
Physics Letters A 375 (2011) 3956–3959

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Quantum holonomies for an electric dipole moment

Knut Bakke ∗, Claudio Furtado

Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, PB, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 June 2011
Received in revised form 22 September
2011
Accepted 26 September 2011
Available online 1 October 2011
Communicated by P.R. Holland

Keywords:
Quantum holonomy
Geometric phases
Electric dipole moment
He–McKellar–Wilkens effect
Scalar Aharonov–Bohm effect
Dislocation
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effect and show a new proposal for implementing one-qubit quantum gates.
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1. Introduction

At present days, geometric quantum phases [1] and quan-
tum computation [2] are the center of several studies around
the world. The possibility of implementing the quantum compu-
tation via non-abelian geometric quantum phases [3] was pro-
posed by Zanardi and Rasetti [4], and it has became important
due to its stability [5]. In recent years, a great deal of works
has shown different applications of quantum holonomies in quan-
tum computation [6–15]. The holonomic quantum computation
is based on adiabatic evolutions, where unitary operators U (λ),
called holonomies, act on the subspace spanned the eigenvectors
of a family of Hamiltonians F = {H(λ) = U (λ)H0U †(λ);λ ∈ M}
(λ corresponds to the control parameter [4]). When the unitary
operator U (λ) acts on an initial state |ψ0〉 belonging to the con-
trol manifold M, it brings the initial state to a final state |ψ〉 =
U (λ)|ψ0〉, where this action gives rise to a quantum gate [16].
The general expression of the action of this unitary operator is

given by: |ψ〉 = U (λ)|ψ0〉 = e−i
∫ t

0 E(t′)dt′Γ (λ)|ψ0〉. The first factor

e−i
∫ t

0 E(t′)dt′ corresponds to the dynamical phase, while the second
factor Γ (λ) := P exp

∫
C A is the holonomy. The object A = A(λ)dλ

corresponds to a connection 1-form called the Mead–Berry con-
nection 1-form, and the quantity A(λ) corresponds to the Mead–
Berry vector potential [1]. The components of A(λ) are defined as:
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Aαβ = 〈ψα(λ)|∂/∂λ|ψβ(λ)〉. It has been shown in Ref. [17] that
the dynamical phase can be omitted if we redefine the energy lev-
els, and study the appearance of geometric phases in any cyclic
evolution of the quantum system. Hence, it has became interest-
ing to study the holonomic quantum computation either in cyclic
evolutions or in noncyclic evolutions [18,19]. Examples of non-
adiabatic cyclic evolutions are the Aharonov–Bohm effect [20], the
Scalar Aharonov–Bohm effect [21–23], the dual of the Aharonov–
Bohm effect [24,25], the Aharonov–Casher effect [26], and the
He–McKellar–Wilkens effect [27]. Analogue effects of the Scalar
Aharonov–Bohm effect, the Aharonov–Casher effect and the He–
McKellar–Wilkens effect have been studied in noncommutative
quantum mechanics [28], Lorentz-symmetry violation background
[29] and in the presence of topological defect [30–33]. Recently,
the holonomic quantum computation has been studied based on
the Aharonov–Casher effect [34–36].

In this Letter, we consider a neutral particle with a permanent
electric dipole moment, thus, and based on the analogue effects of
the Scalar Aharonov–Bohm effect for neutral particle with perma-
nent magnetic dipole moment [30] and the He–McKellar–Wilkens
effect [31–33], we calculate the quantum holonomies associated
with these analogue effects and show a new proposal for im-
plementing one-qubit quantum gates. We start by doing a brief
review of the mathematical formulation of the spinor theory in
the presence of curvature and torsion. Thus, we present the back-
ground of this work based on a torsion field, and review the
analogue effect of the He–McKellar–Wilkens effect in the pres-
ence of torsion. In the following, we obtain the analogue effect
of the Scalar Aharonov–Bohm effect for a neutral particle with a
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permanent electric dipole moment in the presence of a disloca-
tion. At the end, we discuss the quantum holonomies based on
the analogue effects of the Scalar Aharonov–Bohm effect and the
He–McKellar–Wilkens effect, and how to implement the holonomic
quantum computation.

