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We consider reaction–diffusion systems on the infinite line that
exhibit a family of spectrally stable spatially periodic wave trains
u0(kx − ωt;k) that are parameterized by the wave number k. We
prove stable diffusive mixing of the asymptotic states u0(kx +
φ±;k) as x → ±∞ with different phases φ− �= φ+ at infinity for
solutions that initially converge to these states as x → ±∞. The
proof is based on Bloch wave analysis, renormalization theory,
and a rigorous decomposition of the perturbations of these wave
solutions into a phase mode, which shows diffusive behavior, and
an exponentially damped remainder. Depending on the dispersion
relation, the asymptotic states mix linearly with a Gaussian profile
at lowest order or with a nonsymmetric non-Gaussian profile
given by Burgers equation, which is the amplitude equation of the
diffusive modes in the case of a nontrivial dispersion relation.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider spatially extended pattern-forming systems that exhibit periodic traveling-wave solu-
tions u(x, t) = u0(kx − ωt;k) for a certain range of wave numbers k ∈ (kl,kr). The profile u0(θ;k) is
assumed to be 2π -periodic in θ = kx − ωt , where the wave number k and the temporal frequency
ω are assumed to be related via a nonlinear dispersion relation ω = ω(k). Examples are the Taylor
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vortices in the Taylor–Couette problem, roll solutions in convection problems, or periodic wave trains
in reaction–diffusion systems.

We are interested in the dynamics of perturbations of wave-train solutions of the above form.
Since the linearization around a wave train always possesses essential spectrum up to the imaginary
axis, we cannot expect exponential relaxation towards the original profile even for spectrally stable
wave trains. Moreover, the periodic nature of the underlying wave train suggests that we should allow
perturbations that change the phase or the wave number of the underlying profile. In these cases, we
expect that diffusive decay or diffusive mixing of phases or wave numbers dominate the dynamics.
More precisely, consider an initial condition of the form

u(x,0) = u0
(
q0(x)x + φ0(x);q0(x)

)
, q0(x) → k±, φ0(x) → φ± as x → ±∞, (1.1)

where the functions q0(x) and φ0(x) are bounded and small in an appropriate norm. We may then
expect that the solution u(x, t) can, to leading order, be written in the form

u(x, t) ≈ u0
(
q(x, t)x + φ(x, t) − ω0t;q(x, t)

)
,

and the issue is to determine the behavior of the phase φ(x, t) and the local wave number q(x, t) as
t → ∞. We distinguish three different classes of initial data, namely

(a) constant wave number q0(x) ≡ k0 and equal phases φ+ = φ− at infinity for non-zero phase per-
turbations φ0(x) �≡ 0, which correspond to localized perturbations of the underlying wave train;

(b) constant wave number q0(x) ≡ k0 but different phases φ+ �= φ− at infinity, which correspond to
a relative phase shift of the wave train at ±∞;

(c) different wave numbers k− �= k+ at infinity, which correspond to interface dynamics between two
different wave trains.

In this paper, we address the cases (a) and (b) for general reaction–diffusion systems

∂t u = D∂2
x u + f (u) (1.2)

with x ∈ R, t � 0, and u(x, t) ∈ R
d , where D ∈ R

d×d is symmetric and positive definite, and f is
smooth. We now outline our results and refer to Theorems 1 and 2 for the precise statements, and to
Fig. 1 for illustrations.

For localized perturbations of a single wave train (a) we transfer existing stability results from
specific systems [15,17,16,19] to general reaction–diffusion systems. In lowest order, the dynamics
near a wave train can be described by the evolution of the local wave number q(t, x), and we prove
that the renormalized wave number difference t[q(t1/2x, t) − k0] converges towards a multiple of
the x-derivative of the Gaussian 1√

4πα
exp(− x2

4α ) for an appropriate constant α > 0. This yields the

asymptotics

sup
x∈R

∣∣u(x, t) − φlimφ∗(x − cgt, t)∂θ u0(θ;k)
∣∣ � C2t−1+b as t → ∞,

with φ∗(x, t) = 1√
4παt

e−x2/(4αt) , where φlim ∈ R depends on the initial data, where α > 0 and cg ∈ R

are constants determined by the spectral properties of u0(·,k0), and where b > 0 is a small, but arbi-
trary, correction coefficient. Thus we have Gaussian decay, where throughout this paper we say that
a function decays (in time) like a Gaussian if it can be bounded by a constant times the heat kernel

1√
4πt

exp(− x2

4t ); in particular, the terms Gaussian or Gaussian profiles will always refer to functions of

the form 1√
4πα

exp(− x2

4α ).

For perturbations that induce a global phase shift (b), that is, for q0(x) ≡ k0 and φ− �= φ+ but with
|φd| := |φ+ − φ−| small, we establish diffusive decay of wave-number perturbations. Specifically, the
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Fig. 1. The panels illustrate different types of diffusive behavior in the frame that moves with the speed of the group velocity cg .
(a) Localized perturbations of wave trains decay diffusively like Gaussians. (b1) If ω′′ = 0, then phase fronts develop when
φ− �= φ+ , and the wave-number perturbation (i.e., the derivative of the phase plotted in (b1)) decays diffusively like a Gaussian.
(b2) If ω′′ �= 0, then phase fronts develop, and the wave-number perturbation decays as determined by the Burgers equation.
(c) Shown is the expected formal diffusive mixing of wave-number fronts in case ω′′ = 0. Solid and dashed lines indicate
solutions at t = 0 and for t � 1, respectively, while the small solid curves in (b1)–(b2) indicate the amplitude-scaled spatially
periodic wave train to visualize the phase shifts.

renormalized wave number converges to a Gaussian profile when ω′′(k0) = 0, while it converges to
a nonsymmetric non-Gaussian profile when ω′′(k0) �= 0. This latter case is the major result of this
paper.

The case (c) where q0(x) → k± as x → ±∞ with k− �= k+ is more difficult and depends crucially
on the sign of ω′′(k0). If ω′′(k0) �= 0, diffusive mixing of the local wave number cannot be expected:
instead, depending on the sign of ω′′(k0)(k+ − k−), we expect that q(x, t) evolves either as a stable
viscous shock or as an approximate rarefaction wave [3]. If ω′′(k0) = 0, nonlinear diffusive mixing can
be expected, but, for some technical issues that we explain below, a rigorous proof remains open and
is left for future research.

The proof of diffusive mixing of phases of wave trains in systems with no S1-symmetry has re-
sisted many attempts. With the rigorous separation of the phase variable φ from remaining modes
found in [3], a new technique is now available to treat this question. This method combined with the
renormalization group method [1,2], which has been applied for instance in [15,17,4,6,18,19] to a va-
riety of pattern-forming and hydrodynamic systems, finally yields our results. Diffusive mixing results
for the real Ginzburg–Landau equation, which has a natural decomposition into phase and amplitude
variables due to its gauge symmetry, have been obtained for instance in [1,5].

The results in this paper were presented by the last author at the Snowbird meeting in 2007.
Meanwhile, similar results on the diffusive stability of wave trains have been established in [9,7,8]
using pointwise estimates.
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Notation. Throughout this paper, we denote many different constants that are independent of the
Burgers parameters α, β and the rescaling parameter L > 0 by the same symbol C . For m1,m2 ∈ N,
we define the weighted spaces Hm2 (m1) = {u ∈ L2(R): ‖u‖Hm2 (m1) < ∞} with norm ‖u‖Hm2 (m1) =
‖uρm1‖Hm2 (R) , where ρ(x) = (1 + x2)1/2 and Hm2 (R) is the Sobolev space of functions with weak
derivatives up to order m2 in L2(R). With an abuse of notation, we sometimes write ‖u(x, t)‖Hm2 (m1)

for the Hm2 (m1)-norm of the function x → u(x, t). The Fourier transform is denoted by F so that
û(k) := F (u)(k) = 1

2π

∫
e−ikxu(x)dx for u ∈ L2(R). Parseval’s identity and F (∂xu)(k) = ikû(k) imply

that F is an isomorphism between Hm2 (m1) and Hm1 (m2), that is, the weight in physical space
yields smoothness in Fourier space and vice versa. To indicate functions in Fourier space, we also
write û ∈ Ĥm1 (m2) instead of û ∈ Hm1 (m2).

2. Statement of results

2.1. Wave trains and their dispersion relations

We assume that there are numbers k0 �= 0 and ω0 ∈ R such that (1.2) has a solution of the form
u(x, t) = u0(k0x−ω0t), where u0(θ) is 2π -periodic in its argument. Thus, u0 is a 2π -periodic solution
of the boundary-value problem

k2 D∂2
θ u + ω∂θ u + f (u) = 0 (2.1)

with k = k0 and ω = ω0. Linearizing (2.1) at u0 yields the linear operator

L0 = L(k0) = k2
0 D∂2

θ + ω0∂θ + f ′(u0(θ)
)
, (2.2)

which is closed and densely defined on L2
per(0,2π) with domain D(L0) = H2

per(0,2π). We assume

that λ = 0 is a simple eigenvalue of L0 on L2
per(0,2π), so that its null space is one-dimensional and

therefore spanned by the derivative ∂θ u0 of the wave train.
We may now vary the parameter k in (2.1) near k = k0 and again seek 2π -periodic solutions

of (2.1). The derivative of the boundary-value problem (2.1) with respect to ω, evaluated at k = k0 in
the solution u0, is given by ∂θ u0. Since λ = 0 is a simple eigenvalue of L0 on L2

per(0,2π), we see that
∂θ u0 does not lie in the range of L0, and the linearization of the boundary-value problem (2.1) with
respect to (u,ω) is therefore onto. Thus, exploiting the translation symmetry of (2.1) we can solve
(2.1) uniquely, up to translations in θ , for (u,ω) as functions of k and obtain the wave trains

u(x, t) = u0
(
kx − ω(k)t;k

)
, k ∈ (kl,kr), (2.3)

where ω(k0) = ω0 and kl < k0 < kr . In particular, wave trains exist for wave numbers k in an open
interval centered around k0. We call the function k → ω(k) the nonlinear dispersion relation and
define the phase speed of the wave train with wave number k by cp := ω(k)/k and its group velocity
by

cg = dω

dk
(k). (2.4)

To state our assumptions on the spectral stability of the wave train u0 as a solution to the reaction–
diffusion system (1.2), we consider the linearization

∂t v = L0 v (2.5)

of (1.2) in the frame θ = k0x − ω0t that moves with the phase speed cp = ω0/k0. Particular solutions
to this problem can be found through the Bloch-wave ansatz

u(θ, t) = eλ(�)t+i�θ/k0 ṽ(θ, �), (2.6)
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where � ∈ R and ṽ(θ, �) is 2π -periodic in θ for each �. In fact, since ṽ(ϑ, � + k0) = eiϑ ṽ(ϑ, �), we can
restrict � to the interval [−k0/2,k0/2). Substituting (2.6) into (2.5), we obtain

L̃(�)ṽ = λ(�)ṽ (2.7)

with a family of operators L̃ given by

L̃(�)ṽ = e−i�θ/k0 L
(
ei�θ/k0 ṽ(θ, �)

) = k2
0 D(∂θ + i�/k0)

2 ṽ + ω(∂θ + i�/k0)ṽ + f ′(u0(θ)
)

ṽ, (2.8)

each of which is a closed operator on L2
per(0,2π) with dense domain H2

per(0,2π). In particular, L̃(�)

has compact resolvent, and its spectrum is therefore discrete. We can label the eigenvalues of L̃(�)

by indices j ∈ N and write them as continuous functions λ j(�) of �. In addition, we can order these
eigenvalues so that Reλ j+1(0) � Reλ j(0) for all j. In fact, the curves � → λ j(�) are analytic except
possibly near a discrete set of values of � where the values of two or more curves λ j(�) for different
indices j coincide.

Next, we assume that λ1(0) is the rightmost element in the spectrum for � = 0. Since we assumed
that λ = 0 is algebraically simple as an eigenvalue of L, there is a curve λ1(�) of eigenvalues with
λ1(0) = 0, and this curve is analytic in � for � close to zero. We call the curve λ1(�) the linear
dispersion relation and denote the associated eigenfunctions of L̃(�) by ṽ1(θ, �). We shall compute
the derivative dλ1/d� and recover the group velocity as defined via the nonlinear dispersion relation,
namely

− Im ∂�λ1|�=0 = −cp + ∂kω(k0) = −cp + cg. (2.9)

We remark that the phase velocity cp appears in this formula solely because we computed λ1 in the
frame moving with speed cp, while ω was computed in the steady frame. We also note that the signs
of the second derivatives of λ1 and ω are, in general, not related. Finally, we assume that Reλ′′

1(0) < 0
and that all other eigenvalues λ j(�) satisfy Reλ j(�) < −σ0. The following hypothesis summarizes the
assumptions we made so far.

Hypothesis 2.1 (Existence of spectrally stable wave trains). Eq. (1.2) admits a spectrally stable wave-train
solution u(x, t) = u0(θ) with θ = k0x − ω0t for appropriate numbers k0 �= 0 and ω0 ∈ R, where u0 is
2π -periodic. Spectral stability entails the following properties. First, the linearization L0 of (1.2) about
u0 has a simple eigenvalue at λ = 0. Furthermore, the linear dispersion relation λ1(�) with λ1(0) = 0
is dissipative so that λ′′

1(0) < 0, and there exist constants σ0, �0,α0 > 0 such that Reλ1(�) < −σ0

for |�| > �0 and Reλ1(�) < −α0�
2 for |�| < �0, while all other eigenvalues λ j(�) with j � 2 have

Reλ j(�) � −σ0 for all � ∈ [−k/2,k/2).

