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a b s t r a c t

When representing DNA molecules as words, it is necessary to take into account the fact
that a word u encodes basically the same information as its Watson–Crick complement
θ(u), where θ denotes the Watson–Crick complementarity function. Thus, an expression
which involves only a word u and its complement can be still considered as a repeating
sequence. In this context, we define and investigate the properties of a special class
of primitive words, called pseudo-primitive words relative to θ or simply θ-primitive
words, which cannot be expressed as such repeating sequences. For instance, we prove
the existence of a unique θ-primitive root of a given word, and we give some constraints
forcing two distinct words to share their θ-primitive root. Also, we present an extension of
the well-known Fine and Wilf theorem, for which we give an optimal bound.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Encoding information as DNA strands as in, e.g., DNA Computing, brings up for investigation new features based on the
specific biochemical properties of DNA molecules. Recall that single-stranded DNA molecules can be viewed as words over
the quaternary alphabet of bases {A, T , C,G}. Moreover, one of the main properties of DNA molecules is the Watson–Crick
complementarity of the bases A and T and respectively G and C . Because of this property twoWatson–Crick complementary
single DNA strands with opposite orientation bind together to form a DNA double strand, in a process called base-pairing.
Recently, there were several approaches to generalize notions from classical combinatorics onwords in order to incorporate
this major characteristic of DNA molecules, see, e.g., [1–3]. Along these lines, in this paper, we generalize the concept of
primitivity and define pseudo-primitive words.
The notion of periodicity plays an important role in various fields of theoretical computer science, such as algebraic

coding theory, [4], and combinatorics on words, [5,6]. An integer p ≥ 1 is a period of a word if any of two letters on the
word which are distant from each other by p letters are the same. The well-known periodicity theorem by Fine and Wilf
states that if a word has two periods p, q and is of length at least p + q − gcd(p, q), then gcd(p, q) is also a period of the
word, where gcd(p, q) is the greatest common divisor of p and q [7]. This theorem can be rephrased as: if a power of a word
u and a power of a word v share the same prefix of length |u| + |v| − gcd(|u|, |v|), then u and v are powers of a same word
t . This description elucidates the relationship between the Fine and Wilf theorem and the notion of primitivity. A word is
called primitive if it cannot be decomposed as a power of another word. Investigating the primitivity of a word is often the
first step when analyzing its properties. Moreover, how a word can be decomposed and whether two words are powers of
a common word are two questions which were widely investigated in language theory, see, e.g., [5,6,8].
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While, in classical combinatorics on words we look for repetitions of the form ui for some word u and some i ≥ 2, when
dealing with DNAmolecules (i.e., their abstract representation as words) we have to take into account the fact that a word u
encodes the same information as its complement θ(u), where θ denotes theWatson–Crick complementarity function, or its
mathematical formalization as an arbitrary antimorphic involution. In other words, we can extend the notion of power to
pseudo-power relative to θ or simply θ-power. A θ-power of u is a word of the form u1u2 · · · un for some n ≥ 1, where u1 = u
and for any 2 ≤ i ≤ n, ui is either u or θ(u). In this context, we define θ-primitive words as stringswhich cannot be a θ-power
of another word. Also, we define the θ-primitive root of a word w as the shortest word u such that w is a θ-power of u. In
classical combinatorics on words, there exist two equivalent definitions for the primitive root of a word w as the shortest
word u such thatw is a power of u, or the unique primitive word u such thatw is a power of u. The first main contribution of
this paper is to propose such equivalent definitions for the θ-primitive root of a word, that is, we prove that the θ-primitive
root of a word w is the unique θ-primitive word u such that w is a θ-power of u. In the process of obtaining this result, we
also prove an extension of the Fine and Wilf theorem. Until now, several extensions of this theorem were proved, see, e.g.,
[9–14]. In this paper, we look at the case when a θ-power of u and a θ-power of v share a same prefix. If the prefix is longer
than a given bound, then we prove that u and v are θ-powers of a same word, that is, they share their θ-primitive root. Our
bound is twice the length of the longer word (u or v) plus the length of the other word minus the greatest common divisor
of the lengths of u and v. Moreover, we show that this bound is optimal.
The paper is organized as follows. In Section 2, we fix our terminology and recall some basic results. In Section 3 we

investigate some basic properties of θ-primitive words. In particular, we give an extension of the Fine and Wilf theorem
which implies immediately that we can define the θ-primitive root of a word in the two equivalent ways. In Section 4,
we present several constraints forcing two words to share their θ-primitive root. In Section 5, we investigate some
connections between the θ-primitive words that we introduced here and the θ-palindrome words, which were proposed
and investigated in [2,3]. In Section 6, we present the optimal bound for our extension of the Fine and Wilf theorem.

2. Preliminaries

LetΣ be a finite alphabet. We denote byΣ∗ the set of all finite words over the alphabetΣ , by ε the empty word, and by
Σ+ the set of all nonempty finite words overΣ . The length of awordw, denoted by |w|, is the number of letters occurrences,
i.e., if w = a1 . . . an with ai ∈ Σ , 1 ≤ i ≤ n, then |w| = n. For a letter a ∈ Σ , let |w|a denote the number of occurrences of
a in w. Therefore, |w| =

∑
a∈Σ |w|a. We say that u is a prefix (resp. a suffix) of v, if v = ut (resp. v = tu) for some t ∈ Σ

∗.
For any integer 0 ≤ k ≤ |v|, we use the notation prefk(v) (suffk(v)) for the prefix (resp. suffix) of length k of a word v, and
Pref(v) (Suff(v)) for the set of all prefixes (resp. all suffixes) of v. In particular pref0(v) = ε for any word v ∈ Σ∗. An integer
p ≥ 1 is a period of a wordw = a1 . . . an, with ai ∈ Σ for all 1 ≤ i ≤ n, if ai = ai+p for all 1 ≤ i ≤ n− p.
A wordw ∈ Σ+ is called primitive if it cannot be written as a power of another word; that is,w = un implies n = 1 and

w = u. For a wordw ∈ Σ+, the shortest u ∈ Σ+ such thatw = un for some n ≥ 1 is called the primitive root of the wordw
and is denoted by ρ(w). The following result gives an alternative, equivalent way for defining the primitive root of a word.

Theorem 1. For each word w ∈ Σ∗, there exists a unique primitive word t ∈ Σ+ such that ρ(w) = t, i.e., w = tn for some
n ≥ 1.

The next result illustrates another property of primitive words.

Proposition 2. Let u ∈ Σ+ be a primitive word. Then u cannot be a factor of u2 in a nontrivial way, i.e., if u2 = xuy, then
necessarily either x = ε or y = ε.

We say that two words u and v commute if uv = vu. The following result characterizes the commutation of two words
in terms of primitive roots.

Theorem 3. For u, v ∈ Σ∗, the following conditions are equivalent: (i) u and v commute; (ii) u and v satisfy a non-trivial relation,
i.e., an equation where the two sides are not graphically identical; (iii) u and v have the same primitive root.

For two words u and v, we denote by u ∧ v the maximal common prefix of u and v. The following result from [6] will be
very useful in our future considerations.

Theorem 4. Let X = {x, y} ⊆ Σ∗ such that xy 6= yx. Then, for each words u, v ∈ X∗ we have

u ∈ xX+, v ∈ yX+, |u|, |v| ≥ |xy ∧ yx|, ⇒ u ∧ v = xy ∧ yx.

The following result is an immediate consequence.

Corollary 5. Let X = {x, y} ⊆ Σ∗, u ∈ xX∗, and v ∈ yX∗ such that |u|, |v| ≥ |xy|. If |u ∧ v| ≥ |xy|, then ρ(x) = ρ(y).

Two words u and v are said to be conjugate if there exist words x and y such that u = xy and v = yx. In other words, v
can be obtained via a cyclic permutation of u. The next result characterizes the conjugacy of two words.

Theorem 6. Let u, v ∈ Σ+. Then the following conditions are equivalent: (i) u and v are conjugate; (ii) there exists a word z
such that uz = zv; moreover, this holds if and only if u = pq, v = qp, and z = (pq)ip, for some p, q ∈ Σ∗ and i ≥ 0; (iii) the
primitive roots of u and v are conjugate.
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Fig. 1. The sets of primitive and θ-primitive words.

Note that conjugacy is an equivalence relation, the conjugacy class of a word w consisting of all conjugates of w. The
following is a well-known result.

Proposition 7. Ifw is a primitive word, then its conjugacy class contains |w| distinct primitive words.

The following result, known as the Fine and Wilf theorem in its form for words, see [6,5], illustrates a fundamental
periodicity property of words. As usual, gcd(n,m) denotes the greatest common divisor of n and m.

Theorem 8. Let u, v ∈ Σ∗, n = |u|, m = |v|, and d = gcd(n,m). If two powers ui and vj of u and v have a common prefix of
length at least n+m− d, then u and v are powers of a common word. Moreover, the bound n+m− d is optimal.

