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a b s t r a c t 

At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of 

the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) 

method. Recently, however, it has been pointed out that standard formulation of SPH (SSPH) has difficul- 

ties in the treatment of a contact discontinuity such as a core–mantle boundary and a free surface such as 

a planetary surface. This difficulty comes from the assumption of differentiability of density in SSPH. We 

have developed an alternative formulation of SPH, density independent SPH (DISPH), which is based on 

differentiability of pressure instead of density to solve the problem of a contact discontinuity. In this pa- 

per, we report the results of the GI simulations with DISPH and compare them with those obtained with 

SSPH. We found that the disk properties, such as mass and angular momentum produced by DISPH is dif- 

ferent from that of SSPH. In general, the disks formed by DISPH are more compact: while formation of a 

smaller mass moon for low-oblique impacts is expected with DISPH, inhibition of ejection would promote 

formation of a larger mass moon for high-oblique impacts. Since only the improvement of core–mantle 

boundary significantly affects the properties of circumplanetary disks generated by GI and DISPH has not 

been significantly improved from SSPH for a free surface, we should be very careful when some con- 

clusions are drawn from the numerical simulations for GI. And it is necessary to develop the numerical 

hydrodynamical scheme for GI that can properly treat the free surface as well as the contact discontinuity. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

The origin of the Moon is one of the most important prob-

ems in the planetary science. The giant impact (GI) hypothesis

 Cameron and Ward, 1976; Hartmann and Davis, 1975 ) is currently

he most popular, since it can solve difficulties that other mod-

ls face, such as the current angular momentum of Earth–Moon

ystem and Moon’s small core fraction compared to the other

ocky planets. According to the GI hypothesis, at the late stage

f the terrestrial planet formation, a Mars-sized protoplanet col-

ided with the proto-Earth and produced a circumplanetary debris

isk, from which the Earth’s Moon is formed. To examine whether

his scenario really works or not, a number of numerical simula-

ions of collisions between two planetary embryos have been car-

ied out (e.g., Benz et al., 1986, 1987, 1989; Cameron and Benz,

991; Cameron, 1997; Canup and Asphaug, 20 01; Canup, 20 04;

akajima and Stevenson, 2014 ). Most of them were done by using
∗ Corresponding author. Tel.: +81 (0)78 940 5707; fax: +81 (0)78 304 4972. 

E-mail address: natsuki.hosono@riken.jp (N. Hosono). 
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019-1035/© 2016 The Authors. Published by Elsevier Inc. This is an open access article u
he smoothed particle hydrodynamics (SPH) method which was a

idely used particle-based fluid simulation method developed by

ucy (1977) and Gingold and Monaghan (1977) . Recently, however,

t is pointed out that the results of numerical simulation of GI by

PH method should be re-examined from the geochemical point of

iew. 

Recent high precision measurement of isotope ratio revealed

hat it is not easy for the GI hypothesis to reproduce observed

roperties of the Moon. The Moon and the Earth have almost iden-

ical isotopic composition for oxygen ( Wiechert et al., 2001 ), and

sotopic ratios chromium ( Lugmair and Shukolyukov, 1998 ), tita-

ium ( Zhang et al., 2012 ), tungsten ( Touboul et al., 2007 ) and sil-

con ( Georg et al., 2007 ). This means that the bulk of the Moon

hould come from the proto-Earth, unless very efficient mixing

ccurred for all the isotopic elements ( Pahlevan and Stevenson,

007 ). On the other hand, in previous numerical simulations of

I, the disk material comes primarily from the impactor, which is

ikely to have had the different isotopic compositions from that

f the Earth. To solve this problem, several models have been

roposed and studied numerically. These models have the total
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Table 1 

The model parameters. 

Parameter Model 0.88 Model 0.99 Model 1.05 Model 1.10 

R init / R E 5.0 5.0 5.0 5.0 

L init / L EM 0.88 0.99 1.05 1.10 

v ∞ (km/s) 0 0 0 0 

N tot 302,364 302,364 302,364 302,364 

N tar 271,388 271,388 271,388 271,388 

N imp 30,976 30,976 30,976 30,976 

M tar / M E 1.0 1.0 1.0 1.0 

M imp / M E 0.109 0.109 0.109 0.109 

M core / M tot 0.3 0.3 0.3 0.3 

Parameter Model 1.15 Model 1.17 Model 1.21 Model 1.32 

R init / R E 5.0 5.0 5.0 5.0 

L init / L EM 1.15 1.17 1.21 1.32 

v ∞ (km/s) 0 10.0 0 0 

N tot 302,364 305,389 302,364 302,364 

N tar 271,388 279,206 271,388 271,388 

N imp 30,976 26,183 30,976 30,976 

M tar / M E 1.0 1.0 1.0 1.0 

M imp / M E 0.109 0.1 0.109 0.109 

M core / M tot 0.3 0.3 0.3 0.3 
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angular momentum significantly larger than that of the present

Earth–Moon system. Models with a fast rotating proto-Earth ( ́Cuk

and Stewart, 2012 ), a hit-and-run collision ( Reufer et al., 2012 ) and

a massive impactor ( Canup, 2012 ) have been proposed. Although

the excess angular momentum is assumed to be removed by the

evection resonance with the Sun (e.g., Ćuk and Stewart, 2012 ), it

may work only a narrow range of tidal parameters ( Wisdom and

Tian, 2015 ). This means that the Moon was formed by a fortuitous

event. 

Recently, however, it is pointed out that the results of numerical

simulations with the standard formulation of SPH (SSPH) is prob-

lematic. It turned out that SSPH has problems in dealing with a

contact discontinuity and a free surface. It is pointed out that these

difficulties result in serious problems, such as the treatment of hy-

drodynamical instabilities (e.g., Okamoto et al., 2003; Agertz et al.,

2007; Valcke et al., 2010; McNally et al., 2012 ). This problem arises

from the assumption in SSPH that the local density distribution is

differentiable, though in real fluid, the density is not differentiable

around the contact discontinuity. As a result, around the contact

discontinuity, the density of the low-density side is overestimated

and that of the high-density side is underestimated. Thus, pressure

is also misestimated around the contact discontinuity and an “un-

physical” repulsive force appears. This unphysical repulsive force

causes a strong surface tension which suppresses the growth of

hydrodynamical instabilities. In the GI simulation, since the core–

mantle boundary is a contact discontinuity and the planetary sur-

face also has a density jump, the accurate treatment of the contact

discontinuities is very important. 

We have developed a novel SPH formulation, density indepen-

dent SPH (DISPH), to solve the problem for the contact discontinu-

ity ( Saitoh and Makino, 2013; Hosono et al., 2013; Hopkins, 2013 ).

Instead of the differentiability of the density, DISPH requires the

differentiability of the pressure. As a result, DISPH significantly im-

proves the treatment of the contact discontinuity. Thereby, GI must

also be re-investigated by DISPH. In this paper, we present results

of GI simulations performed with DISPH and compare them with

those obtained with SSPH by focusing on the treatment of contact

discontinuity and its impacts on the results. We found that DISPH

produced significantly different debris disk, which should lead to

different moon forming process. We concluded that the results of

GI is sensitive to the numerical scheme and previous numerical

simulations of GI should be re-considered. 

It is worth noting that Wada et al. (2006) reported the results

of GI by a 3D grid-base method. They found that the post impact
volution of the disk is different from that of SSPH. They pointed

ut that it is due to the poor description of debris disk. They sug-

ested that the difference may be due to low-resolution for the

ebris disk in SPH calculations. However, it could be rather due to

heir oversimplified polytropic-like EOS. Thus, it is not straightfor-

ard to compare their results with SSPH. 

Canup et al. (2013) reported the comparison of the results of

I between adaptive mesh refinement (AMR) and SPH and con-

luded that the predicted moon mass of two methods are quan-

itatively quite similar. Although we notice qualitative differences

n disk spatial structures in some of these results (for example,

he different clump structure between AMR and SPH in Fig. 4 of

anup et al. (2013) ), our DISPH also predicts similar moon masses

or the collision parameters that they tested, as we will mention

n Section 5 . Comprehensive code–code comparison is needed with

rid codes, as well as between DISPH and SSPH. In this paper, we

ocus on the latter comparison. 