Standard perturbation theory yields that the wave trains u0(kx−ω(k)t;k) are also spectrally stable,
possibly for a smaller interval kl � k̃l < k < k̃r � kr of wave numbers than the interval of existence. By
changing kl,kr accordingly, we shall assume from now on that the wave trains u0(·;k) with k ∈ (kl,kr)

are spectrally stable with uniform constants �0, σ0, α0.
For later use, we collect a few properties of the linear dispersion relation and refer to [3, §4.2] for

their derivation. We denote by

Ladu = k2
0 D∂2

θ u − ω0∂θ u + f ′(u0(θ)
)T

u

the L2
per((0,2π))-adjoint of L0 = L(k0) and let uad be a nontrivial function in its null space with the

normalization

〈uad, ∂θ u0〉L2(0,2π) = 1. (2.10)
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Using the adjoint eigenfunction, we have

λ′
1(0) = i

〈
uad, cp∂θ u0 + 2k0 D∂2

θ u0
〉
L2 = i(cp − cg) ∈ iR, (2.11)

λ′′
1(0) = −〈uad,4k0 D∂k∂θ u0 + 2D∂θ u0〉L2 ∈ R. (2.12)

We shall also use the identity

∂� ṽ1(·,0) = i∂ku0 (2.13)

that was established in [3, §4.2].

2.2. Statement of results

Throughout this section, we fix the wave number k0 of a wave train u0(k0x − ω0t;k0) of the
reaction–diffusion system (1.2) that satisfies Hypothesis 2.1. We then set

ω0 = ω(k0), cp = ω0/k0, cg = ω′(k0), β = −1

2
ω′′(k0), θ = k0x − ω0t

and write

λ1(�) = i(cp − cg)� − α�2 + O
(
�3) (2.14)

for the expansion of the linear dispersion relation of u0(·;k0). For convenience henceforth we write
k = k0. Before we state our result, we remark that the decomposition of the initial data that we shall
use below in the statements of our theorems is not unique. This non-uniqueness will be removed in
the proofs but does not affect the conclusions made in the results below.

Our first result states that u0 is diffusively stable with respect to localized perturbations and ex-
tracts the leading-order behavior of the displacement for large times. For notational convenience, in
the following we consider initial conditions at t = 1.

Theorem 1 (Diffusive stability). Let u0(·;k) be a spectrally stable wave train that satisfies Hypothesis 2.1 and
pick b ∈ (0,1/2); then there are ε, C > 0 such that the following holds. If, for some θ0 ∈ [0,2π),

u(x, t)|t=1 = u0
(
θ − θ0 + φ0(x);k

) + v0(x) with ‖φ0‖H3(3),‖v0‖H2(3) � ε, (2.15)

then the solution u(x, t) of (1.2) exists for all times t � 1, it can be written as

u(x, t) = u0
(
θ − θ0 + φ(x, t);k

) + v(x, t),

and there is a constant φlim ∈ R depending only on the initial condition so that

sup
x∈R

∣∣φ(x, t) − φlimG
(
x − cg(t − 1), t

)∣∣ + ∣∣v(x, t)
∣∣ � Ct−1+b, (2.16)

where

G(x, t) = 1√ e−x2/(4αt). (2.17)

4απt
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In particular, we have

sup
x∈R

∣∣u(x, t) − u0
(
θ − θ0 + φlimG

(
x − cg(t − 1), t

);k
)∣∣ � C1t−1+b.

Next, we discuss diffusive mixing of phases for non-localized phase perturbations. In this situation,
the precise asymptotics of perturbations depends on β = − 1

2 ω′′(k).

Theorem 2 (Diffusive mixing of phases). Let u0(·;k) be a spectrally stable wave train that satisfies Hypothe-
sis 2.1 and pick b ∈ (0,1/2); then there are constants ε, C > 0 such that the following holds.

(i) Assume that β = − 1
2 ω′′(k) = 0 and u(x, t)|t=1 = u0(θ − θ0 + φ0(x);k) + v0(x) with φ0(x) → φ± for

x → ±∞, |φd| = |φ+ − φ−| � ε, and

∥∥φ′
0(·)

∥∥
H2(2)

,‖v0‖H2(2) � ε. (2.18)

Then the solution u(x, t) to (1.2) exists for all t � 1, and can be written as

u(x, t) = u0
(
θ − θ0 + φ∗(x − cg(t − 1), t

);k
) + v(x, t),

where

φ∗(x, t) = φ− + (φ+ − φ−)erf(x/
√

αt), with erf(x) = 1√
4π

x∫
−∞

e−ξ2/4 dξ (2.19)

and supx∈R |v(x, t)| � Ct−1/2+b.
(ii) The same result holds if β = − 1

2 ω′′(k) �= 0, with φ∗(x, t) replaced by

φ∗(x, t) = α

β
ln

(
1 + z erf(x/

√
αt)

)
, ln(1 + z) = φ+ − φ−. (2.20)

Remark 2.2. Clearly, the decompositions (2.15) and (2.18) are not unique. For instance, φ0 ≡ 0 would
be one possibility in (2.15), but we may shift perturbations between φ0 and v0. In the proof we shall
fix this non-uniqueness via mode filters.

The higher weight in the initial conditions in Theorem 1 vs. 2 is due to the fact that in Theorem 1
we want to extract higher-order asymptotics, i.e., faster decay. The asymptotic phase-profiles in (2.17),
(2.19) and (2.20) only depend on k via α from (2.14) (and on β for (2.20)). In particular, they are
independent of the phase speed cp and therefore are formulated in x and t .

Remark 2.3. Formally, we may as well describe the diffusive mixing of wave numbers in case ω′′ = 0,
see Remark 2.7. However, then the rigorous separation of the (then unbounded) phase, see Section 3,
becomes more difficult. Therefore, we will not consider this case here.

2.3. The idea

The translation invariance of (1.2) and the fact that by assumption we have periodic wave trains
u0(θ;k) for wave numbers k in a whole interval (kl,kr) suggest to consider initial conditions for (1.2)
of the form

∣∣uic(x) − u0(k±x + φ±;k±)
∣∣ → 0 as x → ±∞. (2.21)
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The behavior of the corresponding solutions can be discussed formally if we assume that the initial
phase shift φ+ − φ− or the initial wave number shift q+ − q− happens on a long spatial scale. We
make the ansatz

u(x, t) = u0
(
k0x − ω0t + Φ(X, T );k0 + δ∂XΦ(X, T )

)
(2.22)

where 0 < δ � 1 is a small perturbation parameter that determines the length scale over which the
wave number is modulated by the function ∂XΦ , and where X and T are long spatial and temporal
scales. Plugging (2.22) into (1.2) and comparing equal powers in δ it turns out (see [3, §4.3]) that

(X, T ) = (
δ(x − cgt), δ2t

)
, where cg = ω′(k), (2.23)

are the correct spatial and temporal scales, and that q(X, T ) := ∂XΦ(X, T ) should satisfy the Burgers
equation

∂T q = α∂2
X q + β∂X

(
q2), α = −1

2
λ′′

1(0), β = −1

2
ω′′(k), (2.24)

while the phase Φ(X, T ) itself satisfies the integrated Burgers equation

∂T Φ = α∂2
XΦ + β(∂XΦ)2. (2.25)

Note again that in case β = 0 (Theorem 2(i)) (2.24) resp. (2.25) are the linear diffusion equations.
Two questions arise: (a) What do we (formally) learn from (2.24) resp. (2.25)? (b) In what sense,

i.e. in what spaces and over what time scales, do solutions of (2.24) via (2.22) approximate solutions
of (1.2), and can we give rigorous proofs for that?

To answer (a) we briefly review some well-known results about dynamics and stability in the
Burgers equation in the following section. With this in mind we turn to (b). One way to translate
the formal analysis into rigorous results is to give estimates for the difference between the formal
approximation

Uapprox(x, t) = u0
(
θ + Φ(X, T ; δ);k + δ∂XΦ(X, T ; δ))

and a true solution u(x, t) of (1.2), on sufficiently long time scales. In [3] this has been achieved for
a variety of cases using a separation of the critical mode (the phase mode) from the exponentially
damped remaining modes by Bloch wave analysis. Here, for special initial data we obtain the diffu-
sive stability results and the mixing results from Theorems 1 and 2. The proofs heavily rely on the
coordinates from [3], which are introduced in Section 3.

2.4. Dynamics in the perturbed Burgers equation

In the spectrally stable case the amplitude equation for long wave modulations of the local wave
number is given by the Burgers equation. For given classes of initial conditions the behavior of
solutions of the Burgers equation is well understood, and, moreover, this behavior is stable under per-
turbations of the Burgers equation. Thus, before proving our results for (1.2) with initial data (2.21)
we briefly review some well-known results about the (perturbed) Burgers equation, cf. [2,11] and [19,
Section 3]. This also motivates the ideas and methods of the proof. To keep track of α and β we do
not rescale (2.24) to the standard form ∂τ q = ∂2

ξ q + ∂ξ (q2).
The Burgers equation (2.24) has Galilean invariance: if q solves (2.24), then v = q + c solves

∂T v = α∂2
X v − 2cβ∂X v + β∂X (v)2 which can be transformed back to (2.24) via X → X + 2cβT . Thus,

concerning the stability of constant solutions of (2.24) we can restrict to q ≡ 0.
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We add a higher-order perturbation in the form of a total derivative to (2.24) and for notational
convenience we take initial conditions at time T = 1. Thus we consider

∂T q = α∂2
X q + β∂X

(
q2) + γ ∂X h(q, ∂X q), q|T =1 = q0, (2.26)

where for simplicity h(a,b) = ad1 bd2 is a monomial. For γ = 0 we again have the Burgers equation.
The perturbation is assumed to be of higher order. To make this precise we define the degree

dh = d1 + 2d2 − 3, and assume that d2 � 1 and dh � 0. (2.27)

The mean
∫

R
q(X, T )dX is conserved also by the perturbed Burgers equation (2.26). Diffusive sta-

bility of q = 0 in (2.26) is based on the fact that solutions to the linear diffusion equation in Fourier
space concentrate at wave number κ = 0. Roughly speaking, for initial data in L1(R) that decay like
|X |−n , the solutions of ∂T q = α∂2

X q fulfill

q(X, T ) =
n−1∑
j=0

T −( j+1)/2q̂( j)
0 (0)H j(X/

√
T ) + O

(
T −n/2) for T → ∞, (2.28)

where H j is a multiple of the (scaled) jth Hermite function H(x) = (−1) j∂
j

x exp(−x2/(4α)).
Thus, if q̂0(0) = 1

2π

∫
R

q0(X)dX �= 0 then ‖q(·, T )‖L∞ � C T −1/2‖q0‖L1 , while for q̂(0) = 0 we have
‖q(·, T )‖L∞ � C T −1‖q0‖L1 . In the second case it turns out that solutions to the nonlinear equation
(2.26) with zero mean have the same asymptotics as solutions to the linearization with zero mean.
Thus, both nonlinear terms β∂X (q2) and γ ∂X h(q, ∂X q) are called asymptotically irrelevant.

For q̂(0) �= 0 only γ ∂X h(q, ∂X q) is irrelevant, and there is a nonlinear correction to the dynamics
for (2.26) compared to (2.28). To derive this we use the Cole–Hopf transformation

Q (X, T ) = exp

(
β

α

√
αX∫

−∞
q(Y , T )dY

)
, q(X, T ) =

√
a

β

∂Y Q (Y , T )

Q (Y , T )
, Y = X/

√
α,

which transforms (2.26) with γ = 0 into the linear heat equation ∂T Q = ∂2
X Q , Q |T =1 = Q 0, with

limX→−∞ Q 0(X) = 1 and limX→∞ Q 0(X) = 1 + z > 0, i.e.

ln(1 + z) = β

α

∞∫
−∞

q(Y ,1)dY .

Since limT →∞ Q (
√

T X, T ) = 1 + z erf(X)+ O(1/
√

T ) we find that the solution q to the Burgers equa-
tion (2.26) with γ = 0 satisfies

lim
T →∞

√
T q(

√
T X, T ) = α

β

d

dX
ln

(
1 + z erf(X/

√
α)

) =: f ∗
z (X), (2.29)

with rate O(1/
√

T ). Therefore, if β �= 0, then the renormalized solutions converge toward a non-
Gaussian limit f ∗

z (X). Again, the same behavior can be shown for (2.26) with γ �= 0. We summarize
these results as follows:

Proposition 2.4. For each b ∈ (0,1/2), there exist C1, C2, T0 > 0 such that for solutions q of the perturbed
Burgers equation (2.26) the following holds.
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(i) Assume that ‖q0‖H2(3) � C1 and
∫ ∞
−∞ q0(X)dX = 0. Then there exists a qlim ∈ R such that

∥∥T q(
√

T X, T ) − qlim Xe−X2/4α
∥∥

H2(3)
� C2T − 1

2 +b. (2.30)

Thus, ‖q(X, T )‖L1 � C2T −1/2+b and ‖q(X, T )‖L∞ � C2T −1+b .
(ii) Assume that A = ∫ ∞

−∞ q0(X)dX �= 0, β = 0, and ‖q0‖H2(2) � C1 . Then

∥∥∥∥T 1/2q(
√

T X, T ) − A√
4πα

e−X2/(4α)

∥∥∥∥
H2(2)

� C2T − 1
2 +b, (2.31)

and consequently ‖q(X, T )‖L∞ � C2T −1/2 .
(iii) Assume that A = ∫ ∞

−∞ q0(X)dX �= 0, β �= 0, and ‖q0‖H2(2) � C1 . Then

∥∥T 1/2q
(
T 1/2 X, T

) − f ∗
z (X)

∥∥
H2(2)

� C2T −1/2+b, where f ∗
z (X) =

√
α

β
√

4π

ze−X2/α

1 + z erf(X/
√

α)
,

(2.32)

and ln(1 + z) = β
α

∫ ∞
−∞ q0(Y )dY . In particular, again ‖q(X, T )‖L∞ � C2T −1/2 .

