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1. Introduction and overview

1.1. Main result

Let K be a field that is finitely generated over a finite field κ of characteristic p. Let K sep be a fixed
separable closure of K , and let κ be the algebraic closure of κ in K sep. Let G K := Gal(K sep/K ) denote
the absolute Galois group and Ggeom

K := Gal(K sep/Kκ) the geometric Galois group of K .
Let F be a finitely generated field of transcendence degree 1 over Fp . Let A be the ring of elements

of F which are regular outside a fixed place ∞ of F . Let ϕ : A → K {τ } be a Drinfeld A-module of
rank r over K of special characteristic p0. For any prime p �= p0 of A let ρp : G K → GLr(Ap) denote
the homomorphism describing the Galois action on the Tate module Tp(ϕ). We are interested in the
image of the associated adelic Galois representation

ρad := (ρp)p : G K −→
∏
p�=p0

GLr(Ap).

By Anderson [And86, §4.2], it is known that the composite of ρad with the determinant map is the
adelic Galois representation associated to some Drinfeld module of rank 1 of the same character-
istic p0. Thus the image of ρad(Ggeom

K ) under the determinant is finite: see Proposition 6.3 below.
Consequently, the image of ρad(G K ) under the determinant is an extension of a finite group and a
pro-cyclic group and therefore far from open. Also, the main problem in determining ρad(G K ) lies in
determining ρad(Ggeom

K ) ∩ ∏
p�=p0

SLr(Ap).
Recall that two subgroups of a group are called commensurable if their intersection has finite index

in both. We will show that ρad(Ggeom
K ) is commensurable to an explicit subgroup of

∏
p�=p0

SLr(Ap)

whose definition depends only on information on certain endomorphism rings associated to ϕ .
We will also determine ρad(G K ) up to commensurability.

First, since the Galois representation commutes with the endomorphisms of ϕ over K , the image
of ρad must be contained in the centralizer of EndK (ϕ) in

∏
p�=p GLr(Ap). Second, enlarging K does
0
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not change the image of Galois up to commensurability, but may increase the endomorphism ring.
Since all endomorphisms of ϕ over any extension of K are defined over a finite separable extension,
the relevant endomorphism ring is therefore EndK sep (ϕ).

For a Drinfeld module in generic characteristic it turns out that the image of ρad up to com-
mensurability, which was determined in [PR09a], indeed depends only on EndK sep (ϕ). But in special
characteristic this cannot be so, due to a phenomenon described in [Pin06b]. The problem is that
the endomorphism ring of a Drinfeld module in special characteristic can be non-commutative. As a
consequence, it is possible that for some integrally closed infinite subring B ⊂ A, the endomorphism
ring of the Drinfeld B-module ϕ|B is larger than that of ϕ . The Galois representation associated to ϕ
must then commute with the additional operators coming from endomorphisms of ϕ|B , forcing the
image of ρad to be smaller. But using the results of [Pin06b] one can reduce the problem to the case
where this phenomenon of growing endomorphism rings does not occur.

For the following results let a0 be any element of A that generates a positive power of p0. View
a0 as a scalar element of

∏
p�=p0

GLr(Ap) via the diagonal embedding A ↪→ ∏
p�=p0

Ap, and let 〈a0〉
denote the pro-cyclic subgroup that is topologically generated by it.

In the simplest case, where the endomorphism ring of ϕ over K sep is A and does not grow under
restriction, our main result is the following:

Theorem 1.1. Let ϕ be a Drinfeld A-module of rank r over a finitely generated field K of special characteris-
tic p0 . Assume that for every integrally closed infinite subring B ⊂ A we have EndK sep (ϕ|B) = A. Then

(a) ρad(Ggeom
K ) is commensurable to

∏
p�=p0

SLr(Ap), and

(b) ρad(G K ) is commensurable to 〈a0〉 · ∏p�=p0
SLr(Ap).

More generally, set R := EndK sep (ϕ) and F := Quot(A). Assume for the moment that the center of
R is A. Then R ⊗A F is a central division algebra over F of dimension d2 for some d dividing r. For
any prime p �= p0 of A, the Tate module Tp(ϕ) is a module over Rp := R ⊗A Ap, which is an order
in a semisimple algebra over Fp. Let Dp denote the commutant of Rp in EndAp

(Tp(ϕ)), which is an
order in another semisimple algebra over Fp. Let D1

p denote the multiplicative group of elements of
Dp of reduced norm 1. This is isomorphic to SLr/d(Ap) for almost all p by Proposition 4.11, and equal
to SLr(Ap) for all p if R = A.

In this situation a version of our main result is the following:

Theorem 1.2. Let ϕ be a Drinfeld A-module over a finitely generated field K of special characteristic p0 .
Assume that R := EndK sep (ϕ) has center A and that for every integrally closed infinite subring B ⊂ A we have
EndK sep (ϕ|B) = R. Let D1

p and 〈a0〉 denote the subgroups defined above. Then

(a) ρad(Ggeom
K ) is commensurable to

∏
p�=p0

D1
p , and

(b) ρad(G K ) is commensurable to 〈a0〉 · ∏p�=p0
D1
p .

Theorem 1.2 is the central result of this article; its special case R = A is just Theorem 1.1. Sec-
tions 2 to 5 are dedicated to proving Theorem 1.2. In Section 6 we deduce corresponding results
without any assumptions on EndK sep (ϕ) that are somewhat more complicated to state.

1.2. Outline of the proof

In this outline we explain the key steps in the proof of Theorem 1.2 in the case R = A; the general
case follows the same principles. So we assume that for every integrally closed infinite subring B ⊂ A
we have EndK sep (ϕ|B) = A. After replacing K by a finite extension, we may assume that ρad(Ggeom

K ) ⊂∏
p�=p0

SLr(Ap). Let Γ
geom
p denote its image in SLr(Ap) for any single prime p �= p0 of A, and let �

geom
p

denote its image in SLr(kp) over the residue field kp := A/p.
A large part of the effort goes into proving that �

geom
p = SLr(kp) for almost all p. The key arithmetic

ingredients for this are the absolute irreducibility of the residual representation from [PT06], the
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Zariski density of Γ
geom
p in SLr,Fp from [Pin06a], and the characterization of kp by the traces of

Frobenius elements in the adjoint representation from [Pin06b].
In fact, the absolute irreducibility combined with a strong form of Jordan’s theorem on finite sub-

groups of GLr from [LP11] shows that �
geom
p is essentially a finite group of Lie type in characteristic

p := char(F ). Let Hp denote the ambient connected semisimple linear algebraic group over an alge-
braic closure k̄p of kp. If Hp is a proper subgroup of SLr,k̄p

, the eigenvalues of any element of Hp

must satisfy one of finitely many explicit multiplicative relations that depend only on r. In this case
we show that the eigenvalues of any Frobenius element in the residual representation satisfy a sim-
ilar relation. If this happens for infinitely many p, the fact that the adelic Galois representation is a
compatible system implies that the eigenvalues of Frobenius over any single Fp satisfy the same kind
of relation. But that is impossible, because Γ

geom
p is Zariski dense in SLr,Fp . Therefore Hp is equal to

SLr,k̄p
for almost all p.

This means that �
geom
p is essentially the group of k′

p-rational points of a model of SLr,k̄p
over a

subfield k′
p ⊂ k̄p. To identify this subfield we observe that the trace in the adjoint representation for

any automorphism of the model is an element of k′
p. We show that this holds in particular for the

images of Frobenius elements. But by [Pin06b] the images of the traces of all Frobenius elements in
the adjoint representation of SLr generate kp for almost all p. It follows that kp ⊂ k′

p for almost all p,

and then the inclusion �
geom
p ⊂ SLr(kp) must be an equality for cardinality reasons.

We also need to prove that the homomorphism Ggeom
K → SLr(kp1 ) × SLr(kp2 ) is surjective for any

distinct p1,p2 outside some finite set of primes. This again relies on traces of Frobenius elements.
Indeed, if the homomorphism is not surjective, the surjectivity to each factor and Goursat’s lemma
imply that its image is essentially the graph of an isomorphism SLr(kp1 )

∼−→ SLr(kp2 ). This isomor-
phism must come from an isomorphism of algebraic groups over an isomorphism of the residue
fields σ : kp1

∼−→ kp2 . Using this we show that the traces of Frobenius in the adjoint representation
of SLr map to the subring graph(σ ) ⊂ kp1 × kp2 . But that again contradicts the result from [Pin06b]
unless p1 or p2 is one of finitely many exceptional primes.

Next we prove that Γ
geom
p = SLr(Ap) for almost all p. For this we may already assume that

�
geom
p = SLr(kp). That alone does not imply much, because Ap is a local ring of equal characteris-

tic, and so the Teichmüller lift of the residue field kp ↪→ Ap induces a lift SLr(kp) ↪→ SLr(Ap). But
using successive approximation in SLr(Ap) we reduce the problem to showing that Γ

geom
p surjects to

SLr(A/p2). This in turn we can guarantee for almost all p using traces of Frobenius elements again.
Indeed, suppose first that (p, r) �= (2,2). Then the result from [Pin06b] implies that the images

of the traces of all Frobenius elements in the adjoint representation of SLr generate A/p2 for almost
all p. In particular these traces do not all lie in the Teichmüller lift kp ⊂ A/p2, and so the images of
Frobenius elements in GLr(Ap) cannot all lie in the lift of GLr(kp). The desired surjectivity Γ

geom
p �

SLr(A/p2) follows from this using some group theory.
In the remaining case p = r = 2 it may happen that the traces of Frobenius in the adjoint repre-

sentation do not generate the field F , but the subfield of squares F 2 := {x2 | x ∈ F }, of which F is an
inseparable extension of degree 2. This phenomenon stems from the fact that the adjoint representa-
tion of SL2 on psl2 in characteristic 2 factors through the Frobenius Frob2 : x �→ x2. In that case, the
result from [Pin06b] implies that the images of the traces of all Frobenius elements in the adjoint
representation of SLr generate the subring kp ⊕ p2/p3 of A/p3 for almost all p, where kp denotes
the canonical Teichmüller lift of the residue field kp of p. By digging deeper into the structure of
SL2(A/p3), and replacing K by a finite extension at a crucial step in the argument, we can again show
that Γ

geom
p surjects to SLr(A/p2).

Finally, using group theory alone the above results about SLr(kp1 ) × SLr(kp2 ) and SLr(Ap) im-
ply that the homomorphism Ggeom

K → ∏
p/∈P3

SLr(Ap) is surjective for some finite set of primes P3.

On the other hand, the homomorphism Ggeom
K → ∏

p∈P3
SLr(Ap) has open image by the main re-

sult of [Pin06b]. While this does not directly imply that the image of the product homomorphism
Ggeom

K → ∏
p�=p SLr(Ap) is open, because the image of a product map may be smaller than the prod-
0
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uct of the images, some variant of the argument can be made to work, thereby finishing the proof of
Theorem 1.2 (a).

Theorem 1.2 (b) is deduced from this as follows. Since ρad(Ggeom
K ) is already open in

∏
p�=p0

SLr(Ap),

it suffices to show that detρad(G K ) is commensurable to 〈a0〉 within
∏

p�=p0
A×
p . As the determinant

of ρad is the adelic Galois representation associated to some Drinfeld module of rank 1 of the same
characteristic p0, this reduces the problem to the case that r = 1 and that ϕ is defined over a finite
field, say over κ itself. Then Frobκ acts through multiplication by an element a ∈ A which is a unit at
all primes p �= p0 but not at p0. It follows that (a) = pi

0 for some positive integer i. The same prop-

erties of a0 show that (a0) = p
j
0 for some positive integer j. Together it follows that (a j) = p

i j
0 = (ai

0),
and so a j/ai

0 is a unit in A× . As the group of units is finite, we deduce that a j
 = ai

0 for some positive

integer 
. In particular ρad(G K ) = 〈a〉 is commensurable to 〈a0〉, as desired. This finishes the proof of
Theorem 1.2 (b).

1.3. Structure of the article

Section 1 is the present introduction and overview. Sections 2 and 3 deal with subgroups of SLn

and GLn . They are independent of Drinfeld modules, of the rest of the article, and of each other.
Section 2 deals with subgroups of SLn and GLn over a field and establishes suitable conditions for

such a subgroup to be equal to SLn . It is based on some calculations in root systems, on known results
on finite groups of Lie type, and on a strong form of Jordan’s theorem from [LP11].