Spinors in curved spacetime must be defined locally, where
spinors transform under infinitesimal Lorentz transformations [37].
Thus, we introduce a local reference frame for observers through
the noncoordinate basis given by a 1-form basis θ̂a = ea

μ(x)dxμ ,
which satisfies the condition: gμν(x) = ea

μ(x)eb
ν(x)ηab , where

ηab = diag(+ + +). The components ea
μ(x) are called triads, and

have an inverse defined as dxμ = eμ
a(x)θ̂a . Triads are related to

the inverse via eμ
a(x)ea

ν(x) = δμ
ν and ea

μ(x)eμ
b(x) = δa

b . The
Latin indices indicate the local reference frame (flat space), while
the Greek indices indicate the curved space. When we consider
the presence of torsion, the same mathematical formulation to de-
fine the spinors is used [38]. However, in the presence of torsion,
the expression of the covariant derivative of a spinor changes in
relation to that one given only in the presence of curvature. The
components of the covariant derivative of a spinor in the presence
of curvature and torsion are given by [38]

∇μ = ∂μ + i

4
ωμab(x)Σab + i

4
Kμab(x)Σab, (1)

where we have a connection 1-form ωa
b = ωμ

a
b(x)dxμ related

to the curvature and a connection 1-form Kμab(x) related to the
torsion. By following Ref. [38], the connection 1-form Kμab(x)
can be defined in terms of the contortion tensor via Kμab(x) =
Kβνμ[eν

a(x)eβ
b(x) − eν

b(x)eβ
a(x)]. Moreover, the contortion ten-

sor is related to the torsion tensor via K β
νμ = 1

2 (T β
νμ − Tν

β
μ −

Tμ
β
ν), where the torsion tensor is antisymmetric in the last two

indices while the contortion tensor is antisymmetric in the first
two indices. An interesting effect is the coupling between the tor-
sion and spinors [38]. By writing the torsion tensor into three
irreducible components, the trace 4-vector Tμ = T β

μβ , the axial
4-vector Sα = εαβνμTβνμ , and the tensor qβνμ , which satisfies
the conditions qβ

μβ = 0 and εαβνμqβνμ = 0, the torsion tensor
becomes: Tβνμ = 1

3 (Tν gβμ − Tμgβν) − 1
6 εβνμγ Sγ + qβνμ . It was

shown in Ref. [38] that the trace 4-vector T μ and the tensor
qβνμ decouple to fermions, while the axial 4-vector Sμ couples
to spinors. We shall show this in the following.

Let us discuss the quantum dynamics of a neutral particle
with a permanent electric dipole moment interacting with exter-
nal fields. The quantum dynamics of this neutral particle is de-
scribed by introducing a nonminimal coupling iγ μ∂μ → iγ μ∂μ −
i d

2 Σμνγ 5 Fμν(x) into the Dirac equation [39,40], where Fμν(x) is

the electromagnetic tensor and Σμν = i
2 [γ μ,γ ν ]. In the presence

of curvature and torsion, the partial derivative must be changed by
the covariant derivative of a spinor defined in (1). Thus, the γ μ

matrices correspond to the Dirac matrices defined in curved space,
and are related to that in flat space via γ μ = eμ

a(x)γ a , where γ a

corresponds to the usual Dirac matrices in flat spacetime [41]. It
has been shown in Ref. [32] that the nonrelativistic limit of the
Dirac equation in the presence of curvature and torsion is given by
(with h̄ = c = 1)

i
∂ψ

∂t
= 1

2m
(	p + 	Ξ)2ψ − d2 B2

2m
ψ + d	σ · 	Eψ + 1

8
	σ · 	Sψ (2)

where 	σ are the Pauli matrices, and we have introduced the vector
	Ξ whose components are [31,32]