A mapping θ : Σ∗ → Σ∗ is called a morphism (an antimorphism) if for any words u, v ∈ Σ∗, θ(uv) = θ(u)θ(v)
(resp. θ(uv) = θ(v)θ(u)). A mapping θ : Σ∗ → Σ∗ is called an involution if, for all words u ∈ Σ∗, θ(θ(u)) = u. Watson–
Crick complementarity is a typical example of antimorphic involutions; in fact, it is defined as the antimorphic involution θ
satisfying θ(A) = T , θ(T ) = A, θ(C) = G, and θ(G) = C , which is called the Watson–Crick involution.
For a mapping θ : Σ∗ → Σ∗, a wordw ∈ Σ∗ is called θ-palindrome ifw = θ(w), see [2,3]. We say that a wordw ∈ Σ+

is a pseudo-power of a non-empty word t ∈ Σ+ relative to θ , or simply θ-power of t , ifw ∈ t{t, θ(t)}∗. Conversely, t is called
a pseudo-period of w relative to θ , or simply θ-period of w if w ∈ t{t, θ(t)}∗. Hence t is a θ-period of w if and only if w is a
θ-power of t . We call a word w ∈ Σ+ θ-primitive if there exists no non-empty word t ∈ Σ+ such that w is a θ-power of t
and |w| > |t|. We define the θ-primitive root ofw, denoted by ρθ (w), as the shortest word t such thatw is a θ-power of t .

3. Properties of θ-primitive words

In this section, we consider θ : Σ∗ → Σ∗ to be either a morphic or an antimorpic involution, other than the identity
function. We start by looking at some basic properties of θ-primitive words.

Proposition 9. If a wordw ∈ Σ+ is θ-primitive, then it is also primitive. Moreover, the converse is not always true.

Proof. Suppose thatw is a θ-primitive word but not primitive. Then there exists some t ∈ Σ+ such thatw = tn with n ≥ 2.
By definition of θ-power, w is a θ-power of t . However, this contradicts the θ-primitivity of w because |t| < |w|. For the
converse, since θ is not the identity function, there exists a letter a such that θ(a) 6= a. Then, if we take w = aθ(a), it is
obvious thatw is primitive, but not θ-primitive. �

Thus, the class of θ-primitive words is strictly included in the set of primitive ones, as illustrated in Fig. 1.

Proposition 10. The θ-primitive root of a word is θ-primitive.

Proof. Letw ∈ Σ+ and t = ρθ (w) be its θ-primitive root, that is,w is a θ-power of t . Suppose, now that t is not θ-primitive.
Then there exists a word s ∈ Σ∗ such that t is a θ-power of s and |s| < |t|. Note that θ(t) is a θ-power of either s or θ(s).
Thus,w is a θ-power of s. However, this contradicts t being the θ-primitive root ofw because |s| < |t|. �

We also obtain the following result as an immediate consequence.

Corollary 11. The θ-primitive root of a word is primitive.

Contrary to the case of primitive words, a conjugate of a θ-primitive word need not be θ-primitive, as shown by the
following two examples.

Example 1. Let θ : {A, T , C,G}∗ → {A, T , C,G}∗ be the Watson–Crick involution defined in Section 2. Then the word
w = GCTA is θ-primitive, while its conjugatew′ = AGCT = AGθ(AG) is not.

Example 2. Let θ : {a, b, c, d}∗ → {a, b, c, d}∗ be a morphic involution defined by θ(a) = c , θ(c) = a, θ(b) = d, and
θ(d) = b. Then the wordw = abadcb is θ-primitive, while its conjugatew′ = babadc = (ba)2θ(ba) is not.

So, we can formulate the following result.

Proposition 12. The class of θ-primitive words is not necessarily closed under circular permutations.
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Fine and Wilf’s result on words (Theorem 8) constitutes one of the fundamental periodicity properties of words. Thus, a
natural question is whether we can obtain an extension of this result when for twowords u, v, instead of taking a power of u
and a power of v, we look at a θ-power of u and a θ-power of v. First, we analyze the case when θ is a morphic involution; it
turns out that in this casewe can obtain the same bound as in Theorem 8. However, since the proof of this result is analogous
to the one for Theorem 8, see for instance [5], we will not include it here.

Theorem 13. Let θ : Σ∗ → Σ∗ be a morphic involution, u, v ∈ Σ+ with n = |u|, m = |v|, and d = gcd(n,m),
α(u, θ(u)) ∈ u{u, θ(u)}∗, and β(v, θ(v)) ∈ v{v, θ(v)}∗. If the two θ-powers α(u, θ(u)) and β(v, θ(v)) have a common prefix
of length at least n + m − d, then there exists a word t ∈ Σ+ such that u, v ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). Moreover, the
bound n+m− d is optimal.

However, as illustrated by the following example, if the mapping θ is an antimorphic involution, then the bound given
by Theorem 13 is no longer enough.

Example 3. Let θ : {a, b}∗ → {a, b}∗ be the mirror mapping defined as follows: θ(a) = a, θ(b) = b, and θ(w1 . . . wn) =
wn . . . w1, wherewi ∈ {a, b} for all 1 ≤ i ≤ n. Obviously, θ is an antimorphic involution on {a, b}∗. Let now u = (ab)kb and
v = ab. Then, u2 and vkθ(v)k+1 have a common prefix of length 2|u| − 1 > |u| + |v| − gcd(|u|, |v|). However u and v do
not have the same θ-primitive root, that is, ρθ (u) 6= ρθ (v).

Before stating an analogous result also for the case of antimorphic involutions, we introduce themapping ϕ : Σ∗×Σ →
N defined as ϕ(u, a) = |u|a + |u|θ(a), that is, the number of occurrences of the letters a and θ(a) in the word u. Note that for
any letter a and any word u, ϕ(u, a) = ϕ(u, θ(a)) ≤ |u|, with equality only when u ∈ {a, θ(a)}∗. We will call this mapping
the characteristic function on the alphabetΣ . Moreover, lcm(n,m) denotes, as usual, the least common multiple of n and m.

Theorem 14. Let θ : Σ∗ → Σ∗ be an antimorphic involution, u, v ∈ Σ+, and α(u, θ(u)) ∈ u{u, θ(u)}∗, β(v, θ(v)) ∈
v{v, θ(v)}∗ be two θ-powers sharing a common prefix of length at least lcm(|u|, |v|). Then, there exists a word t ∈ Σ+ such that
u, v ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). In particular, if α(u, θ(u)) = β(v, θ(v)), then ρθ (u) = ρθ (v).

Proof. The proof of this result uses the techniques from [11]. First, we can suppose, without loss of generality that
gcd(|u|, |v|) = 1 and thus lcm(|u|, |v|) = |u||v|. Otherwise, i.e., gcd(|u|, |v|) = d ≥ 2,we consider a newalphabetΣ ′ = Σd,
where the new letters are words of length d in the original alphabet, and we look at the words u and v as elements of (Σ ′)+.
In the larger alphabet gcd(|u|, |v|) = 1, and if we can prove the theorem there it immediately gives the general proof. Let
now |u| = n and |v| = m. If we denote by α′(u, θ(u)) ∈ u{u, θ(u)}∗ and β ′(v, θ(v)) ∈ v{v, θ(v)}∗ the prefixes of length
lcm(n,m) = nm of α(u, θ(u)) and β(v, θ(v)), respectively, then we actually have α′(u, θ(u)) = β ′(v, θ(v)).
Since the mapping θ is an involution, we can easily notice that for any word w and any letter a, ϕ(w, a) = ϕ(θ(w), a).

Moreover, since α′(u, θ(u)) = β ′(v, θ(v)), whenever, for a letter a, ϕ(u, a) > 0, we also have that ϕ(v, a) > 0.
Suppose now that there exist two letters a and b such that {a, θ(a)} ∩ {b, θ(b)} = ∅, ϕ(u, a) > 0, and ϕ(u, b) > 0.

Then, since n = |u| =
∑
c∈Σ |u|c , we have that ϕ(u, a) < n. Let us look next at the number of occurrences of a and θ(a)

in the two sides of the equality α′(u, θ(u)) = β ′(v, θ(v)). Since |α′(u, θ(u))| = |β ′(v, θ(v))| = nm, where |u| = n, and
|v| = m, we obtain mϕ(u, a) = nϕ(v, a). However this contradicts the fact that gcd(n,m) = 1 and ϕ(u, a) < n. So, there
exists a letter a ∈ Σ such that u ∈ {a, θ(a)}+. Since α′(u, θ(u)) = β ′(v, θ(v)), this implies that also v ∈ {a, θ(a)}+. Thus,
ρθ (u) = ρθ (v). �

Note that, in many cases there is a big gap between the bounds given in Theorems 13 and 14. Moreover, Theorem 14
does not give the optimal bound for the general case when θ is an antimorphic involution. In Section 6, we show that this
optimal bound for the general case is 2|u| + |v| − gcd(|u|, |v|), where |u| > |v|, while for some particular cases we obtain
bounds as low as |u| + |v| − gcd(|u|, |v|). As an immediate consequence of Theorems 13 and 14, we obtain the following
result.

Corollary 15. For any wordw ∈ Σ+ there exists a unique θ-primitive word t ∈ Σ+ such thatw ∈ t{t, θ(t)}∗, i.e., ρθ (w) = t.

