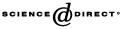


Available online at www.sciencedirect.com



Topology and its Applications 139 (2004) 1-15

Topology and its Applications

www.elsevier.com/locate/topol

On a conjecture about spectral sets

Karim Belaid^a, Othman Echi^{b,*}

^a Département de Mathématiques, Ecole Suppérieure des Sciences et Techniques Tunis, 5, Avenue Taha Hussein, B.P. 56 Bab Mnara 1008, Tunisia

^b Department of Mathematics, Faculty of Sciences of Tunis, University Tunis-El Manar, "Campus Universitaire", 2092 Tunis, Tunisia

Received 2 May 2003; received in revised form 16 July 2003

Abstract

Let *R* be a commutative ring with identity. We denote by Spec(*R*) the set of prime ideals of *R*. Call a partial ordered set *spectral* if it is order isomorphic to $(\text{Spec}(R), \subseteq)$ for some *R*. A longstanding open question about spectral sets (since 1976), is that of Lewis and Ohm [Canad. J. Math. 28 (1976) 820, Question 3.4]: "If (X, \leq) is an ordered disjoint union of the posets $(X_{\lambda}, \leq_{\lambda})$, $\lambda \in \Lambda$, and if (X, \leq) is spectral, then are the $(X_{\lambda}, \leq_{\lambda})$ also spectral?".

Let (X, \leq) be a poset and $x \in X$. Recall that the *D*-component of *x* is defined to be the intersection of all subsets of *X* containing *x* that are closed under specialization and generization (i.e., under \leq and \geq). Let (X, \leq) be a spectral set which is an ordered disjoint union of the posets $(X_{\lambda}, \leq_{\lambda}), \lambda \in \Lambda$. It is clear that $(X_{\lambda}, \leq_{\lambda})$ is a disjoint union of *D*-components of *X*. Thus the conjecture of Lewis and Ohm is equivalent to the following question: "Is a *D*-component of a spectral set spectral?"

This paper deals with topological properties of a *D*-component of a spectral set, improving the understanding of the conjecture of Lewis and Ohm. The concepts of up-spectral topology and down-spectral topology are introduced and studied. © 2003 Elsevier B.V. All rights reserved.

MSC: 06B30; 54A10; 54F05

Keywords: Spectral topology; Spectral set; Ordered disjoint union

^{*} Corresponding author. E-mail addresses: belaid412@yahoo.fr (K. Belaid), othechi@math.com, othechi@yahoo.com (O. Echi).

^{0166-8641/}\$ – see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2003.07.003

Introduction

Let Spec(R) denote the set of prime ideals of a commutative ring R with identity, ordered by inclusion, and call a partial ordered set *spectral* if it is order isomorphic to Spec(R) for some R. The prime spectrum of a general commutative unitary ring, endowed with the Zariski topology, is a well established tool in algebraic geometry. Note also that spectral sets are posets which arise as the prime ideals of distributive lattices with 0 and 1, ordered by inclusion. In the lattice theory literature spectral sets have usually been called *representable posets*. Such spectral sets are of interest not only in (topological) ring and lattice theory, but also in computer science, in particular, in domain theory.

In order that an ordered set (X, \leq) be spectral it is necessary (but not sufficient [10]) that it satisfies two conditions:

- (K_1): Each nonempty totally ordered subset of (X, \leq) has a supremum and an infimum (that is, X is *up-complete* and *down-complete*).
- (*K*₂): For each a < b in *X*, there exist two adjacent elements $a_1 < b_1$, such that $a \leq a_1 < b_1 \leq b$ (that is, *X* is *weakly atomic*).

These properties were noted, for a ring spectrum, by I. Kaplansky (see [7, Theorems 9 and 11]), and then are called respectively the *first condition* and the *second condition* of Kaplansky.

Note that Lewis and Ohm have added another necessary condition (*H*): for (X, \leq) to be spectral;

Let $S = \{S(x) \mid x \in X\}$, $\mathcal{G} = \{G(x) \mid x \in X\}$, where $S(x) = \{y \in X \mid y \ge x\}$ and $G(x) = \{y \in X \mid y \le x\}$.

(*H*): If \mathcal{F} is a collection of subsets of X such that $\mathcal{F} \subseteq \mathcal{S}$ or $\mathcal{F} \subseteq \mathcal{G}$, then $\bigcap_{F \in \mathcal{F}} F = \emptyset$ implies that there is a finite collection of sets from \mathcal{F} whose intersection is empty.

Following [10], there exists a partially ordered set which satisfies the conditions (K_1) , (K_2) , and (H) but is not spectral, thus showing that these conditions are not sufficient for a partially ordered set to be spectral.

Recall that if *R* is a ring, the *Zariski topology* or the *hull-kernel topology* for Spec(*R*) is defined by letting $C \subseteq \text{Spec}(R)$ be closed if and only if there exists an ideal \mathfrak{a} of *R* such that

$$C = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subseteq \mathfrak{p} \}.$$

Although many results about spectral sets have been obtained by Dobbs, Hochster, Fontana, Lewis, Ohm, and others (see [1,2,4–10]), a complete algebraic characterization of spectral sets still seems very far off.

On the other hand, the corresponding topological question of characterizing *spectral spaces* (that is, topological spaces homeomorphic to the prime spectrum of a ring equipped with the Zariski topology) was completely answered by Hochster in [6]. Recall that a closed subset *C* of a topological space *X* has a *generic point* if there is some $x \in C$ such that $\overline{\{x\}} = C$. A topological space in which every nonempty irreducible closed subset has a generic point is called a *sober space*. A topology \mathcal{T} on a set *X* is spectral if and only if the following axioms hold:

- (i) X is a T_0 -space.
- (ii) X is quasi-compact and has a basis of quasi-compact open subsets.
- (iii) The family of quasi-compact open subsets of X is closed under finite intersections.
- (iv) Every nonempty irreducible closed subset has a generic point.

Let *R* be a ring and \mathcal{T} the Zariski topology on Spec(*R*). Then for each $\mathfrak{p} \in \text{Spec}(R)$, we have

$$\{\mathfrak{p}\} = S(\mathfrak{p}) = \big\{\mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{p} \subseteq \mathfrak{q}\big\}.$$

According to [10], if (X, \mathcal{T}) is a topological space and \leq is a partial ordering on *X*, the topology \mathcal{T} is said to be *compatible with* \leq , if $\overline{\{x\}} = S(x)$, for each $x \in X$.