Ξi = −d(	σ × 	B)i − iξi − 1
S0σi . (3)
8

We have defined the components of the vector 	ξ in (3) as ξi =
− 1

4 eϕ
i(x)ωϕ jk(x)Σ i j . Note the spin–torsion coupling given by the

last term of Eq. (2).
From now on, we will work with a background given by a

topological defect in a crystalline solid. In crystalline solids, lin-
ear topological defects are built by applying the Volterra pro-
cess [42], which consists in of a process of “cut and glue”. The
analogy between linear topological defects in solids and the three-
dimensional gravity was proposed by Katanaev and Volovich [43],
where a defect corresponds to a torsion, a singular curvature, and
both of them along the line of the defect. By using the approach
of Katanaev and Volovich [43], a continuous distribution of de-
fects can be described through the differential geometry, where
all the information about the stress and strain induced by the de-
fect in an elastic media are contained in the geometric quantities
like the metric, the curvature tensor, etc. Studies of linear topo-
logical defects can be found in the literature in the context of
classical mechanics [44–47], and as a background in quantum sys-
tems [48–53].

Let us present the background of this work. In this work, we
work with a background made of a linear topological defect called
dislocation. By using the Katanaev–Volovich approach [43], a dis-
location is described by the following line element [45,46]

ds2 = dρ2 + ρ2 dϕ2 + (dz + χ dϕ)2, (4)

where the parameter χ is a constant, and it is related to the Burg-
ers vector [42]. Note that, there is no presence of curvature in this
defect, but there exists the presence of torsion [46]. By using the
formulation of the spinor theory in curved space [37], we define
the triads in the form:

θ̂1 = cosϕ dρ − ρ sinϕ dϕ;
θ̂2 = sinϕ dρ + ρ cosϕ dϕ;
θ̂3 = dz + χ dϕ. (5)

Now, we need to get the information about the torsion of the
defect. This can be obtained by solving the Cartan structure equa-
tions [54] T a = dθ̂a + ωa

b ∧ θ̂b , where ωa
b = ωμ

a
b(x)dxμ corre-

sponds to the connection 1-form given in (1), and T a is the torsion
2-forms which is related to the connection 1-form Kμab(x) in (1)
and, consequently, it is related to the 4-axial vector given in (2).
Moreover, the operator d is the exterior derivative and the symbol
∧ means the wedge product. Thus, by using the triads (5) and by
solving the Cartan structure equations, we do not obtain any non-
null component of the connection 1-form ωμ

a
b(x), but we obtain

one non-null component of the torsion 2-form [32]

T 3 = 2πχδ(ρ)δ(ϕ)dρ ∧ dϕ. (6)

It has also been shown in Ref. [32], if we consider a linear
distribution of magnetic charges λm on the symmetry axis of the
dislocation and a neutral particle with a permanent electric dipole
moment, that this linear distribution of magnetic charges produces
a radial magnetic field 	B = λm

ρ ρ̂ which interacts with the electric
dipole moment, and a phase shift on the wave function arises from
this interaction. The phase shift associated with this interaction in
the presence of a dislocation is

φHMW = −d

∮
(	σ × 	B)ϕ dϕ − 1

8

∮
S0σie

i
μ(x)dxμ

= −2πλmσ 3 − πχσ 2. (7)

The phase shift (7) is known as the analogue effect of the He–
McKellar–Wilkens effect [27] given in the presence of a topological
defect [32]. Of course, magnetic charges do not exist in the nature,
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thus, several discussions about the topological nature of the quan-
tum phase of permanent electric dipoles have been done in the
last decade [55]. In order to reproduce the same field configura-
tion of the He–McKellar–Wilkens setup [27], several experiments
have been proposed [56–58]. Based on the experiment of Ref. [58],
where it was considered a long ferromagnetic wire electrically
charged whose magnetization is parallel to the wire direction and
where the magnitude of magnetization changes linearly along the
wire, geometric quantum phases for a neutral particle with perma-
nent magnetic and electric dipole moments were studied in [59].
In the same way done in Ref. [59], we can consider the radial mag-
netic field obtained in the experiment of Ref. [58], and obtain the
phase shift (7).