Let us note now that, maybe evenmore importantly, just as in the case of primitive words, this result provides us with an
alternative, equivalentway for defining the θ-primitive root of awordw, i.e., the θ-primitive word t such thatw ∈ t{t, θ(t)}∗.
This proves to be a very useful tool in our future considerations.
Moreover, we also obtain the following two results as immediate consequences of Theorems 13 and 14.

Corollary 16. Let u, v ∈ Σ+ be two words such that ρ(u) = ρ(v) = t. Then ρθ (u) = ρθ (v) = ρθ (t).

Corollary 17. If we have two words u, v ∈ Σ+ such that u ∈ v{v, θ(v)}∗, then ρθ (u) = ρθ (v).

4. Relations imposing θ-periodicity

It is well-known, due to Theorem 3, that any non-trivial equation over two distinct words forces them to be powers
of a common word, i.e., to share a common primitive root.Thus, a natural question is whether this would also be the case
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when we want two distinct words to be θ-powers of a common word, i.e., to share a common θ-primitive root. From [1],
we already know that the equation uv = θ(v)u imposes ρθ (u) = ρθ (v) only when θ is a morphic involution. In this section,
we give several examples of equations over {u, θ(u), v, θ(v)} forcing ρθ (u) = ρθ (v) in the case when θ : Σ∗ → Σ∗ is an
antimorphic involution.
The first equationwe look at is very similar to the commutation equation of twowords, but it involves also themapping θ .

Theorem 18. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ and u, v ∈ Σ+. If uvθ(v) = vθ(v)u, then
ρθ (u) = ρθ (v).

Proof. Since uvθ(v) = vθ(v)u, we already know, due to Theorem 3, that there exists a primitive word t ∈ Σ+ such that
u = t i and vθ(v) = t j, for some i, j ≥ 0. If j = 2k for some k ≥ 0, then we obtain immediately that v = θ(v) = tk, i.e.,
ρ(u) = ρ(v) = t . Thus, ρθ (u) = ρθ (t) = ρθ (v). Otherwise, i.e., j = 2k + 1, we can write v = tkt1 and θ(v) = t2tk, where
t = t1t2 and |t1| = |t2| > 0. Hence, θ(v) = θ(t1)θ(t)k = t2tk, which implies t2 = θ(t1). In conclusion, u, v ∈ t1{t1, θ(t1)}∗,
for some word t1 ∈ Σ+, i.e., ρθ (u) = ρθ (t1) = ρθ (v). �

Example 4. Let θ : {a, b}∗ → {a, b}∗ be defined as θ(a) = b and θ(b) = a, and let u = ab and v = aba. Then
uvθ(v) = vθ(v)u = (ab)4 and ρθ (u) = ρθ (v) = a.

Next, we modify the previous equation, such that on one side, instead of vθ(v), we take its conjugate θ(v)v.

Theorem 19. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ and u, v ∈ Σ+. If vθ(v)u = uθ(v)v, then
ρθ (u) = ρθ (v).

Proof. If we concatenate the word θ(v) to the right on both sides of the equation vθ(v)u = uθ(v)v, then we obtain
(vθ(v))(uθ(v)) = (uθ(v))(vθ(v)). Due to Theorem 3, this means that there exists a primitive word t ∈ Σ+ such that
vθ(v) = t i and uθ(v) = t j, for some i, j ≥ 0, j ≥ di/2e. If i = 2k for some k ≥ 0, then θ(v) = v = tk and thus also
u = t j−k, i.e., ρ(u) = ρ(v) = t . Henceforth, ρθ (u) = ρθ (t) = ρθ (v). Otherwise, i.e., j = 2k+ 1, we can write v = tkt1 and
θ(v) = t2tk, where t = t1t2 and |t1| = |t2| > 0. Hence, we achieve again t2 = θ(t1), which implies that v ∈ t1{t1, θ(t1)}∗.
Moreover, since uθ(v) = t j, we also obtain u = t j−k−1t1 ∈ t1{t1, θ(t1)}∗. Thus, ρθ (u) = ρθ (t1) = ρθ (v). �

Example 5. Using Σ defined in Example 4, let u = a and v = aba. Then vθ(v)u = uθ(v)v = abababa and ρθ (u) = ρθ (v)
= a.

The next result gives an example of a more intricate equation which also imposes θ-periodicity.

Theorem 20. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ and u, v ∈ Σ∗. If u2v = vuθ(u), then
u = θ(u) and ρ(u) = ρ(v).

Proof. Since u2v = vuθ(u), due to Theorem 6, there exist some words z, t ∈ Σ∗ and some integer k ≥ 0 such that u2 = zt ,
uθ(u) = tz, and v = (zt)kz. This representation clarifies that uθ(u) can be obtained by cyclically permuting u2. Note that
this operation preserves the property of the word being square. Thus, uθ(u) = w2 for some w ∈ Σ∗, and in fact we have
u = θ(u) because θ is length-preserving. As a result, the given equation becomes u2v = vu2 so that ρ(u) = ρ(v). �

Recall that the primitive root of a θ-palindromic word is θ-palindrome. As such, Theorem 20 means that u2v = vuθ(u)
implies v = θ(v). Examples of u and v satisfying u2v = vuθ(u) are hence quite trivial like u = wi and v = wj for some
θ-palindromew and i, j ≥ 0.
Next, we look at the case when both uv and vu are θ-palindromic words, which also proves to be enough to impose that

u, v ∈ {t, θ(t)}∗ for some t ∈ Σ+.

Theorem 21. Let u, v ∈ Σ∗ be two words such that both uv and vu are a θ-palindrome and let t = ρ(uv). Then, t = θ(t) and
either ρ(u) = ρ(v) = t or u = (t1θ(t1))it1 and v = θ(t1)(t1θ(t1))j, where t = t1θ(t1) and i, j ≥ 0.

Proof. The equality uv = θ(uv) immediately implies that t = θ(t). Moreover, if u and v commute, then ρ(u) = ρ(v) =
ρ(uv) = t . Assume now that u and v do not commute. Since ρ(u) 6= ρ(v) and uv = tn for some n ≥ 1, we can write
u = t it1 and v = t2tn−i−1 for some i ≥ 0 and t1, t2 ∈ Σ+ such that t = t1t2. Thus, vu = t2tn−1t1 = (t2t1)n and since
vu = θ(vu) we obtain that also t2t1 is a θ-palindrome, i.e., t2t1 = θ(t2t1) = θ(t1)θ(t2). Now, if |t1| = |t2|, then t2 = θ(t1)
and thus t = t1θ(t1), u = t it1, and v = θ(t1)tn−i−1. Otherwise, either |t1| > |t2| or |t1| < |t2|. We consider next only the
case |t1| > |t2|, the other one being similar. Since t2t1 = θ(t1)θ(t2), we can write θ(t1) = t2x and t1 = xθ(t2) for someword
x ∈ Σ+ with x = θ(x). Then, since t = θ(t)we have that t = t1t2 = xθ(t2)t2 = θ(xθ(t2)t2) = θ(t2)t2x. Hence, x and θ(t2)t2
commute, which contradicts the primitivity of t . �

Example 6. With θ defined in Example 4, let u = aba and v = babab. Then both uv and vu are a θ-palindrome. For such u
and v, t = ρ(uv) = ab = aθ(a).

As an immediate consequence we obtain the following result.

Corollary 22. For u, v ∈ Σ∗, if uv = θ(uv) and vu = θ(vu), then ρθ (u) = ρθ (θ(v)). In particular, there exists some t ∈ Σ+
such that u, v ∈ {t, θ(t)}∗.
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Fig. 2. The equation θ(v)vx = yvθ(v).

Fig. 3. The equation vθ(v)v = xv2y.

5. On θ-primitive and θ-palindromic words

In this section,we investigate someword equations underwhich a θ-primitivewordmust be a θ-palindrome. Throughout
this section we consider θ : Σ∗ → Σ∗ to be an antimorphic involution over the alphabetΣ .

Theorem 23. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ and v ∈ Σ+ be a θ-primitive word. If
θ(v)vx = yvθ(v) for some words x, y ∈ Σ∗ with |x|, |y| < |v|, then v is a θ-palindrome and x = y = ε.

Proof. Assume there exist some words x, y ∈ Σ∗ with |x|, |y| < |v|, such that θ(v)vx = yvθ(v), as illustrated in Fig. 2.
Then, we can write v = v1v2 = v2v3, with v1, v2, v3 ∈ Σ∗, y = θ(v2) = x, v1 = θ(v1), v3 = θ(v3). Since v1v2 = v2v3,

we can write v1 = pq, v3 = qp, v2 = (pq)ip, and v = (pq)i+1p for some words p, q ∈ Σ∗ and some i ≥ 0. Thus, pq = θ(pq)
and qp = θ(qp), which, due to Theorem 21, leads to one of the following two cases. First, if p = tkt1 and q = θ(t1)t j, where
k, j ≥ 0 and t = t1θ(t1) is the primitive root of pq, then we obtain that v = t(k+j+1)(i+1)+kt1 with (k+ j+ 1)(i+ 1)+ k ≥ 1,
which contradicts the θ-primitivity of v. Second, if ρ(p) = ρ(q) = t , then also v ∈ {t}∗ where t = θ(t). Thus, v = θ(v),
and the initial identity becomes v2x = yv2. However, since v is θ-primitive and thus also primitive, we immediately obtain,
due to Proposition 2, that x = y = ε. �

In other words, the previous result states that if v is a θ-primitive word, then θ(v)v cannot overlap with vθ(v) in a
nontrivial way. However, the following example shows that this is not the case anymore if we look at the overlaps between
θ(v)v and v2, or between vθ(v) and v2, respectively, even if we consider the larger class of primitive words.

