

Linear Algebra and its Applications 283 (1998) 165-169

LINEAR ALGEBRA AND ITS APPLICATIONS

p-Contraction and 2 x 2 matrix

Takahiko Nakazi^{a,*}, Kazuyoshi Okubo ^{b,1}

^a Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan ^b Mathematics Laboratory, Sapporo College, Hokkaido University of Education, Sapporo 002, Japan

Received 29 October 1997; received in revised form 28 April 1998; accepted 12 May 1998

Submitted by R.A. Brualdi

Abstract

In this paper, the following is proved. When $|a| \leq 1$ and $|b| \leq 1$,

$$
A = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}
$$

is a ρ -contraction if and only if

$$
|c|^2+|a-b|^2\leq \inf_{\zeta\in D}\left|\frac{\{\rho+(1-\rho)\overline{a}\overline{\zeta}\}\{\rho+(1-\rho)b\zeta\}-\overline{a}b|\zeta|^2}{\rho\zeta}\right|^2,
$$

where D is the open unit disc. The result is then extended to quadratic operators. Several special cases of the result are analysed in detail. © 1998 Published by Elsevier Science Inc. All rights reserved.

/I MS classification: Primary 47 A 20

Keywords: p-dilation; Numerical radius; Matrix

1. Introduction

For $\rho > 0$, a bounded linear operator A on a Hilbert space $\mathcal H$ is a ρ -contraction if and only if the powers of A admit a representation

^{*} Corresponding author. E-mail: nakazi@math.sci.hokudai.ac.jp.

[!] E-mail: okubo@atson.sap.hokkyodai.ac.jp.

^{0024-3795/981519.00 © 1998} Published by Elsevier Science Inc. All rights reserved. Pil: S0024-3795(98) l 0097-6

$$
Anh = \rho P Unh \hspace{2mm} (h \in \mathscr{H}; n = 1, 2, \ldots),
$$

where U is a unitary operator (called a unitary ρ -dilation) on some Hilbert space $\mathscr K$ containing $\mathscr K$ as a subspace, and where P is the projection from $\mathscr K$ to \mathcal{H} . A is a contraction, that is, the norm $||A|| \le 1$ if and only if A is a 1-contraction. This is a theorem of Sz. -Nagy [5]. The numerical radius $w(A)$ of A is not bigger than l if and only if A is a 2-contraction. This is a theorem of Berger [1]. Sz.-Nagy and Foias [6] gave intrinsic characterizations of operators of ρ contractions. Unfortunately, even if $\mathcal H$ is of two dimension, it is difficult to determine when A is a ρ -contraction except $\rho = 1$. In this paper, we assume that $\mathscr H$ is a two dimensional Hilbert space. Assuming A is triangular, we determine when A is a ρ -contraction. In fact, for $\rho = 2$, the numerical radius is given.

In this paper, D is the open unit disc and \overline{D} is its closure. $\mathscr{H}ol(\overline{D}, \alpha, \overline{D})$ denotes a set of all holomorphic functions from \overline{D} into \overline{D} which vanish at $\alpha \in D$ and $\mathscr{H}ol(\overline{D})$ denotes a set of all holomorphic contractions on \overline{D} .

In the proof of Theorem, we use three elementary well known results.

(1) $\sup\{|f'(x)|; f \in \mathcal{M}ol(\overline{D}, \alpha, \overline{D})\} = 1/(1-|\alpha|^2).$

(2) $\sup\{|f(\beta)|; f \in \mathcal{H}ol(\overline{D}, \alpha, \overline{D})\} = \left|\frac{x-\beta}{1-\overline{x}\beta}\right|$ when $\beta \in D$.

(3) $f(A)$ is a contraction for any $f \in \mathcal{H}ol(\overline{D})$ if and only if $f(A)$ is a contraction for any $f \in \mathscr{H}ol(\overline{D}, \alpha, \overline{D})$.