Remark 2.5. (a) By translation invariance of (2.26), we can replace q0 in Proposition 2.4 by q0(· − X0)

for some X0 ∈ R and obtain the corresponding results for q(X − X0, T ); w.l.o.g. we set X0 = 0.
(b) The higher weight for q0 in Proposition 2.4(i) compared to (ii), (iii) is due to the fact that we

want to isolate higher-order asymptotics (with faster decay). For this we need F (q0) ∈ H3(2) ↪→ C2.
(c) The profiles in (ii), (iii) are explicitly given in terms of A due to the conservation of

∫
q dx, i.e.,

since the right-hand side of (2.26) is a total derivative. On the other hand, the constant qlim in (i) in
general depends on q0 in a complicated way.

(d) The local phase Φ , which is related to the wave number q by q = ∂XΦ , satisfies the (perturbed)
integrated Burgers equation

∂T Φ = α∂2
XΦ + β(∂XΦ)2 + γ h

(
∂XΦ,∂2

XΦ
)
, Φ(X,1) = Φ0(X). (2.33)

For (2.33) there exist C1, C2 > 0 such that we have the following asymptotics.
(i) If ‖Φ0‖H3(3) � C1 then there exists a φlim = −2αqlim ∈ R such that

∥∥T 1/2Φ(
√

T X, T ) − φlime−X2/4α
∥∥

H3(3)
� C2T −1/2+b. (2.34)

Thus, the renormalized phase converges toward a Gaussian.
(ii) If β = 0 and Φ0(X) → Φ± as X → ±∞ with |Φ+ − Φ−| � C1 and ‖Φ ′

0‖H2(2) � C1, then

∥∥Φ(
√

T X, T ) − Φ∗(X)
∥∥

H3(2)
� C2T −1/2+b

where Φ∗(X) = Φ− + (Φ+ − Φ−)erf(X/
√

α).
(iii) If β �= 0 and Φ0(X) → Φ± as X → ±∞ with |Φ+ − Φ−| � C1 and ‖Φ ′

0‖H2(2) � C1, then

∥∥Φ(
√

T X, T ) − Φ∗
z (X)

∥∥
H3(2)

� C2T −1/2+b

where Φ∗
z (X) = Φ− + α

β
ln(1 + z erf(X/

√
α)), ln(1 + z) = β

α (Φ+ − Φ−).
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Remark 2.6. We briefly want to explain the reason for (2.27) and the idea of (discrete) renormaliza-
tion. If

∫
q0(X)dX �= 0, then, for L > 1 chosen sufficiently large, we let

qn(ξ, τ ) = Lnq
(
Lnξ, L2nτ

)
. (2.35)

Then qn satisfies

∂τ qn = α∂2
ξ qn + β∂ξ

(
q2

n

) + γ L−n∂ξ hn(qn, ∂ξ qn), (2.36)

with

hn(qn, ∂ξ qn) = L−(d1+2d2−3)nqd1
n (∂ξ qn)

d2 , (2.37)

where dh = d1 + 2d2 − 3 � 0 due to (2.27). Next, solving ∂T q = α∂2
X q + β∂X (v2) + γ ∂X h(q, ∂X q) for

T ∈ [1,∞) is equivalent to iterating the renormalization process

solve (2.36) for τ ∈ [
L−2,1

]
with initial data qn

(
ξ, L−2) = Lqn−1(Lξ,1) ∈ X , (2.38)

where X is a suitable Banach space. Since (formally) L−n∂ξ hn in (2.36) goes to zero, in the limit
n → ∞ we recover the linear diffusion equation (if β = 0) respectively the Burgers equation (if β �= 0)
for qn , with the known asymptotics (2.28) respectively (2.29). Similarly, if

∫
q0 dX = 0, then we scale

qn(ξ, τ ) = L2nq
(
Lnξ, L2nτ

)
, (2.39)

and (independent of whether β is zero or not) end up with the linear diffusion equation in the
respective renormalization process. To make this rigorous we need a suitable Banach spaces X and
rigorous control of the iterative process (2.38), and again we refer to [2] and [19, Section 3] for
details. However, two observations are most important. (a) In (2.37) we see that each derivative in x
gives an additional L−1 in the rescaling. (b) The diffusive spreading in physical space corresponds to
concentration at κ = 0 in Fourier space according to F (Lu(L·))(k) = û(κ/L). Thus, for the linear part,
only the parabolic shape of the spectrum λ(κ) = −ακ2 of α∂2

x near κ = 0 is relevant.

Remark 2.7. If q0(X) → q± for X → ±∞, then q(
√

T X, T ) = Q ∗
0 (X) + O(T −1/2) as T → ∞ for the

solutions of qT = α∂2
X q, where Q ∗

0 (X) = q− + (q+ − q−)erf(X/
√

α). Thus we have diffusive mixing of
the wave numbers. Then, for β = 0 and for suitable q0, we have the asymptotics

q(
√

T X, T ) = Q ∗(X) + O
(
T −1/2) as T → ∞ (2.40)

for (2.26), where |Q ∗(X)− Q ∗
0 (X)| � Ce−X2/4, i.e., we have essentially the same asymptotics as in the

linear case, with a small localized correction, see [2]. On the other hand, for β �= 0 a front is created,
see [3]. However, here we do not further comment on this case since below we focus on diffusive
mixing of phases.

3. The separation of the wave numbers

3.1. The ansatz

Only special systems such as the cGL have an S 1-symmetry and therefore a natural decomposition
into amplitude and phase. Hence, the first step is to extract from a general reaction–diffusion system
an equation for the phase, and then out of this for the wave number. We follow the formal derivation
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made in [3] which uses a multi-scale expansion which however we cannot assume a priori. Thus,
here we proceed as follows for the reaction–diffusion system (1.2). As above we change coordinates
via θ = kx − ωt , and obtain

∂t u = k2 D∂2
θ u + ω∂θ u + f (u). (3.1)

A stationary wave train u0(θ;k) of (3.1) with period 2π satisfies

k2 D∂2
θ u0 + ω∂θ u0 + f (u0) = 0. (3.2)

Given a smooth phase function φ(ϑ, t) we seek solutions of the form

u(θ, t) = u0
(
ϑ;k

(
1 + ∂ϑφ(ϑ, t)

)) + w(ϑ, t), (3.3)

where the phase φ(ϑ, t) and the coordinates θ and ϑ are related by

θ = ϑ − φ(ϑ, t). (3.4)

Roughly speaking we require that ∂ϑφ is small, uniformly in ϑ , and that φ(ϑ, t) is close to the asymp-
totic profile we want to extract. Still, (3.3) adds an additional degree of freedom by introducing φ;
we later add additional conditions on φ and w , via mode filters, to remove this additional degree of
freedom again.

Remark 3.1. It might seem more natural to make the ansatz

u(θ, t) = u0
(
θ + φ(θ, t);k

(
1 + ∂θφ(θ, t)

)) + w(θ, t) (3.5)

instead of (3.3). However, we need to be able to relate the dynamics of u(θ, t) back to properties of
the wave train u0(θ;k). Thus, we would need to express u(θ, t) in terms of ϑ = θ + φ(θ, t), i.e.,

u0
(
θ + φ(θ, t);k

(
1 + ∂θφ(θ, t)

)) → u0
(
ϑ;k

(
1 + ∂θφ

(
θ(ϑ, t), t

)))
which involves the inverse θ(ϑ, t) of the function ϑ = θ +φ(θ, t). The occurrence of this inverse would
have made the forthcoming analysis much more complicated.

Remark 3.2. Suppose that we found a phase function φ(ϑ, t) with small derivative ∂ϑφ(ϑ, t) so that
(3.3) satisfies (3.1). Using the implicit function theorem, we can then, a posteriori, solve (3.4) for ϑ as
a function of θ which is of the form ϑ = θ + φ̌(θ, t), where

φ̌(θ, t) = φ(ϑ, t) = φ
(
θ + φ̌(θ, t), t

)
.

In particular, we see that

u0
(
ϑ;k

(
1 + ∂θφ(ϑ, t)

)) = u0
(
θ + φ

(
θ + φ̌(θ, t), t

);k
(
1 + ∂θφ

(
θ + φ̌(θ, t), t

)))
(3.6)

and

d

dθ
φ
(
θ + φ̌(θ, t), t

) = (
1 + ∂θ φ̌(θ, t)

)
∂θφ

(
θ + φ̌(θ, t), t

)
= ∂θφ

(
θ + φ̌(θ, t), t

) + O
(∣∣∂θφ

(
θ + φ̌(θ, t), t

)∣∣2)
.

Thus, to leading order, the solution (3.6) is of the desired form (3.5) with φ(θ, t) replaced by φ(θ +
φ̌(θ, t), t).
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We now substitute the ansatz (3.3) into (3.1) and derive the resulting PDE in ϑ . We use the
notation

uφ
0 := u0

(
ϑ;k(1 + ∂ϑφ)

)
, ∂ ju

φ
0 := (∂ ju0)

φ := (∂ ju0)
(
ϑ;k(1 + ∂ϑφ)

)
, j = ϑ,k. (3.7)

Assuming that ∂ϑφ is small, we obtain

dϑ

dθ
= 1

1 − ∂ϑφ
,

dϑ

dt
= −∂tφ

1 − ∂ϑφ
,

d

dθ
= 1

1 − ∂ϑφ

d

dϑ
,

d2

dθ2
=

(
1

1 − ∂ϑφ

d

dϑ

)2

,

and therefore

du

dθ
= 1

1 − ∂ϑφ
∂ϑ uφ

0 + k∂2
ϑφ

1 − ∂ϑφ
∂kuφ

0 ,

d2u

dθ2
=

(
1

1 − ∂ϑφ

d

dϑ
+ k∂2

ϑφ

1 − ∂ϑφ

d

dk

)2

uφ
0 ,

du

dt
= −∂tφ

1 − ∂ϑφ
∂ϑ uφ

0 + k

(
− ∂2

ϑφ∂tφ

1 − ∂ϑφ
+ ∂ϑ∂tφ

)
∂kuφ

0 ,

and

dw

dt
= ∂ w

∂t
− ∂ w

∂ϑ

∂tφ

1 − ∂ϑφ
,

dw

dθ
= 1

1 − ∂ϑφ

∂ w

∂ϑ
,

d2 w

dθ2
=

(
1

1 − ∂ϑφ

d

dϑ

)2

w.

Thus

− ∂tφ

1 − ∂ϑφ
∂ϑ uφ

0 − k

(
∂2
ϑφ

∂tφ

1 − ∂ϑφ
− ∂ϑ∂tφ

)
∂kuφ

0 + ∂t w − ∂tφ

1 − ∂ϑφ
∂ϑ w

= k2 D

((
1

1 − ∂ϑφ

∂

∂ϑ
+ k∂2

ϑφ

1 − ∂ϑφ

∂

∂k

)2

uφ
0 +

(
1

1 − ∂ϑφ

∂

∂ϑ

)2

w

)

+ ω
1

1 − ∂ϑφ

(
∂ϑ uφ

0 + k
(
∂2
ϑφ

)
∂kuφ

0 + ∂ϑ w
)

− (
k2 D∂2

ϑ u0 − ω∂ϑ u0 + f (u0)
) + f

(
uφ

0 + w
)

(3.8)

where we used (3.2) in the last equation.
Our goal is to separate the critical modes, which involve the dynamics of φ, from the damped

noncritical modes using the eigenfunctions of the linearization L(k). This is done via Bloch waves
which we introduce next.

3.2. Bloch wave analysis

Bloch wave transform J is a generalization of Fourier transform F . We briefly review the main
properties and refer to [12,17,13,3] for proofs and further details. From now on we use a slightly
rescaled Fourier transform, namely
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ŵ(�) = (F w)(�) = 1

2πk

∞∫
−∞

e−i�ϑ/k w(ϑ)dϑ, w(ϑ) = (
F −1 ŵ

)
(ϑ) =

∞∫
−∞

ei�ϑ/k ŵ(�)d�,

(3.9)

and thus, denoting the classical Fourier transform (where k = 1) by F1,

(F w)(�) = 1

k
(F1 w)(�/k) and (F ŵ)(ϑ) = (

F −1
1 ŵ

)
(ϑ/k). (3.10)

Then, for sufficiently smooth and rapidly enough decaying functions w , we have

(
J −1 w̃

)
(ϑ) := w(ϑ) =

∞∫
−∞

ei�ϑ/k ŵ(�)d� =
∑
j∈Z

k/2∫
−k/2

eiϑ(�+ jk)/k ŵ(� + jk)d�

=
k/2∫

−k/2

ei�ϑ/k
[∑

j∈Z

ei jϑ ŵ(� + jk)

]
d� =

k/2∫
−k/2

ei�ϑ/k w̃(ϑ, �)d� (3.11)

where

w̃(ϑ, �) = (J w)(ϑ, �) =
∑
j∈Z

ei jϑ ŵ(� + jk). (3.12)

Similar to the Fourier transform, the Bloch transform can be defined for tempered distributions. By
construction,

w̃(ϑ + 2π,�) = w̃(ϑ, �) and w̃(ϑ, � + k) = eiϑ w̃(ϑ, �), (3.13)

such that we can restrict ourselves to � ∈ [−k/2,k/2). The Bloch transform of the product of two
functions w1 and w2 in ϑ-space is given by the convolution

J [w1 · w2](ϑ, �) = [w̃1 ∗ w̃2](ϑ, �) =
k/2∫

−k/2

w̃1(ϑ, � − �̃)w̃2(ϑ, �̃)d�̃ (3.14)

of their Bloch transforms w̃1 and w̃2 in Bloch space, where (3.13) is used for |� − �̃| > k/2. The
analytic properties of the Bloch transform are based on a generalization of Parseval’s identity

∞∫
−∞

∣∣u(ϑ)
∣∣2

dϑ = 2πk

2π∫
0

k/2∫
−k/2

∣∣ũ(ϑ, �)
∣∣2

d�dϑ.