Example 7. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ , p, q ∈ Σ+ such that ρ(p) 6= ρ(q),
p = θ(p), and q = θ(q), and let v = p2q2p and u = pq2p2. It is easy to see that u and v are primitive words. In addition, if we
takeΣ = {a, b}, the mapping θ to be the mirror image, p = a, and q = b, then u and v are actually θ-primitive words. Since
θ(v) = pq2p2 and θ(u) = p2q2p, we can write xv2 = vθ(v)y and yθ(u)u = u2z where x = p2q2, y = pq2p, and z = q2p2.
Thus, for primitive (resp. θ-primitive) words u and v, vθ(v) can overlap with v2 and θ(u)uwith u2 in a nontrivial way.

Maybe even more surprisingly, the situation changes again if we try to fit v2 inside vθ(v)v, as shown by the following
result.

Theorem 24. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ and v ∈ Σ+ be a primitive word. If
vθ(v)v = xv2y for some words x, y ∈ Σ∗, then v is θ-palindrome and either x = ε and y = v or x = v and y = ε.

Proof. Suppose that vθ(v)v = xv2y for some words x, y ∈ Σ∗, as illustrated in Fig. 3.
If we look at this identity from left to right, then we can write v = xv1 = v1v2, with v1, v2 ∈ Σ∗ such that |x| = |v2| and

θ(v) = θ(v2)θ(v1). Then, if we look at the right sides of this identity, then we immediately obtain that x = v2 and v1 = y.
Thus, v = xy = yx, implying that x, y ∈ {t}∗, for some primitive word t . However, since v is primitive, this means that either
x = ε and y = v or x = v and y = ε. Moreover, in both cases we also obtain v = θ(v). �

6. A shorter bound for the Fine and Wilf theorem (antimorphic case)

Throughout this section we take θ : Σ∗ → Σ∗ to be an antimorphic involution, u, v ∈ Σ+ with |u| > |v|, α(u, θ(u)) be
a θ-power of u, and β(v, θ(v)) be a θ-power of v. Recall that α(u, θ(u)) starts with u and β(v, θ(v)) starts with v. We start
our analysis with the case when v is θ-palindrome.

Theorem 25. Let u and v be two words with |u| > |v| and v = θ(v). If there exist two θ-powers α(u, θ(u)) ∈ u{u, θ(u)}∗ and
β(v, θ(v)) ∈ v{v, θ(v)}∗ having a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then ρθ (u) = ρθ (v).
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Fig. 4. The common prefix of uθ(u) and vn of length |u| + |v| − 1.

Fig. 5. The common prefix of u2 and β(v, θ(v)) of length |u| + |v| − 1.

Proof. First, we can suppose, without loss of generality that gcd(|u|, |v|) = 1. Otherwise, i.e., gcd(|u|, |v|) = d ≥ 2, we
consider a new alphabet Σ ′ = Σd, where the new letters are words of length d in the original alphabet, and we look at
the words u and v as elements of (Σ ′)+. In the larger alphabet gcd(|u|, |v|) = 1, and if we can prove the theorem there it
immediately gives the general proof.
Since v = θ(v), β(v, θ(v)) = vn for some n ≥ 2. Moreover, if v ∈ Σ , then trivially u ∈ v{v, θ(v)}∗, i.e., ρθ (u) = ρθ (v).

So, suppose next that |v| ≥ 2 and, since gcd(|u|, |v|) = 1, u = viv1, where i ≥ 1 and v = v1v2 with v1, v2 ∈ Σ+.
If α(u, θ(u)) = u2α′(u, θ(u)), then u2 and vn have a common prefix of length at least |u|+ |v|− gcd(|u|, |v|), which, due

to Theorem 8, implies that ρ(u) = ρ(v) = t , for some primitive word t ∈ Σ+, and thus ρθ (u) = ρθ (t) = ρθ (v).
Otherwise, α(u, θ(u)) = uθ(u)α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}∗. Now, we have two cases depending

on |v1| and |v2|. We present here only the case when |v1| ≤ |v2|, see Fig. 4, the other one being symmetric. Now,
since θ is an antimorphism, θ(suff|v|−1(u)) = pref|v|−1(θ(u)). So, we can write v2 = θ(v1)z for some z ∈ Σ∗, since
|v1| ≤ |v2| ≤ |v| − 1 = |v| − gcd(|u|, |v|). Now, to the left of the border-crossing v there is at least one occurrence of
another v, so we immediately obtain z = θ(z), as v2 = θ(v1)z and θ(v2) = θ(z)v1. Then, v = v1θ(v1)z = zv1θ(v1) = θ(v)
which implies, due to Theorem 18, that ρθ (v1) = ρθ (z). So, since v = v1θ(v1)z and u = viv1 = (v1θ(v1)z)iv1, we obtain
ρθ (u) = ρθ (v). �

Let us look next at the case when u is θ-palindrome.

Theorem 26. Let u and v be two words with |u| > |v| and u = θ(u). If there exist two θ-powers α(u, θ(u)) ∈ u{u, θ(u)}∗ and
β(v, θ(v)) ∈ v{v, θ(v)}∗ having a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then ρθ (u) = ρθ (v).

Proof. As in the previous proof, we can suppose without loss of generality that gcd(|u|, |v|) = 1. Also, since u = θ(u),
we actually have α(u, θ(u)) = un for some n ≥ 2. Moreover, since u starts with v and u = θ(u), we also know that u
ends with θ(v). Now, if v ∈ Σ , then trivially u ∈ v{v, θ(v)}∗, i.e., ρθ (u) = ρθ (v). So, we can suppose next that |v| ≥ 2
and thus, since gcd(|u|, |v|) = 1, we have u = β ′(v, θ(v))v′, where β ′(v, θ(v)) is a prefix of β(v, θ(v)) and v′ ∈ Σ+,
v′ ∈ Pref(v) ∪ Pref(θ(v)).
Case 1: We begin our analysis with the case when the border between the first two u’s falls inside a v, as illustrated in
Fig. 5. Then, we can write v = v1v2 = v2v3 where v1, v2, v3 ∈ Σ+, implying that v1 = xy, v3 = yx, and v2 = (xy)jx for
some j ≥ 0 and x, y ∈ Σ∗. Moreover, since u ends with θ(v), we also have v1 = θ(v1), i.e., xy = θ(y)θ(x). If x = ε, then
v1, v2, v3, v ∈ {y}∗, which implies that also u ∈ y{y, θ(y)}∗, i.e., ρθ (u) = ρθ (v) = ρθ (y); moreover, since gcd(|u|, |v|) = 1
we actually must have y ∈ Σ . Similarly, we also obtain ρθ (u) = ρθ (v) when y = ε. So, from now on we can suppose that
x, y ∈ Σ+.
Let us consider next the case when, before the border-crossing v we have an occurrence of another v, as illustrated

in Fig. 5. Then, we have that v2 = θ(v2), i.e., (xy)jx = (θ(x)θ(y))jθ(x). If j ≥ 1, then this means that x = θ(x) and
y = θ(y). Then, the equality xy = θ(y)θ(x) becomes xy = yx. So, there exists a word t ∈ Σ+ such that x, y ∈ {t}∗,
and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). Otherwise, j = 0 and we have x = θ(x). But then, the
equality xy = θ(y)θ(x) becomes xy = θ(y)x, implying that x = p(qp)n and y = (qp)m for some m ≥ 1, n ≥ 0, and
some words p and q with p = θ(p) and q = θ(q), see [1]. Since u2 and β(v, θ(v)) share a common prefix of length at
least |u| + |v| − gcd(|u|, |v|) = |u| + |v| − 1, v3 and some β ′(v, θ(v)) share a prefix of length |v3| − 1. Furthermore, as
v3 = yx = (qp)mp(qp)n, v = v1v2 = p(qp)m+np(qp)n, and θ(v) = (pq)np(pq)m+np, this means that independently of what
follows to the right the border-crossing v, either v or θ(v), we have two expressions over p and q sharing a common prefix
of length at least |p| + |q|. So, due to Corollary 5, p, q ∈ {t}∗ for some t ∈ Σ+, which implies that also x, y, v ∈ {t}+ and
u ∈ {t, θ(t)}+, i.e., ρθ (u) = ρθ (v).
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Fig. 6. The common prefix of u2 and β(v, θ(v)) of length |u| + |v| − 1.

Fig. 7. The prefix of u2α′(u, θ(u)) and β(v, θ(v)) of length 2|u| + |v| − 1.