Note that \mathcal{T} is compatible with \leq if and only if the following conditions hold:

- (1) S(x) is closed for all $x \in X$, and
- (2) closed sets of (X, T) are closed under specialization.

It is clear that any order compatible topology is a T_0 -topology. Conversely, if (X, \mathcal{T}) is a T_0 -space, then \mathcal{T} is compatible with the ordering \leq defined by: $x \leq y$ if and only if $y \in \overline{\{x\}}$. One can obviously see that (X, \leq) is spectral if and only if there exists an order compatible spectral topology on X. Thus, the concept of spectral sets may be considered as a merely topological notion.

Now, let us consider the two natural examples of posets (\mathbb{N}, \leq) and (\mathbb{N}, \geq) . Set $\mathbb{\widetilde{N}} = \mathbb{N} \cup \{\omega\}$ and equip $\mathbb{\widetilde{N}}$ with the ordering \leq^{ω} (respectively \geq_{ω}) extending \leq (respectively \geq) on \mathbb{N} and making ω the greatest (respectively smallest) element of $(\mathbb{\widetilde{N}}, \leq^{\omega})$ (respectively $(\mathbb{\widetilde{N}}, \geq_{\omega})$). Then $(\mathbb{\widetilde{N}}, \leq^{\omega})$ and $(\mathbb{\widetilde{N}}, \geq_{\omega})$ are spectral sets [9, Theorem 3.1].

The two previous examples motivate us to introduce two notions linked to spectral sets. These notions are important in obtaining information concerning a longstanding open question about spectral sets (since 1976) stated by Lewis and Ohm [10, Question 3.4]: if a poset (X, \leq) is the disjoint union of posets $\{(X_{\lambda}, \leq_{\lambda}), \lambda \in \Lambda\}$, we shall say that X is the *ordered disjoint union* of the X_{λ} 's if $x \leq y$ if and only if there is an λ such that $x, y \in X_{\lambda}$ and $x \leq_{\lambda} y$.

Theorem 3.1 of [10] says that if $(X_{\lambda}, \leq_{\lambda})$ is spectral for each $\lambda \in \Lambda$, then (X, \leq) is spectral. However, Lewis and Ohm have not been able to establish the converse of the previous theorem and they raise the following question:

"If (X, \leq) is the ordered disjoint union of posets $(X_{\lambda}, \leq_{\lambda})$, $\lambda \in \Lambda$, and if (X, \leq) is spectral, then are the $(X_{\lambda}, \leq_{\lambda})$ also spectral?".

Let us introduce the two new concepts.

Definition 0.1. Let (X, \leq) be a poset, $\omega \notin X$ and $\widetilde{X} = X \cup \{\omega\}$. Equip \widetilde{X} with the partial order \leq^{ω} (respectively \leq_{ω}) extending \leq on X and making ω the greatest (respectively smallest) element of $(\widetilde{X}, \leq^{\omega})$ (respectively $(\widetilde{X}, \leq_{\omega})$). The poset (X, \leq) is said to be *upspectral* (respectively *down-spectral*) if $(\widetilde{X}, \leq^{\omega})$ (respectively $(\widetilde{X}, \leq_{\omega})$) is a spectral set.

Naturally, one can wonder what the topological analog is of each of the notions subsequently introduced. We propose the following definitions.

Definition 0.2. Let *X* be a topological space.

- (1) X is said to be an *up-spectral* space if it satisfies the axioms of a spectral space with the exception that X is not necessarily quasi-compact.
- (2) X is said to be a *down-spectral* space if it satisfies the axioms of a spectral space with the exception that X does not necessarily have a generic point when it is irreducible.

It will be shown that a poset (X, \leq) is a down-spectral (respectively up-spectral) set if and only if there exists an order compatible down-spectral (respectively up-spectral) topology on (X, \leq) .

We finish this introduction by stating the main results of this paper.

Result A. Any disjoint union of down-spectral (respectively up-spectral) sets is a downspectral (respectively up-spectral) set.

Result B [Proposition 4.1]. Suppose that (X, \mathcal{T}) is a disjoint union of topological spaces $(X_{\lambda}, \mathcal{T}_{\lambda})$ ($\lambda \in \Lambda$). Then X is up-spectral if and only if each X_{λ} is up-spectral.

Let (X, \leq) be a poset and $x \in X$. Recall that the *D*-component of x is defined to be the intersection of all subsets of X containing x that are closed under specialization and generization.

Let (X, \leq) be a spectral set which is an ordered disjoint union of the posets $(X_{\lambda}, \leq_{\lambda}), \lambda \in \Lambda$. It is clear that $(X_{\lambda}, \leq_{\lambda})$ is a disjoint union of *D*-components of *X*. Thus the conjecture of Lewis and Ohm is equivalent to the following question: "Is a D-component of a spectral set spectral?"

The aim of this paper is to give some topological properties of a D-component of a spectral set, improving the understanding of the question raised in 1976 about disjoint order unions of posets.

Let (X, \leq) be a spectral set, \mathcal{D} a *D*-component of *X* and \mathcal{T} an order compatible spectral topology on X.

Lazard has proved in [8], that there exists a family of subsets $(E^n, n \in \mathbb{N})$ of X such that:

(i) $\mathcal{D} = \bigcup_{n \in \mathbb{N}} E^n$ (the Lazard's formula for a *D*-component). (ii) $E^n \subseteq E^{n+1}$.

(iii) For each $n \in \mathbb{N}$, E^n is a closed subset of X.

We define on \mathcal{D} two topologies $\mathcal{T}_1(\mathcal{D})$ and $\mathcal{T}_2(\mathcal{D})$ by

 $(\mathcal{D}, \mathcal{T}_1(\mathcal{D}))$ is the disjoint union of the subspaces $E^0, E^n \setminus E^{n-1}, n \in \mathbb{N} \setminus \{0\}$.