As a consequence, Bloch wave transform is an isomorphism between Hm2 (m1), and the space Bm1 (m2)

of functions ũ(ϑ, �) that are 2π -periodic w.r.t. ϑ , satisfy (3.13), and whose norm

‖ũ‖Bm1 (m2) =
m1∑
j=0

m2∑
i=0

2π∫
0

k/2∫
−k/2

∣∣∂ j
� ∂ i

ϑ ũ(ϑ, �)
∣∣2

d�dϑ

is finite. We now collect a few more properties; see, e.g., [17] or [3, §5.2] for more details and proofs.
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Remark 3.3. (a) If w1(ϑ) is 2π -periodic in ϑ and the support of the Fourier transform ŵ2 of a
complex-valued function w2(ϑ) lies in (−1/2,1/2), then we have

J [w1 w2](ϑ, �) = w1(ϑ)ŵ2(�). (3.15)

Due to (3.15) Bloch transform is useful to analyze differential operators with spatially-periodic coeffi-
cients, which in Bloch space become multiplication operators.

(b) Since we are interested in functions which do not necessarily decay to zero at infinity, we
employ a method already used in [14] to extend multiplication operators from the space L2 of square-
integrable functions to the space L2

ul of uniformly locally square-integrable functions equipped with

the norm ‖u‖L2
ul

= supx∈R

∫ x+1
x |u(y)|2 dy. We recall that

Hm
ul =

{
u : R → R; ‖u‖Hm

ul
= ‖u‖Hm(x,x+1) < ∞ with lim

y→0
‖u − T yu‖Hm

ul
→ 0

}

where [T yu](x) = u(x + y). Now let m, s ∈ Z with m + s � 0 and m � 0, and consider a function

M̃ : R → L
(

Hm+s
per (0,2π), Hm

per(0,2π)
)
, � → M̃(�)

which is C 2 in the Bloch wave number �. Then M̃ defines a bounded operator M : Hm+s
ul → Hm

ul with

‖M‖L(Hm+s
ul ,Hm

ul)
� C(m, s)‖M̃‖C 2

b ((−k/2,k/2),L(Hm+s
per ,Hm

per))
. (3.16)

Clearly, this can be extended to multi-linear operators.

3.3. Mode filters, and separation into critical and noncritical modes

Our goal is to separate the dynamics of the eigenmodes ṽ1(ϑ, �) associated with the critical eigen-
values λ1(�) from the remaining modes, which are linearly exponentially damped and therefore called
noncritical. We use mode filters to obtain this splitting.

Due to Hypothesis 2.1 there exists a number �1 with 0 < �1 � 1 so that the eigenvalue λ1(�) of
L̃(�) is bounded away from the rest of the spectrum for |�| < �1. Therefore, there exists an L̃(�)-
invariant projection

Q̃ c(�) = 1

2π i

∫
Γ

[
λ − L̃(�)

]−1
dλ

onto the space spanned by ṽ1(ϑ, �), where Γ ⊂ C is a small circle that surrounds λ1(�) counter-
clockwise in the complex plane and does not intersect the rest of the spectrum of L(�) for this
fixed �. For � = 0 we have

Q̃ c(0)ṽ(·,0) = 〈uad, ṽ〉ṽ1(·,0),

and similarly Q̃ c(�) can be expressed by using the scalar product with the adjoint ũad(·, �) in Bloch
space.

We choose a nonincreasing (for � � 0) C∞
0 -cutoff function χ : R → [0,1] with

χ(�) =
{

1 for |�| � 1,

0 for |�| � 2,
(3.17)

and define
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P̃ c
fs(�) = Q̃ c(�)χ

(
4�

�1

)
, P̃ s

fs(�) := 1 − Q̃ c(�)χ

(
4�

�1

)
,

P̃ c
mf(�) = Q̃ c(�)χ

(
8�

�1

)
, P̃ s

mf(�) := 1 − Q̃ c(�)χ

(
8�

�1

)
,

and

P̃ c(�) = Q̃ c(�)χ

(
2�

�1

)
, P̃ s(�) := 1 − Q̃ c(�)χ

(
16�

�1

)
.

These operators commute for each fixed � and satisfy

(
1 − P̃ c) P̃ c

fs = 0 = (
1 − P̃ c

fs

)
P̃ c

mf,
(
1 − P̃ s) P̃ s

fs = 0 = (
1 − P̃ s) P̃ s

mf,

P̃ c
fs + P̃ s

fs = 1, P̃ c
mf + P̃ s

mf = 1. (3.18)

We define scalar-valued operators p̃c
fs(�) and p̃c

mf(�) implicitly by

[
p̃c

fs(�)ũ
]
ṽ1(·, �) = P̃ c

fs(�)ũ,
[

p̃c
mf(�)ũ

]
ṽ1(·, �) = P̃ c

mf(�)ũ. (3.19)

Remark 3.3(b) implies that each of the operators above extends to a bounded operator on Hm+s
ul . The

resulting operators will be denoted by the same letter but with the superscript ˜ being dropped.
The mode filters pc

mf and P s
mf are now used to separate the critical and noncritical modes in (3.8),

while pc
fs and P s

fs are used to limit the Fourier support of the critical modes. We write (3.8) given by

− ∂tφ

1 − ∂ϑφ
∂ϑ uφ

0 − k

(
∂2
ϑφ

∂tφ

1 − ∂ϑφ
− ∂ϑ∂tφ

)
∂kuφ

0 + ∂t w − ∂tφ

1 − ∂ϑφ
∂ϑ w

= k2 D

((
1

1 − ∂ϑφ

∂

∂ϑ
+ k∂2

ϑφ

1 − ∂ϑφ

∂

∂k

)2

uφ
0 +

(
1

1 − ∂ϑφ

∂

∂ϑ

)2

w

)

− ω
1

1 − ∂ϑφ

(
∂ϑ uφ

0 + k
(
∂2
ϑφ

)
∂kuφ

0 + ∂ϑ w
)

− (
k2 D∂2

ϑ u0 − ω∂ϑ u0 + f (u0)
) + f

(
uφ

0 + w
)
, (3.20)

as

[−B0 + B1(∂ϑφ, w)
]
∂tφ + ∂t w = −Li∂ϑφ + L w + G(∂ϑφ, w), (3.21)

where

B0∂tφ = (∂ϑ u0 − k∂ku0∂ϑ)∂tφ,

Li∂ϑφ = −L(k∂ϑφ∂ku0) + k2 D
(
2∂ϑφ∂2

ϑ u0 + ∂2
ϑφ∂ϑ u0

) − ω∂ϑφ∂ϑ u0

= k
[

L(i∂ϑφ∂�v1) + kD
(
2∂ϑφ∂2

ϑ u0 + ∂2
ϑφ∂ϑ u0

) − cp∂ϑφ∂ϑ u0
]
,
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B1(∂ϑφ, w)∂tφ =
(

∂ϑ u0 − ∂ϑ uφ
0

1 − ∂ϑφ

)
∂tφ − k

(
∂2
ϑφ∂kuφ

0

1 − ∂ϑφ
∂tφ + (

∂ku0 − ∂kuφ
0

)
∂ϑ∂tφ

)

− ∂ϑ w

1 − ∂ϑφ
∂tφ, (3.22)

and where G contains the remaining terms. In the calculation above, we used that ∂�v1 = i∂ku0,
see (2.13). The symbol Li is used since in the critical modes ∂ϑ Li corresponds to L, see (3.33) below,
i.e., Li resembles an integration of L. Clearly,

B1(∂ϑφ, w) = O
(|∂ϑφ| + |w|), G(∂ϑφ, w) = O

(|∂ϑφ|2 + |w|2).
Our goal is to replace (3.21) with the system

∂t P c
fs B0φ = P c

fs Li∂ϑφ + P c
mf B1(∂ϑφ, w)∂tφ − P c

mfG(∂ϑφ, w),

∂t w = L w + P s
fs B0∂tφ − P s

fs Li∂ϑφ − P s
mf B1(∂ϑφ, w)∂tφ + P s

mfG(∂ϑφ, w) (3.23)

for (φ, w). Subtracting the first from the second equation and using (3.18), we see that solutions of
(3.23) give solutions of (3.21). Alternatively, we may consider the system

∂t pc
fs B0φ = pc

fs Li∂ϑφ + pc
mf B1(∂ϑφ, w)∂tφ − pc

mfG(∂ϑφ, w),

∂t w = L w + P s
fs B0∂tφ − P s

fs Li∂ϑφ − P s
mf B1(∂ϑφ, w)∂tφ + P s

mfG(∂ϑφ, w) (3.24)

for (φ, w), where the first equation is now scalar-valued. Inspecting (3.19) we see that (3.23) and
(3.24) are equivalent. We shall require that (φ, w) satisfy

supp F [φ] ⊂ I := {
�; χ(4�/�1) = 1

}
(3.25)

and

(
1 − P s)w = 0 (3.26)

for all t � 1. Since P s commutes with L, it follows from (3.18) and (3.24) that (3.26) holds for all
t > 1 if it is true for t = 1.

It remains to check whether (3.25) is respected by (3.24) and to calculate the operator pc
fs B0 to

see whether (3.24) is a proper evolution equation. Due to the properties of the multiplier pc
mf, we

know that

supp F
[

pc
mf

(
B1(∂ϑφ, w)∂tφ − G(∂ϑφ, w)

)]
� I

for any sufficiently smooth function φ. From (3.22) we find that the operators B0 and Ti have 2π -
periodic coefficients in ϑ and are multipliers in Bloch space which allows us to use Remark 3.3. For
any function φ that satisfies (3.25), we then obtain

P̃ c
fs J [B0φ] = P̃ c

fs(�)J [B0φ](ϑ, �)
(3.15)= φ̂(�)χ(4�/�1)Q̃ c(�)

(
∂ϑ u0(ϑ) + O(�)

)
= φ̂(�)χ(4�/�1)

(
1 + O(�)

)
ṽ1(ϑ, �)

(3.25)= [(
1 + O(�1)

)
φ̂(�)

]
ṽ1(ϑ, �),
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where the O(�1)-term is a multiplier and [(1 + O(�1))φ̂] has support in I . Therefore, using the
definition (3.19) of pc

fs and denoting the operator associated with the O(�1)-term by B2, we get

pc
fs B0φ = (1 + B2)φ (3.27)

for all φ that satisfy (3.25), where B2 has norm ‖B2‖ = O(�1) and respects (3.25), i.e.
supp F [B2φ] ⊂ I . Since similar arguments apply to the multiplier Li , (3.25) is indeed preserved
by (3.24).

For all (φ, w) for which (∂ϑφ, w) is small and φ satisfies (3.25), the first equation of (3.24) can be
written as

∂tφ = [
1 + B2 + pc

mf B1(∂ϑφ, w)
]−1[

pc
fs Li∂ϑφ − pc

mfG(∂ϑφ, w)
]
.

Substituting this expression for ∂tφ into the second equation of (3.24) for w , we arrive at the system

∂tφ = [
1 + B2 + pc

mf B1(∂ϑφ, w)
]−1[

pc
fs Li∂ϑφ − pc

mfG(∂ϑφ, w)
]
, (3.28)

∂t w = L w − P s
fs Li∂ϑφ + P s

mfG(∂ϑφ, w) + [
P s

fs B0 − P s
mf B1(∂ϑφ, w)

]
× [

1 + B2 + pc
mf B1(∂ϑφ, w)

]−1[
pc

fs Li∂ϑφ − pc
mfG(∂ϑφ, w)

]
. (3.29)

Thus we have a splitting of the critical modes φ and the noncritical modes w .