Now, suppose that before the border-crossing vwe have an occurrence of θ(v). If |u| < 2|v|+|v1|, then, since β(v, θ(v))
starts with v, we must have v = θ(v), in which case we can use Theorem 25 to conclude that ρθ (u) = ρθ (v). Otherwise,
|u| ≥ 2|v| + |v1| and since u = θ(u), u ends either with vθ(v) or with θ(v)θ(v). In the first case, we obtain v3 = θ(v3), i.e.,
yx = θ(yx), which together with xy = θ(xy) imply, due to Corollary 22, that x, y ∈ {t, θ(t)}∗, for some t ∈ Σ+ and thus,
ρθ (u) = ρθ (v). In the second case, we obtain v1 = v3, i.e., xy = yx. So, x, y ∈ {t}∗, and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗,
i.e., ρθ (u) = ρθ (v).
Case 2: Let us consider now the case when the border between the first two u’s falls inside θ(v), as illustrated in Fig. 6. Then,
we can write again v = v1v2 = v2v3 where v1, v2, v3 ∈ Σ+, which implies that v1 = xy, v3 = yx, and v2 = (xy)jx for some
j ≥ 0 and x, y ∈ Σ∗. Just as before, if x = ε or y = ε, we immediately obtain that ρθ (u) = ρθ (v). So, we can suppose that
x, y ∈ Σ+. Moreover, v1 = θ(v1), i.e., xy = θ(xy). Now, if the border-crossing θ(v) is preceded by an occurrence of v, then
we also have v3 = θ(v3), i.e., yx = θ(yx). Then, due to Corollary 22, there exists some t ∈ Σ+ such that x, y ∈ {t, θ(t)}∗,
implying that ρθ (u) = ρθ (v), since v = (xy)j+1x and u = β ′(v, θ(v))θ(v2). If, on the other hand, the border-crossing θ(v)
is preceded by another θ(v), then we immediately obtain v1 = v3, i.e., xy = yx. So, x, y ∈ {t}∗, for some t ∈ Σ+, and thus
also v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). �

Although the previous two results give a very short bound, i.e., |u| + |v| − gcd(|u|, |v|), this is not enough in the general
case, as illustrated in Example 3. Nevertheless, we can prove that, independently of how the θ-power α(u, θ(u)) starts,
2|u| + |v| − gcd(|u|, |v|) is enough to impose ρθ (u) = ρθ (v). The first case we consider is when α(u, θ(u)) starts with u2.

Theorem 27. Given two words u, v ∈ Σ+ with |u| > |v|, if there exist two θ-powers α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v))
∈ v{v, θ(v)}∗ having a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|) and, moreover, α(u, θ(u)) = u2α′(u, θ(u))
for some α′(u, θ(u)) ∈ {u, θ(u)}+, then ρθ (u) = ρθ (v).

Proof. Just as we did before, we can suppose, without loss of generality, that gcd(|u|, |v|) = 1. Now, if v ∈ Σ , then trivially
u ∈ v{v, θ(v)}∗, i.e., ρθ (u) = ρθ (v). So, we can suppose next that |v| ≥ 2 and thus, since gcd(|u|, |v|) = 1, we have
u = β ′(v, θ(v))v′, where β ′(v, θ(v)) is a prefix of β(v, θ(v)) and v′ ∈ Σ+ is a prefix of either v or θ(v).
Case 1: Let us look first at the case when the border between the first two u’s falls inside v, i.e., u = β ′(v, θ(v))v1 for some
v1 ∈ Σ

+ such that v = v1v2 and β ′(v, θ(v)) ∈ v{v, θ(v)}∗ is a prefix of β(v, θ(v)). Moreover, if this border-crossing v
is followed to the right by another v, then v2 = v1vv2, since pref|v|(u) = v. Thus, v1v2 = v2v1, meaning that there exists
a primitive word t ∈ Σ+ such that v1, v2 ∈ {t}+ and thus v ∈ {t}+. Moreover, since u = β ′(v, θ(v))v1, we also have
u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). Otherwise, the border-crossing v is followed to the right by θ(v), as illustrated in Fig. 7.
Thus, we can write v = v1v2 = v2v3 with v1, v2, v3 ∈ Σ+, |v1| = |v3|, and v3 = θ(v3). But then, Theorem 6 implies that
there exist some i ≥ 0 and some x, y ∈ Σ∗ such that v1 = xy, v3 = yx, v2 = (xy)ix, and v = (xy)i+1x. If x = ε, then we have
that v1, v2, v3, v ∈ {y}+, which implies that also u ∈ y{y, θ(y)}∗, i.e., ρθ (u) = ρθ (v). Similarly, we also obtain ρθ (u) = ρθ (v)
when y = ε. So, from now on we can suppose that x, y ∈ Σ+.
Suppose first that i ≥ 1. If we take |β ′(v, θ(v))| = k|v| with k ≥ 1, then the length of the first u is |u| = k|v| + |v1| =

k(i+1)|xy|+ k|x|+ |xy|. Since the second u starts with v2 = (xy)ix, using length arguments, wemust have that its right end
will fall inside either v or θ(v), after exactly 2|xy| characters. If the right end of the second u falls inside θ(v) = (yx)i+1θ(x),
then suff|xy|(u) = yx. But, the first u endedwith v1 = xy. So, xy = yx, which implies that there exists a primitiveword t ∈ Σ+
such that x, y ∈ {t}∗, and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (t) = ρθ (v). Otherwise, the right end of the
second u falls inside v, i.e., suff2|xy|(u) = xyxy. Actually, depending on what precedes to the left this second border-crossing
v, either v or θ(v), we have suff|x|+2|xy|(u) ∈ {xxyxy, θ(x)xyxy}. Next, we look at the suffix of the first u and we have again
two cases depending on what precedes the first border-crossing v. If there is a v to the left of this border-crossing v, then
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Fig. 8. The prefix of u2α′(u, θ(u)) and β(v, θ(v)) of length 2|u| + |v| − 1.

Fig. 9. The prefix of u2α′(u, θ(u)) and β(v, θ(v)) of length 2|u| + |v| − 1.

Fig. 10. The prefix of u2α′(u, θ(u)) and β(v, θ(v)) of length 2|u| + |v| − 1.

suff|x|+2|xy|(u) = xyxv1, and thus we obtain immediately that xy = yx. So, in this case there exists a primitive word t ∈ Σ+,
such that v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). Otherwise, there is a θ(v) to the left of the border-crossing v, i.e.,
suff|x|+2|xy|(u) = yxθ(x)v1. Thus, in this case we obtain that either yxθ(x) = xxy or yxθ(x) = θ(x)xy. However, in both cases,
due to Theorems 19 and 20, we obtain x, y ∈ {t, θ(t)}∗ for some t ∈ Σ+, which immediately implies ρθ (v) = ρθ (u).
Suppose next that i = 0, i.e., v1 = xy, v3 = yx, v2 = x, v = xyx, and θ(yx) = yx, as illustrated in Fig. 8. Now, if we

compute the length of the first u, then we have |u| = k|v| + |xy| for some k ≥ 1. Since the second u starts with v2 = x, we
must have that its right end will fall inside either v or θ(v), after exactly |y| characters. Now, we have two cases depending
on what occurs to the left of this second border-crossing point.
First, if there is a v occurring before this border-crossing point, then suff2|xy|(u) = xyxy. Next, we turn again to look

at the suffix of the first u. Depending on whether there is v or θ(v) to the left of the first border-crossing v, we have
suff2|xy|(u) ∈ {yxxy, θ(y)θ(x)xy}. Thus, either yx = xy or θ(xy) = xy. However, since also θ(yx) = yx, we obtain that
either x, y ∈ {t}∗ or x, y ∈ {t, θ(t)}∗ for some t ∈ Σ+, and thus ρθ (u) = ρθ (v).
Second, if θ(v) = θ(x)θ(y)θ(x) occurs to the left of the second border-crossing point, since suff|xy|(u) = v1 = xy, then

we obtain immediately that x = θ(x). But, we already knew that yx = θ(yx), i.e., yx = xθ(y), which implies x = p(qp)j and
y = (pq)k for some j ≥ 0, k ≥ 1, and some words p and q such that p = θ(p) and q = θ(q), see [1]. Now, since α(u, θ(u))
and β(v, θ(v)) have a common prefix of length 2|u| + |v| − gcd(|u|, |v|) = 2|u| + |v| − 1, we can also look at the prefix of
length |v|−1 of the thirdword from α(u, θ(u)), which is either u or θ(u). However, in all cases, after we reduce the common
prefix, we have two distinct expressions over p and q of length longer than |p| + |q|, which implies, due to Corollary 5, that
pq = qp. Thus, also in this case ρθ (u) = ρθ (v).
Case 2: Consider now the case when the border between the first two u’s falls inside θ(v). If this border-crossing θ(v) is
followed to the right by another θ(v), as illustrated in Fig. 9, then there exist some v1, v2 ∈ Σ+ such that v = v1v2,
v1 = θ(v1), and v2 = θ(v2). Thus, obviously v, θ(v), u, θ(u) ∈ {v1, v2}+, i.e., α(u, θ(u)) and β(v, θ(v)) are actually
two expressions over {v1, v2} having a common prefix of length 2|u| + |v| − gcd(|u|, |v|) = 2|u| + |v| − 1. Moreover,
since |u| = k|v| + |v2| for some k ≥ 1 and the second u begins with v1, its right end cuts a v or θ(v) after exactly
(2|v2| mod |v|) 6= |v2| characters. Thus, the two expressions over {v1, v2} have to differ at some point, and moreover, after
we eliminate the common prefix we remain with two distinct expressions over v1 and v2 of length longer than |v1| + |v2|,
which implies, due to Corollary 5, that v1v2 = v2v1. Thus, also in this case ρθ (u) = ρθ (v).
Hence, the border-crossing θ(v) is followed to the right by v, as illustrated in Fig. 10. Then, we canwrite v = v1v2 = v2v3