Section 3 deals with closed subgroups of SLn and GLn over a complete discrete valuation ring R of
equal characteristic p with finite residue field, and establishes suitable conditions for such a subgroup
to be equal to SLn(R). The method uses successive approximation over the congruence filtration of
SLn(R), respectively of GLn(R), whose subquotients are related to the adjoint representation. Curiously,
the case p = n = 2 presents special subtleties here, too, because the Lie bracket on sl2 in characteristic
2 is not surjective.

In Section 4 we list known results about Drinfeld modules in special characteristic or adapt them
slightly to the situation at hand. This includes properties of endomorphism rings, Galois representa-
tions on Tate modules, characteristic polynomials of Frobenius, and bad reduction. We also create the
setup in which the proof of Theorem 1.2 takes place, and list the main arithmetic ingredients from
[Pin06a,Pin06b,PT06] with their immediate consequences.

Section 5 then contains (what remains of) the proof of Theorem 1.2, following the outline expained
above.

In Section 6 we determine ρad(Ggeom
K ) and ρad(G K ) up to commensurability for arbitrary Drinfeld

modules in special characteristic. The main ingredients for this are the special case of Theorem 1.2
and some reduction steps from [Pin06b].

This article is based on the doctoral thesis of the first author [Dev10]; its results are roughly the
same as the results there. We are grateful to Florian Pop for pointing out Theorem 4.13.

2. Subgroups of SLn over a field

In a nutshell, the main goal of this section is to establish suitable conditions for subgroups of SLn

over a field to be equal to SLn . We first give conditions for root systems to be simple of type A
 , and
then deal with the case of connected semisimple linear algebraic groups over a field. Based on this
we treat the case of finite groups of Lie type, which must also take inner forms of SLn into account.
The main results are Theorems 2.14, 2.20, and 2.21. We also recall a strong form of Jordan’s theorem
from [LP11].

2.1. Root systems

Let Φ be a non-trivial root system generating a Euclidean vector space E . Let W be the associated
Weyl group, and let S be a W -orbit in E . We are interested in the conditions:
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(a) S generates E as a vector space.
(b) There are no distinct elements λ1, . . . , λ4 ∈ S such that λ1 + λ2 = λ3 + λ4.
(c) There are no distinct elements λ1, . . . , λ6 ∈ S such that λ1 + λ2 + λ3 = λ4 + λ5 + λ6.

Theorem 2.1. Assume (a) and (b). Then Φ is simple of type A
 for some 
 � 1. Moreover, if

Φ = {±(ei − e j)
∣∣ 0 � i < j � 


} ⊂ E = R
+1/diag(R)

in standard notation, and if 
 �= 2 or in addition (c) is satisfied, then

S = {cei | 0 � i � 
}

for some constant c �= 0.

The proof of this result extends over the rest of this subsection. Throughout we assume conditions
(a) and (b). Note that (a) implies that 0 /∈ S .

Lemma 2.2. Let λ ∈ S and α1 , α2 be two orthogonal roots in Φ . Then λ ⊥ α1 or λ ⊥ α2 .

Proof. Let sαi ∈ W denote the simple reflection associated to αi . The fact that α1 ⊥ α2 implies that

sαi (λ) = λ − 2(λ,αi)

(αi,αi)
· αi, and

sα1 sα2(λ) = λ − 2(λ,α1)

(α1,α1)
· α1 − 2(λ,α2)

(α2,α2)
· α2,

and hence

λ + sα1 sα2(λ) = sα1(λ) + sα2(λ).

But if λ is not orthogonal to α1 or α2, these are four distinct elements of S , contradicting condi-
tion (b). �
Lemma 2.3. The root system Φ is simple.

Proof. Assume that Φ = Ψ1 + Ψ2 is decomposable and let λ ∈ S . Since Φ generates E , there exists
an α ∈ Φ which is not orthogonal to λ. Suppose without loss of generality that α ∈ Ψ2. Then, by
Lemma 2.2, the vector λ is orthogonal to all roots that are orthogonal to α; in particular λ ⊥ Ψ1. Then
w(λ) ⊥ Ψ1 for all w ∈ W and therefore S ⊥ Ψ1. However, this contradicts condition (a). �
Lemma 2.4. The root system Φ does not contain a root subsystem of type B2 .

Proof. Assume that Ψ ⊂ Φ is a root subsystem of type B2. Then the subspace RΨ possesses a basis
{e1, e2} such that Ψ consists of eight roots ±e1, ±e2, and ±e1 ± e2, and where e1 ⊥ e2 and e1 + e2 ⊥
e1 − e2. Thus for any λ ∈ S , Lemma 2.2 implies that λ ⊥ ei for some i = 1, 2, and that λ ⊥ e1 ± e2 for
some choice of sign. Together this gives four cases, in each of which we deduce that λ ⊥ e1. As λ was
arbitrary, this shows that S ⊥ e1, contradicting condition (a). �
Lemma 2.5. The root system Φ is not of type G2 .
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Proof. Choose simple roots α1, α2 of Φ such that α1 is the shorter one. Then Φ contains the root
2α1 + α2 which is orthogonal to α2, and the root 3α1 + 2α2 which is orthogonal to α1. Thus for any
λ ∈ S , Lemma 2.2 implies that λ ⊥ α2 or λ ⊥ 2α1 +α2, and that λ ⊥ α1 or λ ⊥ 3α1 + 2α2. By a simple
calculation, each of these four cases implies that λ = 0, contradicting condition (a). �
Lemma 2.6. The root system Φ does not contain a root subsystem of type D4 .

Proof. Assume that Ψ ⊂ Φ is a root subsystem of type D4. Then, up to scaling the inner product
on E , the subspace RΨ possesses an orthonormal basis {e1, e2, e3, e4} such that Ψ consists of the
roots ±ei ± e j for all 1 � i < j � 4 and all choices of signs. In particular, the roots e1 + ei and e1 − ei
are orthogonal for every 2 � i � 4. Thus for any λ ∈ S , Lemma 2.2 implies that λ ⊥ e1 + εiei for
some εi = ±1. Since the roots e1 − ε2e2 and ε3e3 + ε4e4 are also orthogonal, Lemma 2.2 implies that
λ ⊥ e1 − ε2e2 or λ ⊥ ε3e3 + ε4e4. Since

(e1 + ε2e2) + (e1 − ε2e2) = (e1 + ε3e3) + (e1 + ε4e4) − (ε3e3 + ε4e4) = 2e1,

in both cases we deduce that λ ⊥ 2e1. As λ was arbitrary, this shows that S ⊥ 2e1, contradicting
condition (a). �

Combining Lemmas 2.3 through 2.6, it follows that Φ is a simple root system of type A
 for
some 
 � 1. Using standard notation we may identify E with the vector space R
+1/diag(R), let
e0, . . . , e
 ∈ E denote the images of the standard basis vectors of R
+1, and assume that Φ consists
of the roots ei − e j for all distinct 0 � i, j � 
. Then its Weyl group is the symmetric group S
+1 on
l + 1 letters, acting on E by permuting the coefficients.

Consider any λ ∈ S and write λ = (a0, . . . ,a
) modulo diag(R). Since λ �= 0 in E , the coefficients ai
are not all equal.

Lemma 2.7. Suppose that 
 � 3, and consider indices i and j satisfying ai �= a j . Then for all indices i′ and j′
that are distinct from i and j we have ai′ = a j′ .

Proof. The assumption implies that i �= j, and the assertion is trivial unless also i′ �= j′ . Then ei − e j
and ei′ − e j′ are orthogonal roots, and so Lemma 2.2 implies that λ ⊥ ei − e j or λ ⊥ ei′ − e j′ . This
means that ai = a j or ai′ = a j′ ; but by assumption only the second case is possible. �
Lemma 2.8. If 
 � 3, there exists an index i such that the a j for all j �= i are equal.

Proof. Since 
 � 3 and the ai are not all equal, Lemma 2.7 implies that the ai are also not all distinct.
Therefore there exist distinct indices i, j, j′ satisfying ai �= a j = a j′ . Then for any i′ �= i, j, Lemma 2.7
shows that ai′ = a j′ . Thus i has the desired property. �
Lemma 2.9. If 
 = 2 and in addition condition (c) is satisfied, then the ai are not all distinct.

Proof. Being an orbit under the Weyl group, the set S consists of the vectors

(a0,a1,a2), (a1,a2,a0), (a2,a0,a1),

(a0,a2,a1), (a1,a0,a2), (a2,a1,a0)

modulo diag(R). If the ai are all distinct, these six vectors are all distinct in E , for instance because
the positions of the greatest and the smallest coefficient of a vector in R3 depend only on its residue
class modulo diag(R). As the sum of the three vectors in the first row is equal to the sum of those in
the second row, that contradicts condition (c). �
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We can now prove Theorem 2.1. The statement about Φ has already been established. To show the
statement about S , we may assume condition (c) if 
 = 2. If 
 � 2, using the action of the Weyl group
S
+1, Lemma 2.8 or 2.9 implies that S contains an element of the form (a,b, . . . ,b) mod diag(R)

with a �= b. The same is trivially true if 
 = 1, because then any non-zero element of E has this form.
But for any 
 � 1, the indicated element of E is equal to ce1 with c = a − b �= 0. Since S is an orbit
under S
+1, it follows that S = {cei | 0 � i � 
}, as desired. This finishes the proof of Theorem 2.1.

2.2. Some algebraic relations

From here until the end of this section we fix an integer n � 2. Consider the expression

∏
i1,i2

distinct

(αi1 − αi2) ·
∏

i1,i2,i3
distinct

(
αi1αi2 − α2

i3

)

·
∏

i1,...,i4
distinct

(αi1αi2 − αi3αi4) ·
∏

i1,...,i6
distinct

(αi1αi2αi3 − αi4αi5αi6), (2.10)

where the products are extended over all tuples of distinct indices in {1, . . . ,n}. (Note that some
of these products are empty for small n, but this will not cause any problems.) Clearly this is a
symmetric polynomial with integral coefficients in the variables α1, . . . ,αn . It can therefore be written
uniquely as a polynomial with integral coefficients in β1, . . . , βn , where

n∏
i=1

(T − αi) = T n + β1T n−1 + · · · + βn.

In particular, we can apply it to the coefficients of the characteristic polynomial det(T · Idn − γ ) of a
matrix γ ∈ GLn over any field L and obtain an algebraic morphism

f : GLn,L −→ A1
L . (2.11)

By construction, this morphism has the following property:

Lemma 2.12. For any algebraically closed field L and any matrix γ ∈ GLn(L) with eigenvalues α1, . . . ,αn ∈ L,
listed with their respective multiplicities, we have f (γ ) = 0 if and only if one of the following holds:

(a) There exist distinct indices i1, i2 such that αi1 = αi2 .
(b) There exist distinct indices i1, i2, i3 such that αi1αi2 = α2

i3
.

(c) There exist distinct indices i1, . . . , i4 such that αi1αi2 = αi3αi4 .
(d) There exist distinct indices i1, . . . , i6 such that αi1αi2αi3 = αi4αi5αi6 .

Lemma 2.13. For any field L and any integer N � 1, the morphism

GLn,L −→ A1
L, γ �→ f

(
γ N)

is not identically zero.

Proof. Let T ⊂ GLn,L be the subgroup of diagonal matrices. Then none of the factors in (2.10) is
identically zero on T ; hence f is not identically zero on T . Since the morphism T → T , γ �→ γ nN

is surjective, it follows that γ �→ f (γ nN ) is not identically zero on T , and hence not on GLn,L . This
implies the desired conclusion. �
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2.3. Linear algebraic groups

Theorem 2.14. Let n � 2, let L be an algebraically closed field, and let G be a connected semisimple linear
algebraic subgroup of SLn,L . Assume that the tautological representation of G on Ln is irreducible and the
morphism f from (2.11) does not vanish identically on G. Then G = SLn,L .

Proof. Let T be a maximal torus of G , let E = X∗(T )⊗R be the associated character space, let Φ ⊂ E
be the root system of G with respect to T , and let W denote the Weyl group of Φ . The assumption
n � 2 and the irreducibility implies that G and hence Φ is non-trivial.

Let S ⊂ E be the set of weights of T in the given representation on Ln . The fact that the represen-
tation is faithful implies that S generates E . Let λ ∈ S denote the highest weight of the representation,
and let W λ ⊂ S denote its orbit under W . Then S is contained in the convex closure of W λ; hence
W λ also generates E .