Proof. (1) If $f \in \mathcal{H}$ ol(D, x, D) then $|(f \circ \phi_{-\alpha})'(0)| \leq 1$ by the Schwarz's lemma where $\phi_{-x}(z) = (z + \alpha)/(1 + \overline{\alpha}z)$. Hence the supremum is less than equal to $1/(1-|x|^2)$. The supremum is attained by $\phi_x(z)=(z-\alpha)/(1-\overline{\alpha}z)$. (2) If $f \in \mathcal{H}ol(\bar{D}, \alpha, \bar{D})$ then $f(z) = \phi_{\alpha}(z)g(z)$ and $|g(z)| \leq 1$. Hence the supremum is attained by $\phi_x(z)$. (3) The 'only if' part is clear. If $f \in \mathcal{H}ol(\overline{D})$ and $f(x) = \beta, g = \phi_\beta \circ f$ belongs to $\mathcal{H}ol(\bar{D}, \alpha, \bar{D})$ and it follows that $||g(A)|| \leq 1$ or, equivalently $||f(A)|| = ||\phi_{-11}(g(A))|| \le 1$ (see [4]). \Box

2. Basic result

In order to give a Theorem, we use a theorem of Misra ([4], Theorem I.I) and a result of Ando and the second author [7]. Corollary I is known. Corollary 2 is new and with a theorem of Berger [1], it gives a necessary and sufficient condition for $w(A) \leq 1$.

Theorem. Suppose a and b are complex numbers in the closed unit disc \overline{D} . Then,

 $A = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$

it is a p-contraction ~]'and only if

$$
|c|^2+|a-b|^2\leq \inf_{\zeta\in D}\left|\frac{\{\rho+(1-\rho)\bar{a}\bar{\zeta}\}\{\rho+(1-\rho)b\zeta\}-\bar{a}b|\zeta|^2}{\rho\zeta}\right|^2.
$$

Proof. By [7], A is a ρ -contraction if and only if for any $\zeta \in D, g_{\zeta}(A)$ is a contraction where $g_{\zeta}(z) = z\zeta/\{\rho + (1 - \rho)z\zeta\}$. If $a = b$, by Theorem 1.1 of [4], $g_i(A)$ is a contraction if and only if

$$
|c| |g'_{\zeta}(a)| \leqslant (\sup\{|f'(g_{\zeta}(a))|; f \in \mathscr{H}ol(\overline{D}, g_{\zeta}(a), \overline{D})\})^{-1}.
$$

Hence by (1)

$$
|c| \leqslant \frac{1-|g_{\zeta}(a)|^2}{|g'_{\zeta}(a)|} = \frac{|\rho + (1-\rho)a\zeta|^2 - |a\zeta|^2}{|\zeta\rho|}.
$$

Thus \vec{A} is a ρ -contraction if and only if

$$
|c| \leq \inf_{\zeta \in D} \left| \frac{|\rho + (1-\rho)a\zeta|^2 - |a\zeta|^2}{\zeta\rho} \right|.
$$

This implies the theorem when $a = b$.

Suppose $a \neq b$. Note that $g_1(a) \neq g_2(b)$ for $\zeta \neq 0$. Hence A is a ρ -contraction if and only if

$$
\begin{bmatrix} f \circ g_{\zeta}(a) & c \ \frac{f \circ g_{\zeta}(a) - f \circ g_{\zeta}(b)}{a - b} \\ 0 & f \circ g_{\zeta}(b) \end{bmatrix}
$$

is a contraction for any $f \in \mathcal{H}ol(\bar{D}, g_1(h), \bar{D})$ and for any $\zeta \in \bar{D}$ by the von Neumann's inequality and (3). As in Theorem I.I of [4], this is equivalent to

$$
|c|^2/|a-b|^2 \leq \frac{1}{|f| \circ g_{\zeta}(a)|^2} - 1
$$

for any $f \in \mathcal{H}ol(\bar{D}, g_1(b), \bar{D})$ and for any $\zeta \in \bar{D}$. It is easy to see that by (2)

$$
\sup\{|f \circ g_{\zeta}(a)|; f \in \mathscr{H}ol(\bar{D}, g_{\zeta}(b), \bar{D})\} = \left|\frac{g_{\zeta}(a) - g_{\zeta}(b)}{1 - \overline{g_{\zeta}(a)}g_{\zeta}(b)}\right|^{-1}
$$

$$
= \left|\frac{\{\rho + (1-\rho)\bar{a}\bar{\zeta}\}\{\rho + (1-\rho)b\zeta\} - \bar{a}b|\zeta|^2}{(a-b)\rho\zeta}\right|.
$$

This implies the theorem when $a \neq b$. \Box

Corollary 1. In Theorem, A is a 1-contraction if and only if

$$
|c|^2 \leq \inf_{\zeta \in D} \left| \frac{1 - \bar{a}b|\zeta|^2}{\zeta} \right|^2 - |a - b|^2 = (1 - |a|^2)(1 - |b|^2).
$$

Corollary 2. *In Theorem, A is a 2-contraction if and only if*

$$
|c|^2 \leq \inf_{|\zeta|=1} |2 - (\bar{a}\bar{\zeta} + b\zeta)|^2 - |a - b|^2 = 4 \inf_{|\zeta|=1} \{ (1 - \text{Re}(a\zeta))(1 - \text{Re}(b\zeta)) \}.
$$