Here we do not insist that the results of GI simulations by

ISPH are much closer to realistic phenomenon than by SSPH.

hile DISPH has been improved for treatment of a contact bound-

ry, both DISPH and SSPH have a problem to treat free surface, i.e.,

lanetary surface. We here stress that only the improvement for

reatment of a contact boundary significantly affects properties of

ircumplanetary disks generated by GI. Therefore, we need to be

ery careful when some definitive conclusions are drawn from the

urrent numerical simulations for GI. To clarify details of Moon for-

ation, it is necessary to develop the numerical hydrodynamical

cheme for GI that properly treats the planetary surface as well as

he core–mantle boundary. 

This paper is organized as follows. In Section 2 , we briefly de-

cribe the numerical technique. We focus on the implementation

f DISPH for non-ideal EOS. In Section 3 , we describe models of

he GI simulations. In Section 4 , we show the results and compar-

sons of the GI simulations with the two methods and clarify the

eason for the difference in the properties of the generated disks.

e also show the results of single component objects, in addition

o those of differentiated objects with core–mantle structure. The

ormer and latter simulations discriminate the differences due to a

ree surface from a core–mantle boundary between the two meth-

ds. In Section 5 , we summarize this paper. 

. Numerical method 

.1. Overview of DISPH 

In the SPH method, the evolution of fluid is expressed by the

otions of fluid elements that are called SPH particles. The gov-

rning equations are written in the Lagrangian form of hydrody-

amic conservation laws. The equations of motion and energy of

he i th particles are written as follows: 

d 2 � r i 
dt 2 

= 

�
 a 

hydro 
i 

+ 

�
 a 

visc 
i + 

�
 a 

grav 
i 

, (1)

du i 

dt 
= 

(
du i 

dt 

)hydro 

+ 

(
du i 

dt 

)visc 

, (2)

here � r , � a , u and t are the position vector, the acceleration vec-

or, the specific internal energy and the time, respectively. The

ubscript i denotes the value of i th particle. The superscripts hy-

ro, visc and grav mean the contributions of the hydrodynami-

al force evaluated by SPH, viscosity and self-gravity, respectively.

he formal difference between SSPH and DISPH is in the form of

  

hydro 
i 

and ( du i / dt ) hydro . The other terms in the right hand side

f Eqs. (1) and (2) have the same forms for both methods. Since

he equations of SSPH can be found in the previous literature



N. Hosono et al. / Icarus 271 (2016) 131–157 133 

Fig. 1. Radial profiles of the mass and the density for the SSPH and DISPH methods. The upper two panels show binned mass in log scale. The binned width is set to 

0.01 R E . The mass is normalized in the current Earth mass and the distance is normalized by current Earth radius. The middle two panels show mean mass within the binned 

volume. The lower two panels show radial distance from central planet versus density for each particle. Each axis is shown in log scale. The left column shows the results 

for DISPH and the right column shows those of SSPH. 
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1 Note that in Saitoh and Makino (2013) , they used symbol ζ instead of the sym- 

bol α. 
e.g., Benz et al., 1986; Monaghan, 1992; Canup, 2004 ), here we

ill only describe those of DISPH. 

DISPH is originally developed by Saitoh and Makino (2013) for

he ideal gas EOS and then extended to an arbitrary EOS by Hosono

t al. (2013) . The main advantage of DISPH is the elimination of

nphysical surface tension which rises at the contact discontinu-

ty. The unphysical surface tension in SSPH comes from the re-

uirement of the differentiability of the density. Saitoh and Makino

2013) developed a new SPH formulation which does not require

he differentiability of the density, but requires that of (a function

f) pressure. As a result, their new SPH can correctly handle hy-

rodynamical instability. 

Note that around the shock, neither the pressure nor the den-

ity is continuous. Thus the assumption of the differentiability of

ressure and density is broken across the shock. Saitoh and Makino
2013) used the quantity p α where p is as pressure and α is a con-

tant exponent for their formulation to improve the treatment of

he shock. 1 Saitoh and Makino (2013) applied α = 0 . 1 and show

hat the treatment the strong shock is improved. However, they

onsidered only ideal gas EOS. Here, we apply this formulation to

uids with non-ideal EOS. The choice of α is related with how to

reat a free surface such as a planetary surface. DISPH overesti-

ates the pressure gradient around the free surface, while SSPH

nderestimates it. 

In Appendix A , we show the results of the 3D shock problem

imulated with SSPH and DISPH. In the ideal gas EOS case ( Fig. 17 ),
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Fig. 2. Snapshots for the collision between the same mass objects which consist of 

granite. The left column shows the results of DISPH and right column shows those 

of SSPH. The upper row is shown in x −y plane and the lower row is shown in 

y −z plane. The color of each particle indicates the original objects of particle. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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the numerical pressure blip at the contact boundary is the smallest

for α = 0 . 1 , while the numerical density blip is relatively large for

the same α = 0 . 1 . Saitoh and Makino (2013) determined α = 0 . 1 as

a best choice for ideal gas through more detailed discussions. On

the other hand, in the Tillotson EOS case, it is not clear that which

α is the best choice. In the case of 3D shock problem ( Fig. 17 ),

α = 1 is the best choice. However, in the case of strong shock test,

α = 0 . 1 may be the best choice. Tillotson EOS ( Fig. 18 ) shows the

different dependence of the numerical pressure blip at the con-

tact boundary on α from that with ideal EOS. This indicates that

the smaller α works better to treat large pressure jump, namely,

the strong shock and the free surface. We adopt α = 0 . 1 also in

this paper, although more comprehensive tests on the choice of α
are needed in future study. We will show the effects of im proved

treatment of the free surface and the core–mantle boundary in

Sections 4.1 and 4.2 , respectively. 

In Appendix B , we also show the results of the Keplerian disk

test and Gresho vortex problem. Results of the Keplerian disk tests

with SSPH and DISPH tell us that both schemes can maintain the

disk structure during the first several orbital period, whereas catas-

trophic breakup takes place before 10 orbital period. Previous stud-

ies also reported the same results ( Cullen and Dehnen, 2010; Hop-

kins, 2015 ). In our simulations of GI, we only follow about 3.4

times of the rotation period (7.0 h at R = 2 . 9 R E , where R E is the

current Earth’s radius). We thus consider that the effect of the

numerical AM transfer is not crucial for our simulation results.

From the Gresho vortex test, we can see that there is no critical

difference between results with two schemes. Overall, both SSPH

and DISPH are capable of dealing with rotation disks with simi-

lar degree, as far as the simulation time is less than 3.4 orbital

periods. 

The essential difference between DISPH and SSPH is in the

way to estimate the volume element of a particle, �V i . As the

starting point, following Saitoh and Makino (2013) and Hosono
t al. (2013) , we introduce the physical quantity: 

 i = 〈 p αi 〉 �V i , (3)

here brackets mean “smoothed” values. Hereafter, we denotes p α

s y . The value of y i is given as follows: 

 y i 〉 = 

∑ 

j 

Y j W ( � r i −�
 r j ; h i ) , (4)

here W and h i are the kernel function (see below) and the

o-called smoothing length, respectively. By using y i and Y i , we

erived the equations of motion and energy for our scheme as

ollows: 

  

hydro 
i 

= −
∑ 

j 

Y i Y j 

m i 

[ 〈 y i 〉 1 /α−2 

�i 

�
 ∇ W ( � r i −�

 r j ; h i ) 

+ 

〈 y j 〉 1 /α−2 

� j 

�
 ∇ W ( � r i −�

 r j ; h j ) 

]
, (5)

du i 

dt 

)hydro 

= 

∑ 

j 

Y i Y j 

m i 

〈 y i 〉 1 /α−2 

�i 

( � v i − �
 v j ) · �

 ∇ W ( � r i −�
 r j ; h i ) , (6)

here m i and 

�
 v i are the mass and the velocity vector of particle

 , respectively. Here � is the so-called “grad- h ” term (e.g., Springel

nd Hernquist, 2002; Hopkins, 2013; Hosono et al., 2013 ); 

i = 1 + 

h i 

3 〈 ̂  y i 〉 
∂〈 ̂  y i 〉 
∂h i 

. (7)

ere, ˆ y is the value to determine the smoothing length; 

 i = 1 . 2 

(
ˆ Y i 

〈 ̂  y i 〉 
)1 / 3 

, (8)

 ̂

 y i 〉 = 

∑ 

j 

ˆ Y j W ( � r i −�
 r j ; h i ) . (9)

ote that the choice of ˆ Y and 〈 ̂  y 〉 is arbitrary, as far as ˆ Y / ̂  y has the

imension of volume. In this paper, following Saitoh and Makino

2013) , we chose ˆ Y = m and 〈 ̂  y 〉 = 〈 ρ〉 , where ρ is the density.

ote that since the interactions between two particles are anti-

ymmetric, our SPH conserves the total momentum and energy.

he grad- h term improves the treatment of the strong shock (e.g.,

aitoh and Makino, 2013; Hopkins, 2013 ). In Appendix C , we show

he results of strong shock with DISPH both with and without the

rad- h term. We show that our DISPH with the grad- h term works

ell for the strong shock. Our DISPH with the grad- h term has

nough capability for the problems which include strong shock. 