Next, since the conjugates of T form a Zariski dense subset of G , and f does not vanish identically
on G , it follows that f does not vanish identically on T . From this we conclude that

(a) none of the weights λ ∈ S has multiplicity > 1;
(b) there are no distinct elements λ1, λ2, λ3 ∈ S such that λ1 + λ2 = 2λ3;
(c) there are no distinct elements λ1, . . . , λ4 ∈ S such that λ1 + λ2 = λ3 + λ4;
(d) there are no distinct elements λ1, . . . , λ6 ∈ S such that λ1 + λ2 + λ3 = λ4 + λ5 + λ6;

because by Lemma 2.12 any one of these relations would imply that f |T = 0.
In particular, the assumptions of Theorem 2.1 are satisfied for Φ and the orbit W λ. It follows that

Φ is simple of type A
 for some 
 � 1 and that W λ = {cei | 0 � i � 
} in standard notation for some
constant c �= 0. Since W λ consists of weights, c is an integer. Let us use the standard ordering of A
 ,
where the simple roots are ei−1 − ei for all 1 � i � 
. The fact that λ is dominant then implies that
λ = ce0 with c > 0, or λ = ce
 with c < 0. These two cases correspond to dual representations which
are interchanged by the outer automorphism of A
; hence we may assume that λ = ce0 and c > 0.

Lemma 2.15. Suppose that L has characteristic p > 0. Then 0 < c � p − 1.

Proof. For any integer d � 0 let Vd denote the irreducible representation of SL
+1,L with highest
weight de0. We know already that there exists a central isogeny SL
+1,L � G , such that the pullback
of the given representation on Ln is isomorphic to V c . Write c = a + pb with integers 0 � a � p − 1
and b � 0. Then by Steinberg’s Tensor Product Theorem (cf. [Hum06, Theorem 2.7]) we have V c ∼=
Va ⊗ V (p)

b , where ( )(p) denotes the pullback under the absolute Frobenius morphism Frobp , which on
coordinates is given by x �→ xp .

If a = 0, it follows that the homomorphism SL
+1,L � G ⊂ SLn,L factors through Frobp , which is not
a central isogeny. We must therefore have a > 0. Suppose that b > 0. Then the aei for 0 � i � 
 are
distinct weights of Va , and the be j for 0 � j � 
 are distinct weights of Vb; hence the λi j := aei + pbe j

for 0 � i, j � 
 are distinct weights of V c . In other words, the λi j for 0 � i, j � 
 are distinct elements
of S . Since λ00 + λ11 = λ01 + λ10, this contradicts the property (c) above. We must therefore have
b = 0 and so 0 < c � p − 1, as desired. �
Lemma 2.16. For all 0 � i � c we have (c − i)e0 + ie1 ∈ S.

Proof. Consider the simple root α := e0 −e1, and let U±α ⊂ G denote the two root subgroups, isomor-
phic to Ga,L and normalized by T , corresponding to ±α. Let Hα ⊂ G denote the subgroup generated
by T and Uα and U−α , whose semisimple part has root system {±α} of type A1. For any weight μ
let Vμ ⊂ Ln denote the associated weight space, and recall that the highest weight is λ = ce0. Then
the subspace

⊕
i∈Z V ce0−iα is Hα-invariant and irreducible with highest weight ce0 by [Jan03, Part II,

Proposition 2.11].
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If L has characteristic 0, by classical results the representation of the Lie algebra of Hα on this
subspace is irreducible with highest weight ce0. If L has characteristic p > 0, we have 0 < c � p − 1
by Lemma 2.15, and so the same conclusion holds by [Pre87, Theorem 1]. From [Hum78, Proposi-
tion 21.3], it follows that the set of weights of this representation is saturated; in other words these
weights are ce0 − iα for all 0 � i � 2(ce0,α)/(α,α) = c. They therefore appear in S , as desired. �

In particular, Lemma 2.16 implies that S contains the elements

λ1 := ce0, λ3 := (c − 1)e0 + e1,

λ2 := ce1, λ4 := e0 + (c − 1)e1.

If c � 3, these elements are all distinct. If c = 2, we have λ3 = λ4, but λ1, λ2, λ3 are all distinct. Since
λ1 + λ2 = λ3 + λ4, we obtain a contradiction to the above property (c) if c � 3, respectively to (b) if
c = 2. We must therefore have c = 1.

But then G ∼= SL
+1,L and the given representation is isomorphic to the standard representation on
L
+1. Thus 
 + 1 = n and so G = SLn,L , as desired. This finishes the proof of Theorem 2.14. �
2.4. Finite groups of Lie type

In this subsection L denotes an algebraically closed field of characteristic p > 0.
Let G be a simply connected simple semisimple linear algebraic group over L. A surjective endo-

morphism F : G → G whose group of fixed points G F is finite is called a Frobenius map on G . For any
such F , any non-abelian finite simple group isomorphic to a Jordan–Hölder constituent of G F is called
a finite simple group of Lie type in characteristic p.

A few small finite simple groups of Lie type have idiosyncrasies that we avoid with the following
ad hoc definition. Denote the center of a group H by Z(H).

Definition 2.17. Let Γ be a finite simple group of Lie type in characteristic p. We call Γ regular if
there exist G and F as above such that

(a) Γ ∼= G F /Z(G F ),
(b) G F is perfect, and
(c) G F is the universal central covering of Γ as an abstract group.

Proposition 2.18. Up to isomorphism, there are only finitely many finite simple groups of Lie type, in any
characteristic, that are not regular.

Proof. Suppose that Γ is a non-abelian Jordan–Hölder constituent of G F . Since G is simply connected,
by [GLS98, Theorem 2.2.6 (f)], the group G F is generated by elements whose order is a power of p. We
can therefore apply [GLS98, Theorem 2.2.7] to G F . The first part of this theorem says that, with finitely
many exceptions up to isomorphism, G F /Z(G F ) is non-abelian simple. It is therefore isomorphic to
Γ . The second part says that, with the same exceptions as in the first part, the group G F is perfect.

As Γ is simple and hence perfect, by [GLS98, Theorem 5.1.2], it possesses a universal central cov-
ering Γ c � Γ which is unique up to isomorphism. Its kernel M(Γ ) is called the Schur multiplier of Γ .
By [GLS98, Theorem 6.1.4], after removing another finite number of exceptions up to isomorphism
(these are listed in Table 6.1.3), the Schur multiplier M(Γ ) is isomorphic to Z(G F ). Since G F is al-
ready perfect with G F /Z(G F ) ∼= Γ , this implies that G F is the universal central covering of Γ . Then
Γ is regular, and the proposition follows. �

The next result is a direct consequence of the stronger statements of [Hum06, Theorems 2.11
and 20.2].
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Proposition 2.19. Let G and F be as above, and let ρ : G F → SLn(L) be an irreducible representation on the
vector space Ln. Then ρ is the restriction to G F of an irreducible algebraic representation ρG : G → SLn,L .

Now we can state our analogues of Theorem 2.14.

Theorem 2.20. Let n � 2, and let Γ be a finite subgroup of SLn(L) that acts irreducibly on Ln. Assume that Γ

is perfect and that Γ/Z(Γ ) is a direct product of finite simple groups of Lie type in characteristic p that are
regular in the sense of Definition 2.17. Assume moreover that the map Γ → L, γ �→ f (γ ) is not identically
zero. Then there exist a finite subfield k′ of L and a model G ′ of SLn,L over k′ such that Γ = G ′(k′).

Proof. Let Γ 1, . . . ,Γ m denote the simple factors of Γ/Z(Γ ) and Γ1, . . . ,Γm their inverse images in Γ .
Then the natural homomorphism Γ1 ×· · ·×Γm � Γ is a central extension. By [Gor68, Theorem 3.7.1],
the pullback of the given irreducible representation on Ln is the exterior tensor product of irreducible
representations Γi → GLni (L) for certain ni � 1. In fact every ni � 2, because the corresponding pro-
jective representation of Γ 1 × · · · × Γ m is faithful.

For each 1 � i � m choose a simply connected simple semisimple linear algebraic group Gi over L,
a Frobenius map Fi : Gi → Gi , and an isomorphism G Fi

i /Z(G Fi
i ) ∼= Γ i , such that G Fi

i is perfect and
the universal central covering of Γ i . By the last property the isomorphism lifts to a homomorphism
G Fi

i → Γi . By Proposition 2.19 the composite homomorphism G Fi
i → Γi → GLni (L) is the restriction of

some irreducible algebraic representation ρi : Gi → GLni ,L . Since Gi is simple and ni � 2, the kernel of
this homomorphism is finite.

Set G := G1 × · · · × Gm . Then the exterior tensor product of the above ρi defines an irreducible
algebraic representation ρ : G → GLn,L . By construction its kernel is finite; in other words it induces an
isogeny G � ρ(G). Moreover, with the Frobenius map F := F1 × · · · × Fm on G the homomorphism ρ
induces a homomorphism G F → Γ lifting the given isomorphism

G F /Z
(
G F ) =

m∏
i=1

G Fi
i /Z

(
G Fi

i

) ∼=
m∏

i=1

Γ i
∼= Γ/Z(Γ ).

As Γ is perfect, it follows that G F → Γ is surjective.
Since G is a connected semisimple algebraic group, so is its image ρ(G), which is therefore con-

tained in SLn,L . Moreover, the tautological representation of ρ(G) on Ln is again irreducible. Further-
more, since by assumption the morphism f does not vanish identically on the subgroup Γ ⊂ ρ(G), it
does not vanish identically on ρ(G). By Theorem 2.14 we therefore have ρ(G) = SLn,L .

In particular ρ(G) is simple of type An−1, and so G itself is simple of type An−1. As G is simply
connected, it is therefore isomorphic to SLn,L . Consider the resulting isogeny ρ : SLn,L ∼= G � ρ(G) =
SLn,L . Its scheme-theoretic kernel is contained in the scheme-theoretic kernel of ρ ◦ F ; hence there
exists an isogeny F ′ : SLn,L → SLn,L satisfying F ′ ◦ρ = ρ ◦ F . On the other hand ρ is bijective; hence it
induces an isomorphism from G F to SLF ′

n,L . Together it follows that Γ = SLF ′
n,L .

Finally, by known classification results such as [Car87, Proposition 4.5], the Frobenius map F ′ is
standard. This means that there is a finite subfield k′ ⊂ L and a model G ′ of SLn,L over k′ such that
SLF ′

n,L = G ′(k′). Thus Theorem 2.20 is proved. �
For the next theorem let c denote the least common multiple of the orders of all finite simple

groups of Lie type that are not regular in the sense of Definition 2.17, which is finite by Proposi-
tion 2.18. Let Γ der denote the derived group of Γ .

Theorem 2.21. Let n � 2, and let Γ be a finite subgroup of GLn(L) that acts irreducibly on Ln. Assume that
Γ/Z(Γ ) is a direct product of finite simple groups of Lie type in characteristic p. Assume moreover that the
map Γ → L, γ �→ f (γ c) is not identically zero. Then there exist a finite subfield k′ of L and a model G ′ of SLn,L

over k′ such that Γ der = G ′(k′).
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Proof. Let Γ i and Γi → GLni (L) be as in the proof of Theorem 2.20. Suppose that some factor of
Γ/Z(Γ ), say Γ 1, is not regular. Then for every γ ∈ Γ , the definition of c implies that γ c ∈ Γ2 · · ·Γm .
Each eigenvalue of γ c then has multiplicity � n1 � 2; hence f (γ c) = 0 by Lemma 2.12 (a). This
contradicts the given assumptions, and so each Γ i is in fact regular.

The assumptions also imply that Γ der is perfect and that Γ = Γ der · Z(Γ ). Write any γ ∈ Γ in
the form γ = γ ′ζ with γ ′ ∈ Γ der and a scalar ζ ∈ Z(Γ ). By construction f (α) is homogeneous of
some degree d in the coefficients of α; thus we have f (γ c) = f (γ ′ cζ c) = f (γ ′ c) · ζ cd . Since this is
not identically zero and γ ′ c ∈ Γ der, it follows that f is not identically zero on Γ der.

Together this shows that Γ der satisfies the assumptions of Theorem 2.20, and so the desired asser-
tion follows. �

The following auxiliary results will help to determine the subfield k′ and the model G ′ arising in
Theorems 2.20 and 2.21:

Proposition 2.22. Let n � 2, and let G, G ′ be models of SLn,L over finite subfields k,k′ ⊂ L, respectively.
If G ′(k′) ⊂ G(k), then |k′| � |k|.