3.4. The system for wave numbers and damped modes

We now replace φ by ψ = ∂ϑφ and obtain

∂tψ = ∂ϑ

[
1 + B2 + pc

mf B1(ψ, w)
]−1[

pc
fs Liψ − pc

mfG(ψ, w)
]
, (3.30)

∂t w = L w − P s
fs Liψ + P s

mfG(ψ, w) + [
P s

fs B0 − P s
mf B1(ψ, w)

]
× [

1 + B2 + pc
mf B1(ψ, w)

]−1[
pc

fs Liψ − pc
mfG(ψ, w)

]
, (3.31)

which we also write in short as

∂t V = ΛV + F (V), (3.32)

where V = (ψ, w), Λ is a linear operator, and F (V ) = O(|V |2). We now prove that the spectrum of
the operator

∂ϑ(1 + B2)
−1 pc

mf Li

near λ = 0 is approximately given by the linear dispersion curve λ1(�) with the associated eigenmodes
given approximately by the Fourier modes exp(−i�ϑ/k). This follows from

Li
(
ei�ϑ/k) = k

[
L

(
ei�ϑ/ki∂� ṽ1

) + (
kD

(
2∂2

ϑ u0 + i(�/k)∂ϑ u0
) − icp∂ϑ u0

)
ei�ϑ/k],

and therefore (p̃c
mf J Li(ei�ϑ/k))(�) = χ( 8�

�1
)ik[λ′

1(0) − i�(2kD∂ϑ∂k ṽ1 + ∂ϑ u0) + O(�2)]ei�ϑ/k. Since 1 +
B2(�) = 1 + O(�) as a multiplier and ∂ϑ ei�ϑ/k = i(�/k)ei�ϑ/k we find

J
(
∂ϑ(1 + B2)

−1 pc
mf Lie

i�ϑ/k)(�) = χ

(
8�

�

)(
λ1(�) + O

(
�3))ei�ϑ/k. (3.33)
1
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For notational convenience we diagonalize the linear part of (3.30), (3.31) by setting

(
vc

vs

)
= S −1

(
ψ

w

)
=

(
1 0

−S1 1

)(
ψ

w

)
, (3.34)

where S̃1 ∈ C∞([−k/2,k/2), L(C, Hm(T2π ))) is a multiplier with supp S̃1 ⊂ {�1/8 < |�| < �1/4}. Thus,
vc = ψ and P s vs = vs, and, by definition,

S −1ΛS = diag
(
λc,Λs), (3.35)

with λc(�) = χ( 8�
�1

)(λ1(�) + O(�3)), cf. (3.33). In these coordinates, (3.32) becomes

∂t vc = λc vc + ∂ϑ pc
mf N

(
vc, vs), (3.36a)

∂t vs = Λs vs + P s
mf N

(
vc, vs), (3.36b)

where N is a smooth nonlinear map from Hm+2
ul × Hm+2

ul into Hm
ul for every m � 1.

3.5. The moving frame

To prove Theorems 1 and 2 we want to set up renormalization processes based on (3.36). For this
we need to remove the O(�) terms in λ1(�) = i(cp − cg)� − α�2 + O(�3). Therefore we define

(
uc

us

)
= J −1

(
vc

vs

)
via

(
ũc

ũs

)
(ϑ, �, t) = ei(cp−cg)�t

(
ṽc

ṽ s

)
(ϑ, �, t). (3.37)

This yields

∂t ũc = λ̃g(�)ũc + (∂ϑ + i�/k)p̃c
mf Ñ

(
ũc, ũs), (3.38a)

∂t ũs = Λ̃s
g(�)ũs + P̃ s

mf Ñ
(
ũc, ũs), (3.38b)

where λ̃g(�) = λ1(�) − i(cp − cg)� and Λ̃s
g(�) = Λ̃(�) − i(cp − cg)�. The factors e±ic�t drop out of the

nonlinearities since as multipliers they commute with the mode filters and

(
ũ∗2)(�)e−ic�t = ((

eic�t ṽ
)∗2)

(�)e−ic�t =
∫
m

eic(�−m)t ṽ(� − m)eicmt ṽ(m)dm e−ic�t = (
ṽ∗2)(�),

and similar for higher power convolutions.
In general, (3.37) does not correspond to a simple transform in ϑ-space. However, if ũ has the

special form ũ(t, �,ϑ) = α̃(�, t)g(ϑ) then, cf. (3.9),

v(ϑ, t) =
k/2∫

−k/2

ei�(ϑ/k+(cp−cg)t)α̃(t, �)g(ϑ)d� = α
(
ϑ/k + (cp − cg)t, t

)
g(ϑ)

= [
α(x − cgt, t) + ∂ϑα(x − cgt, t)φϑ(ϑ, t) + h.o.t.

]
g(ϑ). (3.39)

Thus, (3.37) will be responsible for recovering the group speed in Theorems 1 and 2, which motivates
the index g in (3.38). On the other hand, completely transforming (3.36) to a comoving frame would
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make the linear part spatially and temporally periodic, and the subsequent analysis would require
Floquet theory in time and thus be more complicated.

The key features of (3.38) are the following. By construction,

λg(�) = (
λ1(�) − i(cp − cg)�

) = −α�2 + O
(
�3). (3.40)

We have

(∂ϑ + i�/k)p̃c
mf Ñ

(
ũc + ũs) = η̃(�)Ñ c(ũc, ũs), (3.41)

where |η̃(�)| = C� and N c maps Hm+2(n) × Hm+2(n) into Hs(n) for all s ∈ N. In particular, by the
calculations from [3],

η̃(�)Ñ c(ũc, ũs) = βi�
(
ũc)∗2 + h.o.t., (3.42)

with β = − 1
2 ω′′(k), and where the higher-order terms h.o.t. are discussed later. The spectrum of Λ̃s

g
is left of Re z < −σ0, hence ũs is linearly exponentially damped. Thus, heuristically, if for now we
ignore ũs and h.o.t. in (3.42), then, as explained in Section 2.4 we have the following situations: in
Theorem 1 and in Theorem 2 case (i) (with ω′′ = 0), corresponding to Proposition 2.4 cases (i) and (ii),
respectively, the whole nonlinearity is irrelevant and we obtain Gaussian diffusive behavior of ũc ; for
case (ii) of Theorem 2 (ω′′ �= 0), corresponding to Proposition 2.4 case (iii), the dynamics are governed
by the Burgers equation for ũc .

The (unavoidable) drawbacks of the coordinates (3.38) are their relatively complicated derivation,
and that (3.38) is quasi-linear while the original system (1.2) is semi-linear.

4. The results in Bloch wave space

To prove Theorems 1 and 2, in Section 5 we set up renormalization processes for (3.38) in Bloch
space. For this we need Bloch spaces with regularity and weights in �. Thus we first collect a num-
ber of definitions and basic properties. We recall that Hm2 (m1) = {u ∈ L2(R): ‖u‖Hm2 (m1) < ∞} with
‖u‖Hm2 (m1) = ‖uρm1‖Hm2 (R) , where ρ(x) = (1 + |x|2)1/2, and that F is an isomorphism between

Hm2 (m1) and Ĥm1 (m2), where the notation Ĥm1 (m2) = Hm1 (m2) is used to indicate functions that
live in Fourier space.

Similarly, for L > 0 and m1,m2,b � 0 define

Bm1
L (m2,b) := {

ṽ ∈ Hm1
(
(−Lk/2, Lk/2), Hm2

per
(
(0,2π)

))
: ‖ṽ‖Bm1

L (m2,b)
< ∞}

,

‖ṽ‖2
Bm1

L (m2,b)
=

∑
α�m1

∑
β�m2

∥∥(
∂α
� ∂

β
ϑ ṽ

)
ρb

∥∥2
L2((−Lk/2,Lk/2),L2(T2π ))

.

Here ρ = ρ(�), i.e., we introduce a weight in the Bloch wave number �, and the subscript L indicates
that the Bloch wave number varies in [−kL/2,kL/2]. For fixed L > 0 the weight ρ is irrelevant since,
due to the bounded wave number domain, all norms ‖ · ‖Bm1

L (m2,b1)
and ‖ · ‖Bm1

L (m2,b2)
are equivalent,

but the constants depend on b1, b2 and L. The purpose of the weights is to take advantage of the
“derivative structure” of the nonlinearity in the equation for ũc , see (3.42), and Lemma 5.2 below.

Let Bm1 (m2,b) := Bm1
1 (m2,b). Then J is an isomorphism between Hm2 (m1) and Bm1 (m2,b), with

arbitrary b � 0, see, e.g., [17, Lemma 5.4]. We define the scaling operators

R1/L : Bm1(m2,b) → Bm1
L (m2,b), [R1/L ṽ](ϑ, �) = ṽ(ϑ, �/L).
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Only � is rescaled, and ϑ is not, and similar to (3.37) this does in general not correspond to a simple
rescaling of v . However, note that ũc = ũc(�, t) does not depend on ϑ , i.e., for ũc Bloch space is
identified with Fourier space, and in this case we have

J −1(R1/L ũ) = F −1(R1/L ũ) = LRLu, (4.1)

i.e., concentration at � = 0 in Bloch space corresponds to spreading in ϑ . Finally,

‖R1/L ṽ‖Bm1
L (2,b)

� C Lb+1/2‖ṽ‖Bm1 (2,b), (4.2)

and, for ũ, ṽ ∈ Bm1
L (m2,0) with m1,m2 � 1/2 and � ∈ (−L/2, L/2),

R1/L(RL ũ ∗ RL ṽ)(�, x) =
1/2∫

−1/2

ũ(� − Lm, x)v(Lm, x)dm

= L−1

L/2∫
−L/2

ũ(� − m, x)ṽ(m, x)dm =: L−1(ũ ∗L ṽ)(�, x). (4.3)

This will be used to express the rescaled nonlinear terms, where henceforth we will drop the subscript
L in ∗L .

To recall the heuristics, as a model for Theorems 1 and 2(i) (in which the nonlinearities are
completely irrelevant), consider the Fourier transformed version of ∂t u = α∂2

x u, ut=1 = u0, i.e.,

∂t ũ = −α�2ũ, which is solved by ũ(�, t) = e−(t−1)α�2
ũ(�,1). Then, for any c ∈ C, or more specifically

c ∈ R since we consider real-valued functions u, f̃ c(�) = ce−α�2
is a fixed point of the renormalization

map

G(1) : ũ → e−α�2(1−1/L2)R1/L ũ. (4.4)

Moreover, for L > 1 being sufficiently large, this line of fixed points is attractive in H2(2). To see
this, write ũ(�) = f̃ c(�) + g̃(�) with g̃(0) = 0. Then, using |g̃(�)| � (�/L)‖∂� g̃‖C0

b
(by the mean value

theorem) and H2 ↪→ C1 we obtain

∥∥e−α�2(1−1/L2)R1/L g̃
∥∥2

H2(2)
� C L−1‖g̃‖H2(2). (4.5)

Thus, ṽ(�, t) = ũ(t−1/2�, t) → f̃ c(�) as t → ∞ is the expected scaling for ũc in Theorem 2(i). The-
orem 2(ii) is also based on (4.4) but we have a nonlinear correction to the asymptotic profile as
explained in Section 2.4.

Similarly, for any c ∈ R, g̃c(�) = ic�e−α�2
is a fixed point of the renormalization map

G(2) : ũ → e−α�2(1−1/L2)LR1/L ũ, (4.6)

and again this line of fixed points is attractive in H3(2) ∩ X0, where X0 consists of functions with
zero mean. For this write ũ(�) = g̃c(�) + h̃(�) with ∂�h̃(0) = 0 and use |h̃(�/L)| � (�/L)2‖∂2

� h̃‖C0
b

and

H3 ↪→ C2. Thus, ṽ(�, t) = t1/2ũ(t−1/2�, t) → g̃c(�) as t → ∞ is the expected scaling for ũc in Theo-
rem 1. The need for ũ ∈ C2 also explains the higher weight in x in Theorem 1.
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Theorem 3 (Diffusive stability). Let u0(·;k) be a spectrally stable wave train and b ∈ (0,1/2). There exist
ε, C > 0 such that if ‖(ũc, ũs)|t=1‖H3(2)×B3(2,2) � ε1 and ũc(0,1) = 1

2πk

∫
uc(ϑ,1)dϑ = 0, then the solution

(ũc, ũs) to (3.38) exists for all t � 1, and there exists a ψ̃lim ∈ R such that

∥∥t1/2ũc(t−1/2�, t
) − iψ̃lim�e−α�2∥∥

H3(2)
� Ct−1/2+b, (4.7)∥∥t1/2ũs(t−1/2�, t

)∥∥
B3√

t
(2,2)

� Ct−1/2+b. (4.8)

Theorem 4 (Diffusive mixing of phases). Let u0(·;k) be a spectrally stable wave train and b ∈ (0,1/2). There
exist ε, C > 0 such that for |φd| � ε the following holds.

(i) Assume that β = − 1
2 ω′′(k) = 0, ‖ũc(�,1)‖H2(2) � ε with ũc(0,1) = φd/(2πk), ‖ũs(·,1)‖B2(2,2) � ε

and P̃ sũs(·,1) = ũs(·,1). Then the solution (ũc, ũs) to (3.38) exists for all t � 1, and

∥∥R1/
√

t ũc(�, t) − ũc∗(�)
∥∥

H2(2)
� Ct−1/2+b, (4.9)∥∥R1/

√
t ũs(�, t)

∥∥
B2√

t
(2,2)

� Ct−1/2+b , (4.10)

where ũc∗(�) = φde−α�2
.

(ii) If β = − 1
2 ω′′(k) �= 0 then the same result holds with ũc∗(�) replaced by

ũc∗(�) = F
(√

α

β

ze−ϑ2/(k2α)

1 + z erf(ϑ/
√

kα)

)
(�), (4.11)

where ln(1 + z) = β
α φd.

Before proving Theorems 3 and 4 we show that they imply Theorems 1 and 2.

Proof of Theorem 1. Given initial data in the form (2.15) from Theorem 1, i.e.,

u(x, t)|t=0 = u0
(
θ − θ0 + φ0(x);k

) + v0(x) with ‖φ0‖H3(3),‖v0‖H3(2) � ε,

we first need to extract (ũc, ũs)|t=1 and show that they fulfill the assumptions of Theorem 3. Then
we translate (4.7), (4.8) back into (φ, v) coordinates.

Thus, as explained in Remark 3.2, let u(x, t)|t=1 = u0(ϑ;k(1 + ∂ϑφ0)) + w0(ϑ) with θ = ϑ − φ0(ϑ)

and

w0(ϑ) := u0(ϑ;k) − u0
(
ϑ;k(1 + ∂ϑφ0)

) + v0(x).