Note that in order to actually perform numerical integration, we

eed to determine new values of 〈 y i 〉 , by solving a set of implicit

quations, Eq. (4) combined with the equation of state p = p(ρ, u ) .

hus, as in Hosono et al. (2013) , we iteratively solve Eq. (4) . The

umber of iterations is set to 3, following the previous works (e.g.,

ection 5.6 in Saitoh and Makino, 2013 ). The iteration procedure

s the same as that described in Hosono et al. (2013) , except for

he initial guess of Y i . The initial guess of Y i is obtained by the

umerical integration of Y i using its time derivative: 

dY i 
dt 

= ( αγi − 1 ) 〈 y i 〉 1 −1 /αm i 

du i 

dt 
, (10)

i = 

ρi 

p i 

(
∂ p 

∂ρ

)adiabatic 

i 

, 

= 

m i 

Y i 
〈 y i 〉 1 −1 /α

(
∂ p 

∂ρ

)adiabatic 

i 

. (11)

ote that these equations reduce to those of Hosono et al. (2013)

n the case of α = 1 . For the kernel function W , we employ the



N. Hosono et al. / Icarus 271 (2016) 131–157 135 

Fig. 3. Snapshots for the collision between single component objects at t = 24 h. The upper two rows show the results of DISPH, while lower two rows show those of SSPH. 

The orange particles indicate material of the target, while red particles indicate those of impactor. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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ubic spline function ( Monaghan and Lattanzio, 1985 ). Note that

he use of the cubic spline kernel for the derivative sometimes

auses the paring instability ( Dehnen and Aly, 2012; Price, 2012 ).

n order to avoid this instability, we adopt a gradient of the kernel

hich has a triangular shape ( Thomas and Couchman, 1992 ). 

For the artificial viscosity, with both methods, we use the ar-

ificial viscosity described in Monaghan (1997) . Note that for both

ethods we use the smoothed density for the evaluation of ar-

ificial viscosity. The parameter for the strength of the artificial
iscosity is set to be 1.0. In order to suppress the shear viscos-

ty, we apply the Balsara switch ( Balsara, 1995 ) to the evaluation

f the artificial viscosity. 

The self-gravity is calculated using the standard BH-tree

ethod ( Barnes and Hut, 1986; Hernquist and Katz, 1989 ).

he multipole expansion is calculated up to the quadrupole

rder and the multipole acceptance criterion is the same

s Barnes and Hut (1986) . The opening angle is set to be

.75. 
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momentum of Earth–Moon system. The predicted moon mass is normalized in the 

current Moon mass. Note that model 1.17 is not plotted in this figure. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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2.2. Timestep 

In the SPH method, the timestep is usually determined by the

Courant condition as follows ( Monaghan, 1997 ): 

�t CFL 
i = C CFL 2 h i 

max j v sig 
i j 

, (12)

where 

v sig 
i j 

= c i + c j − 3 

( � v i − �
 v j ) · ( � r i −�

 r j ) 

| � r i −�
 r j | , (13)

and c i is the sound speed of particle i . Here C CFL is a CFL coeffi-

cient which is set to 0.3 in this paper. In this paper, we consider

three additional criteria: fractional changes in the specific internal

energy, Y (DISPH only), and the accelerations. These are 

�t u i = C u 
u i 

| d u i / d t| , (14)

�t Y i = C Y 
Y i 

| d Y i / d t| , (15)

�t a i = C a 

√ 

h i 

| � a i | , (16)

where C u , C Y and C a are dimensionless timestep multipliers.

Throughout this paper, we set C u = C Y = C a = C CFL . Note that Eqs.

(14) and (15) are applied when du i / dt < 0. 

2.3. Equation of state 

In order to actually evaluate Eqs. (5) , (6) and (10) , we need the

expression of p ( ρ , u ). Throughout this paper, we use the Tillot-

son EOS ( Tillotson, 1962 ), which is widely used in the GI simula-

tions. The Tillotson EOS contains 10 parameters, which we should

choose to describe the given material. The material parameters of

the Tillotson EOS for each material are listed in Melosh (1989) ,

p. 234, Table AII.3. Note that in the very low density regime, the

Tillotson EOS gives negative pressure which is unphysical on the

scale of GI. To avoid numerical instabilities due to negative pres-

sure, we introduce a minimum pressure p min for the Tillotson EOS.

In the scale of GI, the typical value of pressure is order of ∼ 100

GPa. Throughout this paper, thus, we set p = 0 . 1 GPa. Also, we
min 
mpose the minimum timestep to prevent the timestep from be-

oming too small due to unphysical values of partial derivatives of

OS by density. We carefully determine the minimum timestep as

ne second not to cause poor description of the physical evolu-

ion of a system in this paper. In addition, in this case, we do not

valuate hydrodynamical terms in Eqs. (1) and (2) , since this small

imestep is actually applied for particles with very low density. 

. Initial condition 

We performed numerical simulations of GI from eight initial

odels. In this section, we briefly describe how we set up the ini-

ial conditions. 

We first constructed two initial objects, the proto-Earth (tar-

et) and the impactor, which satisfy the given impactor-to-target

ass ratio and total mass. We use ∼3 × 10 5 SPH particles in

otal. Following Benz et al. (1987) , both objects consist of pure

ron cores and granite mantles. First, we place equal-mass SPH

articles in a Cartesian 3D-lattice. Then, inner 30% of the ob-

ect is set up as iron and the remaining outer part is set up as

ranite. The initial specific internal energy of particles is set to

.1 GM E / R E J/kg and the initial velocity of particles is set to zero.

ere, G and M E are the gravitational constant and the current

arth’s mass. We let the SPH particles relax to the hydrostatic

quilibrium by introducing the damping term ( Monaghan, 1994 )

o the equation of motion. The end time of this relaxation pro-

ess is set to t = 10 , 0 0 0 s, which is about 10 times of the dy-

amical time for the target. After this relaxation process, the par-

icle velocities for each particle are ∼ 1% of the typical impact

elocity (an order of 10 km/s in the case of the Moon forming

mpact). 

We constructed eight models. One of them, model 1.10, cor-

esponds to run number 14 of Canup and Asphaug (2001) . They

oncluded that the Moon would form in this run. In this model,

he impactor approaches the proto-Earth in a parabolic orbit. An-

ther model, model 1.17, was close to run number 7 of Benz et al.

1987) . In this model, the initial relative orbit is hyperbolic. The re-

aining models have the same parameters as those of model 1.10

xcept for the initial angular momentum. High and low angular

omentum models correspond to high-oblique and low-oblique

ollisions. In all models, initial objects are non-rotating. We inte-

rated the evolution of these models for about 1 day. This du-

ation time of the simulation is smaller than the time scale of

umerical angular momentum transfer due to the artificial vis-

osity (for detail, see Canup, 2004 ). When we present the result,

e set the time of the first contact of two objects as the time

ero. 

Table 1 shows the summary of the initial conditions. The

olumns indicate the initial separation between two objects

 R init / R E ), initial angular momentum of the impactor ( L init ), veloc-

ty at the infinity ( v ∞ 

), the total number of particles ( N tot ), the

umber of particles of target ( N tar ), the number of particles of im-

actor ( N imp ), the mass of target ( M tar / M E ), the mass of impactor

 M imp / M E ) and the mass of core ( M core / M tot ). Here, L EM 

is the an-

ular momentum of the current Earth–Moon system, respectively.

e set R E = 6400 km, M E = 6 . 0 × 10 24 kg and L EM 

= 3 . 5 × 10 35 kg

 

2 /s. 