for some v1, v2, v3 ∈ Σ+ with |v1| = |v3| and v1 = θ(v1). Thus, due to Theorem 6, there exist some words x, y ∈ Σ∗ and
some i ≥ 0 such that v1 = xy, v3 = yx, v2 = (xy)ix, and v = (xy)i+1x. Again, if either x = ε or y = ε, then we obtain
immediately that ρθ (u) = ρθ (v). So, from now on, we can suppose that x, y ∈ Σ+. Moreover, since u ends with θ(v2), we
also know that θ(u) starts with v2 = (xy)ix.
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Fig. 11. The prefixes of u2α′(u, θ(u)) and β(v, θ(v)) of length 2|u| + |v|.

Suppose first that i ≥ 1. Then, the length of the first u is |u| = k|v| + |v2| = k|v| + i|xy| + |x| for some k ≥ 1. Since
the second u starts with θ(v1) = xy, its right end will cut either v or θ(v) after exactly |x| + (i − 1)|xy| characters. If this
second border point falls inside v, since both u and θ(u) start with xy, we obtain xy = yx. That is, there exists a primitive
word t ∈ Σ+ such that x, y, v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). Otherwise, this second border point cuts
θ(v) = θ(x)(xy)i+1 after exactly |x| + (i − 1)|xy| characters. Then, since u ends with θ(v2) = θ(x)(xy)i, depending on
whether to the left of this second border-crossing θ(v) we have either v or θ(v), we obtain either yxθ(x) = θ(x)xy or
xyθ(x) = θ(x)xy. In the first case, Theorem 19 implies x, y ∈ {t, θ(t)}∗ for some t ∈ Σ+, while in the latter one we obtain
x = θ(x) and ρ(x) = ρ(y). Since v = (xy)i+1x and u = β ′(v, θ(v))θ(v2), we conclude again that ρθ (u) = ρθ (v).
Otherwise, we have i = 0, i.e., v1 = xy, v3 = yx, v2 = x, v = xyx, and θ(v) = θ(x)xy. Using length arguments again, we

notice that the right end of the second u cuts either v or θ(v) after exactly 2|x| characters.
Let us look first at the case when this second border point falls inside θ(v). Then x = θ(x), as u ends with θ(v2) = θ(x).

Since α(u, θ(u)) and β(v, θ(v)) have a common prefix of length 2|u|+ |v|− gcd(|u|, |v|) = 2|u|+ |v|− 1, we can also look
at the prefix of length |v| − 1 of the third word from α(u, θ(u)), which is either u or θ(u). Since u ends with θ(v2) = θ(x),
we know that both u and θ(u) start with x. Furthermore, since θ(xy) = xy, we actually have two distinct expressions over
{x, y}+, one starting with x and the other with y, having a common prefix longer than |x| + |y|, implying, due to Corollary 5,
that xy = yx. So, also in this case ρθ (u) = ρθ (v).
Next, we turn to the case when the second border point falls inside v and we analyze two cases depending on the length

of u. Firstly, if |u| > 2|v|, then the first u starts either with v2 or with vθ(v) and we look at the prefix of the second u, see
Fig. 10. In the former case, we obtain immediately that xy = yx, which implies that there exists a primitive word t ∈ Σ+
such that x, y, v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ (u) = ρθ (v). In the latter case, we obtain yx = θ(yx), which together
with xy = θ(xy) implies, due to Corollary 22, that x, y ∈ {t, θ(t)}∗ for some t ∈ Σ+, and thus also ρθ (u) = ρθ (v).
Second, if |u| < 2|v|, then we actually must have u = vθ(v2) = xyxθ(x), as illustrated in Fig. 11. Since α(u, θ(u)) and

β(v, θ(v)) have a commonprefix of length 2|u|+|v|−1, after eliminating the commonprefix, we obtain one of the following
four equations, depending on whether the third block of α(u, θ(u)) is u or θ(u), and the fourth block of β(v, θ(v)) is v or
θ(v).

- If we have θ(x)xy pref|x|−1(x) = yxx pref|x|−1(yx), then pref|x|(yx) = θ(x), and thus we obtain pref|x|−1(x) =
pref|x|−1(θ(x)). Now, if we denote x = x1 . . . xn with x1, . . . , xn ∈ Σ , then the equation pref|x|−1(x) = pref|x|−1(θ(x))
becomes x1 . . . xn−1 = θ(xn) . . . θ(x2). Depending on whether |x| is even or odd, this equality implies x =
x1 . . . xkθ(x1 . . . xk) or x = x1 . . . xkxk+1θ(x1 . . . xk) with xk+1 = θ(xk+1). However, on both cases, we obtain x = θ(x).
Then, from the initial equation θ(x)xy pref|x|−1(x) = yxx pref|x|−1(yx) we obtain x2y = yx2, which implies ρ(x) = ρ(y).
Hence, also ρθ (u) = ρθ (v).
- If θ(x)xy = yxθ(x), then, due to Theorem 19, we immediately obtain x, y ∈ {t, θ(t)}∗ for some t ∈ Σ+, and thus
ρθ (u) = ρθ (v).
- If θ(x)x pref|xy|−1(θ(x)θ(y)) = yxx pref|x|−1(yx), then we can write yx = θ(x)z for some word z ∈ Σ+ with |z| = |y|.
If we substitute this equation into the initial one, we obtain xθ(z) pref|x|−1(x) = zx pref|x|−1(θ(x)), which implies that
x1 . . . xn−1 = θ(xn) . . . θ(x2), where x = x1 . . . xn with x1, . . . , xn ∈ Σ . Just as before we can again derive x = θ(x). Since
xy = θ(xy), we canwrite xy = θ(y)xwhich implies that x = p(qp)j and y = (qp)k, for some j ≥ 0, k ≥ 1, and somewords
p and q such that p = θ(p) and q = θ(q), see [1]. Then, using these relations, the initial equation becomes a nontrivial
identity over p and q of length more than |p| + |q|. Thus, due to Corollary 5, there exists a primitive word t such that
p, q, x, y ∈ {t}+. So, ρθ (u) = ρθ (v).
- If θ(x)x pref|xy|−1(θ(x)θ(y)) = yxθ(x) pref|x|−1(x), then we can write again yx = θ(x)z for some word z ∈ Σ+ with
|z| = |y|. Thus, the initial equation becomes xθ(z) = zθ(x). If in the equation xy = θ(y)θ(x)we concatenate xθ(x) both
to the left and to the right, then we derive xθ(x)xyxθ(x) = xθ(yx)θ(x)xθ(x). Substituting yx = θ(x)z and θ(yx) = θ(z)x,
we derive xθ(x)xθ(x)zθ(x) = xθ(z)xθ(x)xθ(x). Now, since xθ(z) = zθ(x), this becomes (xθ(x))2xθ(z) = xθ(z)(xθ(x))2,
which implies that there exists a primitive word t ∈ Σ+ such that xθ(x), xθ(z) ∈ {t}∗. If xθ(x) = t2j for some j ≥ 0,
then x = θ(x) = t j, t = θ(t), z, y ∈ {t}∗, and thus ρθ (u) = ρθ (v). If xθ(x) = t2j+1 for some j ≥ 1, then we actually have
x = t jt1, θ(x) = θ(t1)t j, and θ(z) = θ(t1)tk where t = t1θ(t1) and k ≥ 0. Now, from the equation yx = θ(x)z we also
obtain that y ∈ {t1, θ(t1)}+. So, also in this case we can conclude that ρθ (u) = ρθ (v). �

Next, let us look at the case when α(u, θ(u)) starts with uθ(u)u.
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Fig. 12. The case where n is even, vj−1 = v, vj = θ(v), and vj+1 = v.

Theorem 28. Given two words u, v ∈ Σ+ with |u| > |v|, if there exist two θ-powers α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v))
∈ v{v, θ(v)}∗ having a common prefix of length at least 2|u|+|v|−gcd(|u|, |v|) and,moreover,α(u, θ(u)) = uθ(u)uα′(u, θ(u))
with α′(u, θ(u)) ∈ {u, θ(u)}∗, then ρθ (u) = ρθ (v).