At this moment, let us consider the presence of a uniform elec-
tric field 	E = E0 ẑ parallel to the z axis of the dislocation (4). In this
case, the Schrödinger–Pauli equation becomes

i
∂ψ

∂t
= 1

2m

(
	p − 1

8
S0 	σ

)2

ψ + d	σ · 	Eψ. (8)

Hence, by using the Dirac phase factor [60], we can write the solu-
tion of the Schrödinger–Pauli equation (8) in the form: ψ = eiφψ0,
where ψ0 is the solution of the following equation:

i
∂ψ0

∂t
= p̂2

2m
ψ0. (9)

Thus, the phase shift acquired by the wave function of the neutral
particle with permanent electric dipole moment in the presence of
a dislocation is

φSAB = −d

τ∫
0

	σ · 	E dt − 1

8

∮
S0σie

i
μ(x)dxμ

= −dE0τσ 3 − πχσ 2. (10)

The phase shift (10) corresponds to the analogue effect of the
Scalar Aharonov–Bohm effect for a neutral particle with a perma-
nent electric dipole moment. We must note that, by taking χ = 0
into (10), the phase shift corresponds to the Scalar Aharonov–
Bohm effect for a neutral particle obtained by Anandan in [40]. We
can see that the geometric phase (10) is a non-abelian phase and
it does not depend on the velocity of the neutral particle, that is, it
is a nondispersive phase [61,62]. Moreover, we must note that we
have obtained the non-abelian geometric phase (10) without mak-
ing the adiabatic approximation, which constitutes a phase shift
like the Aharonov–Anandan quantum phase [17].

From now on, we discuss a way of implementing one-qubit
quantum gates based on the quantum holonomies provided by the
non-abelian geometric phases φHMW given in (7), and φSAB given
in (10). The holonomy associated with the analogue effect of the
He–McKellar–Wilkens effect is given by

U1(ω,χ) = eiφHMW = e−iωσ 3−iχπσ 2
, (11)

where we have defined the parameter ω = 2π dλm . The holonomic
quantum computation based on the He–McKellar–Wilkens effect
can be achieved by using ω and χ as control parameters. The con-
trol parameter ω is related to the intensity of the radial magnetic
field, thus, any choice of the values of ω corresponds to changing
the intensity of the magnetic field. On the other hand, the con-
trol parameter χ is related to the strength of the dislocation. In
general, one can measure the strength of the dislocation in a crys-
talline solid by using crystallography techniques in the laboratory.
Hence, the parameter χ can be considered a control parameter in
the sense that we can verify the strength of the dislocation be-
fore building the interferometry experiment. The parameter χ is
related to the Burgers vector 	b by χ = b/2π . In crystalline solids,
the intensity of the Burgers vector is of order of some interatomic
distances. In this way, b is of order of Angstroms, and the con-
tribution of the defect to the topological phase is small, thus, the
paths around of the defect must be repeated many times in order
to obtain a significant contribution to this holonomy.

Furthermore, the holonomy associated with the analogue effect
of the Scalar Aharonov–Bohm effect for neutral particles is given
by

U2(λ,χ) = eiφSAB = e−iλσ 3−iχπσ 2
, (12)

where we have defined another parameter λ = dE0τ . In this
case, the holonomic quantum computation based on the Scalar
Aharonov–Bohm effect for neutral particles can be achieved by
considering λ and χ as control parameters. Now, we have that the
control parameter λ is related to the intensity of the electric field.