. Results 

We first show the results of collisions of objects with a single

omponent without core–mantle boundary structure in Section 4.1 .

his set of runs is to discriminate the effects of a free surface

rom those of core–mantle structure and the core–mantle bound-

ry. Then we show the results of collisions of two differentiated
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Fig. 5. Specific internal energies for model 1.15 within 0.1 R E slice with both methods are shown. The color bar is given at the bottom. Top two rows show the results of 

DISPH, while bottom two rows show those of SSPH. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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bjects with core–mantle boundary. We overview the time evolu-

ion of eight models obtained with two different methods, DISPH

nd SSPH in Section 4.2 . In all runs, we found the differences

etween the results with two methods are rather significant. In

ection 4.3 , we compare the predicted mass of the moon obtained

ith two methods. In Section 4.4 , we investigate the cause of this

ifference. 
.1. Collisions of single-component objects 

We consider collisions between single-component planets con-

isting of only granite mantle. Here we performed two types of im-

acts; one is the collision between equal mass objects, the other is

he same target-to-impactor mass ratio as described in Section 3 ,

ut with single-component objects. Since the objects have no
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Fig. 6. The upper two rows show time series of the model 1.10 with DISPH, while the lower two rows show those with SSPH. Results are shown in the face on view and 

particle with z ≤ 0 are shown. Times are t = 0 . 5 , 1 . 0 , 1 . 5 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 and 7.0 h from the initial contact of two objects. The unit length is set to the current radius of 

Earth, R E . In the first three panels, the length of each side is 6 R E and in the other panels the length of each side is 20 R E . The orange and gray particles are mantle and core 

particles of the target and red and black particles are those of the impactor. The blue circles indicate the Roche limit, ∼ 2.9 R E . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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core–mantle boundary, the difference between the results of two

methods should come from the treatment of the free surface. 

The initial objects are constructed in a similar way to the pre-

scription in Section 3 , although there is no iron core in this case.

In the run with equal-mass objects, both objects have mass of 1 M E 

and radius of 1 R E , and the initial specific internal energy is set to

be 0.1 GM E / R E . The initial angular momentum is the same as the

current angular momentum of the Earth–Moon system. The veloc-

ity of the impactor at infinity is zero. In this simulation we employ

300,754 particles in total. 
Fig. 1 shows the radial profiles of mass and density of the fi-

al outcome of the collision of two equal mass objects for both

ethods. With SSPH, a gap in the particle distribution is formed

round r � 2.5 R E , while with DISPH the radial distribution is con-

inuous. This means that SSPH produces gap structure between the

ody and disk and more spreading disk than DISPH. The gap at

 � 2.5 R E is also found in the snapshot on the x –y plane with

SPH ( Fig. 2 ). There is, however, no physical reason for the forma-

ion of this gap. It seems to be natural that the angular momen-

um distribution is continuous. Why the gap is formed in the SSPH
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Fig. 7. The edge-on views of results in Fig. 6 . The length of each side is 12 R E . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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imulation is most likely the same as the gap formation at the con-

act discontinuity (for detail, see Section 4.4 ). Since there is a den-

ity jump around the free surface, the free surface is a kind of con-

act discontinuity. Though there is no discontinuity in the density

istribution, the slope is steep at 2–3 Earth radius and the density

tself is low. Thus, the density difference between two particles ra-

ially separated can be very large, resulting in the problem similar

o that in the contact discontinuity. DISPH does not suffer from

uch a problem. 

The result in Appendix D also suggests that DISPH is better than

SPH for the treatment of the free surface. However, since around

he free surface the pressure is not continuous as well as density,
t cannot be readily concluded that DISPH is sufficiently improved

rom SSPH for treatment of the free surface. 

Fig. 3 shows the snapshots for a set of runs of single-component

bjects with the mass ratio of 10:1 given by Table 1 . They show

 similar trend on difference between the two methods to that

ound in Fig. 1 . DISPH generally tends to produce more compact

isks than SSPH does. Note that the sizes of the planet after an

mpact are roughly the same between SSPH and DISPH. Because

ISPH produces more compact disks, the results by DISPH look as

f the planet itself is inflated. 

In order to compare the results between two methods quan-

itively, we employ the so-called “predicted moon mass” as just
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Fig. 8. Same as Fig. 6 , but the contour is specific angular momentum around z -axis is shown. The length of each side is 12 R E . The color scale is normalized by 
√ 

GM E R E . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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a reference value. First, we extract “disk particles” from the sim-

ulation results. Following Canup and Asphaug (2001) , we classi-

fied SPH particles to three categories, namely, escaping particles,

disk particles and planet particles. Particles whose total (potential

+ kinetic) energies are positive are regarded as escaping. If the to-

tal energy of a particle is negative and its angular momentum is

greater than that of the circular orbit at the surface of the planet,

it is categorized as a disk particle. Then, other particles are cate-

gorized as planet particles, since these particles should fall back to
he target. After the particles are classified, we predict the moon

ass using information of disk particles. According to the N -body

imulations by Ida et al. (1997) and Kokubo et al. (20 0 0) , the pre-

icted moon mass, M M 

, is given by: 

 M 

= 1 . 9 

L disk √ 

GM E R Roche 

− 1 . 1 M disk − 1 . 9 M disk , escape , (17)
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Fig. 9. Same as Fig. 6 , but for model 0.88. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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M  
here L disk , R Roche and M disk, escape are the angular momentum of

he disk, the Roche radius of the planet, the mass of the disk, re-

pectively. Note that M disk, escape is the total mass of disk particles

hat escape from the disk through scattering by accreting bodies.

ollowing previous works (e.g., Kokubo et al., 20 0 0; Canup, 20 04 ),

e set M disk, escape to 0.05 M disk . Assuming that materials from the

roto-Earth and the impactor are well mixed in the disk parti-

les, we estimate the fraction of the moon materials originating

rom the proto-Earth. It has been known that the Moon and the

arth have identical isotope ratios for several elements. This means

hat the Moon should contain large fraction ( > 90%) of materials

rom proto-Earth mantle (e.g., Canup, 2012; Ćuk and Stewart, 2012;

eufer et al., 2012 ). 
Note that since Eq. (17) is an empirical equation, this equa-

ion sometimes yields an unphysical moon mass, such as a neg-

tive mass or a greater mass than the disk, in particular for

igh-oblique impacts. However, M M 

in Eq. (17) is a good indi-

ator for quantitative comparison between DISPH and SSPH. In

his paper we use M M 

in Eq. (17) as a reference value for the

omparison. 

Fig. 4 shows the predicted moon mass ( M M 

) as a function of ini-

ial impact angular momentum ( L init ), obtained by the collisions of

wo single-component objects. Both methods have a qualitatively

imilar L init -dependence; M M 

increases as L init increases. How-

ver, DISPH produces more compact disks and accordingly smaller

 than SSPH does. Since the two objects have no core–mantle
M 
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Fig. 10. Same as Fig. 6 , but for model 1.32. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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boundary, this difference should come from the treatment of the

free surface. 

Fig. 5 shows the distributions of specific internal energy for

model 1.15 with both methods. The difference between two meth-

ods are clear. The first two snapshots for each method look fairly

similar; shock heating and the arm-like structure can be clearly

shown. In the panels t > 2.3 h, however, clear difference between

two methods can be seen. With DISPH, the arm re-collides to the

proto-Earth and undergoes shock heating again, which results in

hot and compact debris disk (panel t = 24 . 0 h). On the other hand,

with SSPH, cold particles are ejected around the arm-like structure

(panels t = 2 . 3 −3 . 3 h). These ejected particles finally become the
old and expanded disk (panels t ≥ 4.7 h). Note that similar cold

nd expanded disk can be seen in previous studies with SSPH. This

ifference might come from the treatment of free surface or shock.

ince in this paper we focused on the treatment of core–mantle

oundary, further investigation of the origin of this difference is

eft for future works. 