W.l.o.g. assume that (1 − P s)w0 = 0, otherwise redefine φ0 = pc
mfφ0. This fixes the non-uniqueness

in (2.15). Also, φ0 ∈ Hm(3) for all m ∈ N due to the compact support of φ̃0, and, with ψ0 = ∂ϑφ0,
J from (3.12) and S from (3.34),

(
ũc, ũs)∣∣

t=1 = J S −1(ψ0, w0) = J (ψ0, w0 − S1ψ0) (4.12)

is well defined and fulfills ‖(ũc, ũs)‖H3(2)×B3(2,2) � C1ε and ũc(0,1) = 1
2πk

∫
uc(ϑ,1)dϑ = 0.

We now use (4.7), (4.8) to recover Theorem 1. Using (3.10) and F −1
1 (i�e−α�2

)(ϑ) =
− 1√ ϑ

2α e−ϑ2/(4α) we have

4πα
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t Rt1/2 uc(ϑ, t) − ψlimϑe−ϑ2/(4k2α) = F −1[t1/2 Rt−1/2 ũc(�, t) − iψ̃lim�e−α�2]
(ϑ),

where ψlim = − ψ̃lim√
4πα

1
2αk , and from c1‖û‖Hn(m) � ‖u‖Hm(n) � c2‖û‖Hn(m) we obtain

∥∥t Rt1/2 uc(ϑ, t) − ψlimϑe−ϑ2/(4k2α)
∥∥

H2(3)
� Ct−1/2+b.

Then, with

ψ(ϑ, t) = uc(ϑ + k(cp − cg)t, t
)

and w(ϑ, t) = S1uc(ϑ/k + (cp − cg)t, t
) + us(ϑ, t)

we obtain, in L∞ ,

φ(ϑ, t) :=
ϑ∫

−∞
ψ(ξ, t)dξ = −2k2ψlimα√

t

ϑ+k(cp−cg)t∫
−∞

(
− ξ

2αk2t
e−ξ2/(4k2αt)

)
dξ + O

(
t−1)

= −2t−1/2k2ψlimαe−(ϑ+k(cp−cg)t)2/(4αk2t) + O
(
t−1), (4.13)

i.e., φlim = −4k2
√

α3πψlim. Also w(ϑ, t) = O(t−1) since supp S̃1 ⊂ {�1/8 < |�| < �1/4} and

∥∥us(ϑ, t)
∥∥

L∞ = ∥∥ J−1ũs(·, ·, t)(ϑ)
∥∥

L∞ =
∥∥∥∥∥

k/2∫
−k/2

ei�ϑ/kũs(ϑ, �, t)d�

∥∥∥∥∥
L∞

=
∥∥∥∥∥t−1/2

kt1/2/2∫
−kt1/2/2

ei�t−1/2ϑ/kũs(ϑ, t−1/2�, t
)(

1 + �2)2(
1 + �2)−2

d�

∥∥∥∥∥
L∞

� Ct−1/2
∥∥Rt−1/2 ũs(·, ·, t)

∥∥
B3√

t
(2,2)

� Ct−1+b. (4.14)

Finally,

ϑ = θ − θ0 + φ(ϑ, t) = θ − θ0 − 2k2t−1/2ψlimαe−(ϑ+k(cp−cg)t)2/(4αk2t) + O
(
t−1)

= θ − θ0 − 2k2t−1/2ψlimαe−(x−cgt)2/(4αt) + O
(
t−1)

using θ = kx − ωt = k(x − cpt) and the implicit function theorem. �
Proof of Theorem 2. First, assume that β = 0. As above we write u(x, t)|t=0 = u0(ϑ;k(1 + ∂ϑφ0)) +
w0(ϑ) with w0(ϑ) := u0(ϑ;k) − u0(ϑ;k(1 + ∂ϑφ0)) + v0(x), and where now ‖φ′

0(·)‖H2(2) � ε and
φ0(ϑ) → φ± as ϑ → ±∞. Again, w.l.o.g. assume that (1 − P s)w0 = 0. Then, for

ψ0(ϑ) = ∂ϑφ0(ϑ) = uc(ϑ,1)

we obtain 2πkũc(0,1) = ∫
uc(ϑ,1)dϑ = φd , and Theorem 4 applies to

(
ũc, ũs)∣∣

t=1 = J S −1(ψ0, w0) = J (ψ0, w0 − S1ψ0).

Thus, with ψ(ϑ, t) = uc(ϑ + k(cp − cg)t, t) and w(ϑ, t) = S1uc(ϑ + k(cp − cg)t, t) + us(ϑ, t) we obtain,
in L∞ ,
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φ(ϑ, t) := φ− +
ϑ∫

−∞
ψ(ξ, t)dξ = φ− + (φ+ − φ−)

1√
4πk2t

ϑ+k(cp−cg)t∫
−∞

e−ξ2/(4k2αt) dξ + O
(
t−1)

= φ− + (φ+ − φ−)erf
(
(x − cgt)/

√
4αt

) + O
(
t−1)

and w(ϑ, t) = O(t−1/2+b) as in (4.13) and (4.14) above. Hence

ϑ = θ + φ(ϑ, t) = θ + φ− + (φ+ − φ−)erf
(
(x − cgt)/

√
4αt

) + O
(
t−1/2)

and by shifting the O(t−1/2)-part to v we obtain part (i) in Theorem 2. Part (ii) with β �= 0 works in
the same way. �
5. Renormalization

We first prove Theorem 3; the minor modifications needed to prove Theorem 4(i) are then ex-
plained in Section 5.5, while the changes for the slightly more complicated proof of Theorem 4(ii) are
explained in Section 5.6.

5.1. The rescaled systems

Based on the asserted behavior t1/2ũc(t−1/2�, t) → iψlim�e−α�2
we introduce, for n ∈ N and L > 1

chosen sufficiently large below, the variables

ũc
n(κ, τ ) := Lnũc(κ/Ln, L2nτ

) = Ln[RL−n ũc](κ, L2nτ
)
, (5.1)

ũs
n(ϑ,κ, τ ) := Lnũs(ϑ,κ/Ln, L2nτ

) = Ln[RL−n ũs](ϑ,κ, L2nτ
)
. (5.2)

Then (ũc
n, ũs

n) fulfill

∂τ ũc
n(κ, τ ) − λ̃g,n(κ)ũc

n(κ, τ ) = L3n Ñ c
n

(
ũc

n, ũs
n

)
(κ, τ ), (5.3a)

∂τ ũs
n(ϑ,κ, τ ) − Λ̃g,nũs

n(ϑ,κ, τ ) = L3n Ñ s
n

(
ũc

n, ũs
n

)
(ϑ,κ, τ ), (5.3b)

where

λ̃g,n(κ) = L2nλ̃g
(
κ/Ln), Λ̃g,n = L2n RL−nΛ̃g RLn ,

Ñ c
n

(
ũc

n, ũs
n

) = η̃
(
κ/Ln)RL−n Ñ c(L−n RLn ũc

n, L−n RLn ũs
n

)
,

Ñ s
n

(
ũc

n, ũs
n

) = RL−n P̃ s
mf Ñ

(
L−n RLn ũc

n, L−n RLn ũs
n

)
.

Except for the different scaling due to ũc
n(0, �) = 0, (5.3) has a very similar structure as, e.g., [15,

Eq. (30)] or [18, Eq. (3.2)]. Thus, similar to (2.38), we shall consider the following iteration:

solve (5.3) for τ ∈ I := [
L−2,1

]
with initial data

(
ũc

n
ũs

n

)(
ϑ,κ, L−2) = L

(
ũc

n−1
ũs

n−1

)
(ϑ,κ/L,1).

(5.4)

Formally, (5.3) is solved by the variation of constant formula, i.e.
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ũc
n(κ, τ ) = e(τ−1/L2)λ̃g,n(κ)ũc

n

(
κ,1/L2) +

τ∫
1/L2

e(τ−s)λ̃g,n(κ)L3n Ñ c
n

(
ũc

n, ũs
n

)
(κ, s)ds, (5.5a)

ũs
n(ϑ,κ, τ ) = e(τ−1/L2)Λ̃g RLn ũs

n(ϑ,κ, τ ) +
τ∫

1/L2

e(τ−s)Λ̃g,n L3n Ñ s
n

(
ũc

n, ũs
n

)
(ϑ,κ, s)ds. (5.5b)

However, (5.5) cannot be used to construct the solution since (5.3) is a quasi-linear system, as it
can be seen from N : Hm2 (m1) × Hm2 (m1) → Hm2−2(m1) in (3.36). To solve (5.3) we use maximal
regularity methods [10] for parabolic equations in (weighted) Sobolev spaces as in [19]. A posteriori,
(5.5) can then be used to estimate the solutions. Thus, we first note some properties of the linear
semigroups and the nonlinearities in (5.5), and then explain how to obtain local existence for (5.3).

5.2. Estimates on the linear semigroups and the nonlinearities

We shall need some detailed estimates on the linear semigroups and the nonlinear terms in (5.5).
The idea is to exploit the derivative-like structure in the Bloch wave number κ of Ñ c as expressed
in (3.42) by relaxing the weight, and to regain the weight using e(τ−τ ′)λ̃g,n . Thus, from this point on,
the weights in κ become important.

Lemma 5.1. There exists a C > 0 such that for all L > 1 we have

∥∥e(τ−τ ′)λ̃g,n ũc
n

∥∥
B3

Ln (2,2)
� C max

{
1,

(
τ − τ ′)−b/2}∥∥ũc

n

∥∥
B3

Ln (2,2−b)
, (5.6)

∥∥e(τ−τ ′)Λ̃g,n ũs
n

∥∥
B3

Ln (2,2)
� C max

{
1,

(
τ − τ ′)−m2/2}

e−γ0 L2n(τ−τ ′)∥∥ũs
n

∥∥
B3

Ln (2−m2,2)
. (5.7)

Proof. Eq. (5.6) holds since the real part of λ̃g,n(κ) = L2nλ̃g(κ/Ln) = −ακ2 + O(κ3) is bounded from
above by the parabola −α0κ

2, while (5.7) holds since Λ̃g,n is a relatively bounded perturbation of
L2n(∂ϑ + iκ/Ln)2 and by construction has spectrum left of −L2nγ0. �

The following lemma transfers the fact that derivatives give higher powers of L−1 upon rescaling
to general convolution operators with a “derivative-like” structure.

Lemma 5.2. Let m1 ∈ N, γ � 0, and K̃ ∈ Cm1
b ([−1/2,1/2)2, H2(T2π )) with ‖K̃ (κ − �, �)‖H2(T2π ) �

C(|κ − �| + |�|)γ . Then

(ṽ, w̃) → (M1/L K )(ṽ, w̃)(κ,ϑ) :=
L/2∫

−L/2

[R1/L K̃ ](κ − �, �,ϑ)ṽ(κ,ϑ)w̃(κ − �,ϑ)d�

defines a bilinear mapping (M1/L K ) : Bm1
L (2,2)× Bm1

L (2,2) → Bm1
L (2,2), and there exists a C > 0 such that

for all L > 1 we have

∥∥(M1/L K )(ṽ, w̃)
∥∥

Bm1
L (2,2−γ )

� C L−min{γ ,1}‖ṽ‖Bm1
L (2,2)

‖w̃‖Bm1
L (2,2)

.

Proof. This holds due to sup� | �γ L−γ

(1+�2)γ /2 | � C L−γ . �
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Lemma 5.3. Let ‖(ũc
n, ũs

n)‖[B3
Ln (2,2)]2 � Rn � 1. There exists a C > 0 such that

L3n
∥∥Ñ c

n

(
ũc

n, ũs
n

)∥∥
B3(2,1)

� C L−n R2
n. (5.8)

The term L3n Ñ s
n can be split according to the number of ϑ derivatives as L3n Ñ s

n = Ñ s
n,0 + Ñ s

n,1 + Ñ s
n,2 such

that

∥∥Ñ s
n,i

∥∥
B3(2−i,2)

� C R2
n. (5.9)

Proof. We write L3n Ñ c
n = s1 + s2, where, as explained in Section 3.5, the lowest-order term s1 in

L3n Ñ c
n (ũc

n, ũs
n) reads

s1(κ) = L3niβ
κ

Ln
RL−n

(
L−n RLn ũc

n

)�2
(κ), (5.10)

cf. (3.42). This yields ‖s1‖B3(2,1) � C L−n R2
n by direct calculation. The remaining terms s2 can

be estimated in a similar way using Lemma 5.2 and taking into account the finite support of
(∂ϑ + i�/k)p̃c

mf Ñ (ũc + ũs) in Fourier space.

This does not work for L3n Ñ s
n (ũc

n, ũs
n). However, here we do not need an additional factor L−n ,

and (5.9) simply follows by checking the number of derivatives in N and using (4.3). �
5.3. Local existence

Since (3.36) and hence (5.3) is quasi-linear we cannot combine Lemmas 5.1 and 5.3 to directly
show local existence for (5.3) via (5.5). Instead we use maximal regularity theory from [10]. For
I = (τ0, τ1) and r, s � 0 let

Hr,s(I,m1) = L2(I, Hr(m1)
) ∩ Hs(I, L2(m1)

)
.

Since (3.36) is a parabolic problem these spaces only occur with s = r/2 and we set K m2 (I,m1) =
Hm2,m2/2(m1). Then, for any given weight b > 0, Bloch transform is an isomorphism between
K m2 (I,m1) and

K̃ m1(I,m2,b) = L2(I, Bm1(m2,b)
) ∩ Hm2/2(I, Bm1(0,b)

)
.