Now, we wish to show that we can make any arbitrary ro-
tation on the permanent electric dipole moment of the neutral
particle by using the holonomy (12) associated with analogue ef-
fect of the Scalar Aharonov–Bohm effect for neutral particles. First
of all, we consider the logical states being the projections of the
electric dipole moment on the z-axis of the dislocation, that is,
|0L〉 = |d+〉 and |1L〉 = |d−〉. The states |d+〉 and |d−〉 correspond
to the projections of the electric dipole moment parallel and an-
tiparallel to the z-axis of the dislocation. Thus, by taking the values
of the control parameters λ and χ of the holonomy (12) in the
range 0 < λ < 1 and 0 < χ < 1, we can apply the Zassenhaus for-

mula e A+B = e AeB e− 1
2 [A,B] · · · (where A and B are matrices) on the

holonomy (12). In this way, we have

U2(λ,χ) ≈ e−iλσ 3
e−iχπσ 2

e−iλπχσ 1
. (13)

By using the definition of function of a matrix, e A = ∑∞
i=0

An

n! , we
can write the quantum holonomy (13) in the form:

U2(λ,χ) ≈ α0 I + α1iσ 1 − α2iσ 2 + α3iσ 3, (14)

where the parameters αi are

α0 = cosλ cosπχ cosλπχ + sinλ sinπχ sinλπχ ;
α1 = sinλ sinπχ cosλπχ − cosλ cosπχ sinλπχ ;
α2 = cosλ sinπχ cosλπχ + sinλ cosπχ sinλπχ ;
α3 = cosλ sinπχ sinλπχ − sinλ cosπχ cosλπχ. (15)

Hence, we have shown that we can make any arbitrary rotation
on the electric dipole moment of the neutral particle by applying
the quantum holonomy (14) on the logical states |0L〉 = |d+〉 and
|1L〉 = |d−〉, which constitutes a universal set of one-qubit quantum
gates [63]. Thus, we have seen that we can implement the holo-
nomic quantum computation based on the analogue effect of the
Scalar Aharonov–Bohm effect for neutral particles without making
the adiabatic approximation.

Comparing with the model proposed in Ref. [34] for the holo-
nomic quantum computation based on the Aharonov–Casher setup,
where the quantum computation is performed when a particle
placed at site b encircles the other particle placed at site a, and the
logical states are defined as |0〉 = |μ(a)q(b)〉 and |1〉 = |q(a)μ(b)〉,
we can see that we have proposed a simpler model than the model
of Ref. [34] because the logical states are given by the projections
of the permanent electric dipole moment.

The same procedure can be made to achieve the holonomic
quantum computation based on the analogue effect of the He–
McKellar–Wilkens effect. In this case, we change λ to ω in the
expression (14), and we obtain the quantum holonomy associated
with the analogue effect of the He–McKellar–Wilkens effect. Since
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the logical states are the same of the last case, thus, we also have
a universal set of one-qubits quantum gates.

In conclusion, we have obtained the analogue effect of the Scalar
Aharonov–Bohm effect for a neutral particle with a permanent
electric dipole moment in the presence of a dislocation, and we
have shown a new proposal for implementing one-qubit quantum
gates based on the analogue effects of the Scalar Aharonov–Bohm
effect and the He–McKellar–Wilkens effect. We have seen that the
presence of a dislocation produces a new contribution to the ge-
ometric phases which allow us to make any arbitrary rotation on
the logical states given by the projections of the electric dipole
moment on the z-axis of the dislocation. Any rotation on one-
qubit can be performed by using the intensity of the field and
the parameter related to the strength of the dislocation as control
parameters. We should note that in the Holonomic Quantum Com-
putation proposed in Ref. [4], the quantum gates are realized in
an abstract parameter space, where we define transversing paths
in an energetically degenerate subspace of this abstract parame-
ter space. In our proposal for implementing one-qubits quantum
gates, the topological phases (7) and (10) are generated in a phys-
ical space spanned by the states of the electric dipole moment.
Hence, the quantum holonomies associated with the topological
phases (7) and (10) do not need any path ordering in order to
implement one-qubit quantum gates. Since the Scalar Aharonov–
Bohm effect for a neutral particle with permanent magnetic dipole
moment was observed in [64], the Scalar Aharonov–Bohm effect
in the presence of a dislocation seems to be physically acceptable
for implementing the holonomic quantum computation. Further-
more, the quantum holonomies associated with the He–McKellar–
Wilkens effect add a new theoretical discussion in the field of the
holonomic quantum computation.
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