We will show a similar plot for collisions between differenti-

ted objects. As we will show in Fig. 13 , the dependance of M M 

n L init is different from that in Fig. 4 . The difference is due to

he contribution from core–mantle structure and its boundary. The

ore–mantle boundary has to be treated properly as well as the

ree surface in GI simulations. 
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Fig. 11. Snapshots at t ∼ 24 h for all models. The panels in upper two rows show the results of DISPH, while those in the lower two rows show those of SSPH. The length 

of each side is 40 R E . 
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.2. Collision of objects with core–mantle structure 

Next we discuss details of collisions between differentiated ob-

ects with core-mantle structure. We will show that the contact

ensity discontinuity at the core–mantle boundary may be a prob-

em in calculations with SSPH and it is improved with DISPH.

ig. 6 shows the time evolution of model 1.10 obtained with two

ethods. What is shown here is the face-on view (in the x –y

lane) of particles with negative values of the z coordinate, seen
rom z = ∞ . t  
The two runs in the first frame ( t = 0 . 5 h) look fairly simi-

ar. In both runs, the core of the impactor (black) is significantly

eformed. It pushes up the mantle of the proto-Earth (orange) and

he mantle of the impactor (red) is left behind. In the first four

rames, the results of the two models are qualitatively similar. In

oth runs, the core of the impactor forms an arc-like structure at

 = 1 h, which becomes more extended at t = 1 . 5 h. However, this

rc is more extended for the run with SSPH. In the frames of t = 2 –

 h, most of the mass of the impactor, which has not escaped from

he planet gravitational potential, fall back to the proto-Earth in
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Fig. 12. Time evolution of the predicted moon mass (a), the disk specific angular momentum (b), the mass of disk (c) and escaping mass (d), respectively. The red curve 

indicates the results of DISPH, while green curve indicates those of SSPH. The mass and angular momentum are normalized by the current Moon mass, M L and 
√ 

GM E R Roche , 

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he run with DISPH, while some of the mass forms extended en-

elope and disk in the run with SSPH. As we will see in the next

ection, this difference in the structure causes a large difference in

he predicted moon mass. 
Fig. 7 shows the edge-on views of the two runs of model

.10. The vertical distribution of ejected mantle material is

lso quite different. In the frames of t = 1 and 2 h, the re-

ults are qualitatively similar. In the frames of t = 3 –7 h,
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Fig. 13. (a) The initial angular momentum versus the predicted moon mass 

with both methods. Red circles indicate the results with DISPH, while green 

triangles indicate those of SSPH. The angular momentum is normalized in the 

current angular momentum of Earth–Moon system. (b) The same as (a), but 

shows target material fraction in disk. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this 

article.) 
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however, SSPH produces vertically stretched disk. On the other

hand, with DISPH, the number of the disk particles is much

smaller than with SSPH. DISPH produces a thinner disk than

SSPH. 

Fig. 8 shows the distribution of the angular momentum. For t �
2 h, the ejecta with high angular momentum ( > 

√ 

GM E R E ) is much

abundant in the SSPH result (lower panels) than in the DISPH

result. 

Figs. 9 and 10 show the same plots as Fig. 6 for the mod-

els with low-oblique collision and high-oblique collision, respec-

tively. From these figures, it is obvious that more extended debris

disks are greatly formed in the runs with SSPH than in those with

DISPH. 

Fig. 11 shows the snapshots at the end time of simulations

for all runs. The azimuthal distributions of the disks are differ-

ent between SSPH and DISPH. With SSPH, particles are widely

distributed. In particular, in model 1.17, the distribution is nearly

azimuthally symmetric. On the other hand, with DISPH, the dis-

tribution of particles is clearly asymmetric and no large disk is

formed. 

The results of our SSPH runs are similar to those in the previ-

ous works. In both cases, disks extended to outside of the Roche

radius are formed. On the other hand, the disk is very thin in

our DISPH runs for these models. We quantify this difference more

clearly in the Section 4.4 in order to understand the cause of the

difference. 
.3. Dependence on disk properties on impact angular momentum 

In this section, we summarize dependence of disk properties on

nitial impact angular momentum. The conditions of the successful

oon forming impact is defined by (1) the predicted moon mass is

omparable to or larger than the present Moon mass, and (2) most

f materials of the formed moon comes from the target planet (the

roto-Earth). 

Fig. 12 a shows the time evolution of predicted moon mass

 M 

for models 0.88, 1.1, 1.15, 1.21 and 1.32 with both methods.

ig. 12 b and c are the disk specific angular momentum l disk and

ass M disk used to evaluate the moon mass ( Eq. (17) ), which are

alculated by setting the coordinate origin at the barycenter of the

arget’s core particle. Fig. 12 d shows the time evolution of M escape 

the escape mass by the impact). The oscillation in these quan-

ities is due to the post-impact oscillational deformation of the

erged planet. For L init � 1.15 L EM 

, M M 

obtained with DISPH is

ignificantly smaller than that with SSPH, because l disk is smaller.

or model 1.21 and model 1.32, while M disk with DISPH is sim-

lar to or rather smaller than that by SSPH, l disk is higher for

ISPH, resulting in larger M M 

with DISPH than that with SSPH.

n addition, SSPH produces larger amounts of escaping mass than

ISPH does. These result in the larger M M 

with DISPH than with

SPH. 

Fig. 13 a shows the dependance of M M 

on L init for runs with

SPH and DISPH. Generally, M M 

increases with L init for both meth-

ds as in Fig. 4 (runs with single-component objects). Notice that

he dependence is much more sensitive in the differentiated ob-

ects impacts ( Fig. 13 a) than in single component objects impacts

 Fig. 4 ). For a high-oblique collision, the impact momentum is

ransferred to ejecta from the outer parts of the impactor and the

arget. The volume of ejecta may be primarily regulated by a ge-

metrical effect if the collision velocity is fixed. If the volume of

jecta and momentum transferred to the ejecta are the same for a

xed L init between an impact of differentiated objects and that of

ingle component objects, the total ejecta mass from differentiated

bjects is smaller and its post-impact velocity is higher than that

rom single component objects. It results in formation of a more

pread disk or a hit-and-run collision for the differentiated objects

mpact at high-oblique impacts. 

With DISPH, M M 

is an order of magnitude smaller than those

ith SSPH for L init � 1.1 L EM 

, the trend of which is also found in

ig. 4 . On the other hand, in the case of L init � 1.15 L EM 

, DISPH

roduces larger M M 

than SSPH. This is because in the runs with

SPH, more materials are ejected during the first contact event

han in the DISPH runs ( Fig. 12 d), probably by the artificial ten-

ion at core–mantle boundaries of the impactor and the target, as

e discuss in details in Section 4.4 . In the panels of relatively high

 init (models 1.17, 1.21 and 1.32) in Fig. 11 clearly show that much

ore materials are scattered away in the runs with SSPH, while

ore compact clumps remain in the runs with DISPH. As a re-

ult, DISPH produces abrupt transition of the predicted moon mass

 M 

around L init ∼ 1.15 L EM 

. Since M M 

is sensitive to the distribu-

ion of the disk particles, the difference in M M 

between SSPH and

ISPH is more pronounced than that in the distributions of formed

isks. 

In models 1.21 and 1.32, the predicted moon mass with DISPH

re greater than disk mass (see, Fig. 12 a and c). Since Eq. (17) is

n empirical equation, it is not proper enough for nearly graz-

ng impacts. The values of M M 

should be treated as a reference

alue. 

Fig. 13 b shows the material fraction from target in the disk for

ach model. These results show that the material fraction from the

arget is significantly smaller than 90% in all models with both

SPH and DISPH. However, in the DISPH runs, M M 

is twice as

uch as M L at L init � 1.15 L EM 

for M imp = 0 . 109 M E . An impact with
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DISPHDISPH

SSPH

Fig. 14. Close-up views of the impactor of model 1.17 at t = 6 min. The top panel shows that with DISPH, whereas the bottom panel displays that with SSPH. Colors are the 

same as those of Fig. 6 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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maller M imp that produces M M 

∼ M L should have smaller L init ,

hile the disk material fraction from the target would be signif-

cantly increased. Because L init in that case may be smaller than

 EM 

, we can adopt higher impact velocity, which may further in-

rease the disk fraction from the target. We will explore the pa-

ameters of the impact with M M 

∼ M L and L init ∼ L EM 

that pro-

uces a disk mostly from the target (the proto-Earth) in a separate

aper. 

.4. Effect of the “Unphysical Surface Tension” in SSPH 

In this section we discuss the origin of the difference between

wo methods by focusing on the treatment of the core–mantle

oundary. 