Since E^n is a closed subspace of (X, \mathcal{T}) , it is spectral. Let \mathcal{T}_n be the topology induced by \mathcal{T} on E^n . We define the topology $\mathcal{T}_2(\mathcal{D})$ on \mathcal{D} by letting the closed sets be the F with the property that there exists some $n \in \mathbb{N}$, such that F is a closed subset of (E^n, \mathcal{T}_n) . Observe that a set O is open in $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ if and only if it is of the form $O = U \cup (\mathcal{D} \setminus E^k)$, where k is a sufficiently large integer so that $\mathcal{D} \setminus E^k \subseteq O$, and U is open in (E^k, \mathcal{T}_k) .

Under the previous notation we have the two following topological results, improving the understanding of the conjecture of Lewis and Ohm.

Result C [Theorem 5.1]. Let (X, \leq) be a spectral set, \mathcal{D} be a *D*-component of *X* and \mathcal{T} an order compatible spectral topology on *X*. Then $(\mathcal{D}, \mathcal{T}_1(\mathcal{D}))$ is an up-spectral topology.

Result D [Theorem 5.5]. Let (X, \leq) be a spectral set, \mathcal{D} be a D-component of X and \mathcal{T} an order compatible spectral topology on X. Then the space $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ satisfies the following properties:

- (1) $T_2(\mathcal{D})$ is compatible with the order induced by $\leq on \mathcal{D}$.
- (2) $T_2(\mathcal{D})$ is quasi-compact.
- (3) Each nonempty irreducible closed subset of (D, T₂(D)) distinct from D has a generic point.

1. Down-spectral topology

We start by describing how to construct down-spectral spaces.

Theorem 1.1. Let (X, T) be a topological space. Then the following statements are equivalent:

- (i) (X, \mathcal{T}) is a down-spectral space.
- (ii) There exists a spectral space Y with minimum element ω, such that X is equal to the subspace Y\{ω}.

Proof. (i) \Rightarrow (ii). Let $\omega \notin X$ and $\widetilde{X} = X \cup \{\omega\}$. When (X, \mathcal{T}) is reducible (respectively irreducible), we consider the topology $\widetilde{\mathcal{T}}$ on \widetilde{X} such that the closed subsets are \widetilde{X} and the closed subsets of (X, \mathcal{T}) (respectively \widetilde{X} and the closed subsets of (X, \mathcal{T}) distinct from X).

Clearly, $\{\overline{\omega}\} = \widetilde{X}$, and $(\widetilde{X}, \widetilde{T})$ is a quasi-compact T_0 -space. Thus, ω is the least element of (\widetilde{X}, \leq) , where \leq is the ordering induced by the topology \widetilde{T} on \widetilde{X} .

If $U \subseteq X$ is open, then $U \cup \{\omega\}$ is open in $Y = \widetilde{X}$.

Let *O* be a nonempty open subset of $(\widetilde{X}, \widetilde{T})$, then the following properties hold:

- (1) There exists an open subset U of (X, \mathcal{T}) such that $O = U \cup \{\omega\}$.
- (2) $O = U \cup \{\omega\}$ is quasi-compact in $(\widetilde{X}, \widetilde{T})$ if and only if U is quasi-compact in (X, T).

Hence $(\widetilde{X}, \widetilde{T})$ has a basis of quasi-compact open subsets which is stable under finite intersections.

Let *C* be an irreducible closed subset of $(\widetilde{X}, \widetilde{T})$.

- If $\omega \in C$, then $C = \overline{\{\omega\}} = \widetilde{X}$.
- If $\omega \notin C$, then *C* is an irreducible closed subset of (X, \mathcal{T}) . According to the definition of the topology $\widetilde{\mathcal{T}}$, *C* is necessarily distinct from *X*. Thus, *C* has a generic point.

Therefore, $Y = \widetilde{X}$ is a spectral space with minimum element ω and X is equal to the subspace $Y \setminus \{\omega\}$.

(ii) \Rightarrow (i). Let *Y* be a spectral space with minimum element ω and *X* is equal to the subspace $Y \setminus \{\omega\}$. Let us prove that *X* is a down-spectral space.

Let $(U_i, i \in I)$ be an open covering of X (with $U_i \neq \emptyset$). Then $(U_i \cup \{\omega\}, i \in I)$ is an open covering of Y. Since Y is quasi-compact, there exists a finite sub-covering of $(U_i, i \in I)$ for X. Thus, X is quasi-compact.

Let \mathcal{B} be a basis of quasi-compact open subsets of Y which is stable under finite intersections. Then $\mathcal{B}' = \{U \setminus \{\omega\} \mid U \in \mathcal{B}\}$ is a basis of quasi-compact open subsets of X which is stable under finite intersections.

Let *C* be an irreducible closed subset of *X* such that $C \neq X$. Then *C* is also an irreducible closed subset of *Y*. Hence *C* has a generic point; there exists $x \in C$ such that $C = \overline{\{x\}}^Y = \overline{\{x\}}^X$.

Therefore, X is a down-spectral space. \Box

Let A be a subset of a topological X. We say that A is *closed under specialization* if $\overline{\{x\}} \subseteq A$, for each $x \in A$.

The next result gives another tool for building down-spectral spaces.

Proposition 1.2. Let (X, T) be a spectral space and A a subset of X such that $X \setminus A$ is quasi-compact and A is closed under specialization. Let C be the topology on A, where the closed subsets are A and the closed subsets of (X, T) contained in A. Then C is a down-spectral topology on A.

Proof. Note that $V \subseteq A$ is open in C if and only if $V = O \cap A$, for some open set O of X satisfying $X \setminus A \subseteq O$.

Of course, $\overline{\{x\}}^{\mathcal{C}} = \overline{\{x\}}^{X}$. Thus, (A, \mathcal{C}) is a T_0 -space.

Clearly (A, C) is quasi-compact and every irreducible closed subset of (A, C) distinct from A has a generic point.