Similarly, for every n, let

K̃ m1
Ln (I,m2,b) := R1/Ln K̃ m1(I,m2,b) := L2(I, Bm1

Ln (m2,b)
) ∩ Hm2/2(I, Bm1

Ln (0,b)
)
,

i.e., the subscript Ln again indicates that the Bloch wave number varies in [−kLn/2,kLn/2). From (4.2)
we have

‖R1/Ln ũ‖K̃
m1
Ln (I,m2,b)

� C Ln(b+1/2)‖ũ‖K̃ m1 (I,m2,b). (5.11)

Recall that for each n the weight b in κ gives an equivalent norm in K̃ m1
Ln (I,m2,b), but the constants

depend on n. We also need subspaces of functions that vanish sufficiently fast at τ0, and define

0 K m2(I,m1) := {
v ∈ K m2(I,m1): ∂

j
τ v(·, τ0) = 0 for j ∈ N, j < m2/2 − 1/2

}
,

0 K̃ m1
Ln (I,m2,b) := {

v ∈ K̃ m1
Ln (I,m2,b): ∂

j
τ ṽ(·, ·, τ0) = 0 for j ∈ N, j < m2/2 − 1/2

}
.
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We set

I = (
L−2,1

)
,

and for (ũc
n, ũs

n)|τ=L−2 ∈ [B3
Ln (2,2)]2 construct solutions (ũc

n, ũs
n) ∈ [K̃ 3

Ln (I,3,2)]2 to (5.3). Note again
that for ũc

n we can identify Bloch space with Fourier space such that in fact ũc
n ∈ K 3(I,2) (in the

Fourier sense) with supp ũc
n(τ ) ⊂ In = {|κ | � Ln�1/4}. We abbreviate (5.3) as LnŨn = Ñn(Ũn), where

LnŨn =
(

∂τ ũc
n(κ, τ ) − λ̃g,n(κ)ũc

n(κ, τ )

∂τ ũs
n(ϑ,κ, τ ) − Λ̃g,nũs

n(ϑ,κ, τ )

)
, (5.12)

and, for m2 � 2, we first consider the linear inhomogeneous version of (5.3) with zero initial data, i.e.,

LnŨn(τ ) = Ñn(τ ), Ñn ∈ [
0 K̃ 3

Ln (I,m2 − 2,2)
]2

, Ũn|τ=L−2 = 0, (5.13)

where moreover for the first component Ñ c
n of Ñn = (Ñ c

n , Ñ s
n ) we assume

Ñ c
n ∈ K 3(I,2) (in the Fourier sense), and supp Ñ c

n (τ ) ⊂ In = {|κ | � Ln�1/4
}
. (5.14)

Lemma 5.4. There exists a C > 0, independent of n ∈ N, such that for all Ñn ∈ [0 K̃ 3
Ln (I,m2 − 2,2)]2 which

fulfill (5.14) there exists a unique solution of (5.13) with

‖Ũn‖K̃ 3
Ln (I,m2,2) � C‖Ñn‖0 K̃ 3

Ln (I,m2−2,2). (5.15)

Proof. The first component ∂τ ũc
n(κ, τ ) − λ̃g,n(κ)ũc

n(κ, τ ) = Ñ c
n is independent of ϑ and thus can be

solved by the variation of constant formula using (5.6) (with b = 0). For the second component we
use resolvent estimates for the solution of

(λ − Λ̃g,n)ũs
n = Ñ s

n .

There exists a C > 0 such that for m2 � 2, Ñ s
n ∈ Bm1

Ln (m2 − 2,b) all λ ∈ C with Reλ � 0 we have

∥∥ũs
n

∥∥
B

m1
Ln (m2,b)

+ |λ|m2/2‖u‖B
m1
Ln (0,b)

� C
(∥∥Ñ s

n

∥∥
B

m1
Ln (m2−2,b)

+ |λ|(m2−2)
∥∥Ñ s

n

∥∥
B

m1
Ln (0,b)

)
. (5.16)

Similar to Lemma 5.1 this holds since Λ̃g,n is a relatively bounded perturbation of L2n(∂ϑ + iκ/Ln)2

and by construction has spectrum left of −L2nγ0. See also [19, Appendix A.2] for an explanation of
how to obtain resolvent estimates in weighted spaces. From (5.16) we obtain (5.15) by continuation
of Ñ s

n for τ ∈ R, Laplace transform, and the Paley–Wiener Theorem. In fact, in (5.16) we could choose
λ to the right of −L2nγ0, but Reλ � 0 is enough to show (5.15) with C independent of n. �

We denote the solution operator of (5.13) by 0 L−1
n . To solve the nonlinear problem we write

Ũn = Ṽn + W̃n where Ṽn ∈ K̃ 3
Ln (R,3,2) is a continuation of Ũn|τ=L−2 , which exists due to [10, Theo-

rem 4.2.3]. Then W̃n fulfills

Ln W̃n = Gn(W̃n), W̃n|τ=L−2 = 0, where Gn(W̃n) = Ñn(Ṽn + W̃n) − Ln Ṽn. (5.17)

The idea is to show that for W̃n ∈ 0 K̃ 3
Ln (I,3,2) we have G̃(W̃n) ∈ 0 K̃ 3

Ln (I,1,2) and use Lemma 5.4
and estimates on the nonlinearity to apply the contraction mapping theorem to
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Φ(W̃ ) := 0 L−1
n Gn(W̃n). (5.18)

We set

ρn := ∥∥(
ũc

n, ũs
n

)∣∣
τ=1

∥∥[B3
Ln (2,2)]2 (5.19)

and obtain the following local existence result, taking into account that (ũc
n, ũs

n)(1/L2) and (ũc
n−1,

ũs
n−1) are related by (ũc

n, ũs
n)|τ=L−2 = LR1/L(ũc

n−1, ũs
n−1)|τ=1 and hence, by (4.2),

∥∥(
ũc

n, ũs
n

)∣∣
τ=L−2

∥∥
B3

Ln (2,2)
� C L7/2ρn−1.

Lemma 5.5. There exist C1, C2 > 0, independent of n, such that the following holds. If ρn−1 � C1L−7/2 , then
there exists a unique solution (ũc

n, ũs
n) ∈ [K̃ 3

Ln (I,3,2)]2 to (5.3) with

∥∥(
ũc

n, ũs
n

)∥∥[K̃ 3
Ln (I,3,2)]2 � C2L7/2ρn−1. (5.20)

Moreover, for all τ1 > L−2 and any m2 ∈ N there exists a C3 , independent of n, such that

∥∥(
ũc

n, ũs
n

)∥∥[K̃ 3
n ((τ1,1),m2,2)]2 � C3L7/2ρn−1. (5.21)

Proof. From standard Sobolev embeddings we have that Ñn is a smooth mapping from K̃ 3
Ln (I,3,2)

to K̃ 3
Ln (I,1,2), see also Lemma 5.3. To show that Gn(W̃n) in (5.17) is in 0 K̃ 3

Ln (I,1,2) we have to
fulfill one compatibility condition, namely Gn(W̃n)|τ=L−2 = 0, which holds by construction. For suffi-
ciently small ρn−1, Φ is a contraction since Ñn is quadratic and higher order. In particular, combining
Lemma 5.4 with a slight adaption of (5.9) to the time-dependent case we find that C1, C2 may be cho-
sen independent of n. The higher regularity follows by a standard bootstrapping argument: for almost
all τ ∈ (L−2,1) we have (ũc

n, ũs
n)(τ ) ∈ B3

Ln (3,2). Starting again at such a τ the required compatibility
conditions to apply Lemma 5.4 are automatically fulfilled. This yields (5.21). �
5.4. Proof of Theorem 3 (Diffusive stability)

Due to the loss of L7/2 in Lemma 5.5 we need to improve (5.20) to iterate (5.4). Given a local
solution (ũc

n, ũs
n) with the higher regularity (5.21) this will be achieved by using the variation of

constant formula and a suitable splitting of ũc
n .

For ũc ∈ Ĥ3(2) we define Π ũc = ∂κ ũc(0), which, by Sobolev embedding, gives a continuous map,
i.e. |Π ũc| � C‖ũc‖Ĥ3(2)

. Here, and also in (5.25) below, we need the smoothness in the Bloch wave
number, which for ũc we again identify with the Fourier wave number. To prove Theorem 3 we write

ũc
n(κ,1) = iψn g(κ) + rc

n(κ), ũs
n(κ,ϑ,1) = rs

n(ϑ,κ), (5.22)

where g(κ) = κe−ακ2
and rc

n(0) = ∂κ rc
n(0) = 0. This makes sense since ũn(0, τ ) = 0 for all n ∈ N and

all τ ∈ [1/L2,1] if ũc(0,1) = 0. Substituting (5.22) into (5.3) yields

ψn − ψn−1 = Π Ic
n, (5.23a)

rc
n = e(1−L−2)λ̃g,n LR1/Lrn−1 + Ic

n + Resn, (5.23b)

rs
n = e(1−L−2)Λ̃g LR1/Lrn−1 + I s

n,0 + I s
n,1 + I s

n,2, (5.23c)



B. Sandstede et al. / J. Differential Equations 252 (2012) 3541–3574 3569
where, using the notation L3n Ñ s
n = Ñ s

n,0 + Ñ s
n,1 + Ñ s

n,2 from Lemma 5.3,

Ic
n = L3n

1∫
1/L2

e(1−τ )λ̃g,n Ñ c
n

(
ũc

n, ũs
n

)
(τ )dτ , I s

n, j =
1∫

1/L2

e(1−τ )Λ̃g,n Ñ s
n, j

(
ũc

n, ũs
n

)
(τ )dτ ,

and where the residual in (5.23b) is defined by Resn = iψn−1e(1−L−2)λ̃g,n LR1/L g − iψn g . We also define

ρn,c = ∥∥rc
n

∥∥
B3

Ln (2,2)
and ρn,s = ∥∥rs

n

∥∥
B3

Ln (2,2)
,

which gives, cf. (5.19), ρn = ‖ũc
n‖B3

Ln (2,2) + ‖ũs
n‖B3

Ln (2,2) � C |ψn| + ρn,c + ρn,s.

Now assume that ρn−1 � L−7/2. Then from (5.6), (5.8) we immediately obtain

|ψn − ψn−1| � C L−n(C2L7/2ρn−1
)2

(5.24)

with C2 from (5.20). Moreover, ‖e(1−L−2)λ̃g,n LR1/L g − g‖B3
Ln (2,2) � C L−2n and hence ‖Resn‖B3

Ln (2,2) �
C L−2n|ψn−1|. Next, we have

∥∥e(1−L−2)λ̃g,n LR1/Lrc
n−1

∥∥
B3

Ln (2,2)
� C L−1

∥∥rc
n−1

∥∥
B3

Ln (2,2)
. (5.25)

This follows from rc
n−1(κ/L) = ( κ

L )2∂2
κ rc

n−1(κ̃) for some κ̃ between 0 and κ . Here again we need the
smoothness in κ . Combining the above estimates we arrive at

ρn,c � C L−1ρn−1,c + C L−n(C2L7/2ρn−1
)2 + C L−2n

∣∣ψn−1|. (5.26)

To estimate ρn,s first note that

∥∥e(1−L−2)Λ̃g LR1/Lrs
n−1

∥∥
B3

Ln (2,2)
� Ce−γ0 L2n

L7/2ρn−1,s � L−1ρn−1,s (5.27)

for L sufficiently large. Next, I s
n,0 and I s

n,1 can be estimated using (5.7) and (5.9) to

∥∥I s
n,0

∥∥
B3

Ln (2,2)
+ ∥∥I s

n,1

∥∥
B3

Ln (2,2)
� C L−n(

L7/2ρn−1
)2

. (5.28)

However, for the quasi-linear part I s
n,2 we have to use the higher regularity (5.21) and split I s

n,2 =∫ 1/2
1/L2 · · ·dτ + ∫ 1

1/2 · · ·dτ to obtain

∥∥I s
n,2

∥∥
B3

Ln (2,2)
� C

(
C2L7/2ρn−1

)2
1/2∫

1/L2

(1 − τ )−1e−γ0 L2n(1−τ ) dτ + C
(
C3L7/2ρn−1

)2
1∫

1/2

e−γ0 L2n(1−τ ) dτ

� C
(
C2

2 + C2
3

)
L−n(L7/2ρn−1

)2
. (5.29)

This yields

ρn,s � C L−1ρn−1 + C L−n(L7/2ρn−1
)2

. (5.30)
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Now, let L � L0 with L0 so large that C L−1 � L−(1−b) and let ρ0 = ‖(ũc, ũs)‖B3(2,2) � L−4. Then,
combining (5.24), (5.26), (5.27) and (5.30), iteration shows that there exists a ψlim ∈ R such that

|ψlim − ψn| + ρn,c + ρn,s � L−n(1−b) as n → ∞, (5.31)

where the correction Lnb takes care of the powers Cn arising in the iteration. This discrete convergence
implies Theorem 3 using t = L2nτ and the local existence Lemma 5.5.