Fig. 14 shows the close-up view of SPH particles in model 1.17

t t = 6 min. Clear gaps in the particle distributions are found near

he core–mantle boundaries of both the target and the impactor in

he SSPH results. In the case of the DISPH run, such a gap does not

xist, and the layers of particles are less clear. The gap visible in

he SSPH run is due to the unphysical surface tension. 

In Fig. 15 , we show the acceleration per particle along the

 -direction, y -direction and torque around the z -axis of the im-

actor’s core and mantle particles. The hydrodynamical forces of

SPH and DISPH runs during the impact phase are different. In the

rst 10 min, the accelerations in both directions of SSPH are larger

han those of DISPH. This difference results in the gap shown in
ig. 14 . From t = 12 to 17 min, the SSPH result shows larger torque

han that of DISPH. 

Fig. 16 illustrates the effect of this surface tension. In the lower

eft panel (SSPH, t = 3 min), none of the impactor’s core parti-

le suffers negative y -directional force, while in the corresponding

napshot with DISPH at t = 3 min (the upper left panel), some par-

icles suffer negative y -directional force. The amplitude of the ac-

eleration of impactor’s core particles is much larger for the SSPH

un. Thus, the impactor particles gain upward velocity (in the di-

ection of y -axis), while losing the forward velocity (negative di-

ection of x -axis), compared to the DISPH run. It is most likely that

his difference is due to the numerical error of SSPH at the contact

ensity discontinuity (the core–mantle boundary) and it results in

he difference in the formed disks between the DISPH and SSPH

uns. 

. Summary 

The GI is the most accepted model for the origin of the

oon. However, it is now being challenged. The identical iso-

ope ratios between the Earth and the Moon found by recent

easurement require a survey of new ranges of impact param-

ters, because the impact previously referred to as a “success-

ul Moon forming impacts” produces a moon mostly consist-

ng of materials from the impactor rather than those from the

roto-Earth. 
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Fig. 15. Time evolution of the mean acceleration along the x -direction, y -direction 

and mean torque around the z -axis of the impactor’s core particle of model 1.17. 

We set t = 0 at the time of the first contact of two bodies. The green line indi- 

cates the value of SSPH while the red line indicates that of DISPH. The acceleration 

and torque are normalized by GM E /R 2 E and GM E / R E , respectively. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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We have re-investigated GI by newly developed “DISPH”

scheme with Tillotson EOS. Recently it is recognized that the SSPH

has a serious problem in the treatment of contact discontinuities

because SSPH assumes differentiability of density. The core–mantle

boundary is a contact discontinuity and the planetary surface (free

surface) also has a density jump. The errors result in the un-

physical surface tension around the contact discontinuity and the

free surface. Since DISPH assumes differentiability of pressure in-

stead of density, it can properly treat the core-mantle boundary,

although the treatment of the free surface is not significantly im-

proved from SSPH, compared with the contact discontinuity. Sev-

eral tests of DISPH in Appendices A–D show advantage to and com-

patibility with SSPH. 
Recent studies have pointed out that the SSPH has a serious

roblem in the treatment of contact discontinuities. The errors re-

ult in the unphysical surface tension around the contact disconti-

uity and the free surface. 

Hosono et al. (2013) extended Saitoh and Makino (2013) ’s

ISPH scheme to non-ideal EOS such as Tillotson EOS, as sum-

arized in Section 2.1 . We have compared the results be-

ween DISPH and SSPH, focusing on properties of circumplane-

ary disks generated by GI. To distinguish between the effects of

he core–mantle boundary and the free surface, we performed

imulations of the collisions between two single component ob-

ects and those between differentiated objects with core–mantle

tructure. 

In the case of collisions between single-component objects,

ompared with SSPH, DISPH always produces more compact disks,

or which smaller moon masses are predicted. This is because nu-

erical repulsive force appears around the free surface, in SSPH

uns ( Section 4.1 ). Note that since the predicted moon mass is sen-

itively dependent on the distribution of the disk particles, slight

ifference in the distribution between SSPH and DISPH can result

n significant difference in the predicted moon mass. 

On the other hand, in the case of collisions between dif-

erentiated objects with core-mantle boundary, DISPH predicts

ore massive moon masses than SSPH does for high-oblique im-

acts, while it still predicts lower mass moons for low-oblique

mpacts ( Section 4.2 ). The different dependence on the initial

mpact angular momentum from the single component objects

ould come from the transfer of impact momentum to the

antle layer with low density and numerical repulsive force

t the core–mantle boundary ( Sections 4.2 and 4.3 ). The over-

ll trend that the predicted moon mass increases with the ini-

ial impact angular momentum is common between SSPH and

ISPH. 

Note that our result is consistent with the conclusion by Canup

t al. (2013) : SSPH and a grid code, AMR, produce disks that

redict similar moon mass. They did a comparison for impacts

ith parameters similar to model 1.21. As we showed in Fig. 13 ,

or model 1.21, SSPH and DISPH show similar results within 50%

f the predicted moon mass. Thereby, DISPH produces consistent

esults with AMR for this parameter. The comparison with grid

odes is necessary for other initial impact angular momentum for

hich DISPH and SSPH significantly differ from each other. How-

ver, clump structure looks different among AMR, SSPH and DISPH,

uggesting that the angular momentum distributions are different

mong them. 

What we want to stress in this paper is that properties of cir-

umplanetary disks generated by GI are sensitive to the choice of

he numerical scheme. Only the difference in the treatment of a

ontact discontinuity (core–mantle boundary) between DISPH and

SPH significantly affects the results. Other effects such as the

reatment of free surface, shock propagation, heating so on are

lso likely to change the results. The results of GI also depend

n the EOS, the initial thermal structure, density profiles, material

trength and numerical resolution and so on. 

We need be very careful when some conclusions are drawn

rom the numerical simulations for GI, because planets consist

f solid layers with different com positions but not uniform gas

nd current numerical schemes have not been developed enough

o treat planets. Thus, we need to develop numerical codes suit-

ble for GI between planets, step by step. The next step of

ISPH would be handling of free surfaces and shock propa-

ation that currently has a free parameter α. For GI, code-–

ode comparisons are now needed. Comparison to experiments

r other numerical schemes in the case of simple impact prob-

em is also needed to calibrate the code. These are left for future

orks. 
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DISPH

SSPH

Fig. 16. The hydrodynamical forces externs on individual particles of the impactor. The upper and lower panels show the DISPH and SSPH runs, respectively. The snapshots 

are about 3, 4 and 5 min after the initial contact of the two bodies from left to right. Colors of particles are the same as those in Fig. 6 . The length of the arrows are 

proportional to the absolute values of hydrodynamical forces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 17. Snapshot from the 3D shock tube problem with both DISPH and SSPH. Density, pressure, velocity and specific internal energy are shown. Green circles, red triangles, 

blue squares and black crosses indicate the results with SSPH, DISPH with α = 1 . 0 , DISPH with α = 0 . 5 and DISPH with α = 0 . 1 , respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 18. Same as Fig. 17 , but with Tillotson EOS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 19. Close-up around the contact discontinuity of Figs. 17 and 18 from left to right. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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ppendix A. 3D shock tube problem by DISPH with α

To study the effect of choice of a parameter α in the DISPH

cheme, we performed two calculation 3D shock tube problems

ith SSPH and DISPH with varying the parameter α. One calcu-

ation is with the ideal gas EOS and another is with Tillotson EOS.

he parameter α is taken to be 1.0, 0.5 and 0.1. 
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The initial condition of the 3D shock tube problem for ideal gas

OS is set as follows: 

(ρ, p, u ) = 

{
(1 . 0 , 1 . 0 , 2 . 5) (x < 0 . 5) , 

(0 . 5 , 0 . 2 , 1 . 0) ( otherwise ) . 
(A.1) 

he velocity of each side is set to be 0. We employ a 3D computa-

ional domain, 0 ≤ x < 1, 0 ≤ y < 1/8 and 0 ≤ z < 1/8, and peri-

dic boundary conditions are imposed in all directions. We employ

deal gas EOS with specific heat ratio γ = 1 . 4 . The particle separa-

ion of high density side is set to 1/512; thus, the total number of

articles is 1572 , 864 . 
The initial condition of the 3D shock tube problem for Tillotson

OS is set as follows: 

(ρ, p, u ) = 

{
(2 . 0 , 7 . 0 , 2 . 33) (x < 0 . 5) , 

(1 . 0 , 3 . 5 , 4 . 85) ( otherwise ) . 
(A.2) 

he parameters of granite are adopted for Tillotson EOS. The den-

ity and specific internal energy are normalized in reference den-

ity ρ0 and reference energy E 0 ( Tillotson, 1962; Melosh, 1989 ).

he computational domain and number of particles are the same

s those in the calculation with the ideal gas EOS. 