Proof. Let q := |k|, and set ε := 1 if G is split and ε := −1 otherwise. Likewise, let q′ := |k′|, and set
ε′ := 1 if G ′ is split and ε′ := −1 otherwise. Then [Hum06, Table 1.6.1] implies that

(
q′) n(n−1)

2

n∏
i=2

(
q′ i − ε′ i) = ∣∣G ′(k′)∣∣ �

∣∣G(k)
∣∣ = q

n(n−1)
2

n∏
i=2

(
qi − εi).

Suppose that q′ > q. Since both numbers are powers of the same prime p, it follows that q′ � pq � 2q.
For each 2 � i � n we then have q′ i − ε′ i � 4qi − 1 > qi − εi , and so the left hand side of the above
inequality is in fact greater than the right hand side, which is impossible. Therefore q′ � q, as de-
sired. �
Proposition 2.23. Let n � 2, and let G, G ′ be models of SLn,L over the same finite subfield k ⊂ L. If G ′(k) ⊂
G(k), then the models are equal and G ′(k) = G(k).

Proof. Let F , F ′ : SLn,L → SLn,L be the Frobenius maps corresponding to the models G, G ′ , respectively.
Since they belong to the same finite field, there exists an automorphism α of SLn,L such that F =
α ◦ F ′ . Then for any g′ ∈ G ′(k) we have g′ ∈ G(k) and hence g′ = F (g′) = α(F ′(g′)) = α(g′). In other
words α is the identity on G ′(k).

Suppose first that α is an inner automorphism. Then it is conjugation by some element of SLn(L).
This element commutes with G ′(k), and since the standard representation of G ′(k) is irreducible by
Proposition 2.19, it must be a scalar. Then α is the identity, and so F = F ′ and G = G ′ , as desired.

If α is not an inner automorphism, we must have n � 3. Let psln(L) denote the image of the nat-
ural homomorphism of Lie algebras sln(L) → pgln(L), and let ρ denote the representation on psln(L)

induced by the adjoint representation of SLn,L . Since n � 3, we know that ρ factors through a faithful
irreducible representation of PGLn,L . Moreover, by Proposition 2.19 it remains irreducible when re-
stricted to G ′(k). On the other hand α induces an automorphism α of psln(L) that commutes with
ρ(G ′(k)). Thus α is multiplication by a scalar, and therefore it commutes with the algebraic represen-
tation ρ . It follows that α induces the identity on PGLn,L . But then it is really an inner automorphism,
contrary to the assumption. �
Proposition 2.24. The subfield k′ and the model G ′ in Theorems 2.20 and 2.21 are unique.

Proof. Let k be another finite subfield of L, and let G be a model of SLn,L over k, such that Γ = G(k).
Then applying Proposition 2.22 in both ways shows that |k′| = |k|. Thus k′ = k, and then Proposi-
tion 2.23 shows that G ′ = G , as desired. �
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2.5. Arbitrary finite groups

The following general result was established by Larsen and the second author in [LP11, Theo-
rem 0.2]:

Theorem 2.25. For any integer n � 1 there exists a constant cn, such that for every field L, of arbitrary char-
acteristic p � 0, and every finite subgroup Γ ⊂ GLn(L), there exist normal subgroups Γ3 ⊂ Γ2 ⊂ Γ1 of Γ

satisfying:

(a) [Γ : Γ1] � cn,
(b) either Γ1 = Γ2 , or p > 0 and Γ1/Γ2 is a direct product of finite simple groups of Lie type in characteris-

tic p,
(c) Γ2/Γ3 is abelian of order not divisible by p, and
(d) either Γ3 = {1}, or p > 0 and Γ3 is a p-group.

We are interested in the following special case:

Theorem 2.26. For any integer n � 1 there exists a constant c′
n, such that for every algebraically closed field L,

of arbitrary characteristic p � 0, and every finite subgroup Γ ⊂ GLn(L) acting irreducibly, there exists a normal
subgroup Γ ′ � Γ satisfying:

(a) [Γ : Γ ′] � c′
n, and

(b) either Γ ′ = Z(Γ ′), or p > 0 and Γ ′/Z(Γ ′) is a direct product of finite simple groups of Lie type in char-
acteristic p.

Proof. Let Γ3 ⊂ Γ2 ⊂ Γ1 ⊂ Γ be the subgroups furnished by Theorem 2.25. First we show that Γ3
is trivial. By assumption, this is a unipotent normal subgroup of Γ . Set V := Ln . Then the subspace
of invariants V Γ3 is non-zero and stabilized by Γ . Since V is an irreducible representation of Γ , it
follows that V Γ3 = V . This means that Γ3 = {1}, as desired.

The triviality of Γ3 implies that Γ2 is an abelian group of order not divisible by p. Let V =
V 1 ⊕ · · · ⊕ Vm be the isotypic decomposition under Γ2, with all summands non-zero. The number
of summands then satisfies m � n. Since Γ2 is normal in Γ , the summands are permuted by Γ ,
and so the permutation action corresponds to a homomorphism f from Γ to the symmetric group
Sm on m letters. Set Γ ′ := Γ1 ∩ ker( f ). By construction this is a normal subgroup of index [Γ : Γ ′]
� [Γ : Γ1] · |Sm| � cn · n! =: c′

n , where cn is the constant from Theorem 2.25.
On the other hand, the fact that Γ2 acts by scalars on each V i and Γ ′ stabilizes each V i im-

plies that Γ2 is contained in the center of Γ ′ . Moreover Γ ′/Γ2 is the kernel of a homomorphism
Γ1/Γ2 → Sm induced by f . Since Γ1/Γ2 is a direct product of non-abelian finite simple groups, this
kernel is simply a direct product of some of the factors. Thus either Γ ′ = Γ1 = Γ2, or p > 0 and
Γ ′/Γ2 is a direct product of finite simple groups of Lie type in characteristic p. The last statement
also implies that the inclusion Γ2 ⊂ Z(Γ ′) must be an equality, and everything is proved. �
3. Subgroups of SLn over a complete valuation ring

Let R be a complete discrete valuation ring of equal characteristic with finite residue field k = R/p

of characteristic p. Fix an integer n � 2. In this section we consider closed subgroups of SLn(R) for
the topology induced by R and establish suitable conditions for such a closed subgroup to be equal
to SLn(R). We use successive approximation over the congruence filtration of SLn(R), respectively of
GLn(R), whose subquotients are related to the adjoint representation. The case p = n = 2 presents
some special subtleties here, because the Lie bracket on sl2 in characteristic 2 is not surjective. In
Subsection 3.4 we show how a certain non-triviality condition required earlier can be guaranteed
using traces in the adjoint representation. The main results are Theorems 3.6, 3.7, 3.16, and 3.17.
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3.1. Adjoint representation

We first collect a few general results on the cohomology and subgroups of the adjoint represen-
tation. Let gln , sln , pgln denote the Lie algebras of GLn , SLn , PGLn , respectively. As usual we identify
elements of gln with n×n-matrices. Let c denote the subspace of scalar matrices in gln . For any field k
let psln(k) denote the image of the natural homomorphism sln(k) → pgln(k).

Proposition 3.1. For any finite field k with |k| > 9 and any subgroup H of GLn(k) that contains SLn(k), we have

H1(H,pgln(k)
) = 0.

Proof. Consider the short exact sequence

0 −→ c(k) −→ gln(k) −→ pgln(k) −→ 0.

Its associated long exact cohomology sequence contains the portion

H1(SLn(k),gln(k)
) −→ H1(SLn(k),pgln(k)

) −→ H2(SLn(k), c(k)
)
.

Here the group on the left is trivial by [TZ70, Theorem 9]. The group on the right classifies central
extensions of SLn(k) by c(k); but since SLn(k) has no central extensions by [Ste81, Theorem 1.1], if
|k| > 9, this group is also trivial. Thus the group in the middle is trivial. Finally, since [H : SLn(k)]
divides [GLn(k) : SLn(k)] = |k| − 1, it is prime to the characteristic of k. By [CPS75, Proposition 2.3 (g)],
the restriction map

H1(H,pgln(k)
) −→ H1(SLn(k),pgln(k)

)
is therefore injective. Thus H1(H,pgln(k)) is trivial, as desired. �

The next proposition is an adaptation of [PR09a, Proposition 2.1].

Proposition 3.2. Let n � 2 and k be a finite field with |k| > 9. Let H be an additive subgroup of gln(k) that is
invariant under conjugation by SLn(k). Then either H ⊂ c(k) or sln(k) ⊂ H.

Proof. Let W0 ⊂ gln(k) denote the subgroup of diagonal matrices. For each pair of distinct indices
1 � i, j � n, let W i, j ⊂ gln(k) denote the group of matrices with all entries zero except, possibly, in
the position (i, j). Then we have the decomposition

gln(k) = W0 ⊕
⊕
i �= j

W i, j .

This decomposition is invariant under conjugation by the group of diagonal matrices T (k) ⊂ GLn(k).
Indeed, an element t = diag(t1, . . . , tn) ∈ T (k) acts trivially on W0 and by multiplication with
χi, j(t) := ti/t j on W i, j . Set T ′(k) := T (k) ∩ SLn(k), and let Fp denote the prime field of k.

Lemma 3.3. The W i, j are non-trivial and irreducible viewed as representations of T ′(k) over Fp . If |k| > 9, they
are pairwise non-isomorphic. Furthermore, they are permuted transitively under conjugation by the normalizer
of T ′(k) in SLn(k).
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Proof. The last assertion follows from the fact that the W i, j are permuted transitively by the permu-
tation matrices and that every permutation matrix can be moved into SLn(k) by changing the sign of
at most one entry.

For the first assertion it thus suffices to consider W1,2. The calculation χ1,2(diag(x, x−1,1, . . . ,1))

= x2 shows that (k×)2 ⊂ χ1,2(T ′(k)) ⊂ k× . Since every element of a finite field k can be written as a
sum of two squares, this subgroup generates k as an Fp-algebra. As W1,2 is a one-dimensional vector
space over k, it is therefore irreducible as a representation of T ′(k) over Fp . Since (k×)2 �= {1} by
assumption, this representation is non-trivial.

For the remaining assertion suppose that two distinct W i, j and W i′, j′ are isomorphic as repre-

sentations of T ′(k) over Fp . This means that χi, j|T ′(k) = χ
pm

i′, j′ |T ′(k) for some m � 0. Without loss
of generality we may assume that (i′, j′) = (1,2). Suppose first that (i, j) = (2,1). Then by applying
the equation to elements of the form diag(x, x−1,1, . . . ,1) we find that x−2 = x2pm

for all x ∈ k× .
By an explicit calculation that we leave to the reader, this is not possible if |k| > 9 (and this bound
cannot be improved if n = 2!). If i, j > 2, the element diag(x, x−1,1, . . . ,1) acts as multiplication by
x2 on W1,2 and trivially on W i, j . Since (k×)2 �= {1} by assumption, again the representations cannot
be isomorphic. If precisely one of i, j is � 2, we may assume that the other is 3. Then the element
diag(x, x, x−2,1, . . . ,1) acts trivially on W1,2 and as multiplication by x±3 on W i, j . Since (k×)3 �= {1}
by assumption, we again obtain a contradiction. �

Now let H be as in the proposition. Suppose first that H ⊂ W0. Consider an arbitrary element h =
diag(h1, . . . ,hn) ∈ H . Take distinct indices 1 � i, j � n and let g ∈ SLn(k) be the matrix with entries 1
on the diagonal and in the position (i, j), and entries 0 elsewhere. Then ghg−1 − h is the matrix with
entry hi − h j in the position (i, j) and entries 0 elsewhere. Since H ⊂ W0, it follows that hi = h j .
Varying i and j we deduce that h is a scalar matrix, i.e., that H ⊂ c(k).

If H �⊂ W0, Lemma 3.3 implies that H contains at least one, and hence all W i, j . Consider the trace
form

gln(k) × gln(k) −→ Fp, (X, Y ) �→ Trk/Fp Tr(XY ),

which is a perfect Fp -bilinear pairing invariant under SLn(k). Then H contains the orthogonal com-
plement W ⊥

0 of W0, and since taking orthogonal complements reverses inclusion relations, the or-
thogonal complement H⊥ of H is contained in W0. By construction H⊥ is again an SLn(k)-invariant
subgroup; hence the preceding arguments show that H⊥ ⊂ c(k). Therefore sln(k) = c(k)⊥ ⊂ H , as de-
sired. �
Corollary 3.4. Let n � 2 and k be a finite field with |k| > 9. Let H be a non-zero additive subgroup of pgln(k)

that is invariant under conjugation by SLn(k). Then H contains psln(k).

