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Abstract

In this paper we give criteria for an ideal J of a TAF algebraA to be meet-irreducible. We

show that J is meet-irreducible if and only if the Cn-envelope of A=J is primitive. In that

case, A=J admits a faithful nest representation which extends to a *-representation of the

Cn-envelope for A=J: We also characterize the meet-irreducible ideals as the kernels of
bounded nest representations; this settles the question of whether the n-primitive and meet-

irreducible ideals coincide.
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1. Introduction

Representation theory of operator algebras is still in its infancy. While for Cn-
algebras the fundamentals of representation theory have long been known, for
nonself-adjoint algebras there are hardly any results of a general nature. For
‘triangular operator algebras’ (a term which we leave undefined), intuition suggests
that the fundamental building blocks for representation theory should be nest
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representations [5–7]. In the category of Cn-algebras, the nest representations are
precisely the irreducible representations.
Recall that a nest representation is a representation for which the closed, invariant

subspaces form a nest (i.e., are linearly ordered). In his study of nonself-adjoint
crossed products, Lamoureux introduced the notion of n-primitive ideal. An ideal is
n-primitive if it is the kernel of a nest representation. Lamoureux has shown that in
various contexts in nonself-adjoint algebras the n-primitive ideals play a role

analogous to the primitive ideals in Cn-algebras. Thus, one can give the set of n-
primitive ideals the hull-kernel topology, and for every (closed, two-sided) ideal I in
the algebra, I is the intersection of all n-primitive ideals containing I; in other
words, I ¼ kðhðIÞÞ:
An ideal J of an algebra A is meet-irreducible if, for any ideals I1 and I2

containing J; the relation I1-I2 ¼ J implies that either I1 ¼ J or I2 ¼ J: In
the case of Tn; the algebra of upper triangular n � n matrices, meet-irreducible ideals
are obtained by ‘cutting a wedge’ from the algebra: let 1pi0pj0pn: The ideal

I ¼ fðaijÞ : aij ¼ 0; i0pipjpj0g

is meet-irreducible, and every meet-irreducible ideal of Tn has this form.
The relationship between meet-irreducible and n-primitive ideals is studied in a

variety of examples in [7], and in [3] meet-irreducible ideals in strongly maximal
triangular AF-algebras are characterized by sequences of matrix units and also in
terms of groupoids. In that paper it is shown that every meet-irreducible ideal is n-
primitive. This is done by constructing a nest representation. The converse question,
whether every n-primitive ideal is meet-irreducible, was left open.

In a recent work [2], the first two authors examined the Cn-envelope of a quotient

A=J of a strongly maximal TAF algebra by an ideal J: They showed the Cn-

envelope is an AF Cn-algebra, even though the quotient A=J is not in general a

TAF algebra. It turns out that the Cn-envelope ofA=J is sensitive enough to detect
the meet irreducibility of J: In Theorem 2.3 we show that J is meet-irreducible if

and only if Cn
envðA=JÞ; the Cn-envelope of A=J; is primitive. The theory of Cn-

envelopes provides the natural framework for studying results of this type. In
Theorem 2.4 we show that for a meet-irreducible ideal J; there exists a faithful and
irreducible *-representation of Cn

envðA=JÞ; whose restriction on A=J is a nest

representation. Since the converse is easily seen to be true, Theorem 2.4 provides
a characterization of meet-irreducible ideals in terms of the representation theory
for A:
The question of whether the kernel of a nest representation is a meet-irreducible

ideal emerged at the Ambelside, UK conference in summer, 1997. Subsequently
some progress was made. In [4] a partial result was obtained: if the TAF algebra A
has totally ordered spectrum, or if the nest representation p has the property that the
von Neumann algebra generated by pðA-AnÞ contains an atom, then kerðpÞ is
meet-irreducible. The solution presented in Theorem 2.6 is self-contained and does
not make use of the results of [3] or [4]. Thus the question is now settled for strongly
maximal TAF algebras.
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Despite the fact that evidence at hand is limited, it nonetheless seems worthwhile
to ask.

Question 1.1. Are there any operator algebras for which the n-primitive ideals, and
the meet-irreducible ideals do not coincide?

2. The main results

We begin by recalling a result of Lamoureux [7].

Lemma 2.1. Let I be a closed, two-sided ideal in a separable Cn-algebra A: Then the

following are equivalent:

(i) I is n-primitive,
(ii) I is primitive,
(iii) I is prime,
(iv) I is meet-irreducible.