Fig. 17 shows snapshots at t = 0 . 1 of the 3D shock tube prob-

em for the ideal gas EOS with both SSPH and DISPH. Both methods

how similar results, except for the contact discontinuity (at x ∼
.55). As expected, DISPH shows fairly smaller pressure blips than

SPH at the contact discontinuity for all values of α, while larger

umps are found in density with DISPH. These results are consis-

ent with those shown in Saitoh and Makino (2013) and Hosono

t al. (2013) . Fig. 18 shows snapshots at t = 0 . 05 of the 3D shock

ube problem for Tillotson EOS with both SSPH and DISPH. Also in

his case, DISPH shows smaller pressure blips around the contact

iscontinuity. For all values of α, DISPH shows better treatment

f the contact discontinuity. The dependence of the magnitude of

he pressure blip on α is different between the ideal gas EOS and

illotson EOS. With Tillotson EOS, the pressure blip is higher for

maller value of α while the blip is still smaller than that with

SPH. However, as shown below, the treatment of a free surface is

etter for smaller α even with DISPH. 

Note that this pressure blip can be a serious problem when

e treat the contact discontinuity. Saitoh and Makino (2013) and

osono et al. (2013) showed the consequence of this pressure blip

see Fig. 4 in Hosono et al., 2013 ). In their hydrostatic equilib-

ium tests, they put the high-density square in the low-density

mbient in the pressure equilibrium. With SSPH, the high density

quare, which should remain its initial shape, quickly transforms

nto circular shape. With DISPH, on the other hand, the high den-

ity square remains its initial shape. This means that with SSPH,

imulations suffer from the unphysical momentum transfer. Saitoh

nd Makino (2013) and Hosono et al. (2013) also showed the re-

ults of Kelvin–Helmholtz instability test, in which the contact dis-

ontinuity plays very important role (see Fig. 5 in Hosono et al.,

013 ). As expected, SSPH shows unphysical surface tension effect,

hile DISPH clearly eliminates it. Previous simulations should have

uffered from this unphysical effect ( Fig. 19 ). 

The treatment of the region with abrupt change in the pressure

hat corresponds to a free surface is improved by DISPH, in par-

icular with small value of α. To show this, we show the pressure

eld around the strong shock region with Tilloston EOS. The initial
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Fig. 22. Snapshots of the Keplerian disk test at t = 3 . 5 and 10. The times are normalized by the orbital time at r = 1 . The top two panels show the results with DISPH, while 

bottom two panels show those of SSPH. The color contour is the density. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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pressure distribution is set as follows: 

p = 

{
10 

6 (x < 0 . 5) , 

1 . 0 ( otherwise ) . 
(A.3)

The density is uniformly set to be ρ0 . Fig. 20 shows the pressure

field and the error at the very first step, where the error is defined

as follows: 

�p i = 

| p i − p| 
p 

. (A.4)

This figure clearly shows that taking the parameter α small im-

proves the treatment of the large pressure jump, such as free

surface. 

In Fig. 21 , we show the results of three runs of GI with α =
1 . The results are somewhat different from those with α = 0 . 1 .
owever, just like the case with α = 0 . 1 , DISPH produces a smaller

oon mass in the model 1.10 and a larger moon mass in the model

.32. 

Our modification for DISPH has good capability for both the

hock and contact discontinuity, although DISPH includes the

ree parameter α. The tests of 3D shock tube and a free sur-

ace with ideal gas EOS show that α = 0 . 1 may be the best

hoice, similar to Saitoh and Makino (2013) . However, with Tillot-

on EOS, different dependence on α can be seen. The results

or GI with Tillotson EOS shows slightly different dependence

n, though the number of runs is few. Thus, more careful cali-

ration for the dependence on α should be done, which is left

or future work. Unless otherwise specified, in the following, we

dopt α = 0 . 1 . 
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Fig. 23. Binned mass and angular momentum of the Keplerian disk test. The top two panels shows the results at t = 3 . 5 , while bottom two panels shows those at t = 10 . 

The times are normalized by the orbital time at r = 1 . Red circles indicate the result with DISPH, while green triangles indicate that of SSPH. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 24. Radius versus azimuthal velocity from the Gresho vortex problem at t = 1 . 0 . Red circles indicate the result with DISPH, while green triangles indicate that of SSPH. 
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binned width 0.02. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ppendix B. Tests for the conservation of angular momentum 

For the calculation of GI problems, it is important to treat the

ngular momentum transfer correctly. In both SSPH and DISPH,

ince the interaction between two particles is pairwise, the global

ngular momentum is conserved. However, it is often said that

SPH does not treat the local angular momentum transfer cor-

ectly; unphysical angular momentum transfer due to the so-called

eroth order error and spurious viscosity appear. In this appendix,

o test whether SSPH and DISPH can treat the angular momentum

ransfer correctly or not, we performed two well-posed tests; one

s the Keplerian disk test (e.g., Hopkins, 2015; Cullen and Dehnen,

010 ) and the other is the Gresho vortex test (e.g., Gresho and

han, 1990 ). 

For the Keplerian disk test, we initialize 2D disk whose surface

ensity is set to 1.0. The inner and outer edges of the disk are set

o 0.5 and 2.0. The initial pressure of the disk is set to 10 −4 and

he heat capacity ratio of the ideal gas is set to 1.4. The self gravity

etween particles are ignored, while the gravity from the central
tar � a = −�
 r /r 3 acts on each particle. In this test we employ 48 , 228

articles in total. 

For the Gresho vortex test, we employ [ −1 , 1) 2 periodic bound-

ry computational domain with the uniform density of unity.

he initial pressure and azimuthal velocity distributions are as

ollows: 

p(R ) = 

⎧ ⎨ 

⎩ 

5 + 12 . 5 R 

2 (R < 0 . 2) , 

9 + 12 . 5 R 

2 − 20 R + 4 log (5 R ) (R < 0 . 4) , 

3 + 4 log (2) ( otherwise ) , 

(B.1) 

 φ(R ) = 

⎧ ⎨ 

⎩ 

5 R (R < 0 . 2) , 

2 − 5 R (R < 0 . 4) , 

0 ( otherwise ) , 

(B.2) 

here R = 

√ 

x 2 + y 2 . In this test we employ 16, 384 particles in

otal. 

Fig. 22 shows the snapshots of the Keplerian disk test with both

ethods. Neither is accurate enough; the disk breaks up less than
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Fig. 25. Radius versus pressure and density of the Sedov–Taylor blast wave test at 

t = 0 . 05 are shown in upper and lower panel, respectively. The red dots indicate 

the results with the grad- h term, while blue dots indicate those without the grad- 

h term. The solid line indicates semi analytic solution. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27. Snapshots of aluminium-to-aluminium test with DISPH (the left column) 

and SSPH (the right column) at t = 0 . 11 s. The orange particles indicate the target 

particles while the red particles indicate those of impactor particles. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

N  

c  

s  

t  

c  

a

A

 

w  

d  

(  

e  

u  

t  

γ
 

o  

g  

h  

g  

N  

a

10 orbits. At the time t = 3 . 5 orbits, both methods show quite sim-

ilar results, except the inner edge r � 0.5. Then, SSPH shows catas-

trophic break up of the rotating disk and makes large filament-like

structure, similar to the previous studies (e.g., Hopkins, 2015 ). On

the other hand, DISPH also shows break up of the rotation disk.

However, DISPH does not produce filament-like structure, though

the break up of the disk can be seen. With SSPH, the outer regions

of the disk is still remain while with DISPH virtually all regions

are distorted. We also note that the radial distributions of the mass

and angular momentum are similar between two methods at the

time t = 3 . 5 orbits (see, Fig. 23 ). However, as expected, the radial

distributions of the mass and angular momentum are quite differ-

ent at the time t = 10 orbits. 

Fig. 24 shows the results of the Gresho vertex test with both

methods. Both methods show similar results; substantial velocity

noise appears, similar to the previous studies (e.g., Springel, 2010;

Hopkins, 2015 ). 