Proof. Apply Proposition 3.2 to the inverse image H̃ ⊂ gln(k) of H . Since H is non-trivial, we have
H̃ �⊂ c(k) and hence sln(k) ⊂ H̃ . Therefore psln(k) ⊂ H , as desired. �
3.2. Successive approximation

The congruence filtration of GLn(R) consists of the subgroups

Gi := {
g ∈ GLn(R)

∣∣ g ≡ Idn mod pi}
for all i � 0. Their successive subquotients possess natural isomorphisms

G[i] := Gi/Gi+1 ∼=
{

GLn(k) if i = 0,

gln(p
i/pi+1) if i > 0,
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where the second isomorphism is given by [Idn + X] �→ [X]. For any subgroup H of GLn(R) we define
Hi := H ∩ Gi and H [i] := Hi/Hi+1 and identify the latter with a subgroup of GLn(k) or gln(pi/pi+1),
respectively. For example, the induced congruence filtration of G ′ := SLn(R) has the successive sub-
quotients

G ′ [i] ∼=
{

SLn(k) if i = 0,

sln(p
i/pi+1) if i > 0.

As a preparation we show:

Lemma 3.5. Assume that |k| > 9. Let H be a subgroup of GLn(R), and let H ′ be a normal subgroup of H that
is contained in SLn(R). Assume that SLn(k) ⊂ H ′ [0] and that H [1] contains a non-scalar matrix. Then we have
H ′ [1] = sln(p/p2).

Proof. Pick a non-scalar matrix X ∈ H [1] ⊂ gln(p/p2). Since p/p2 ∼= k, Proposition 3.2 implies that
the k-vector subspace generated by all SLn(k)-conjugates of X contains sln(p/p2). Thus there exists
γ ∈ SLn(k) such that X and γ Xγ −1 and Idn are k-linearly independent. Choose elements h ∈ H1 and
h′ ∈ H ′ that are mapped to X and γ , respectively, i.e., that satisfy h ≡ Idn +X mod p2 and h′ ≡ γ
mod p. Then the commutator h′hh′−1h−1 lies in H ′ and is congruent to Idn +γ Xγ −1 − X mod p2. By
construction γ Xγ −1 − X mod p2 is not scalar; hence H ′ [1] ⊂ sln(p/p2) contains a non-scalar matrix.

On the other hand the isomorphism G[1] ∼−→ gln(p/p2), [Idn+X] �→ [X] is equivariant under con-
jugation by GLn(R). This conjugation action factors through an action of GLn(k). In the present
situation it follows that H ′ [1] ⊂ sln(p/p2) is an additive subgroup that is invariant under conjugation
by SLn(k) ⊂ H ′ [0] . Since by assumption it also contains a non-scalar matrix, Proposition 3.2 implies
that H ′ [1] = sln(p/p2), as desired. �
Theorem 3.6. Assume that |k| > 9. Let H be a closed subgroup of SLn(R) such that H [0] = SLn(k) and that
H [1] contains a non-scalar matrix. Then H = SLn(R).

Before proving this we derive two consequences. For a closed subgroup H of GLn(R) we let Hder

denote the closure of the derived group of H for the topology induced by R . (Probably the derived
group is already closed, but we neither need nor want to worry about that.)

Theorem 3.7. Assume that |k| > 9. Let H be a closed subgroup of GLn(R) such that SLn(k) ⊂ H [0] and that
H [1] contains a non-scalar matrix. Then Hder = SLn(R).

Proof. Since |k| > 3, the group SLn(k) is perfect, and so the assumption SLn(k) ⊂ H [0] implies that
(Hder)[0] = SLn(k). Since H [1] contains a non-scalar matrix, applying Lemma 3.5 with H ′ = Hder thus
shows that (Hder)[1] = sln(p/p2); in particular it contains a non-scalar matrix. The desired assertion
results by applying Theorem 3.6 to Hder. �
Proposition 3.8. Assume that |k| > 9. Then every closed normal subgroup H ⊂ SLn(R) satisfying H [0] =
SLn(k) is equal to SLn(R).

Proof. Applying Lemma 3.5 with (H,SLn(R)) in place of (H ′, H) shows that H [1] contains a non-scalar
matrix. The desired assertion now follows directly from Theorem 3.6. �
Proof of Theorem 3.6. The proof of this will extend to the end of the next subsection. Let H sat-
isfy the assumptions of Theorem 3.6. Since H is a closed subgroup of SLn(R), the desired assertion
is equivalent to H [i] = SLn(R)[i] for all i � 0. By assumption this holds already for i = 0. Applying
Lemma 3.5 with H ′ = H implies:
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Lemma 3.9. We have H [1] = sln(p/p2).

Lemma 3.10. If (p,n) �= (2,2), then H [i] = sln(pi/pi+1) for all i � 1.

Proof. We use induction on i, the case i = 1 being covered by Lemma 3.9. So suppose that the
assertion holds for some i � 1. Consider the commutator map (g, g′) �→ gg′g−1 g′−1 on GLn(R). Direct
calculation shows that it induces a map G1 × Gi → Gi+1 and hence a map G[1] × G[i] → G[i+1] , which
under the above isomorphisms corresponds to the Lie bracket

[ , ]: sln
(
p/p2) × sln

(
pi/pi+1) −→ sln

(
pi+1/pi+2),

(X, Y ) �→ XY − Y X .

Since (p,n) �= (2,2), the image of this pairing generates sln(pi+1/pi+2) as an additive group, for in-
stance by [Pin00, Proposition 1.2 (a)].

On the other hand, by construction the pairing sends the subset H [1] × H [i] to the subgroup H [i+1] .
The equality in the source thus implies equality in the target, and so the assertion holds for i + 1, as
desired. �

This proves Theorem 3.6 in the case (p,n) �= (2,2). The remaining case is more complicated, be-
cause the image of the Lie bracket on sl2 in characteristic 2 does not generate sl2. We deal with this
in the next subsection.

3.3. Successive approximation in the case p = n = 2

Keeping the assumptions of Theorem 3.6, we now consider the case p = n = 2.
Let Gi for all i � 0 denote the subgroups in the congruence filtration of PGL2(R). Thus Gi consists

of all elements of PGL2(R) whose images in the adjoint representation are congruent to the identity
modulo pi . Their successive subquotients possess natural isomorphisms

G[i] := Gi/Gi+1 ∼=
{

PGL2(k) if i = 0,

pgl2(p
i/pi+1) if i > 0.

We will compare the congruence filtration of G with that of G ′ := SLn(R). Let π denote the projection
SL2 → PGL2. For i > 0 the induced map G ′ [i] → G[i] corresponds to the derivative dπ : sl2(pi/pi+1) →
pgl2(p

i/pi+1). Let psl2(p
i/pi+1) denote its image. Being in characteristic 2, we have short exact se-

quences

0 c(pi/pi+1) sl2(p
i/pi+1) psl2(p

i/pi+1) 0,

0 psl2(p
i/pi+1) pgl2(p

i/pi+1)
(∗)

c∗(pi/pi+1) 0,

where c(pi/pi+1) ∼= c∗(pi/pi+1) ∼= pi/pi+1 and the homomorphism (∗) is induced by the trace on gl2.
The first few layers of SL2(R) and PGL2(R) are related as follows. Since k has characteristic 2, the

homomorphism SL2(k) → PGL2(k) is an isomorphism of abstract groups. Therefore π−1(G1) = G ′ 1.
Next consider the subgroup G ′ 2− := π−1(G2) ⊂ SL2(R). What we have just said implies that G ′ 2 ⊂
G ′ 2− ⊂ G ′ 1. By construction π induces a natural homomorphism G ′ 2−/G ′ 3 → G[2] .
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Lemma 3.11. There is an isomorphism c(p/p2)
∼−→ c∗(p2/p3) such that the following diagram commutes:

0 G ′2/G ′3

�
G ′2−/G ′3

[π ]

G ′2−/G ′2

�
0

sl2(p
2/p3)

dπ

c(p/p2)

∼=G[2]

�

0 psl2(p
2/p3) pgl2(p

2/p3) c∗(p2/p3) 0.

Proof. The commutativity on the left hand side is already clear. Let � ∈ p be a uniformizer. An easy
calculation shows that G ′ 2− consists of the matrices

g =
(

1 + � x 0

0 (1 + � x)−1

)
· g2

for all x ∈ R and g2 ∈ SL2(R) which satisfy g2 ≡ Id2 mod p2. The residue class of g in c(p/p2) ∼= p/p2

is then � x mod p2. On the other hand π(g) ∈ PGL2(R) is also the image of the matrix

g̃ := (1 + � x) · g =
(

1 + � 2x2 0

0 1

)
· g2 ∈ GL2(R).

Since g̃ ≡ Id2 mod p2, its image in c∗(p2/p3) ∼= p2/p3 is simply Tr(g̃ − Id2). But the assumptions
g2 ∈ SL2(R) and g2 ≡ Id2 mod p2 imply that Tr(g2 − Id2) ∈ p3, and so an easy calculation shows that

Tr(g̃ − Id2) ≡ � 2x2 + Tr(g2 − Id2) ≡ � 2x2 mod p3.

Thus the diagram in question commutes with the map

c
(
p/p2) −→ c∗

(
p2/p3), (

� x mod p2) �→ (
� 2x2 mod p3).

Up to multiplication by � , respectively � 2, this is simply the Frobenius map x �→ x2 on the finite
field k. It is therefore an isomorphism, as desired. �

Now let H denote the image of H in PGL2(R). Define Hi := H ∩ Gi and H [i] := Hi/Hi+1 and iden-
tify the latter with a subgroup of PGL2(k) or pgl2(p

i/pi+1), respectively. The projection π : SL2(R) �
PGL2(R) induces homomorphisms Hi → Hi and H [i] → H [i] . Consider the subgroup H2− := H ∩ G ′ 2− .
Then by construction the natural homomorphisms H2− → H2 → H [2] are surjective.

Lemma 3.12. We have H [2] = pgl2(p
2/p3).

Proof. By construction H2− can be described equivalently as the inverse image of c(p/p2) ⊂ sl2(p/p
2)

in H1. Thus Lemma 3.9 implies that H2− surjects to c(p/p2). Thus Lemma 3.11 implies that H [2]
surjects to c∗(p2/p3). In particular H [2] is non-zero.

Furthermore, since the embedding H [2] ↪→ pgl2(p
2/p3) is equivariant under conjugation by H ,

its image is invariant under conjugation by H [0] = SL2(k). Thus Corollary 3.4 implies that
psl2(p

2/p3) ⊂ H [2] . Combined with the surjection H [2] � c∗(p2/p3) this implies the desired equal-
ity. �
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Lemma 3.13. We have H [2] = sl2(p
2/p3).

Proof. Lemma 3.12 says that H2− surjects to pgl2(p
2/p3). Combined with Lemma 3.11 this implies

that H2 surjects to psl2(p
2/p3). In particular H [2] contains a non-scalar matrix. Being invariant under

H [0] = SL2(k) and contained in sl2(p
2/p3), by Proposition 3.2 it is therefore equal to sl2(p

2/p3). �
Lemma 3.14. We have H [i] = sl2(p

i/pi+1) for all i � 1.

Proof. By Lemmas 3.9 and 3.13 we already know this assertion for i = 1,2. Suppose that the assertion
holds for some i � 1. The commutator map (g, g′) �→ gg′g−1 g′−1 on GL2(R) induces a map PGL2(R)×
SL2(R) → SL2(R). Direct calculation shows that this in turn induces a map G2 × G ′ i → (G ′)i+2 and
hence a map G[2] × G ′ [i] → G ′ [i+2] , which under the given isomorphisms is obtained from the Lie
bracket by

[ , ]: pgl2
(
p2/p3) × sl2

(
pi/pi+1) −→ sl2

(
pi+2/pi+3),(

(X mod c), Y
) �→ XY − Y X .

Another direct calculation, or looking up [Pin00, Proposition 1.2 (b)], shows that the image of this
pairing generates sl2(p

i+2/pi+3) as an additive group.
On the other hand, by construction the pairing sends the subset H [2] × H [i] to the subgroup H [i+2] .