Let *O* be a quasi-compact open subset of (X, \mathcal{T}) such that $X \setminus A \subseteq O$. We prove that $O \cap A$ is quasi-compact in (A, \mathcal{C}) . To do so, let $(O_i, i \in I)$ be a family of open subsets of (X, \mathcal{T}) such that for each $i \in I$, $X \setminus A \subseteq O_i$ and $(O_i \cap A, i \in I)$ is an open covering of $O \cap A$ in (A, \mathcal{C}) . Hence $O \cap A = \bigcup_{i \in I} (O_i \cap A) = (\bigcup_{i \in I} O_i) \cap A$. This forces $O = \bigcup_{i \in I} O_i$. Since *O* is quasi-compact, there exist finitely many elements $i_1, i_2, \ldots, i_n \in I$ such that $O = O_{i_1} \cup O_{i_2} \cup \cdots \cup O_{i_n}$. Thus, $O \cap A = (O_{i_1} \cap A) \cup (O_{i_2} \cap A) \cup \cdots \cup (O_{i_n} \cap A)$. Therefore, $O \cap A$ is quasi-compact in (A, \mathcal{C}) .

Let *U* be a quasi-compact open subset of (A, C). We may write $U = O \cap A$, where *O* is an open subset of (X, T) such that $X \setminus A \subseteq O$. We claim that *O* is quasi-compact. Indeed, let $(O_i, i \in I)$ be an open covering of *O*, then $X \setminus A \subseteq \bigcup_{i \in I} O_i$. Thus there exists a finite subset $J \subseteq I$, such that $X \setminus A \subseteq \bigcup_{j \in J} O_j$. Let $V_i = O_i \cup (\bigcup_{j \in J} O_j)$, then $O = \bigcup_{i \in I} V_i$, and $X \setminus A \subseteq V_i$ for each $i \in I$. Thus,

$$U = O \cap A = \bigcup_{i \in I} (V_i \cap A).$$

Hence, there exists a finite subset K of I such that

$$U = \bigcup_{k \in K} (V_k \cap A) = \left(\bigcup_{k \in K} V_k\right) \cap A.$$

Hence $O \cap A = (\bigcup_{k \in K} V_k) \cap A$; and thus $O = \bigcup_{k \in K} V_k = \bigcup_{i \in K \cup J} O_i$. It follows that *O* is quasi-compact.

Therefore the quasi-compact open subsets of (A, C) are the intersections of A with the quasi-compact open subsets of (X, T) containing $X \setminus A$.

Now, it is easily seen that the following properties hold:

- -(A, C) has a basis of quasi-compact open subsets.
- The collection of quasi-compact open subsets of (A, C) is closed under finite intersections.

This proves that (A, C) is a down-spectral space. \Box

The next result is in the spirit of an analogous one about spectral sets.

Proposition 1.3. Let (X, \leq) be an ordered set. Then (X, \leq) is a down-spectral set if and only if there exists an order compatible down-spectral topology on X.

Proof. Necessary condition. Let $\omega \notin X$ and $\widetilde{X} = X \cup \{\omega\}$, where ω is the least element of \widetilde{X} . Then $(\widetilde{X}, \leq_{\omega})$ is a spectral set. Hence there exists an order compatible spectral topology \widetilde{T} on \widetilde{X} . Let \mathcal{T} be the topology on X, where the closed subsets are X and the closed subsets of $(\widetilde{X}, \widetilde{T})$ which are contained in X. It is clear, in view of Proposition 1.2, that \mathcal{T} is an order compatible down-spectral topology on X.

Sufficient condition. Let \mathcal{T} be an order compatible down-spectral topology on (X, \leq) . According to Theorem 1.1, there exists an order spectral topology on $(\widetilde{X} = X \cup \{\omega\}, \leq_{\omega})$. Therefore, $(\widetilde{X}, \leq_{\omega})$ is a spectral set, completing the proof. \Box

Corollary 1.4. Every spectral set is down-spectral.

The following result gives an important tool to construct down-spectral sets from spectral sets.

Corollary 1.5. Let (X, \leq) be a spectral set and $x \in X$. Then $(X \setminus G(x), \leq)$ is a down-spectral set.

Proof. Let \widetilde{T} be an order compatible spectral topology on *X*. The subset $A = X \setminus G(x)$ is closed under specialization and $X \setminus A$ is quasi-compact. Let \mathcal{T} be the topology on $A = X \setminus G(x)$ such that the closed subsets are $X \setminus G(x)$ and the closed subsets of (X, \widetilde{T}) contained in $X \setminus G(x)$. Hence, according to Proposition 1.2, (A, \mathcal{T}) is a down-spectral space. On the other hand, we have $\overline{\{x\}}^{\mathcal{T}} = \overline{\{x\}}^{\widetilde{\mathcal{T}}} = S(x)$. Thus \mathcal{T} is compatible with \leq . Therefore, $(X \setminus G(x), \leq)$ is a down-spectral set by Proposition 1.3. \Box

The following result indicates that to discuss the spectrality of a down-complete ordered set with finitely many minimal elements, we may suppose, without loss of generality, that it has only one minimum element.

Recall that an ordered set (X, \leq) is said to be *down-complete* if each nonempty totally ordered subset of (X, \leq) has an infimum.

Proposition 1.6. Let (X, \leq) be a down-complete ordered set with finitely many minimal elements. Then (X, \leq) is spectral if and only if (X, \leq) is down-spectral.

Proof. It remains to prove that if (X, \leq) is down-spectral, then it is spectral. Let C be an order compatible down-spectral topology on X. Since X is down-complete and has finitely many minimal elements, $X = S(a_1) \cup S(a_2) \cup \cdots \cup S(a_n)$, where $\{a_1, a_2, \ldots, a_n\} = Min(X)$. Hence X is reducible or has a generic point, in which case n = 1, and there is a minimum element. X is spectral in either case. \Box

2. Up-spectral topology

We start by describing how to construct up-spectral spaces.

Theorem 2.1. Let (X, T) be a topological space. Then the following statements are equivalent:

- (i) (X, \mathcal{T}) is up-spectral.
- (ii) There exists a spectral space Y with a maximum element ω , such that X is equal to the subspace $Y \setminus \{\omega\}$.

Proof. (i) \Rightarrow (ii). Let $\omega \notin X$ and $\widetilde{X} = X \cup \{\omega\}$. Consider the topology $\widetilde{T} = \mathcal{T} \cup \{\widetilde{X}\}$ on \widetilde{X} . It is easily seen that $(\widetilde{X}, \widetilde{T})$ is a quasi-compact T_0 -space and has a basis of quasi-compact open subsets which is stable under finite intersections. Clearly, ω is the maximum of \widetilde{X} with respect to the ordering induced by the topology \widetilde{T} .