3. Extension to quadratic operators

An operator A on $\mathcal H$ is called a quadratic operator if A satisfies quadratic polynomial, that is, $A^2 + rA + sI = 0$ for some complex numbers r and s. In the finite dimensional case, if $t^2 + rt + s = (t - a)(t - b)$ then A is unitarily similar to a matrix of the form

$$
\begin{bmatrix} al_1 & C \\ 0 & bl_m \end{bmatrix}, \tag{*}
$$

where C is an $1 \times m$ matrix. For a reference on the structure theorem of quadratic operator, see [2]. Since the ρ -contraction is invariant under the unitary similarity, we may assume that a quadratic operator A has a form of $(*)$. Then we can show A is a ρ -contraction if and only if

$$
||C||^2 + |a-b|^2 \le \inf_{\zeta \in D} \left| \frac{\{\rho + (1-\rho)\overline{a}\overline{\zeta}\} {\{\rho + (1-\rho)b\zeta\} - \overline{a}b|\zeta|^2}}{\rho\zeta} \right|^2.
$$

In fact, by the singular value decomposition of C(cf. [3]), there is an $l \times m$ matrix $\Sigma = [\sigma_{ij}]$ where $\sigma_{ij} = 0$ for all $i \neq j$, and $\sigma_{11} \geq \sigma_{22} \geq \cdots \geq \sigma_{qq} \geq 0$ $(q = min{l, m})$ and there are unitary matrices $U \in M_l$, $V \in M_m$ such that $\mathbf{U}\mathbf{C}\mathbf{V}^* = \Sigma$. Here $\sigma_{11}, \sigma_{22}, \dots, \sigma_{qq}$ are the decreasing ordered singular values of *A*, specially, $\sigma_{11} = ||C||$. Then *A* is unitarily similar to a matrix

$$
\left[\begin{array}{cc} al_l & \Sigma \\ 0 & bl_m \end{array}\right]
$$

and this matrix is unitarily similar to the direct sum of 2×2 matrices of form

$$
C_i = \begin{bmatrix} a & \sigma_{ii} \\ 0 & b \end{bmatrix}
$$

and possibly with aI_k or bI_k with $k = |l - m|$. It follows that A is a ρ -contraction if and only if C_1 is. From the Theorem in this paper our assertion is led.

4. Several special cases

In the rest of this paper, let

$$
A = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}.
$$

For some special a and *b,* we compute the infimums in Theorem and Corollary 2 as that in Corollary 1.

- 1. When $|a| = 1$ or $|b| = 1$, A is a p-contraction if and only if $c = 0$.
- 2. When $a = b$, A is a p-contraction if and only if $|c| \leq (p-2)|a|^2$ $+2(1-\rho)|a| + \rho.$
- 3. When $b=0$, A is a p-contraction if and only if $|c|^2 \le \rho(\rho-2)|a|^2$ +2 $\rho(1-\rho)|a| + \rho^2$.
- 4. When $a \ge 0$ and $b \ge 0$, A is a p-contraction if and only if $|c|^2 \le 1$. $(1 - \rho)(a + b) + (\rho - 2)ab$ ² – $(a - b)^2$.
- 5. When $a = -b$ is real, A is a p-contraction if and only if $|c|^2 + 4a^2$ $\leq {\rho-(2-\rho)a^2}^2$.

Acknowledgements

The authors would like to thank the referee for several suggestions, especially for pointing out Section 3 as the extension of our Theorem and the equality in Corollary 2. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

References

- [1] C.A. Berger, A strange dilation theorem, Notices Amer. Math. Soc. 12 (1965) 590.
- [2] Djoković, Ž. Dragomir, Unitary similarity of projectors, Aequationes Math. 42 (1991) 220 224.
- [3] R.A. Horn, C.R. Johnson, Topic in Matrix Analysis, Cambridge University Press. Cambridge, MA, *1991.*
- [4] G. Misra, Curvature inequalities and extremai properties of bundle shifts, J. Operator Theory 11 (1984) 305-318.
- [5] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, Acta Sci. Math. 15 (1953) 87-92.
- [6] B. Sz.-Nagy, C. Foias, Similitude des opérateurs de classes C_p á des contractions, C.R. Acad. Paris 264 (1967) 1063-1065.
- [7] K. Okubo, T. Ando, Operator radii of constraining products, Proc. Amer. Math. Soc. 56 (1976) 203-210.