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Abstract 

Let T be a tournament. The tournament game on T is: Two players independently pick 
a node. If both pick the same node, the game is tied. Otherwise, the player whose node is at the tail 
of the arc connecting the two nodes wins. Fisher and Ryan showed that for any tournament T, 
the tournament game on T has a unique optimal strategy. If one node beats all others, the 
optimal strategy always picks that node. Otherwise, we show the probability that a node is 
picked in the optimal strategy is at most l/3. We also find bounds on the minimum nonzero 
probability of a node in the optimal strategy. 

0. Introduction 

Fisher and Ryan [2,3] studied a generalization of “Scissors, Paper and Stone” 

called Tournament Games. Given a tournament, two players independently pick 
a node. If both pick the same node, the game is tied. Otherwise, the player whose node 

is at the tail of the arc connecting the two nodes wins. A strategy is a vector of 
probabilities on the nodes, so the strategy (x1, x2, . . . , x,) for an n node tournament 
dictates that node 1 is played with probability x1, node 2 with probability x2, etc. 
A strategy is optimal if it maximizes the expected winnings. Since the game is fair, both 
players have the same optimal strategy and the value of the game is 0. 

Fisher and Ryan and Laffond et al. [S] independently showed that there is a unique 
optimal strategy for this game (see Fig. 1, where the nodes are labelled with the 
probability of playing that node in an optimal strategy). 
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Fig. 1. Tournament games on various tournaments. In each of these games, two players simultaneously 
choose one of the nodes. If the nodes are the same, the game is a tie. Otherwise, the player picking the node 
at the tail of the arc connecting the selected node wins. The nodes are labelled with the probability of 

playing that node in an optimal strategy. 

If one node beats all other nodes, then the optimal strategy is to always play that 
node. However if there is no such node, the opponent can defeat such a pure strategy 
by playing a node that beats the node which is always being played. So if each node 
has in-degree of 1 or more, the optimal strategy will be a mixed strategy with several 
nodes being played with positive probability. What is the maximum noncertain 

probability of a node in the optimal strategy for a tournament game? Section 1 answers 
this question. 

Conversely, a node may not be used in the optimal strategy (Fisher and Reeves [l] 
showed that an average of half the nodes in the optimal strategy on a random 
tournament have probability zero). Sometimes a node will be used but its probability 
will be small. What is the minimum nonzero probabizity for a node in the optimal 
strategy for a tournament game? Section 2 addresses this question. 

To answer these questions, we will use a matrix which differs from the usual 
tournament matrix. The payoffmatrix K( 7’) of an n node tournament T is defined by 
the n x n skew-symmetric matrix whose ij element is 

1 if i -fj, 

kij = - 1 if j -+ i, 

0 if i =j. 

Fisher and Ryan [Z] showed that the vector of nonzero probabilities in an optimal 
strategy is the unique null vector of the payoff matrix of the corresponding subtourna- 
ment of T. 
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1. The maximum noncertain probability 

In Fig. 1, the largest probability in the optimal strategy for the left tournament is 3, 
and for the right, it is & z 0.23077. What is the largest possible probability less than 
one in an optimal strategy? Theorem 1 shows the answer is 3. The following simple 
lemma is given in [3]. 

Lemma (Fisher and Ryan [3]). Let p be the optimal strategy ofa tournament game on 
T and let i be a node with pi > 0. Then [K( T)p]i = 0. 

Theorem 1. Let pi be the probability of node i in an optimal strategy. Then either pi = 1 
or pi < 3. 

Proof. Partition the nodes except i into two subsets: let L be the nodes that lose to i, 
and B be the nodes that beat i. Let I= Cjctpj and b = CjpBpj* Since L, B and 
i partition the nodes, we have pi + 1 + b = 1. Also, by the lemma, if pi > 0 then 
1 - b = [ K( T)p]i = 0, i.e., I= b. Hence if pi # 1, I> 0 and b > 0. 

For any j E L, let rj = CksL K( T)jk pk. Since K( T ) is skew-symmetric, 

1 Pjrj = jTL Pj kTL K( T)jkpk = ,FL kTL K( T)jk pjpk = 0. 

jeL 

Since pi > 0 for some j E L, we have that for one such j, rj < 0. Then by the lemma 

0 = [IK(T)Plj = - Pi + rj + C Kjkpj < -pi + 1 pj = -pi + b. 
keB ksB 

Hence b = 12 pi. AS pi + b + 1 = 1, we can conclude pi < 3. I-J 

Theorem 1 is exact in that for all odd numbers n, we can construct an n node 
tournament T whose optimal strategy uses all nodes and that has two nodes with 
probability 4. Let T be the tournament where node 1 beats node 2, nodes i beat node 
1 and loses to node 2 for all i > 2, and with a regular subtournament (a subtourna- 
ment where each node has indegree equal to outdegree) on the nodes 3,4, . . . , n. Then 
in the optimal strategy, nodes 1 and 2 have probability 4, and node i has probability 
1/(3(n - 2)) for all i > 2. 