Let *C* be a nonempty irreducible closed subset of $(\widetilde{X}, \widetilde{T})$. Then $\omega \in C$ and $C = K \cup \{\omega\}$, where *K* is a closed subset of (X, T). We discuss two cases:

Case 1. $K = \emptyset$. In this case, $C = \{\omega\}$ has a generic point.

Case 2. $K \neq \emptyset$. Necessarily, K is an irreducible closed subset of (X, \mathcal{T}) . Hence there exists $x \in X$ such that $C = \overline{\{x\}}^X = \overline{\{x\}}^{\widetilde{X}}$.

Therefore, $X = \widetilde{X} \setminus \{\omega\}$ is an up-spectral subspace of $(\widetilde{X}, \widetilde{T})$.

(ii) \Rightarrow (i). Let (Y, \mathcal{T}) be a spectral space with a maximum element ω . Suppose that $X = Y \setminus \{\omega\}$ is a nonempty subspace of Y. Let us prove that X is an up-spectral subspace of Y.

Since *Y* is the unique open subset of *Y* containing ω , the topology of *X* is $\{X\} \cup \{U \in \mathcal{T} \mid \omega \notin U\}$. Hence *X* has a basis of quasi-compact open subsets which is stable under finite intersections.

Let *C* be an irreducible closed subset of *X*. Then $C \cup \{\omega\}$ is an irreducible closed subset of (Y, \mathcal{T}) . Hence there exists $x \in C$ such that $C \cup \{\omega\} = \overline{\{x\}}^Y$. Thus $C = \overline{\{x\}}^X$, showing that *X* is a sober space. \Box

It is natural to have the following.

Proposition 2.2. Let (X, \leq) be an ordered set. Then (X, \leq) is an up-spectral set if and only if there exists an order compatible up-spectral topology on *X*.

Proof. Necessary condition. Let $\omega \notin X$ and $\widetilde{X} = X \cup \{\omega\}$. We define on \widetilde{X} the ordering \leq^{ω} extending \leq on X and making ω the greatest element of \widetilde{X} . Since (X, \leq) is an up-spectral set, $(\widetilde{X}, \leq^{\omega})$ is a spectral set. Hence there exists an order compatible spectral topology \widetilde{T} on \widetilde{X} . According to Theorem 2.1[(ii) \Rightarrow (i)], the subspace $X = \widetilde{X} \setminus \{\omega\}$ is up-spectral, its topology is, obviously, compatible with the ordering \leq of X.

Sufficient condition. Let \mathcal{T} be an order compatible up-spectral topology on X. Then \widetilde{X} endowed with the topology $\widetilde{\mathcal{T}} = \mathcal{T} \cup \{\widetilde{X}\}$ is a spectral space (cf. the proof of Theorem 2.1(i) \Rightarrow (ii)). Clearly, \widetilde{T} is compatible with \leq^{ω} . Thus $(\widetilde{X}, \leq^{\omega})$ is a spectral set, showing that (X, \leq) is an up-spectral set. \Box

According to [6, Proposition 8], if (X, \leq) is spectral, then (X, \geq) is also spectral.

It follows, immediately, from the definitions and [6, Proposition 8] that we have the following result.

Proposition 2.3. *Let* (X, \leq) *be an ordered set. Then* (X, \leq) *is down-spectral if and only if* (X, \geq) *is up-spectral.*

The previous proposition permits us to state a list of corollaries giving the analogs of results concerning down spectral sets.

Corollary 2.4. Every spectral set is up-spectral.

Corollary 2.5. Let (X, \leq) be a spectral set and $x \in X$. Then $(X \setminus S(x), \leq)$ is an up-spectral set.

Corollary 2.6. Let (X, \leq) be an up-complete ordered set with finitely many maximal elements. Then (X, \leq) is spectral if and only if (X, \leq) is up-spectral.

3. Ordered disjoint unions of down-spectral sets

In this section we will restrict our attention to ordered disjoint unions of down-spectral sets.

Theorem A. Any disjoint union of down-spectral sets is a down-spectral set.

Proof. Let *X* be the ordered disjoint union of the ordered disjoint sets $((X_{\lambda}, \leq_{\lambda}), \lambda \in \Lambda)$. Suppose that for each $\lambda \in \Lambda$, $(X_{\lambda}, \leq_{\lambda})$ is down-spectral. The problem here is to prove that $(\widetilde{X}, \leq_{\omega})$ is a spectral set. To do this, take \mathcal{T}_{λ} an order compatible spectral topology on $\widetilde{X}_{\lambda} = X_{\lambda} \cup \{\omega_{\lambda}\}$, where ω_{λ} is least in \widetilde{X}_{λ} . Let $Y = \bigcup_{\lambda \in \Lambda} \widetilde{X}_{\lambda}$ be the ordered disjoint union of $(\widetilde{X}, \leq_{\lambda\omega})$. Consider the topology \mathcal{T} on Y, where the open sets are the $\bigcup_{\lambda \in \Lambda} U_{\lambda}$, with U_{λ} is an open set of $(\widetilde{X}_{\lambda}, \mathcal{T}_{\lambda})$, for λ in a finite subset L of Λ , and $U_{\lambda} = \widetilde{X}_{\lambda}$, for each $\lambda \in \Lambda \setminus L$.

Step 3.1. (Y, T) is a down-spectral space.

Proof.

Claim 3.1.1. T is compatible with \leq , and (Y, T) is quasi-compact. Moreover, T has a basis of quasi-compact open subsets which is stable under finite intersections.

It suffices to observe that if U_{λ} is quasi-compact and open in X_{λ} , for each $\lambda \in L \subseteq \Lambda$ with $|L| < \infty$ and $U_{\lambda} = X_{\lambda}$, for each $\lambda \in \Lambda \setminus L$, then $U = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ is quasi-compact.

Claim 3.1.2. Each irreducible closed subset of (Y, T) distinct from Y has a generic point.