One can actually characterize when an AF Cn-algebra is primitive in terms

of its Bratteli diagram. Let A ¼ li
-
mðAi;jiÞ be an AF Cn-algebra and assume

that each Ai decomposes as a direct sum Ai ¼ "j Aij of finite-dimensional

full matrix algebras Aij: A path G for A ¼ li
-
mðAi;jiÞ is a sequence fAijig

N

i¼1 so

that for each pair of nodes ðði; jiÞ; ði þ 1; jiþ1ÞÞ there exist an arrow in the
Bratteli diagram for A ¼ li

-
mðAi;jiÞ which joins them. It is known that A is

primitive iff there is a path G for A ¼ li
-
mðAi;jiÞ so that each summand of

Ai is eventually mapped into a member of G:We call such a path G an essential path

for A:
Beyond Cn-algebras, a meet-irreducible ideal need not be primitive. In [3], a

description of all meet-irreducible ideals of a TAF algebra was given in terms of
matrix unit sequences.

Definition 2.2. LetA ¼ li
-
mðAi;jiÞ be a TAF algebra. A sequence ðeiÞiXN of matrix

units from A will be called an mi-chain if the following two conditions are satisfied
for all iXN:

(A) eiAAi:
(B) eiþ1AIdiþ1ðeiÞ;

where Idiþ1ðeiÞ denotes the ideal generated by ei in Aiþ1:

If ðeiÞiXN is an mi-chain for A ¼ li
-
mðAi;jiÞ; let J be the join of all ideals which

do not contain any matrix unit ei from the chain. In [3, Theorem 1.2] it is shown
that for a TAF algebra A ¼ li

-
mðAi;jiÞ; given an mi-chain ðeiÞiXN ; the ideal

J associated with ðeiÞiXN is meet-irreducible. Conversely, every proper
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meet-irreducible ideal inA ¼ li
-
mðAi;jiÞ is induced by some mi-chain, chosen from

some contraction of this representation.
In this paper we give a characterization of the meet-irreducible ideals of TAF

algebras in terms of Cn-envelopes of quotient algebras. We need to recall the
notation and machinery from [2].

Let A ¼ li
-
mðAi;jiÞ be the enveloping Cn-algebra for a TAF algebra A ¼

li
-
mðAi;jiÞ: Let JDA be a closed ideal, and let Ji :¼ J-Ai: For each iX1; Si

denotes the collection of all diagonal projections p which are semi-invariant for Ai;
are supported on a single summand of Ai and satisfy ðpAipÞ-J ¼ f0g: We form
finite dimensional Cn-algebras

Bi :¼
X
pASi

"BðRan pÞ;

where BðRan pÞ denotes the bounded operators on Ran p: Of course, BðRan pÞ is
isomorphic to Mrank p: Let si be the map from Ai into Bi given by siðaÞ ¼P"

pASi
papjRan p: The map sijAi

factors as riqi where qi is the quotient map of Ai

onto Ai=Ji and ri is a completely isometric homomorphism of Ai=Ji into Bi:
Notice that Bi equals the Cn-algebra generated by riðAi=JiÞ:
We then consider unital embeddings pi of Bi into Biþ1 defined as follows. For

each qASiþ1 we choose projections pASi which maximally embed into q under the
action of ji: This way, we determine multiplicity one embeddings of BðRan pÞ into
BðRan qÞ: Taking into account all such possible embeddings, we determine the
embedding pi of Bi into Biþ1:
Finally we form the subsystem of the directed limit B ¼ li

-
mðBi; piÞ corresponding

to all summands which are never mapped into a summand BðRan pÞ where p is a
maximal element of some Si: Evidently, this system is directed upwards. It is also
hereditary in the sense that if every image of a summand lies in one of the selected
blocks, then it clearly does not map into a maximal summand and thus already lies in
our system. By Davidson [1, Theorem III.4.2], this system determines an ideal I of

B: The quotient B0 ¼ B=I is the AF algebra corresponding to the remaining
summands and the remaining embeddings; it can be expressed as a direct limit

B0 ¼ li
-
mðB0

i;p
0
iÞ; with the understanding that B0

i ¼ "jBij for these remaining

summands Bij of Bi: It can be seen that the quotient map is isometric onA=J and

that B0 is the Cn-envelope of A=J:

Theorem 2.3. Let A be a TAF algebra and let JDA be an ideal. Then J is meet-

irreducible if and only if the algebra Cn
envðA=JÞ is primitive.