Proof. Let us suppose again, just as we did before, that gcd(|u|, |v|) = 1. If we denote u′ = uθ(u), then u′u′ and β(v, θ(v))
have a common prefix of length |u′|+|v|−gcd(|u′|, |v|) = |u′|+|v|−1 and,moreover, u′ = θ(u′). Thus, due to Theorem 26,
ρθ (v) = ρθ (u′); let this θ-primitive root be t . Then, uθ(u) = γ (t, θ(t)), for some θ-power γ (t, θ(t)) ∈ t{t, θ(t)}+, which
implies, due to Theorem 14, that ρθ (u) = t = ρθ (v). �

The only case which remains to be considered now is when α(u, θ(u)) starts with uθ(u)θ(u). Next, we give two
intermediate results concerning θ-palindromic words, which will be very helpful in the proof of Theorem 31.

Lemma 29. Letw ∈ Σ+ and x, y, z be θ-palindromes. Ifw = xy = yz, then there exists a θ-palindromic primitive word p ∈ Σ+
such thatw, x, y, z ∈ {p}+.

Proof. Since w = xy with x = θ(x) and y = θ(y), we know from [15], that there exist two θ-palindrome words p, q and
an integer n ≥ 1 such that w = (pq)n, where pq is a primitive word, p 6= ε, x = (pq)ip, y = q(pq)n−i−1, y = (pq)jp, and
z = q(pq)n−j−1 for some integers 0 ≤ i, j < n. If n − i − 1, j ≥ 1, then pq, qp ∈ Pref(y), i.e., pq = qp. Since pq is primitive,
this means that q = ε. Therefore, p is a primitive word andw, x, y, z ∈ {p}+. If n− i−1 ≥ 1 and j = 0, then q(pq)n−i−1 = p,
which implies that n− i− 1 = 1 and hence q = ε, and we reached the same conclusion as above. If n− i− 1 = 0 and j ≥ 1,
then q = (pq)jp, which cannot hold for any j ≥ 1 because p 6= ε. If both n− i− 1 and j are 0, then p = q, which contradicts
the primitivity of pq. �

Lemma 30. Let w ∈ Σ+ and x, y, z be θ-palindromes. If w = xy2 = yz, then there exists a θ-palindrome primitive word
p ∈ Σ+ such thatw, x, y, z ∈ {p}+.

Proof. Since w = yz with y = θ(y) and z = θ(z), we know from [15], that there exist two θ-palindrome words p, q and
an integer n ≥ 1 such that w = (pq)n, where pq is a primitive word, p 6= ε, x = (pq)ip, y2 = q(pq)n−i−1, y = (pq)jp, and
z = q(pq)n−j−1 for some integers 0 ≤ i, j < n. If n− i− 1, j ≥ 1, then, just as in the proof of Lemma 29, pq = qp. Since pq is
primitive, q = ε, and hence p is primitive and x, y, z ∈ {p}+. If n− i−1 ≥ 1 and j = 0, then y = p. Since y2 = q(pq)n−i−1, we
have that p2 = q(pq)n−i−1, which means, due to Theorem 3, that p, q ∈ {t}∗ for some primitive word t . Since pq is primitive,
this implies that q = ε, p = t , and x, y, z ∈ {p}+. If n− i− 1 = 0 and j ≥ 1, then y2 = q and y = (pq)jp, which are clearly
contradictory. If both n− i− 1 and j are 0, then y2 = q and y = p, which contradicts the primitivity of pq. �

Now, we can state the following result which considers the last case of our analysis.

Theorem 31. Let u, v ∈ Σ+ be two words with |u| > |v|. If there exist two θ-powers α(u, θ(u)) ∈ uθ(u)2{u, θ(u)}∗ and
β(v, θ(v)) ∈ v{v, θ(v)}∗ having a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|), then ρθ (u) = ρθ (v).

Proof. Once again, we can suppose that gcd(|u|, |v|) = 1 without loss of generality. If v ∈ Σ , then trivially u ∈ v{v, θ(v)}∗,
i.e., ρθ (u) = ρθ (v). So, we can suppose next that |v| ≥ 2 and thus, since gcd(|u|, |v|) = 1, the end of both of u and uθ(u) falls
inside either v or θ(v). Let β(v, θ(v)) = v1v2 . . . vnvn+1vn+2β ′(v, θ(v)) with v1 = v, vi ∈ {v, θ(v)} for all 2 ≤ i ≤ n + 2,
and β ′(v, θ(v)) ∈ {v, θ(v)}∗ such that the end of uθ(u) falls inside vn+1. Let uθ(u) = v1 · · · vnv

′, where v′ ∈ Pref(vn+1).
Note that since uθ(u) is a θ-palindrome, uθ(u) = θ(v′)θ(vn) · · · θ(v1). Moreover, the end of u falls inside v(n+2)/2 if n is even
and inside v(n+1)/2 if n is odd. So, from now on we take j = n+2

2 whenever n is even and j =
n+1
2 otherwise, i.e., j is chosen

such that the border between u and θ(u) falls inside vj.
Let us consider first the case when n is even. Then x, a prefix of vj, overlaps with a suffix of θ(vj), see Fig. 12, and the

overlap implies x = θ(x). Note that x is a nonempty and proper prefix of vj.
Now we focus on vj−1, vj, and vj+1. Even if j = n, we can consider vj+1 = vn+1 ∈ {v, θ(v)}. Suppose vj−1vj = vθ(v).

If vj+1 = θ(v), then θ(v)2 = xθ(v)x′ for some x′ ∈ Σ+. This means that x, θ(v) ∈ {t}+ for some primitive word t . Since
uθ(u) = v1 · · · vj−1xθ(vj−1) · · · θ(v1), we obtain that u, v ∈ {t, θ(t)}+. But v ∈ Pref(u), which implies ρθ (u) = ρθ (v).
Otherwise, vj+1 = v. Then vθ(v)w = wvθ(v) holds forw ∈ Pref(v)with |w| = |x|, which implies, due to Theorem 18, that
ρθ (v) = ρθ (w) = t . Then x ∈ {t, θ(t)}+, and hence ρθ (u) = ρθ (v). The case when vj−1vj = θ(v)v also leads to the same
conclusion.
Thus, when n is even, only the cases where vj−1vj = vv or vj−1vj = θ(v)θ(v) remain unsolved yet. Moreover, using

exactly the same technique, we can also prove that when n is odd, all we have to consider are the cases when vjvj+1 = vv
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Fig. 13. The case n being even, vj−1 = vj = v, vj+1 = θ(v), and θ(vj−2) = v.

Fig. 14. The case when n is even and v1 = · · · = vn = v.

or vjvj+1 = θ(v)θ(v). Although we shall discuss only the case when n is even, a similar result can also be obtained for n odd.
Assume that n is even, vj−1vj = vv, and let vj = v = xy such that y ∈ Pref(θ(vj−1)), as illustrated in Fig. 13. Then we have
x = θ(x) and y = θ(y).
Next, we claim that once assuming vj−1vj = vv, we only need to consider the case when v1v2 . . . vn = vn, that is, in

all the other cases, we obtain ρθ (u) = ρθ (v). If j = n, then we are done. Otherwise, i.e., j < n, since j = (n + 2)/2 we
have n > 2, and hence also j > 2. Thus we can also consider vj−2. Suppose first that vj+1 = θ(v). If θ(vj−2) = θ(v),
then the nontrivial overlap between θ(v)2 and θ(v) implies that ρ(y) = ρ(x) = ρ(θ(v)), which, as shown earlier, leads to
ρθ (u) = ρθ (v). Otherwise, let θ(vj−2) = v, as illustrated in Fig. 13. Then, let vj+1 = θ(v) = xy′ for some y′ ∈ Pref(v), which
implies that y′ = θ(y′). Therefore, v = xy = y′x, which implies, due to Lemma 29, that v, x ∈ {t}+ for some t ∈ Σ+ and
hence ρθ (u) = ρθ (v).
Now suppose that vj+1 = v, and we consider θ(vj−2). If j + 1 = n, then j − 2 = 1 and thus vj−2 = v1 = v, i.e.,

v1v2 . . . vn = vn. Otherwise, i.e., j + 1 < n, suppose θ(vj−2) = v. Moreover, since j + 1 < n, we can also consider vj+2.
But then, independently of whether vj+2 is v or θ(v) we obtain ρθ (u) = ρθ (v). Repeating the whole process leaves only
the case vj+1 = vj+2 = · · · = vn = v and θ(vj−2) = θ(vj−3) = · · · = θ(v1) = θ(v) unsolved. That is, when we assume
vj−1vj = vv, all we have to consider is the case when v1v2 . . . vn = vn. On the other hand, if we start with the assumption
that vj−1vj = θ(v)2, then the only case remaining to be proved is when v1 = v and v2 = · · · = vn = θ(v); in all the
other cases, using similar techniques as before, we obtain that ρθ (u) = ρθ (v). However, also in this case, independently of
whether vn+1 is v or θ(v), we can conclude that ρθ (u) = ρθ (v). Moreover, using similar arguments as above, if n is odd,
then the only case which remains to be solved is uθ(u) = vnv′. Therefore, independently of the parity of n, the only case we
have to consider is when uθ(u) = vnv′.
Let us look first at the case when n is even. If v = xy, as illustrated in Fig. 14, then uθ(u) = vnv′ = vn/2xθ(v)n/2 with