Since H [2] = pgl2(p
2/p3) by Lemma 3.12, the equality in the source thus implies equality in the target,

and so the assertion holds for i + 2. By separate induction over all even, resp. odd integers, the
assertion follows for all i � 1. �

Lemma 3.14 finishes the proof of Theorem 3.6 in the remaining case p = n = 2. �
3.4. Trace criteria

In this subsection we show how the assumption in Theorem 3.7 that H [1] contain a non-scalar
matrix can be guaranteed using traces in the adjoint representation.

We keep the notations of Subsection 3.2, assume that |k| > 9, and consider a closed subgroup H of
GLn(R), such that SLn(k) ⊂ H [0] . In other words, the remaining assumptions in Theorem 3.7 are met.

Recall that R is a complete valuation ring of equal characteristic. Thus the projection R � k pos-
sesses a unique splitting k ↪→ R . Via this splitting we can view GLn(k) as a subgroup of GLn(R). Let
G2− denote the group of all matrices g ∈ GLn(R) that are congruent to the identity modulo p and
congruent to a scalar modulo p2. Then G2 ⊂ G2− ⊂ G1, and G2−/G2 ∼= c(p/p2).

Lemma 3.15. If H [1] contains only scalar matrices, then up to conjugation by an element of GLn(R) we have
H ⊂ GLn(k) · G2− .

Proof. Consider the commutative diagram with exact rows

0 pgln(p/p
2)

1+( )

�
GLn(R/p2)/(1 + c(p/p2))

�
GLn(k)

�
1

1 G1/G2− G0/G2− G[0] 1

1 (H ∩ G1)/(H ∩ G2−) H/(H ∩ G2−) H [0] 1.
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The assumption H [1] ⊂ c(p/p2) means that H1 = H ∩ G1 ⊂ G2− . Thus the group on the lower left is
trivial, and so the group in the lower middle defines a splitting H [0] → G0/G2− . We compare this
splitting with the splitting induced by the inclusions H [0] ⊂ GLn(k) ⊂ GLn(R). These two splittings
differ by a 1-cocycle H [0] → pgln(p/p2). But since SLn(k) ⊂ H [0] ⊂ GLn(k), Proposition 3.1 shows that
this cocycle is a coboundary. This means that the splittings are conjugate by an element coming from
pgln(p/p2), and the lemma follows. �

Let Ad denote the adjoint representation of GLn , and let Tr Ad(H) denote the subset {Tr Ad(h) |
h ∈ H} ⊂ R . Recall that Hder denotes the closure of the derived group of H .

Theorem 3.16. Assume that |k| > 9. Let H be a closed subgroup of GLn(R) such that SLn(k) ⊂ H [0] and
Tr Ad(H) topologically generates the ring R. Then Hder = SLn(R).

Proof. By Theorem 3.7 it suffices to show that H [1] contains a non-scalar matrix. If that is not the
case, by Lemma 3.15 we may assume that H ⊂ GLn(k) · G2− . Consider any element h ∈ H . Then by
the definition of G2− , its image Ad(h) is the product of an element of PGLn(k) with a matrix that is
congruent to the identity modulo p2. Its trace is therefore congruent to an element of k modulo p2;
in other words we have Tr Ad(h) ∈ k + p2. This contradicts the assumption on Tr Ad(H). �

If p = n = 2, the assumption on traces in Theorem 3.16 may fail in interesting cases (compare
Proposition 4.30), although the conclusion is satisfied. This is due to the fact that the representation
of GL2 on psl2 in characteristic 2 is isomorphic to the pullback under Frob2 of the standard represen-
tation twisted with the inverse of the determinant, which implies that Tr Ad(g) = Tr(g)2 ·det(g)−1 +2
for every g ∈ GL2(R). Thus if det(H) consists of squares, which happens in particular for H = SL2(R),
the subset Tr Ad(H) is entirely contained in the subring R2 := {x2 | x ∈ R}. The following result pro-
vides a suitable substitute in that case:

Theorem 3.17. Assume that |k| > 9 and p = 2. Let H be a closed subgroup of GL2(R) such that SL2(k) ⊂ H [0] .
Let H ′ ⊂ H denote the intersection of all closed subgroups of index 2, and assume that Tr Ad(H ′) topologically
generates the subring R2 := {x2 | x ∈ R}. Then Hder = SL2(R).

Proof. Again by Theorem 3.7 it suffices to show that H [1] contains a non-scalar matrix. If that is not
the case, by Lemma 3.15 we may assume that H ⊂ GLn(k) · G2− . Let � ∈ p be a uniformizer. Then
every element of H can be written in the form h = γ · g2 · (1 +� x) with γ ∈ GL2(k) and g2 ∈ G2 and
x ∈ R .

Lemma 3.18. There exists a homomorphism f : H → p2/p3 satisfying f (h) = Tr(g2 − Id2) mod p3 for any
element h = γ · g2 · (1 + � x) of the above form.

Proof. Consider another element h′ = γ ′ · g′
2 · (1 +� x′) ∈ H with γ ′ ∈ GL2(k) and g′

2 ∈ G2 and x′ ∈ R .
To show that f is well defined, we must prove that Tr(g′

2 − Id2) ≡ Tr(g2 − Id2) mod p3 whenever
h′ = h. But h′ = h implies that γ ′ = γ and hence g′

2 = g2 · (1 + � y) for some y ∈ R . Therefore
Tr(g′

2 − Id2) = Tr(g2 − Id2) + Tr(g2) · � y. Since g2 is congruent to the identity matrix modulo p2, its
trace is congruent to 2 mod p2, i.e., congruent to 0 mod p2. Thus Tr(g2) · � y ∈ p3, and so the map is
well defined.

To show that f is a homomorphism, observe that

h′h = γ ′ · g′
2 · (1 + � x′) · γ · g2 · (1 + � x)

= (
γ ′γ

) · (γ −1 g′
2γ · g2

) · (1 + � x′) · (1 + � x)

with γ ′γ ∈ GL2(k) and γ −1 g′
2γ · g2 ∈ G2 and (1 + � x′) · (1 + � x) = (1 + � y) for some y ∈ R . Thus

f (h′h) = Tr(γ −1 g′
2γ · g2 − Id2) mod p3. Write this trace in the form

Tr
((

γ −1 g′
2γ − Id2

)
(g2 − Id2)

) + Tr
(
γ −1 g′

2γ − Id2
) + Tr(g2 − Id2).
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Here the first summand lies in p4, because γ −1 g′
2γ − Id2 ≡ g2 − Id2 ≡ 0 modulo p2, and the second

summand is equal to Tr(g′
2 − Id2), because the trace is invariant under conjugation. Therefore

Tr
(
γ −1 g′

2γ · g2 − Id2
) ≡ Tr

(
g′

2 − Id2
) + Tr(g2 − Id2) mod p3,

and so f (h′h) = f (h′) + f (h), as desired. �
Since p2/p3 is an elementary abelian 2-group, Lemma 3.18 implies that the restriction of f to the

subgroup H ′ is trivial. In other words, for every element h = γ · g2 · (1 + � x) ∈ H ′ with γ ∈ GL2(k)

and g2 ∈ G2 and x ∈ R we have Tr(g2 − Id2) ∈ p3. But for any such element we have

Tr Ad(h) = Tr Ad(γ g2) = Tr(γ g2)
2 · det(γ g2)

−1 + 2

= Tr(γ g2)
2 · det(γ )−1 · det(g2)

−1 + 2.

Here the matrix γ g2 has coefficients in k +p2; hence its trace lies in k +p2, and the first factor lies in
k + p4. Since γ ∈ GL2(k), the second factor lies in k× . Moreover, the fact that g2 ≡ Id2 mod p2 implies
that det(g2) ≡ 1 + Tr(g2 − Id2) mod p2. But we have just seen that Tr(g2 − Id2) ∈ p3, and so det(g2)

and hence the third factor lies in 1 + p3. Together we find that Tr Ad(h) lies in k + p3. This contradicts
the assumption on Tr Ad(H ′), and so Theorem 3.17 is proved. �
4. Preliminary results on Drinfeld modules

In this section we list some known results about Drinfeld modules or adapt them slightly, and
create the setup on which the proof in Section 5 is based. From Subsection 4.3 onwards we will
restrict ourselves to the case of special characteristic. For the general theory of Drinfeld modules see
Drinfeld [Dri74], Deligne and Husemöller [DH87], Hayes [Hay79], or Goss [Gos96].

4.1. Endomorphisms rings

Let Fp denote the finite field of prime order p. Let F be a finitely generated field of transcendence
degree 1 over Fp . Let A be the ring of elements of F which are regular outside a fixed place ∞ of F .

Let K be another finitely generated field over Fp of arbitrary transcendence degree. Then the endo-
morphism ring of the algebraic additive group Ga,K over K is the non-commutative polynomial ring
in one variable K {τ }, where τ represents the endomorphism u �→ up and satisfies the commutation
relation τu = upτ for all u ∈ K . Consider a Drinfeld A-module

ϕ : A −→ K {τ }, a �→ ϕa

of rank r � 1 over K . Let p0 denote the characteristic of ϕ , that is, the kernel of the homomorphism
A → K determined by the lowest coefficient of ϕ . This is a prime ideal of A and hence either (0) or a
maximal ideal, and ϕ is called of generic resp. of special characteristic accordingly. By definition, the
endomorphism ring of ϕ over K is the centralizer

EndK (ϕ) := {
u ∈ K {τ } ∣∣ ∀a ∈ A: ϕa ◦ u = u ◦ ϕa

}
.

This is a finitely generated projective A-module, and EndK (ϕ) ⊗A F is a finite dimensional division
algebra over F . In special characteristic this algebra can be non-commutative. We often identify A
with its image under the homomorphism A → EndK (ϕ), a �→ ϕa .

It may happen that ϕ possesses endomorphisms over an overfield that are not defined over K . But
by [Gos96, Proposition 4.7.4, Remark 4.7.5], we have:
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Proposition 4.1. There exists a finite separable extension K ′ of K such that for every overfield L of K ′ we have
EndL(ϕ) = EndK ′ (ϕ).

Consider any integrally closed infinite subring B ⊂ A. Then A is a finitely generated projective B-
module of some rank m � 1, and the restriction ϕ|B is a Drinfeld B-module of rank rm over K . By
definition there is a natural inclusion EndK (ϕ) ⊂ EndK (ϕ|B) identifying EndK (ϕ) with the commutant
of A in EndK (ϕ|B). In special characteristic it is possible that the latter is non-commutative and A is
not contained in its center, in which case the inclusion is proper.

Dually consider any commutative A-subalgebra A′ ⊂ EndK (ϕ). Then A′ is a finitely generated pro-
jective A-module of some rank m′ � 1. If A′ is normal, i.e., integrally closed in its quotient field, the
tautological embedding ϕ′ : A′ → K {τ } is a Drinfeld A′-module of rank r/m′ over K ; in particular m′
is then a divisor of r. One can prove the same fact for arbitrary A′ using the isogeny provided by the
following subsection.

4.2. Isogenies

Let ϕ′ be a second Drinfeld A-module over K . Let f be an isogeny ϕ → ϕ′ over K , that is, a
non-zero element f ∈ K {τ } satisfying f ◦ϕa = ϕ′

a ◦ f for all a ∈ A. Then f induces an isomorphism of
F -algebras

EndK (ϕ) ⊗A F ∼−→ EndK
(
ϕ′) ⊗A F (4.2)

which sends e ⊗ 1 to e′ ⊗ 1 if f ◦ e = e′ ◦ f .
The following proposition extends a result of [Hay79, Proposition 3.2] to the possibly non-

commutative case and is established in a different way.

Proposition 4.3. Let ϕ : A → K {τ } be any Drinfeld module, let S be any A-subalgebra of EndK (ϕ) and let S ′
be any maximal A-order in S ⊗A F which contains S. Then there exist a Drinfeld A-module ϕ′ : A → K {τ } and
an isogeny f : ϕ → ϕ′ over K such that S ′ corresponds to EndK (ϕ′) ∩ (S ⊗A F ) via the isomorphism (4.2).