5.5. Proof of Theorem 4(i) (Diffusive mixing, Gaussian case)

The main difference compared to the proof of Theorem 3 are different scalings for ũc
n , ũs

n , which
are now based on (4.4) instead of (4.6). Thus, we introduce

ũc
n(κ, τ ) = RL−n ũc(κ, L2nτ

)
, ũs

n(ϑ,κ, τ ) = RL−n ũs(ϑ,κ, L2nτ
)
. (5.32)

We want to show that

ũc
n(κ,1) → φde−ακ2

, ũs
n(κ,1) → 0 as n → ∞. (5.33)

We obtain

∂τ ũc
n(κ, τ ) − λ̃g,n(κ)ũc

n(κ, τ ) = L2n Ñ c
n

(
ũc

n, ũs
n

)
(κ, τ ), (5.34a)

∂τ ũs
n(ϑ,κ, τ ) − Λ̃g,nũs

n(ϑ,κ, τ ) = L2n Ñ s
n

(
ũc

n, ũs
n

)
(ϑ,κ, τ ), (5.34b)

where λ̃g,n(κ) = L2nλ̃g(κ/L2n) and Λ̃g,n = L2n RL−n Λ̃g RLn as before, and

Ñ c
n

(
ũc

n, ũs
n

) = η̃
(
κ/Ln)RL−n Ñ

(
RLn ũc

n, RLn ũs
n

)
,

Ñ s
n

(
ũc

n, ũs
n

) = RL−n P̃ s
mf Ñ

(
RLn ũc

n, RLn ũs
n

)
.

The renormalization process reads

solve (5.34) for τ ∈ I := [
L−2,1

]
with initial data

(
ũc

n
ũs

n

)∣∣∣∣
τ=L−2

= R1/L

(
ũc

n−1
ũs

n−1

)∣∣∣∣
τ=1

. (5.35)

The local existence for (5.34) works exactly as for (5.3). In contrast to Lemma 5.5 with
(ũc

n, ũs
n)(1/L2) ∈ [B3

Ln (2,2)]2 it suffices here to take (ũc
n, ũs

n)(1/L2) ∈ [B2
Ln (2,2)]2 in order to extract

the asymptotics (5.33), cf. (5.45). Thus, we set

ρn := ∥∥(
ũc

n, ũs
n

)∣∣
τ=1

∥∥[B2
Ln (2,2)]2 , (5.36)

and for ρn−1 � C1L−5/2 we obtain a local solution (ũc
n, ũs

n) ∈ [K̃ 2
Ln (I,3,2)]2 to (5.34) with

∥∥(
ũc

n, ũs
n

)∥∥[K̃ 2
Ln(I,3,2)]2 � C2L5/2ρn−1, (5.37)

and for each τ1 > L−2 and m2 ∈ N there exists a C3 such that we have the higher regularity

∥∥(
ũc

n, ũs
n

)∥∥[K̃ 2 ((τ1,1),m2,2)]2 � C3L5/2ρn−1. (5.38)

Ln
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The estimates for the linear semigroups work as before, i.e., here

∥∥e(τ−τ ′)λ̃g,n ũc
n

∥∥
B2

Ln (2,2)
� C max

{
1,

(
τ − τ ′)−b/2}∥∥ũc

n

∥∥
B2

Ln (2,2−b)
, (5.39)

∥∥e(τ−τ ′)Λ̃g,n ũs
n

∥∥
B2

Ln (2,2)
� C max

{
1,

(
τ − τ ′)−m2/2}

e−γ0 L2n(τ−τ ′)∥∥ũs
n

∥∥
B2

Ln (2−m2,2)
. (5.40)

The nonlinearities are now estimated as follows.

Lemma 5.6. Let ‖(ũc
n, ũs

n)‖[B2
Ln (2,2)]2 � Rn � 1. There exists a C > 0 such that

L2n
∥∥Ñ c

n

(
ũc

n, ũs
n

)∥∥
B2

Ln (2,1)
� C L−n R2

n. (5.41)

The term L2n Ñ s
n can be split according to the number of ϑ derivatives as L2n Ñ s

n = Ñ s
n,0 + Ñ s

n,1 + Ñ s
n,2 such

that

∥∥Ñ s
n,i

∥∥
B2

Ln (2−i,2)
� C R2

n. (5.42)

Proof. Apart from the different power counting, the proof works like the one of Lemma 5.3, with the
crucial difference that now the term s1 from (5.10) vanishes since β = 0 by assumption. �

Similar to (5.22) we now set

ũc
n(κ,1) = φd g(κ) + rc

n(κ), ũs
n(κ,ϑ,1) = rs

n(κ,ϑ), (5.43)

where g(κ) = e−ακ2
and rc

n(0) = 0. Here no variables φn are necessary since, due to the conservation
of total phase shift, i.e., ∂t ũc(0, t) = 0 for all t . We obtain

rc
n = e(1−L−2)λ̃g,n R1/Lrc

n−1 + Ic
n + Resn, (5.44a)

rs
n = e(1−L−2)Λ̃g R1/Lrs

n−1 + I s
n,0 + I s

n,1 + I s
n,1, (5.44b)

where Resn = φd(e(1−L−2)λ̃g,n R1/L g − g) and

Ic
n = L2n

1∫
1/L2

e(1−τ )λ̃g,n Ñ c
n

(
ũc

n, ũs
n

)
(τ )dτ , I s

n, j =
1∫

1/L2

e(1−τ )Λ̃g,n Ñ s
n, j

(
ũc

n, ũs
n

)
(τ )dτ ,

with L2n Ñ s
n = Ñ s

n,0 + Ñ s
n,1 + Ñ s

n,2 from Lemma 5.6. Clearly, ‖Resn‖B2
Ln (2,2) � C |φd|L−2n , and

∥∥e(1−L−2)λ̃g,n R1/Lrc
n−1

∥∥
B2

Ln (2,2)
� C L−1

∥∥rc
n−1

∥∥
B2

Ln (2,2)
(5.45)

which follows by writing rc
n−1(κ/L) = ( κ

L )∂κ rc
n−1(κ̃) for some κ̃ between 0 and κ . Combining this

with (5.39) and (5.41) thus yields

ρn,c � C L−1ρn−1,c + C L−n(C2L5/2ρn−1
)2 + C |φd|L−2n, (5.46)



3572 B. Sandstede et al. / J. Differential Equations 252 (2012) 3541–3574
and similarly

ρn,s � L−1ρn−1,s + C
(
C2

2 + C2
3

)
L−n(L5/2ρn−1

)2
. (5.47)

The proof of Theorem 4(i) now follows by iteration. At this point the assumption |φd| � ε is crucial.
This can be seen by computing ρn,c in powers of L for n = 0,1,2, . . . starting with ρ0,c = 0. Hence,
we need |φd| � L−d with d sufficiently large.

5.6. Proof of Theorem 4(ii) (Diffusive mixing, Burgers’ case)

Essentially, Theorem 4(ii) is again based on the scaling (5.32). However, the crucial difference to
the case β = 0 is that now the analog of (5.41) no longer holds. Therefore, we need to scale ũs

differently, i.e., we blow up ũs
n in order to avoid problems with the quadratic terms involving ũs in

the critical part, in which the term i�β(ũc ∗ ũc) will give the Burgers dynamics for ũc . Thus, for small
p > 0 we introduce

ũc
n(κ, τ ) = RL−n ũc(κ, L2nτ

)
, ũs

n(ϑ,κ, τ ) = Ln(1−p)RL−n ũs(ϑ,κ, L2nτ
)
, (5.48)

to obtain

∂τ ũc
n(κ, τ ) − λ̃g,n(κ)ũc

n(κ, τ ) = L2n Ñ c
n

(
ũc

n, ũs
n

)
(κ, τ ), (5.49a)

∂τ ũs
n(ϑ,κ, τ ) − Λ̃g,nũs

n(ϑ,κ, τ ) = Ln(3−p)Ñ s
n

(
ũc

n, ũs
n

)
(ϑ,κ, τ ), (5.49b)

where again λ̃g,n(κ) = L2nλ̃g(κ/Ln) and Λ̃g,n = L2n RL−n Λ̃g RLn , but now

Ñ c
n

(
ũc

n, ũs
n

) = η̃
(
κ/Ln)RL−n Ñ

(
RLn ũc

n, L−n(1−p)RLn ũs
n

)
,

Ñ s
n

(
ũc

n, ũs
n

) = RL−n P̃ s
mf Ñ

(
RLn ũc

n, L−n(1−p)RLn ũs
n

)
.

Accordingly, the renormalization process reads

solve (5.49) on τ ∈ I := [
L−2,1

]
with initial data

(
ũc

n
ũs

n

)∣∣∣∣
τ=L−2

= R1/L

(
ũc

n−1
L1−pũs

n−1

)∣∣∣∣
τ=1

. (5.50)

The estimates for the linear semigroups are again (5.39) and (5.40), while the nonlinear terms are
estimated as follows.

Lemma 5.7. Let ‖(ũc
n, ũs

n)‖[B2
Ln (2,2)]2 � Rn � 1. There exists a C > 0 such that L2n Ñ c

n (ũc
n, ũs

n) = s1 + s2 +
s3 + s4 with s1 = iβκ(ũc

n ∗ ũc
n) and

‖s2‖B2
Ln (2,1) � C L−n

∥∥ũc
n

∥∥2
B2

Ln (2,2)
,

‖s3‖B2
Ln (2,1) � C L−n(1−p)

∥∥ũc
n

∥∥
B2

Ln (2,2)

∥∥ũs
n

∥∥
B2

Ln (2,2)
,

‖s4‖B2
Ln (2,1) � C L−2n(1−p)R2

n. (5.51)

The term Ln(3−p)Ñ s
n can be split according to the number of ϑ derivatives as Ln(3−p)Ñ s

n = Ñ s
n,0 + Ñ s

n,1 + Ñ s
n,2

such that

∥∥Ñ s
n,i

∥∥
B2

Ln (2−i,2)
� C

(
Ln(1−p)

∥∥ũc
n

∥∥2
B2

Ln (2,2)
+ R2

n

)
. (5.52)
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Proof. The term s2 contains the quadratic terms in ũc
n except for iβκ(ũc

n ∗ ũc
n), i.e., s2 is of the form

s2(κ, t) = h(κ/Ln)(ũc
n ∗ ũc

n) with h(κ) = O(κ2). s3 contains the quadratic interaction of ũc
n and ũs

n , and
s4 contains the remaining terms. Then (5.51) follows from the finite support of Ñ c

n in Fourier space. It
is in s3, s4 that the blowup scaling ũs

n(ϑ,κ, τ ) = Ln(1−p)RL−n ũs(ϑ,κ, L2nτ ) is useful. Eq. (5.52) again
follows by straightforward power counting. �

The terms involving only ũc
n in (5.52) blow up as n → ∞. However, combining (5.52) with the

exponential damping in the stable part, cf. (5.40), we still get local existence for (5.49) with constants
independent of n. We let

ρn := ∥∥(
ũc

n, ũs
n

)∣∣
τ=1

∥∥[B2
Ln (2,2)]2 , (5.53)

and for ρn−1 � C1L−5/2 obtain a local solution (ũc
n, ũs

n) ∈ [K̃ 2
n (I,3,2)]2 to (5.49) with

‖(ũc
n, ũs

n)‖[K̃ 2
Ln (I,3,2)]2 � C2 L5/2ρn−1, as in (5.37), which moreover enjoys the higher regularity

‖(ũc
n, ũs

n)‖[K̃ 2
Ln ((τ1,1),m2,2)]2 � C3L5/2ρn−1, cf. (5.38).

Similar to (5.22) and (5.43) we now separate from ũc
n the lowest-order asymptotics, now obtained

from the Burgers equation. However, due to the contribution s1 = iβκ(ũc
n ∗ ũc

n) of the nonlinearity to
the asymptotics here we work out an intermediate step and split ũc

n in a τ -dependent way. In detail,
let

ũc
n(κ, τ ) = ũc

n,∗(κ, τ ) + α̃n(κ, τ ) (5.54)

where

ũc
n,∗(κ, τ ) = χ

(
κ/Ln)ũc∗(κ, τ ) with ũc∗(�, t) = F

(√
α

β

ze−ϑ2/(k2αt)

1 + z erf(ϑ/
√

kαt)

)
(�),

cf. (4.11), and χ from (3.17). Consequently α̃n(0, τ ) = 0 for all n, τ due to the conservation of total
phase. Then

∂τ α̃
c
n(κ, τ ) − λ̃g,n(κ)α̃c

n(κ, τ ) = L2n(Ñ c
n

(
ũc

n, ũs
n

)
(κ, τ ) − Ñ c

n

(
ũc

n,∗,0
)) + Resn, (5.55a)

∂τ ũs
n(ϑ,κ, τ ) − Λ̃g,nũs

n(ϑ,κ, τ ) = Ln(3−p)Ñ s
n

(
ũc

n, ũs
n

)
(ϑ,κ, τ ), (5.55b)

where

Resn = −∂τ ũc
n,∗ + λ̃g,n(κ)ũc

n,∗ + L2n Ñ c
n

(
ũc

n,∗,0
)
.

Lemma 5.8. There exists a C > 0 such that supL−2�τ�1 ‖Resn(τ )‖B2
Ln (2,2) � C L−n|φd|.

Proof. By construction, i.e., since ũc
n,∗ is an exact solution of the Burgers equation,

Resn(κ, τ ) = C L−n(O
(
κ3)ũc

n,∗ + O
(
κ2(ũc

n,∗ ∗ ũc
n,∗

)))
which can be estimated in B2

Ln (2,2) by L−n|φd| since ũc∗(κ, τ ) is analytic and exponentially decay-
ing. �
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Now setting

ũc
n(κ,1) = ũc

n,∗(κ,1) + rc
n(κ), ũs

n(κ,ϑ,1) = rs
n(κ,ϑ), (5.56)

the remainder of the proof of Theorem 4(ii) works as the proof of Theorem 4(i) in Section 5.5.
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