Let *C* be an irreducible closed subset of (Y, \mathcal{T}) distinct from *Y*. Hence there exists a finite subset *L* of *A* such that $C = \bigcup_{\lambda \in L} C_{\lambda}$ with C_{λ} a closed subset of \widetilde{X}_{λ} . Thus there exists $\lambda \in L$ such that $C = C_{\lambda}$, by irreducibility of *C*. Thus $C = C_{\lambda}$ is an irreducible closed subset of $(\widetilde{X}_{\lambda} \mathcal{T}_{\lambda})$. It follows that *C* has a generic point, completing the proof of Claim 3.1.2.

On may represent the ordered set (Y, \leq) as follows:

Now let us identify all the ω_{λ} to one, ω . This yields the ordered set $(\widetilde{X}, \leq_{\omega})$, which looks like

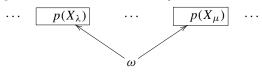
10

This idea permits to prove that $(\widetilde{X}, \leq_{\omega})$ is spectral. Consider the equivalence relation \mathcal{R} on Y such that the equivalence classes are given as follows: $cl_{\mathcal{R}}(x) = \{x\}$, for each $x \in X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$ and $cl_{\mathcal{R}}(\omega_{\mu}) = \{\omega_{\lambda} \mid \lambda \in \Lambda\}$, for each $\mu \in \Lambda$.

The quotient set $Z = Y/\mathcal{R}$ is ordered by letting:

- for each $x, y \in X_{\lambda}$, $cl_{\mathcal{R}}(x) \leq cl_{\mathcal{R}}(y)$ if and only if $x \leq_{\lambda} y$; - $\omega \leq cl_{\mathcal{R}}(x)$, for each $x \in X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$.

Let $p: Y \to Z$ be the canonical surjection, then the ordered set (Z, \leq) looks like



It is easily seen that (Z, \leq) is order isomorphic to $(\widetilde{X}, \leq_{\omega})$. Thus we are aiming to prove that (Z, \leq) is a spectral set.

Let $\mathcal{T}_{\mathcal{R}}$ be the quotient topology on $Z = Y/\mathcal{R}$. To complete the proof of this theorem, it suffices to show that $\mathcal{T}_{\mathcal{R}}$ is an order compatible spectral topology on (Z, \leq) .

Step 3.2. $(Z, T_{\mathcal{R}}, \leq)$ is a spectral space.

The notation of Step 3.1 remains in effect.

Claim 3.2.1. $T_{\mathcal{R}}$ is compatible with the ordering \leq on Z.

The proof consists of showing that $\overline{\{\alpha\}} = S(\alpha)$, for each $\alpha \in Z$. We need to consider the following two cases:

- Suppose that $\alpha = \omega$. Let *V* be a nonempty open subset of $Z = Y/\mathcal{R}$, then $p^{-1}(V)$ is a nonempty open subset of (Y, \mathcal{T}) . Let $x \in p^{-1}(V)$, then there exists $\lambda \in \Lambda$ such that $x \in X_{\lambda}$. Hence $\omega_{\lambda} \in G(x) \subseteq p^{-1}(V)$. Therefore, $\omega \in V$, proving that $\overline{\{\omega\}} = S(\omega) = Z$.

- Suppose that $\alpha = p(x)$, where $x \in X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$. From the definition of the order on *Z*, it is clear that $p^{-1}(S(\alpha)) = S(x)$. Hence $S(\alpha)$ is a closed subset of *Z*. It follows that $\overline{\{\alpha\}} \subseteq S(\alpha)$. Conversely, let $p(y) \in S(\alpha)$ and *V* an open subset of *Z* containing p(y). There exists a saturated (under \mathcal{R}) open subset *U* of *Y* such that V = p(U). Hence $x \in G(y) \subseteq U$, so that $\alpha = p(x) \in V$. Thus $p(y) \in \overline{\{\alpha\}}$. Therefore, $\overline{\{\alpha\}} = S(\alpha)$.

Claim 3.2.2. (Z, T_R) is quasi-compact.

Since (Y, \mathcal{T}) is quasi-compact and p is continuous, Z = p(Y) is also quasi-compact.

Claim 3.2.3. (Z, T_R) has a basis of quasi-compact open subsets which is stable under *finite intersections.*

Let $\mathcal{B}_{\mathcal{R}} = \{p(U) \mid U \in \mathcal{B} \text{ and } \{\omega_{\lambda} \mid \lambda \in \Lambda\} \subseteq U\}$. Any $U \in \mathcal{B}$ such that $\{\omega_{\lambda} \mid \lambda \in \Lambda\} \subseteq U$ is a saturated open subset of *Y*, so that p(U) is an open subset of $Z = Y/\mathcal{R}$. It is clear that p(U) is quasi-compact since *U* is.

Now, let *V* be a nonempty open subset of *Z*. Then $\omega \in V$. Hence $U = p^{-1}(V)$ is a nonempty open subset of (Y, \mathcal{T}) containing $\{\omega_{\lambda} \mid \lambda \in \Lambda\}$. There exists a finite subset *L* of Λ such that

$$U = p^{-1}(V) = \bigcup_{\lambda \in \Lambda} U_{\lambda},$$

with U_{λ} an open set of $(\widetilde{X}_{\lambda} \mathcal{T}_{\lambda})$, for each $\lambda \in L$, and $U_{\lambda} = \widetilde{X}_{\lambda}$, for each $\lambda \in \Lambda \setminus L$. Let \mathcal{B}_{λ} be a basis of quasi-compact open subsets of \widetilde{X}_{λ} . Then for each $\lambda \in \Lambda$, U_{λ} is a union of some nonempty elements of \mathcal{B}_{λ} each of them contains ω_{λ} (since $\{\omega_{\lambda}\} = \widetilde{X}_{\lambda}$). Hence V = p(U)is a union of some elements of $\mathcal{B}_{\mathcal{R}}$, proving that $\mathcal{B}_{\mathcal{R}}$ is a basis of quasi-compact open subsets of $(Z, \mathcal{T}_{\mathcal{R}})$.

Let p(U) and $p(V) \in \mathcal{B}_{\mathcal{R}}$. Since U and V are saturated, we get

 $p(U) \cap p(V) = p(U \cap V),$

showing that $\mathcal{B}_{\mathcal{R}}$ is stable under finite intersections.

Claim 3.2.4. $(Z, T_{\mathcal{R}})$ is sober.

Let G be an irreducible closed subset of Z. We discuss two cases.