Proof. Assume that B0 ¼ Cn
envðA=JÞ is primitive and let G ¼ ðBijiÞ

N

i¼1 an essential

path for B0: Let ei in Biji be the characteristic matrix units for Biji ; i.e., the ones on

the top right corner of Biji :
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Assume that there exist ideals I1 andI2; properly containingJ: Since I1 andI2

properly contain J; there exist matrix units fkAIk with fkeJ; k ¼ 1; 2: So the
images of the fk appear in the presentation for the Cn-envelope in perhaps different
summands. However, the existence of an essential path G implies that some
subordinates for the fk will appear in some member of G; say Biji ; for i sufficiently

large, and so eiAI1-I2: However, eieJ and so J is properly contained in
I1-I2: It follows J is meet-irreducible.
Conversely, assume that J is meet-irreducible. In light of Lemma 2.1 and the

subsequent comments, it suffices to show that the trivial ideal f0g is meet-irreducible
in the Cn-envelope B0:

By way of contradiction assume that there are nontrivial ideals I1 andI2 of B
0 so

that I1-I2 ¼ f0g: We claim that ðA=JÞ-Ikaf0g; k ¼ 1; 2: Indeed, any
nontrivial summand of Ik will eventually be mapped into a direct summand Biji

of B0 corresponding to some maximal element of Si: Hence all matrix units in Biji

belong to Ik; including the characteristic one. This one however also belongs to
A=J and therefore in the intersection ðA=JÞ-Ik:
The claim shows that the zero ideal is not meet-irreducible in A=J: By

considering the pullback, this implies that J is not meet-irreducible in A; which is
the desired contradiction.

Notice that the sequence ðeiÞNi¼1 associated with the path G in the proof above
satisfies conditions (A) and (B) of Definition 2.2 and is therefore an mi-chain for the
ideal J:

Theorem 2.4. If A is a TAF algebra and J an ideal of A; then the following are

equivalent:

(i) There exists a faithful representation t :Cn
envðA=JÞ-BðHÞ so that tðA=JÞ is

weakly dense in some nest algebra.
(ii) J is meet-irreducible.

Proof. Assume that (i) is valid and let t :Cn
envðA=JÞ-BðHÞ be a faithful

representation so that tðA=JÞ weakly dense in some nest algebra AlgN: By way
of contradiction assume thatJ is not meet-irreducible. Theorem 2.3 and Lemma 2.1

imply the existence of nonzero closed ideals I1 and I2 in Cn
envðA=JÞ so that

I1I2 ¼ f0g: The nonzero subspaces ½tðIiÞH� must be mutually orthogonal.
However they are both invariant under tðA=JÞ; and therefore belong to N; a
contradiction.
Conversely, assume that (ii) is valid and so, by Theorem 2.3, we know that

Cn
envðA=JÞ is primitive. Retain the notation established in the paragraphs preceding
Theorem 2.3. Hence

Cn

envðA=JÞ ¼ B0 ¼ li
-
mðB0

i; p
0
iÞ;
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where B0
i ¼ "jBij for the remaining summands Bij of Bi: Let G ¼ ðBijiÞ

N

i¼1 be the

essential path for B0:
Each Bij is a full matrix algebra and therefore contains the algebra Tij of upper

triangular matrices. Form the finite-dimensional algebrasT0
i ¼ "jTij and consider

the direct limit algebra

T0 ¼ li
-
mðT0

i; p
0
iÞ;

where p0i is as earlier. Clearly, T
0 is a TAF algebra whose enveloping Cn-algebra is

B0: Moreover, T0 contains A=J:

We define a state o on B0 as follows. Let ðpiÞNi¼1 be a sequence of diagonal
projections with piATiji so that piþ1 is a subordinate of pi; iAN: We define

oi :B
0
i-C to be the compression on pi and we let o to be the direct limit o ¼ li

-
moi:

Consider the GNS triple ðt;H; gÞ associated with the state o; i.e., t is a

representation of B0 on H and gAH so that oðaÞ ¼ /tðaÞg; gS; aAB0: Since o
is pure, t is irreducible. Moreover, piABiji ; iAN and so t is also faithful.
An alternative presentation for ðt;H; gÞ was given in [8, Proposition II.2.2]. Since

o is multiplicative on the diagonal T0-ðT0Þn; one considers H to be L2ðX; mÞ;
where X is the Gelfand spectrum of T0-ðT0Þn and m the counting measure on the
orbit of o in X: With these identifications, given any matrix unit e; tðeÞ is the
translation operator on X defined in the paragraphs preceding [8, Theorem II.1.1].