|v′| = |x|. But, this actuallymeans that v′ = x since θ(v) = yx. Moreover, x can bewritten as x = θ(z)z for some z ∈ Σ+. So,
the prefix of θ(u) of length |v| is zyθ(z). Let vnvn+1v′′ = pref2|u|+|v|−1(β(v, θ(v)))with v′′ ∈ Pref(vn+2), and vn+1 = θ(z)zw
for somew ∈ Σ+.
First, we consider the case vn+1 = θ(v). Since θ(z) ∈ Pref(vn+1), θ(z) is a prefix of both v and θ(v). Note that

|v′′| = 2|z| − 1 and hence θ(z) ∈ Pref(v′′). If |y| ≥ |z|, then θ(z) ∈ Pref(y), i.e., z ∈ Suff(y) because vn+1 = yθ(z)z and
θ(z) ∈ Pref(vn+1). In Fig. 14, y and v′′ overlap with the overlapped part of length |z| so z = θ(z). Then from the equation
vn+1θ(z) = θ(z)zzy = yθ(z)zθ(z) we derive z3y = yz3. This means that ρ(y) = ρ(z), and thus ρθ (u) = ρθ (v). Otherwise,
i.e., |y| < |z|, we have zy = wθ(z). Then, z = wt and θ(z) = ty for some t ∈ Σ+, which implies thatw = y = θ(y). Hence
θ(v) = yθ(z)z = θ(z)zy, which implies, due to Theorem 18 that ρθ (y) = ρθ (θ(z)), and hence ρθ (u) = ρθ (v).
Next we consider the case when vn+1 = v. If vn+2 = v, then Theorem 8 immediately implies that θ(u) and a conjugate of

v, that is, zyθ(z) share the primitive root t . Since θ(u) = (zyθ(z))j−1z, z ∈ {t}+, and hence t = θ(t) and y, θ(z) ∈ {t}+. Thus,
u, v ∈ {t}+, and hence ρθ (u) = ρθ (v). Otherwise let vn+2 = θ(v) = yθ(z)z. Now, we have two subcases, depending on the
lengths of y and z. First, if |z| ≤ |y|, then pref|z|(v′′) ∈ Pref(y), and hence zy ∈ Pref(y2). Hence ρ(y) = ρ(z), implying that
ρθ (u) = ρθ (v). Second, if |y| < |z|, then since y ∈ Pref(z) we also have y ∈ Suff(θ(z)). Thus, pref|z|−1(θ(z)) ∈ yPref(z), as
illustrated in Fig. 15. Moreover, since zy2 = y2θ(z), we actually have two distinct expressions over {y, z}+, one starting with
y and the other with z, having a common prefix of length at least |y| + |z|. Then, due to Corollary 5, we obtain ρ(y) = ρ(z),
which implies ρθ (u) = ρθ (v).
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Fig. 15. The case when n is even and |y| < |z|.

Fig. 16. The case when n is odd and v1 = · · · = vn = v.

Next we consider the case when n is odd and v1 = · · · = vn = v, see Fig. 16. Let v = xy such that x = θ(x), y = θ(y),
and y = θ(z)z for some x, y, z ∈ Σ+. Then uθ(u) = v(n−1)/2xθ(z)zxθ(v)(n−1)/2.
If vn+1 = θ(v), then x is a prefix of both v and θ(v) and thus v′′ = pref|x|−1(x). Hencewe have xzxzs = vn+1v′′ = θ(z)zxv′′

for some zs = pref|z|−1(θ(z)). Depending on the lengths of x and z, we have the following four subcases. Let us consider the
first subcasewhen |x| = |z|. Then immediatelywe have x = θ(z), andwe are done, i.e., obviously ρθ (u) = ρθ (v). The second
subcase is when |x| > |z|. Then, xzxzs = θ(z)zxv′′ implies that x overlaps non-trivially with xv′′. Since v′′ ∈ Pref(x) and x
is a θ-palindrome, we can write x = x1x2 = x2x1 for some θ-palindromes x1, x2, where, moreover x2 = θ(z). This implies
that x1, x2, x ∈ {t}+ for some t ∈ Σ+, and hence θ(z), z, x ∈ {t, θ(t)}+. Since u, v ∈ {θ(z), z, x}+, we have ρθ (u) = ρθ (v).
The third subcase is when |x| < |z| ≤ 2|x|. Let θ(z) = xzp for some zp ∈ Pref(z), which implies zp = θ(zp). Thus, z = zpx.
Since xz ∈ Pref(θ(z)z), i.e., xzpx ∈ Pref(xzpzpx) and |zp| ≤ |x|, we have zp ∈ Pref(x). Now since θ(z)z ∈ Pref(xzx), we have
θ(z)z = xzpxzp, i.e., z = xzp. Therefore, z = xzp = zpx, which implies ρ(z) = ρ(x) and we obtain again ρθ (u) = ρθ (v). The
fourth subcase is when 2|x| < |z|. As in the third subcase, θ(z) = xz ′p for some θ-palindrome z

′
p. Since xzx ∈ Pref(θ(z)z)

holds in this case, let θ(z)z = xzxz ′s for some z
′
s ∈ Pref(θ(z)). By substituting z = z

′
px into this equation, we obtain z = x

2z ′s.
Then z ′s = θ(z

′
s). Hence, z = z

′
px = x

2z ′s, which implies, due to Lemma 30, that ρ(x) = ρ(z) and hence ρθ (u) = ρθ (v).
Finally we consider the case vn+1 = v = xθ(z)z. Then, as illustrated in Fig. 16, z = θ(z) and thus vn+1 = xz2. If vn+2 = v,

then as above, we can employ Theorem 8 to conclude that ρθ (u) = ρθ (v). Otherwise, vn+2 = θ(v) = z2x. Now we have
four subcases depending on the lengths of x and z. The first subcase is when |x| ≤ |z|. Note that z2 ∈ Pref(zxθ(z)). Hence
z = xzs for some zs ∈ Pref(θ(z)), which implies that zs = θ(zs). Since z = θ(z), z = xzs = zsx. This means ρ(x) = ρ(z)
and we obtain again ρθ (u) = ρθ (v). The second subcase is when |z| < |x| ≤ 2|z|. Since |v′′| = |x| − 1 and v′′ is a prefix
of vn+2 = z2x, we have that z ∈ Pref(v′′). Then, z3 ∈ Pref(zxθ(z)), and we can conclude ρ(x) = ρ(z) as done in the first
subcase. Thus, ρθ (u) = ρθ (v). The third subcase is when 2|z| < |x| ≤ 3|z|. Then, we actually have z2 ∈ Pref(v′′). Thus,
z4 ∈ Pref(zxθ(z)) and again we have ρ(x) = ρ(z), and hence ρθ (u) = ρθ (v). The last subcase is when 3|z| < |x|. Recall that
vn+2 = z2x. Since x = θ(x), we can rewrite this as vn+2 = z2θ(x). As |v′′| = |x| − 1, this means that v′′ = z2x1 for some
x1 ∈ Pref(θ(x)) satisfying |x1| = |x| − 2|z| − 1, which is positive. Since zx ∈ Pref(z2v′′), there exists x2 ∈ Pref(x1) such that
zx = z4x2, i.e., x2 ∈ Suff(x). However, since x2 ∈ Pref(θ(x)), we obtain x2 = θ(x2). Thus, x = z3x2 = x2z3, which implies,
due to Lemma 29, that ρ(x) = ρ(z), so we conclude again that ρθ (u) = ρθ (v). �

Example 8. Let θ : {a, b}∗ → {a, b}∗ be the mirror involution, u = a2ba3b, and v = a2ba. Then, gcd(|u|, |v|) = 1, u3 and
v2θ(v)2v have a common prefix of length 2|u| + |v| − 2, but ρθ (u) 6= ρθ (v).
Example 9. Let θ : {a, b}∗ → {a, b}∗ be the mirror involution, u = ba2baba, and v = ba2ba. Then, gcd(|u|, |v|) = 1, uθ(u)2
and v4 have a common prefix of length 2|u| + |v| − 2, but ρθ (u) 6= ρθ (v).
Combining all results obtained in this section together, we have the extended Fine andWilf theorem for an antimorphic

involution θ :
Corollary 32. Let u, v ∈ Σ∗ be two words with |u| > |v|. If there exist two θ-powers α(u, θ(u)) ∈ u{u, θ(u)}∗ and
β(v, θ(v)) ∈ v{v, θ(v)}∗ having a common prefix of length 2|u| + |v| − gcd(|u|, |v|), then ρθ (u) = ρθ (v). Furthermore,
this bound is optimal.
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7. Conclusion

In this paper, we extended the notion of a primitive word, beingmotivated by encoding information into DNAmolecules.
Then we investigated various relations on words u, v (word equations, extended Fine and Wilf theorem) which imply
ρθ (u) = ρθ (v). A future research topic is to generalize the extended Fine andWilf theorem as is being done for the original
Fine and Wilf theorem (e.g., arbitrary number of periods, for partial words or bidimensional words). Another direction is to
study relations on words which force some of the involved words to share their θ-primitive root (see [16]).
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