Proof. To avoid confusing endomorphisms of ϕ with endomorphisms of the desired ϕ′ we denote
the tautological embedding S ↪→ K {τ } by s �→ ϕs . Fix any non-zero element a ∈ A satisfying S ′a ⊂ S .
Let Ha denote the kernel of ϕa as a finite subgroup scheme of Ga,K . Observe that the action of any
endomorphism s ∈ S on Ha depends only on the residue class of s modulo Sa, and that Sa has finite
index in S ′a. Thus the sum

H :=
∑

s∈S ′a
ϕs(Ha)

is really finite and defines another finite subgroup scheme of Ga,K . By construction H is mapped to
itself under ϕs for every s ∈ S . In particular it is therefore the scheme theoretic kernel of a non-
zero element f ∈ K {τ }. Also, for each s ∈ S we have f (ϕs(H)) ⊂ f (H) = 0; hence f ◦ ϕs annihilates
H = Ker( f ), and thus we have f ◦ ϕs = ϕ′

s ◦ f for a unique element ϕ′
s ∈ K {τ }. For any two elements

s1, s2 ∈ S we have

ϕ′
s1

◦ ϕ′
s2

◦ f = ϕ′
s1

◦ f ◦ ϕs2 = f ◦ ϕs1 ◦ ϕs2 = f ◦ ϕs1s2 = ϕ′
s1s2

◦ f (4.4)

and therefore ϕ′
s1

◦ ϕ′
s2

= ϕ′
s1s2

, and a similar calculation shows that ϕ′
s1

+ ϕ′
s2

= ϕ′
s1+s2

. The resulting
map S → K {τ }, s �→ ϕ′

s is thus a ring homomorphism. In particular its restriction to A is a Drinfeld
A-module ϕ′ such that f defines an isogeny ϕ → ϕ′ , and the full map s �→ ϕ′

s defines an embedding
S ↪→ EndK (ϕ′) compatible with the isomorphism (4.2). To extend this map to the maximal order S ′
we need the following preparation:
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Lemma 4.5. Let Ha2 ⊂Ga,K denote the kernel of ϕa2 . Then

∑
s∈S ′a

ϕs(Ha2) = Ker( f ◦ ϕa).

Proof. The summand for s = a on the left hand side is ϕa(Ha2 ) = Ha = Ker(ϕa) and therefore also
contained in the right hand side. Thus it suffices to prove that the images of both sides under ϕa

coincide. But

ϕa

( ∑
s∈S ′a

ϕs(Ha2)

)
=

∑
s∈S ′a

ϕa
(
ϕs(Ha2)

) =
∑

s∈S ′a
ϕs

(
ϕa(Ha2)

) =
∑

s∈S ′a
ϕs(Ha)

def= H = Ker( f ) = ϕa
(
Ker( f ◦ ϕa)

)
,

as desired. �
Now consider any s′ ∈ S ′ , and observe that we have already constructed ϕ′

a and ϕ′
s′a in K {τ }.

Lemma 4.6. There exists an element ϕ′
s′ ∈ EndK (ϕ′) which satisfies ϕ′

s′ ◦ ϕ′
a = ϕ′

s′a.

Proof. For each s ∈ S ′a we have s′s, s′as ∈ S ′a; hence ϕs′a and ϕs′s and ϕs′as all exist and satisfy
ϕs′a ◦ ϕs = ϕs′as = ϕs′s ◦ ϕa . Also, we have f (ϕs′s(Ha)) ⊂ f (H) = 0 and so

( f ◦ ϕs′a)
(
ϕs(Ha2)

) = ( f ◦ ϕs′s)
(
ϕa(Ha2)

) = ( f ◦ ϕs′s)(Ha) = 0.

Summing over all s ∈ S ′a and using Lemma 4.5 we deduce that f ◦ ϕs′a annihilates Ker( f ◦ ϕa). Thus
there exists a unique element ϕ′

s′ ∈ K {τ } satisfying f ◦ ϕs′a = ϕ′
s′ ◦ f ◦ ϕa . The calculation

ϕ′
s′a ◦ f = f ◦ ϕs′a = ϕ′

s′ ◦ f ◦ ϕa = ϕ′
s′ ◦ ϕ′

a ◦ f

now implies that ϕ′
s′a = ϕ′

s′ ◦ ϕ′
a . Finally, a calculation like that in (4.4) shows that ϕ′

s′ ◦ ϕ′
b = ϕ′

b ◦ ϕ′
s′

for all b ∈ A. Thus ϕ′
s′ ∈ EndK (ϕ′), as desired. �

By a calculation as in (4.4) one easily shows that the map S ′ → EndK (ϕ′), s′ �→ ϕ′
s′ is a ring

homomorphism extending the previous one on S . By construction it factors through a homomorphism
S ′ → EndK (ϕ′) ∩ (S ⊗A F ) which becomes an isomorphism after tensoring with F over A. Since both
sides of the latter are finitely generated torsion free A-modules, that homomorphism must be an
inclusion of finite index. But as S ′ is already a maximal A-order in S ⊗A F , it follows that S ′ →
EndK (ϕ′) ∩ (S ⊗A F ) is an isomorphism. This finishes the proof of the proposition. �
Proposition 4.7. Let ϕ : A → K {τ } be a Drinfeld module of rank r. Let d2 be the dimension of EndK (ϕ) ⊗A F
over its center Z , and let e denote the dimension of Z over F . Then de divides r.

Proof. Set R := EndK (ϕ) and let F ′ be any maximal commutative F -subalgebra of R ⊗A F . Let A′ de-
note the integral closure of A in F ′ . Then by construction we have rankA(A′) = [F ′/F ] = de. Applying
Proposition 4.3 to S := A′ ∩ R and S ′ := A′ yields a Drinfeld A′-module ϕ′ : A′ → K {τ } and an isogeny
f : ϕ → ϕ′|A. Then ϕ′|A has rank r, and the remarks at the end of Subsection 4.1 imply that ϕ′ has
rank r/de. Thus this quotient is an integer, as desired. �
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4.3. Tate modules

From now on we assume that ϕ has special characteristic. We abbreviate R := EndK (ϕ) and as-
sume that A is the center of R . By Proposition 4.7 we then have dimF (R ⊗A F ) = d2 for some
factorization in integers r = nd.

Let K sep denote the separable closure of K inside a fixed algebraic closure K of K . Let κ denote
the finite constant field of K and κ its algebraic closure in K sep. Then G K := Gal(K sep/K ) is the
absolute Galois group and Ggeom

K := Gal(K sep/Kκ) the geometric Galois group of K . Moreover, the
quotient G K /Ggeom

K
∼= Gal(κ/κ) is the free pro-cyclic group topologically generated by the element

Frobκ , which acts on κ by u �→ u|κ | .
By a prime p of A we will mean any maximal ideal of A. The p-adic completions of A and F are

denoted Ap and Fp, respectively. For any prime p �= p0 of A and any positive integer i, the pi -torsion
points of ϕ

ϕ
[
pi] := {

x ∈ K sep
∣∣ ∀a ∈ pi: ϕa(x) = 0

}
form a free A/pi-module of rank r. The p-adic Tate module Tp(ϕ) := lim←− ϕ[pi] is therefore a free Ap-
module of rank r. Choosing a basis, the natural action of the Galois group G K on Tp(ϕ) is described
by a continuous homomorphism

ρp : G K −→ GLr(Ap).

The action of endomorphisms turns Tp(ϕ) into a module over Rp := R ⊗A Ap. Let Dp denote
the commutant of Rp in EndAp

(Tp(ϕ)). Since the action of G K commutes with that of Rp, the
homomorphism ρp factors through the multiplicative group D×

p of Dp. We can thus view ρp as a
homomorphism G K → D×

p . The associated adelic Galois representation then becomes a homomor-
phism

ρad := (ρp)p : G K −→
∏
p�=p0

D×
p ⊂

∏
p�=p0

GLr(Ap).

Let Vp(ϕ) := Tp(ϕ)⊗Ap
Fp denote the rational Tate module of ϕ at p. Then by construction Dp⊗Ap

Fp
is the commutant of R ⊗A Fp in EndFp(Vp(ϕ)).

For the next technical results we choose a maximal commutative F -subalgebra F ′ ⊂ R ⊗A F , let
A′ denote the integral closure of A in F ′ , and choose a Drinfeld A′-module ϕ′ : A′ → K {τ } and an
isogeny f : ϕ → ϕ′|A, as in the proof of Proposition 4.7. Then ϕ′ has rank n and its characteristic
p′

0 is a prime of A′ above p0. For any prime p �= p0 of A the isogeny f induces a G K -equivariant
isomorphism

Vp(ϕ) ∼= Vp

(
ϕ′∣∣A

) ∼=
∏
p′|p

Vp′
(
ϕ′). (4.8)

Proposition 4.9. For any prime p �= p0 of A and any prime p′ of A′ above p we have:

(a) Dp ⊗Ap
Fp is a central simple algebra of dimension n2 over Fp .

(b) There is a natural isomorphism Dp ⊗Ap
F ′
p′

∼−→ EndF ′
p′ (Vp′ (ϕ′)).

(c) The action of G K on Vp′ (ϕ′) is induced by the homomorphism ρp : G K → D×
p and the isomorphism (b).
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Proof. By construction Rp⊗Ap
Fp is a central simple algebra of dimension d2 over Fp, and Dp⊗Ap

Fp
is its commutant in the action on the Rp ⊗Ap

Fp-module Vp(ϕ) of dimension r = nd over Fp. With
general facts on semisimple algebras this implies (a). Next the isomorphism (4.8) is really the isotypic
decomposition of Vp(ϕ) over A′ ⊗A Fp ∼= ∏

p′|p F ′
p′ . Since the action of A′ ⊗A Fp ⊂ R ⊗A Fp commutes

with Dp, the decomposition is Dp-invariant. Thus each Vp′(ϕ′) is a Dp-module. The actions of both
Dp and F ′

p′ agree on Ap; hence they induce a non-zero homomorphism

Dp ⊗Ap
F ′
p′ −→ EndF ′

p′
(

Vp′(ϕ′)
)
.

Here by (a) the left hand side is a central simple algebra of dimension n2 over F ′
p′ . But since Vp′ (ϕ′)

has dimension n over F ′
p′ , the same is true for the right hand side as well. Thus the homomorphism

must be an isomorphism, proving (b). Finally, the natural construction implies (c). �
For any prime p �= p0 of A, let D1

p denote the subgroup of all elements of D×
p whose reduced norm

over Fp is 1.

Proposition 4.10. There exists a finite extension K ′ ⊂ K sep of K such that

ρad
(
Ggeom

K ′
) ⊂

∏
p�=p0

D1
p.

Proof. Let ϕ′ : A′ → K {τ } be as above. By Anderson [And86, §4.2], the determinant of the adelic
Galois representation associated to ϕ′ is the adelic Galois representation associated to some Drinfeld
A′-module of rank 1 of special characteristic p′

0. By Proposition 6.3 below the image of Ggeom
K in that

representation is finite. Choose a finite extension K ′ ⊂ K sep of K such that Ggeom
K ′ lies in its kernel.

Then for any prime p �= p0 of A and any prime p′ of A′ above p, Proposition 4.9 (b) and (c) implies
that ρp(Ggeom

K ′ ) ⊂ D1
p, as desired. �

Proposition 4.11. For almost all primes p �= p0 of A, we have Dp
∼= Matn×n(Ap) and D×

p
∼= GLn(Ap) and

D1
p

∼= SLn(Ap).

Proof. For almost all p, the central simple algebra R ⊗A Fp is split and Rp = R ⊗A Ap is a maximal
order therein. For these p we have Rp

∼= Matd×d(Ap), and Tp(ϕ) is a direct sum of n copies of the
tautological representation Ad

p. Its commutant Dp is then isomorphic to Matn×n(Ap), and everything
follows. �
4.4. Non-singular model

Any integral scheme of finite type over Fp with function field K is called a model of K . By de Jong’s
theorem on alterations [dJ96, Theorem 4.1] we have:

Theorem 4.12. There exists a finite separable extension K ′ of K which possesses a smooth projective model.

In the following we assume that X is a smooth projective model of K . Then we have:

Theorem 4.13. For any finite group H there exist only finitely many continuous homomorphisms G K → H
which are unramified at all points of codimension 1 of X.