From these tests, we should conclude that both methods can

handle the local angular momentum transfer to the same degree.
DISPH

t = 1tsc

t = 2tsc

t = 3tsc

Fig. 26. Snapshots of the free surface tests with DISPH (the left column) and SSPH (the ri

shows those with SSPH. The top, middle and bottom rows show snapshots at 1, 2 and 3 

whose y -directional position is greater than 30 are shown. (For interpretation of the ref

this article.) 
ote that in GI simulations, we set the end time at t = 24 h, which

orresponds to about 3.4 orbital time at the Roche limit. Fig. 22

hows that both methods can treat the local angular momentum

ransfer until 3.4 orbital time. Overall, both SSPH and DISPH are

apable of dealing with rotation disks with similar degree, as far

s the simulation time is less than 3.4 orbital periods. 

ppendix C. Sedov–Taylor blast wave test 

Here we show the results of Sedov–Taylor blast wave test,

hich shows the capability of the strong shock. The initial con-

ition of this test is the same as that used in Saitoh and Makino

2013) . We employ 3D computational domain [0, 1) 3 . We first place

qual-mass 2, 097, 152 particles in the glass distribution with the

niform density of unity. Then, the explosion energy is added to

he central 32 particles. In this test we use the ideal gas EOS with

= 5 / 3 . 

Fig. 25 shows the results of this test with DISPH with and with-

ut grad- h term. Without grad- h term, clearly, the shock propa-

ates slower than the semi analytic solution. DISPH with the grad-

 , on the other hand, shows better results than DISPH without the

rad- h term. Our DISPH with the grad- h can treat the strong shock.

ote that these results are consistent to Saitoh and Makino (2013)

nd Hopkins (2013) . 
SSPH

ght column). The left column shows the results with DISPH, while the right column 

sound crossing time. The blue circles indicate the identical solution. Only particles 

erences to color in this figure legend, the reader is referred to the web version of 
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ppendix D. Test for the treatment of the free surface 

To check the capability for the free surface, we performed three

imple 2D tests which include free surface with both DISPH and

SPH. The first test is hydrostatic equilibrium test, which is car-

ied by Monaghan (1994) . The second test is the vertical impact

f aluminium-to-aluminium test and the third test is the glass-on-

ater test. The latter two tests are performed by Pierazzo et al.

2008) . 

For the first test, we employ 2D computational domain [0, 40)

[0, 40) and 4096 particles in total. The periodic boundary condi-

ion is imposed on the x -direction. We set up the fluid which is ini-

ially in pressure equilibrium under the constant gravitational ac-

eleration g = −10 along the y -direction. We fix the positions and

nternal energies of all particles with y < 4. Around y = H, there

s a free surface. In this test we use the following EOS for linear

lastic material: 

p = A 

(
ρ

ρ0 

− 1 

)
. (D.1) 

he material parameters A and ρ0 are set to the granite’s values in

he Tillotson EOS. Since this system is in a hydrostatic equilibrium,

articles should maintain their initial positions. 

For the second test, we first placed the target particles in [0,

0 4 ) 2 . Then, we placed projectile particles with the impact velocity

0 km/s. We employ 67, 597 particles in total. We set the impact

ngle to 0 ° (vertical impact). The radius of projectile is set to 10 3 

. In this test we use the Tillotson EOS and the material param-

ters are set to the aluminium’s values, similar to Pierazzo et al.

2008) . Note that in this test, we omit the material strength. 

In the third test, we followed the early time evolution of the

lass-on-water test, following Pierazzo et al. (2008) . We first place

arget particles in [0, 0.05) 2 . Then, we placed projectile particles

ith the impact velocity 4.64 km/s. We employed 65, 336 particles

n total. We set the impact angle to 0 ° (vertical impact) The radius

f projectile is set to 1 mm. We used the Tillotson EOS and the
aterial parameters are set to water for target and wet tuff for

rojectile ( Melosh, 1989 ). 

Fig. 26 shows the results of Monaghan’s (1994) test. With SSPH,

t t = 1 sound crossing time, particles around the free surface

learly move to the different positions from the initial positions

nd at t = 2 − 3 sound crossing time, particles move downward.

ith DISPH, similar to SSPH, the outermost particle layer move

ownward. However, the other particles virtually keep their ini-

ial positions until t = 3 and the sound crossing time, second out-

rmost particle layer slightly move upward. Unlike SSPH, DISPH



156 N. Hosono et al. / Icarus 271 (2016) 131–157 

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1

E
je

ct
ed

 m
as

s

Ejection velocity

Fig. 30. Mass ejected faster than ejection velocity versus ejection velocity at t = 

9 . 0 μs. The velocity is normalized by v imp (ρ imp /ρtar ) (3 ν−1) / 3 μ while the mass is nor- 

malized by the impactor mass. The red curve indicates the result with DISPH, while 

the blue curve indicates that with SSPH. The black line indicates reference line for 

a power-law with a slope of v −3 μ . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

t  

p  

g  

h  

s

 

t  

f  

2  

c  

m  

3  

t  

r  

a  

w

R

A  

 

 

 

B  

 

B  

B  

 

B  

C  

C  

 

C  

C  

C  

C  

C  

C  

 

 

G  

G  

 

G  

 

 

H  

H  

H  

H  

 

 

H  

 

H  
produces virtually no x -directional motions. It is clear that DISPH

can treat the free surface better than SSPH. 

Figs. 27 and 28 show the snapshots of the aluminium-to-

aluminium test with both methods. Both methods produce roughly

similar results; the jetting and excavation of the target is produced

around the impact site. The crater size and depth are almost in-

distinguishable between SSPH and DISPH. DISPH has similar accu-

racy/errors for free surface as SSPH does. Note that there are sev-

eral differences between two results, e.g., the height and expansion

of impact jetting. 

Fig. 29 shows the results of the glass-on-water test with both

methods. Unlike the aluminium-to-aluminium test, this test con-

tains the contact discontinuity between water and wet tuff. Sim-

ilar to the aluminium-to-aluminium test, the height and expan-

sion of the ejecta curtain is different between two methods, which

could be due to the unphysical surface tension between two dif-

ferent materials arising in SSPH calculations. The target particles

are pushed up by the projectile particles at the early step of the

impact ( t = 0 . 6 –2.0 μs). This results in the higher crater rim with

SSPH than DISPH. At t = 13 . 9 μs, SSPH produces oblate projectile,

while with DISPH, the projectile and target are mixed. This clearly

due to the unphysical surface tension term which results in an un-

derestimate of material mixing. This difference may be related to

the difference in impact-generated disks in the GI simulations be-

tween DISPH and SSPH. 

Fig. 30 shows the cumulative mass of ejecta M 

ejecta ( v ) with

a vertical velocity greater than a given velocity v . According to

the previous works (e.g., Holsapple, 1993; Housen and Holsapple,

2011 ), the results should have a power-law form with a slope of

3 μ: 

M(v ) ∝ 

( v 
v imp 

)−3 μ
(

ρ imp 

ρtar 

)3 ν−1 

, (D.2)

where v imp , ρ imp and ρtar are the velocity of the impactor, the

density of the impactor and the density of the target. Here, ν
and μ are material parameters which are set to be 0.4 and 0.55

( Housen and Holsapple, 2011 ). Both methods reproduced roughly

similar results to the experiments shown in Housen and Holsap-

ple (2011) . The power-law regime with a slope of −3 μ is well re-

produced with both methods. However, SSPH produces high speed

jetting component ( v � 0.5), which can hardly be seen in the
xperimental results. This difference should come from the fact

hat the target particles feel unphysical surface tension from the

enetrating projectile, as stated in the previous paragraph. The tar-

et particles are pushed up by the projectile particles to acquire

igh vertical velocity. This could result in the difference of the re-

ults of GI between two methods. 

It is not clear which SPH scheme is more correct, especially for

he free surface. The tests carried out in this appendix are per-

ormed using a 2D Cartesian geometry. The results may differ from

D cylindrical or 3D geometries. Thus, it is not straightforward to

ompare these results with Pierazzo et al. (2008) and the experi-

ents. To carry out appropriate comparison, we need to perform

D impact tests or use 2D axisymmetric domain. However, note

hat DISPH does not show unphysical behavior compared to the

esults with grid code. We need further investigation to find an

ppropriate treatment of the free surface, which is left for future

ork. 
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