2. The minimum nonzero probability 

We now address the question: What is the minimum nonzero probability of a node in 
the optimal strategy on an n node tournament game? Let a,, be the answer to the 
question. Fisher and Ryan [3] enumerated all fractional winners on 7 or less nodes. 
This showed that a, = a2 = 1, a3 = a4 = 3, a5 = a6 = $, and a, = a8 = &. 
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Fisher and Ryan [4] studied L,, the maximum value of the least common denomin- 
ator of the probabilities in an optimal strategy for an n node tournament game. They 
showed that L, < rr(n+i)/4. Since a, 3 l/L,, we have a, 2 n-(“+i)j4. Further, an ex- 
haustive search showed that L, = 189. However, in these tournaments, the smallest 
numerator is 9. The same exhaustive search shows that the tournament on the right 
side of Fig. 1 is one of the 9 node tournaments with a node of the smallest nonzero 
probability. So a, = al0 = A. 

Theorem 2. Let a, ~e~Qte the ~in~~~~ ~5ssi~le ~~n~er~ ~r~~u~~~ity in the o~ti~~~ 
strategy of a tournament on n nodes. Then u,,,+~_ t Q a,a,. 

Proof. Let R be an m node tournament with optimal strategy x = (x,, x2, . . . , x,,JT so 

that x1 = a,. Let S be an n node tournament with optimal strategy 

Y = (Yl,YZ, .” t JJ,)~ so that y, = CI,, Then create a tournament T on m + pz - 1 nodes 
by replacing node 1 of S by the entire tournament R (so the nodes in R beat and lose to 
nodes in S according to how node 1 did). The optimal strategy for T is the vector 

2 = (JWT,Y,, **. , y,JT. Thus the probability of node 1 of T is a,,,~,, and hence 

@m+n-1 G %%. 0 

A random search found an 11 node tou~ament game with a node with probability 
& in the optimal strategy. Its payoff matrix and optimal strategy are 

K(T) = 

0 -1 1 -1 I 1 -1 1 -1 f -1 

1 0 -1 1 -1 -1 -1 1 -1 1 1 

-1 1 0 1 -1 1 -1 1 1 -1 -1 

1 -1 -1 0 -1 -1 1 1 1 1 -1 

-1 1 1 1 0 -1 -1 -1 1 I -1 

-1 1 -1 1 1 0 1 -1 -1 1 -1 

1 1 1 -1 1 -1 0 1 1 -1 -1 
-1 -1 -1 -1 1 1 -1 0 1 -1 1 

1 1 -1 -1 -1 1 -1 -1 0 I 1 

-1 -1 1 -1 -1 -1 1 1 -1 0 I 

1 -1 1 1 1 1 1 -1 -1 -1 0 

and Optimal Strategy = & (1 53 61 61 69 81 83 95 97 111 123)T. 
The random search also revealed a 13 node tournament game with a node 

with probability & in the optimal strategy. Its payoff matrix and optimal strategy 
are 
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K(T) = 

0 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 
-1 0 -1 -1 1 -1 1 1 1 -1 -1 -1 1 
1 1 0 1 1 1 -1 1 1 1 -1-l -1 
1 1 -1 0 -1 -1 1 -1 -1 1 -1 1 1 

-1 -1 -1 1 0 -1 1 -1 1 1 -1 1 -1 
-1 1 -1 1 1 0 -1 -1 1 -1 1 -1 1 

-1 -1 1 -1 -1 1 0 1 -1 1 -1 -1 1 

1 -1 -1 1 1 1 -1 0 -1 -1 -1 1 1 

1 -1 -1 1 -1 -1 1 1 0 1 1 -1 -1 
-1 1 -1 -1 -1 1 -1 1 -1 0 1 1 -1 
-1 1 1 1 1 -1 1 1 -1 -1 0 1 -1 
1 1 1 -1 -1 1 1 -1 1 -1 -1 0 1 
1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 0 

and Optimal Strategy = & (1 15 69 85 315 353 395 397 401 499 523 563 585)T. 
The following table shows values for L, and p that have been determined empiric- 

ally. 

n 1,2 3,4 56 7,8 9,lO 11,12 13,14 

L” 1 3 9 35 183 2 979 > 4635 

all 1 113 119 l/35 l/l43 < l/835 < l/4201 
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