Case 1. $\omega \in G$. In this case, $G = \overline{\{\omega\}} = Z$. Thus G has a generic point.

Case 2. Suppose that $\omega \notin G$. Then there exists a finite subset L of Λ such that $p^{-1}(G) = \bigcup_{\lambda \in L} F_{\lambda}$, where F_{λ} is a closed subset of $(\widetilde{X}_{\lambda}, \mathcal{T}_{\lambda})$ and $\omega_{\lambda} \notin F_{\lambda}$, for each $\lambda \in L$, in this case the F_{λ} are saturated. Hence the $p(F_{\lambda})$ are closed subsets of Z. Since $G = \bigcup_{\lambda \in L} p(F_{\lambda})$ and G is irreducible, there is some $\lambda \in L$, with $G = p(F_{\lambda})$ and F_{λ} is necessarily irreducible in $(\widetilde{X}_{\lambda}, \mathcal{T}_{\lambda})$. Thus there exists $x \in Y \setminus \{\omega_{\lambda} \mid \lambda \in \Lambda\}$ such that $p^{-1}(G) = F_{\lambda} = \overline{\{x\}} = S(x)$. By the definition of the ordering on Y, we have p(S(x)) = S(p(x)), for each $x \in Y \setminus \{\omega_{\lambda} \mid \lambda \in \Lambda\}$. Therefore, G = S(p(x)), proving that G has a generic point. \Box

The following result is an immediate consequence of Theorem A and Proposition 2.3.

Corollary 3.3. Any disjoint unions of up-spectral sets is an up-spectral set.

4. Disjoint union of up-spectral spaces

Let (X, \leq) be an ordered disjoint union of the posets $(X_{\lambda}, \leq_{\lambda})$, $\lambda \in \Lambda$. Our concern in this section is to give necessary and sufficient topological conditions on X in order to get all the $(X_{\lambda}, \leq_{\lambda})$ spectral.

Let \mathcal{T} be a topology on X. We denote by $(X/\Lambda, \mathcal{T}/\Lambda)$ the quotient space of the topological space (X, \mathcal{T}) by the equivalence relation \backsim on X whose equivalence classes are the X_{λ} .

Proposition 4.1. Suppose that (X, T) is a disjoint union of topological spaces $(X_{\lambda}, T_{\lambda})$ $(\lambda \in \Lambda)$. Then X is up-spectral if and only if each X_{λ} is up-spectral. **Proof.** Suppose that (X, \mathcal{T}) is an up-spectral space. Since X_{λ} is a clopen subset of (X, \mathcal{T}) , it is an up-spectral space.

Suppose that each $(X_{\lambda}, T_{\lambda})$ is an up-spectral space. The disjoint union (X, T) is easily a T_0 -space.

Let \mathcal{B}_{λ} be a basis of quasi-compact open subsets of $((X_{\lambda}, \mathcal{T}_{\lambda}))$ which is stable under finite intersections. Then clearly, $\mathcal{B} = \bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$ is a basis of quasi-compact open subsets of (X, \mathcal{T}) stable under finite intersections.

Let *C* be a nonempty irreducible closed subset of *X*. Then $C = \bigcup_{\lambda \in \Lambda} C_{\lambda}$, where C_{λ} is a closed subset of $(X_{\lambda}, \mathcal{T}_{\lambda})$. For each $\lambda \in \Lambda$, X_{λ} is a clopen subset of (X, \mathcal{T}) . Hence the C_{λ} are closed in (X, \mathcal{T}) . Thus there exists $\lambda \in L$ such that $C = C_{\lambda}$. So that *C* is a nonempty irreducible closed subset of X_{λ} . Accordingly, there exists $x \in X_{\lambda}$ such that $\overline{\{x\}}^{X_{\lambda}} = C$. Since X_{λ} is a closed subset of $(X, \mathcal{T}), \overline{\{x\}}^{X} = \overline{\{x\}}^{X_{\lambda}} = C$. Thus, (X, \mathcal{T}) is sober. \Box

Corollary 4.2. Let (X, \leq) be an ordered disjoint union of the posets $(X_{\lambda}, \leq_{\lambda}), \lambda \in \Lambda$, such that Λ . Then the following statements are equivalent:

- (i) For each $\lambda \in \Lambda$ $(X_{\lambda}, \leq_{\lambda})$ is an up-spectral set.
- (ii) There exists an order compatible up-spectral topology T on X such that (X/Λ, T/Λ) is a discrete space.

Corollary 4.3. Let (X, \leq) be an ordered disjoint union of $(X_{\lambda}, \leq_{\lambda})$, $\lambda \in \Lambda$, such that Λ is finite. Then the following statements are equivalent:

- (i) For each $\lambda \in \Lambda$ $(X_{\lambda}, \leq_{\lambda})$ is a spectral set.
- (ii) There exists an order compatible spectral topology \mathcal{T} on X such that $(X/\Lambda, \mathcal{T}/\Lambda)$ is a T_1 -space.
- (iii) There exists an order compatible spectral topology T on X such that $(X/\Lambda, T/\Lambda)$ is a discrete space.

5. D-components of a spectral space

Let (X, \leq) be a spectral set, \mathcal{D} a *D*-component of *X* and \mathcal{T} an order compatible spectral topology on *X*. In the introduction we have recalled the Lazard's formula for a *D*-component.

We define on \mathcal{D} two topologies $\mathcal{T}_1(\mathcal{D})$ and $\mathcal{T}_2(\mathcal{D})$ by:

 $(\mathcal{D}, \mathcal{T}_1(\mathcal{D}))$ is the disjoint union of the subspaces $E^0, E^n \setminus E^{n-1}, n \in \mathbb{N} \setminus \{0\}$.

Since E^n is a closed subspace of (X, \mathcal{T}) , it is spectral. Let \mathcal{T}_n be the topology induced by \mathcal{T} on E^n . We define the topology $\mathcal{T}_2(\mathcal{D})$ on \mathcal{D} by letting the closed sets be the F with the property that there exists some $n \in \mathbb{N}$, such that F is a closed subset of (E^n, \mathcal{T}_n) . Observe that a set O is open in $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ if and only if it is of the form $O = U \cup (\mathcal{D} \setminus E^k)$, where k is a sufficiently large integer so that $\mathcal{D} \setminus E^k \subseteq O$, and U is open in (E^k, \mathcal{T}_k) . Under the previous notation, we have the two following topological results, shedding some light on the conjecture of Lewis and Ohm.