In [8, Proposition II.2.2] it is shown that t mapsT0 onto a weakly dense subset of
some nest algebra. The proof of the theorem will follow if we show that the weak

closure of tðA=JÞ contains tðT0Þ:
A moment’s reflection shows that given any contraction aAT0

i j and matrix units

e1; e2;y; en and f1; f2;y; fn in B0; there exists a contraction âAA=J so that

oðf n

k âekÞ ¼ oðf n

k aekÞ

and therefore

/tðâÞtðekÞg; tðfkÞgS ¼ /tðaÞtðekÞg; tðfkÞgS

for all k ¼ 1; 2;y; n: However the collection of all vectors of the form tðeÞg; where e

ranges over all matrix units of B0; forms a dense subset of H and so the desired
density follows.

Remark 2.5. (1) Implication (i) ) (ii) also follows from Theorem 2.6.

(2) There exists a faithful representation t of Cn
envðA=JÞ inBðHÞ so that tðA=JÞ

is weakly dense in a nest algebra if and only if there is a faithful irreducible

representation t of Cn
envðA=JÞ in BðHÞ so that tðA=JÞ is weakly dense in a nest

algebra.
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Theorem 2.6. Let A be a strongly maximal TAF algebra, and let p be a bounded

nest representation of A on a Hilbert space H: Then kerðpÞ is a meet-irreducible

ideal.

Proof. Since a bounded representation of the diagonal masa A-An is completely
bounded, cf. [9, Theorem 8.7], and a completely bounded representation is similar to
a completely contractive representation by Paulsen [9, Theorem 8.1], we may assume
that the restriction of p to the diagonal masa is completely contractive. It fol-
lows that the restriction of p to the diagonal masa is a star representation. Let
J ¼ kerðpÞ; and J1;J2 be ideals in A properly containing J: We need to show
that J1-J2 properly contains J:
Since p is a nest representation, we have (after possibly interchanging J1 and J2)

that

ð0Þa½pðJ1ÞH�D½pðJ2ÞH�;

where ½X� denotes the closed subspace generated by XCH: Fix nAN and let u be a
matrix unit in J1-An\J: Choose a vector hAH be such that jjpðuÞhjj ¼ 1: There
exist mXn; NX1; matrix units vtAJ2-Am and vectors htAH for 1ptpN such
that

pðuÞh 
XN

t¼1
pðvtÞht

�����
�����

�����
�����o14:

In particular, jj
PN

t¼1 pðvtÞhtjj43=4: We may assume that pðvtÞa0 for all t:

Define a projection E ¼
WN

t¼1 pðetÞ ¼ pð
WN

t¼1 etÞ; where et ¼ vtv
n
t are diagonal

matrix units (which need not be distinct). For all s; t;

pðesÞpðvtÞ ¼ pðvsv
n

s vtÞ ¼
pðvtÞ if vsv

n
s ¼ vtv

n
t ;

0 otherwise:

(

So we have E
P

pðvtÞht ¼
P

pðvtÞht: Now

EpðuÞh 
XN

t¼1
pðvtÞht

�����
�����

�����
����� ¼ E pðuÞh 

XN

t¼1
pðvtÞht

 !�����
�����

�����
�����

p pðuÞh 
XN

t¼1
pðvtÞht

�����
�����

�����
�����o14:

Therefore jjEpðuÞhjj41=2: In particular, there exists at least one t; 1ptpN; such
that pðetÞpðuÞa0:
Embed uAAn+Am and decompose it as a sum u ¼

P
us of matrix units in Am:

Then etu ¼ us; for some s; and so it follows pðusÞa0; i.e., useJ: Thus we have
identified matrix units usAJ1\J and vtAJ2\J ofAm with the same final projection.
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Say us ¼ e
ðm;rÞ
ij and vt ¼ e

ðm;rÞ
ik : We now distinguish three cases:

If j ¼ k; then us ¼ vtAJ1-J2\J;

If jok; then vt ¼ use
ðm;rÞ
jk AJ1-J2\J;

If j4k; then us ¼ vte
ðm;rÞ
kj AJ1-J2\J:

It follows that in all three cases J1-J2 properly contains J: Thus J is meet-
irreducible.
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