Theorem 5.1. Let (X, \leq) be a spectral set, \mathcal{D} be a D-component of X and \mathcal{T} an order compatible spectral topology on X. Then $(\mathcal{D}, \mathcal{T}_1(\mathcal{D}))$ is an up-spectral topology.

We need three lemmata.

Lemma 5.2 [3, Proposition 7, p. 122]. Let X be a topological space and U a nonempty open subset of X. Then the mapping $V \mapsto \overline{V}$ defines a bijection from the set of irreducible nonempty closed subsets of U onto the set of irreducible nonempty closed subsets of X meeting U. The inverse bijection is $Z \mapsto Z \cap U$.

Lemma 5.3. Let X be a sober space and U a nonempty open subset of X. Then U is sober.

Proof. Let *F* be a nonempty irreducible closed subset of *U*. According to Lemma 5.2, \overline{F} is an irreducible closed subset of *X*. Hence \overline{F} has a generic point *x*. Let us write $\overline{F} = \overline{\{x\}}^X$, and note that $x \in U$. Clearly, $x \in F = \overline{F} \cap U$. Thus $F = \overline{\{x\}}^U$. \Box

Let *U* be an open subset of a topological space *X*. If *X* has a basis \mathcal{B} of quasi-compact open subsets closed under finite intersections, then $\mathcal{B}_U = \{O \in \mathcal{B} \mid O \subseteq U\}$ is a basis of quasi-compact open subsets of *U* which is closed under finite intersections. Therefore, according to Lemma 5.3, the following lemma is easily checked.

Lemma 5.4. Any open subset of an up-spectral space is up-spectral.

Proof of Theorem 5.1. For each $n \in \mathbb{N}$, (E^n, \mathcal{T}_n) is a spectral space. On the other hand $E^n \setminus E^{n-1}$ is an open subset of E^n , hence $E^n \setminus E^{n-1}$ is up-spectral (cf. Lemma 5.4). Therefore, $(\mathcal{D}, \mathcal{T}_1(\mathcal{D}))$ is an up-spectral space, by Proposition 4.1. \Box

Theorem 5.5. Let (X, \leq) be a spectral set, \mathcal{D} be a D-component of X and \mathcal{T} an order compatible spectral topology on X. Then the space $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ satisfies the following properties:

- (1) $T_2(\mathcal{D})$ is compatible with the order induced by $\leq on \mathcal{D}$.
- (2) $T_2(\mathcal{D})$ is quasi-compact.
- (3) Each nonempty irreducible closed subset of $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ distinct from \mathcal{D} has a generic point.

(Thus what is missing in the conclusion of this theorem to make the topology $T_2(D)$ down-spectral is that it has a basis of quasi-compact open subsets closed under finite intersections.)

Proof. (1) Let $x \in \mathcal{D} = \bigcup_{n \in \mathbb{N}} E^n$. There exists $n \in \mathbb{N}$, such that $x \in E^n$. Hence S(x) is a closed subset of E^n . Thus, S(x) is a closed subset of $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$. On the other hand, it is

easily seen that any closed subset of $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ is closed under specialization, since each closed subset of E^n has this property. Therefore, $\mathcal{T}_2(\mathcal{D})$ is compatible with the ordering \leq on \mathcal{D} .

(2) Let $(\mathcal{U}_i, i \in I)$ be a collection of open subsets of $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ such that $\mathcal{D} = \bigcup_{i \in I} \mathcal{U}_i$. \mathcal{U}_i has the form $\mathcal{U}_i = U_{n_i}^i \cup (\mathcal{D} \setminus E^{n_i})$, and $U_{n_i}^i$ is an open subset of $(E^{n_i}, \mathcal{T}_{n_i})$. Let $p = \min\{n_i: i \in I\}$. Of course, $E^p = \bigcup_{i \in I} (\mathcal{U}_i \cap E^p)$ and $\mathcal{U}_i \cap E^p$ is an open subset of E^p . Thus, there exists a finite subsets J of I, such that $E^p = \bigcup_{i \in J} (\mathcal{U}_i \cap E^p)$. The equality $\mathcal{D} = E^p \cup (\mathcal{D} \setminus E^p)$ implies that $\mathcal{D} = \bigcup_{i \in J} \mathcal{U}_i$, proving that $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ is quasi-compact.

(3) Any nonempty irreducible closed subset of $(\mathcal{D}, \mathcal{T}_2(\mathcal{D}))$ distinct from \mathcal{D} is necessarily of the form $F = F_n$, where $n \in \mathbb{N}$, and F_n is an irreducible closed subset of (E^n, \mathcal{T}_n) . Therefore, F has a generic point. \Box

Acknowledgement

The authors gratefully acknowledge the many helpful corrections, comments and suggestions of the anonymous referee.

References

- K. Belaid, B. Cherif, O. Echi, On spectral binary relation, in: Lecture Notes Pure. Appl. Math., vol. 185, Dekker, New York, 1997, pp. 79–88.
- [2] E. Bouacida, O. Echi, E. Salhi, Topologies associées à une relation binaire et relation binaire spectrale, Boll. Un. Mat. Ital. B 10 (7) (1996) 417–439.
- [3] N. Bourbaki, Algèbre Commutaive, Chapitre 1 à 4, Masson, Paris, 1985.
- [4] D.E. Dobbs, M. Fontana, I.J. Papick, On certain distinguished spectral sets, Ann. Mat. Pura Appl. 128 (1981) 227–240.
- [5] M. Fontana, Quelques nouveaux résultats sur une classe d'espaces spectraux, Rend. Acad. Naz. Lincei Ser. 67 (8) (1979) 157–161.
- [6] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43-60.
- [7] I. Kaplansky, Commutative Rings, revised ed., The University of Chicago Press, 1974.
- [8] D. Lazard, Disconnexité des spectres d'anneaux et des préshémas, Bull. Soc. Math. France 95 (1967) 95– 108.
- [9] W.J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra 25 (1973) 419-433.
- [10] W.J. Lewis, J. Ohm, The ordering of spec R, Canad. J. Math. 28 (1976) 820-835.