Proof. By the Zariski–Nagata purity theorem of the branch locus [Zar58,Nag58], any such extension
comes from a finite étale covering of X . In other words it factors through the étale fundamental group
π et

1 (X). This group lies in a short exact sequence
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1 −→ π et
1 (Xκ ) −→ π et

1 (X) −→ Gal(κ/κ) −→ 1,

where π et
1 (Xκ ) is topologically finitely generated by Grothendieck [SGA03, Exp. X, Theorem 2.9], and

Gal(κ/κ) is the free pro-cyclic group topologically generated by Frobenius. Thus π et
1 (X) is topolog-

ically finitely generated and so possesses only finitely many continuous homomorphisms to H , as
desired. �

We choose an open dense subscheme X ⊂ X such that ϕ extends to a family of Drinfeld A-modules
of rank r over X . Since ϕ has special characteristic p0, the extended family has characteristic p0
everywhere. For any p �= p0, the action of G K on Tp(ϕ) factors through the étale fundamental group
π et

1 (X). In particular it is unramified at all points of codimension 1 in X .
In the next three subsections we look separately at information coming from points in X , respec-

tively in X � X .

4.5. Frobenius action

Consider any closed point x ∈ X with finite residue field κx . By a Frobenius element Frobx ∈ G K
we mean any element whose image in π et

1 (X) lies in a decomposition group above x and acts by
u �→ u|κx| on an algebraic closure of κx . The action of Frobx on Tp(ϕ) corresponds to the action on
the Tate module Tp(ϕx), where ϕx denotes the reduction of ϕ at x.

Let p be any prime of A for which Proposition 4.11 holds. Then ρp(Frobx) ∈ D×
p

∼= GLn(Ap), and
we can consider its characteristic polynomial

fx(T ) := det
(
T · Idn − ρp(Frobx)

) ∈ Ap[T ]. (4.14)

Proposition 4.15. The polynomial fx has coefficients in A and is independent of p.

Proof. Let F ′ and ϕ′ : A′ → K {τ } be as in Subsection 4.3. Then Proposition 4.9 shows that, for every
p as above and every p′|p, the image of fx(T ) in F ′

p′ [T ] is the characteristic polynomial of the image
of Frobx in its representation on Vp′(ϕ′). Applying [Gos96, Theorem 4.12.12 (b)] to the Drinfeld A′-
module ϕ′ shows that this image has coefficients in F ′ and is independent of p′ . Fixing p and varying
p′|p it follows that the coefficients of fx(T ) lie in diag(F ′) ⊂ ∏

p′ |p F ′
p′ , in other words, in the subring

A′ ⊗A F ⊂ A′ ⊗A Fp. But by definition they also lie in the subring Ap
∼= A ⊗A Ap, whose intersection

with the former is just A. Varying both p and p′ then shows that fx(T ) is independent of p. �
Proposition 4.16. Let α1, . . . ,αn be the roots of fx in an algebraic closure F of F , with repetitions if necessary.
Consider any normalized valuation v of F and an extension v of v to F . Let kv denote the residue field at v.

(a) If v does not correspond to p0 or ∞, then for all 1 � i � n we have

v(αi) = 0.

(b) If v corresponds to ∞, then for all 1 � i � n we have

v(αi) = − 1

nd
· [κx/Fp]
[kv/Fp] .

(c) If v corresponds to p0 , then there exists an integer 1 � nx � n such that

v(αi) =
{

1
nxd · [κx/Fp ]

[kv/Fp] for precisely nx of the αi, and

0 for the remaining n − nx of the αi .
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Proof. By construction the αi are the roots of the characteristic polynomial of ρp(Frobx) associated
to the Drinfeld module ϕ of rank r = nd, except that their multiplicities are divided by d. Thus the
proposition is a direct consequence of [Dri77, Proposition 2.1] to ϕ . �
4.6. Good reduction and lattices

In this subsection we briefly leave the current setting and consider the following general situation.
Let L be a field containing Fp with a non-trivial discrete valuation v . Let R ⊂ L denote the as-

sociated discrete valuation ring and m its maximal ideal. Let ψ : A → R{τ }, a �→ ψa be a Drinfeld
A-module of rank s > 0 with good reduction, i.e., such that for every a ∈ A � {0} the highest non-zero
coefficient of ψa is a unit in R . We view L as an A-module with respect to the action a · u := ψa(u)

for all a ∈ A and u ∈ L. Then R is a submodule for this action, and we are interested in the structure
of the A-module L/R .

To any A-module M are associated the following notions. The rank of M is the maximal number of
A-linearly independent elements of M , or ∞ if the maximum does not exist. Of course, any finitely
generated A-module has finite rank. Next, the division hull of an A-submodule N ⊂ M is defined as

√
N := {

u ∈ M
∣∣ ∃a ∈ A � {0}: a · u ∈ N

}
, (4.17)

which is an A-module of the same rank as N . The A-module M is called tame if every finitely gener-
ated A-submodule N ⊂ M satisfies [√N : N] < ∞.

The following result was obtained by Poonen in [Poo95, Lemma 5] when L is a global field and ψ

has generic characteristic, and by Wang [Wan01] in general.

Proposition 4.18. L/R is a tame A-module.

4.7. Bad reduction

Now we return to the situation and the notations of Subsections 4.1 through 4.5. We assume in
addition that there exists a prime p �= p0 of A such that all p-torsion points of ϕ are defined over K .
This can be achieved on replacing K by the finite separable extension corresponding to the action of
G K on ϕ[p].

Let x be one of the finitely many generic points of X � X . Let Kx denote the completion of K with
respect to the valuation at x, and let Rx ⊂ Kx denote the associated discrete valuation ring. Since ϕ
possesses a full level structure of some level p �= p0 over K , it is known to have semistable reduction
over Kx . Its Tate uniformization at x (see [Dri74, §7]) then consists of a Drinfeld A-module ψx over Rx

of some rank 1 � rx � r with good reduction and an A-lattice Λx ⊂ K sep
x of rank r − rx for the action

of A on K sep
x via ψx . Here by definition an A-lattice is a finitely generated projective A-submodule

whose intersection with any ball of finite radius is finite. This implies that any non-zero element of
Λx has valuation < 0. Also, being finitely generated, the lattice is already contained in some finite
Galois extension K ′

x of Kx .
Let Ix ⊂ Dx ⊂ G K denote the inertia group, respectively the decomposition group, at a fixed place

of K sep above x. Then Dx is also the absolute Galois group of Kx . Let D ′
x � Dx denote the absolute

Galois group of K ′
x , and set I ′x := Ix ∩ D ′

x . Then Dx acts on Λx through the finite quotient Dx/D ′
x .

For any prime p �= p0 of A and any positive integer i the Tate uniformization yields a Dx-
equivariant isomorphism

ϕ
[
pi] ∼= {

u ∈ K sep
x

∣∣ ∀a ∈ pi: ψx,a(u) ∈ Λx
}
/Λx (4.19)

and hence a Dx-equivariant short exact sequence

0 −→ ψx
[
pi] −→ ϕ

[
pi] −→ Λx ⊗A

(
p−i/A

) −→ 0.
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Taking the inverse limit over i yields a Dx-equivariant short exact sequence

0 −→ Tp(ψx) −→ Tp(ϕ) −→ Λx ⊗A Ap −→ 0.

Here Ix acts trivially on Tp(ψx), and D ′
x acts trivially on Λx ⊗A Ap. Thus in a suitable basis ρp(D ′

x) is
contained in the group of block triangular matrices of the form

( ∗ ∗
0 1

)
⊂ GLr(Ap),

and ρp(I ′x) is a ρp(Dx)-invariant subgroup of the group of block triangular matrices of the form

(
1 ∗
0 1

)
∼= HomA

(
Λx, Tp(ψx)

) ∼= Tp(ψx)
r−rx . (4.20)

We are interested in the following three consequences:

Lemma 4.21. Fix an integer c � 1. Then for almost all primes p �= p0 of A, any continuous homomorphism
from ρp(Dx) to a finite group of order � c is trivial on ρp(I ′x).

Proof. Fix a Drinfeld A-module ψy of rank rx over a finite field that arises by good reduction from ψx .
Let Froby be an associated Frobenius element in Dx/Ix , the absolute Galois group of the residue field
at x. Then by [Gos96, Theorem 4.12.12 (b)], the characteristic polynomial of Froby on Tp(ψx) has
coefficients in A and is independent of p. Moreover, [Dri77, Proposition 2.1] implies that none of its
eigenvalues β1, . . . , βrx ∈ F is a root of unity. Thus a := ∏rx

i=1(β
c!
i − 1) is a non-zero element of A.

We claim that the assertion holds for all p �= p0 that do not divide a.
Indeed, let f : ρp(Dx) → H be a continuous homomorphism to a finite group of order � c, such

that f |ρp(I ′x) is non-trivial. Then ker f |ρp(I ′x) is a ρp(Dx)-invariant proper closed subgroup of ρp(I ′x)
of index � c. Thus Tp(ψx)

r−rx and hence Tp(ψx), as a representation of ρp(Dx), possesses a non-
trivial finite subquotient of order � c. Then Frobc!

y acts trivially on this subquotient. But this requires

that some βc!
i is congruent to 1 modulo a prime of F above p, or equivalently that p|a. This proves

the claim. �
Lemma 4.22. For almost all primes p �= p0 of A we have ψx[p] = ϕ[p]Ix = ϕ[p]I ′x .

Proof. The inclusions ψx[p] ⊂ ϕ[p]Ix ⊂ ϕ[p]I ′x result from the fact that Ix acts trivially on ψx[p]. To
prove equality take any element of ϕ[p]I ′x . By (4.19) it corresponds to the residue class u + Λx for
some u ∈ K sep

x satisfying ψx,a(u) ∈ Λx for all a ∈ p. That this residue class is I ′x-invariant means
that σu − u ∈ Λx for all σ ∈ I ′x . But σ ∈ I ′x acts trivially on ψx,a(u) ∈ Λx for all a ∈ p; hence
ψx,a(σu −u) = σψx,a(u)−ψx,a(u) = 0. Since the homomorphism ψx,a : Λx → Λx is injective whenever
a �= 0, it follows that σu − u = 0 and hence u is I ′x-invariant.

Let L denote the maximal unramified extension of K ′
x , and R ⊂ L its discrete valuation ring. As in

Subsection 4.6 we denote the residue class in L/R of an element v ∈ L by v and abbreviate a · v :=
ψx,a(v) for all a ∈ A. Since every non-zero element of Λx has valuation < 0, we have Λx ∩ R = {0}
and thus the natural map Λx → L/R is injective; let Nx denote its image.

The fact that u is I ′x-invariant means that u ∈ L. On the other hand, the fact that ψx,a(u) ∈ Λx for
all a ∈ p implies that p · u ⊂ Nx . In particular we have u ∈ √

Nx in the notation of (4.17). But since
[√Nx : Nx] < ∞ by Proposition 4.18, for almost all p we can deduce that u ∈ Nx . Then u = v + λ for
some v ∈ R and λ ∈ Λx . For all a ∈ p we then have ψx,a(v) ∈ Λx ∩ R = {0}; in other words v ∈ ψx[p].
Thus the residue class in question u + Λx comes from an element of ψx[p], as desired. �
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Lemma 4.23. For any finite abelian group H there exists a finite set P ′ of primes of A, such that the number of
continuous homomorphisms G K → H, which are trivial on ker(ρp) for some p /∈ P ′ , is finite.

Proof. For each of the finitely many generic points x of X � X , let P x denote the finite set of primes
of A excluded by Lemma 4.21 with c := |H|. We claim that the assertion holds with P ′ the union of
these sets Px .

Indeed, let f : G K → H be a continuous homomorphism which is trivial on ker(ρp) for some
p /∈ P ′ . From Subsection 4.4 we know that ρp and hence f factors through the étale fundamental
group π et

1 (X). Also, the restriction f |I ′x is trivial for every generic point x of X � X by Lemma 4.21.
There are therefore only finitely many possibilities for the restriction f |Ix . Since there are only finitely
many x, it suffices to prove that the number of such f with fixed restrictions f |Ix for all x is finite.

But since H is abelian, any two such homomorphisms f differ by a continuous homomorphism
g : G K → H which is unramified over X and at all generic points of X � X . By Theorem 4.13 there are
only finitely many possibilities for such g , and the desired finiteness follows. �
4.8. Setup

From here on we assume that ϕ satisfies the conditions of Theorem 1.2. Since we are only inter-
ested in the image of Galois groups up to commensurability, we may replace K by a finite extension.
We first replace it by the composite of the extensions provided by Propositions 4.1 and 4.10 and
the fields of definition of all p-torsion points of ϕ for some chosen prime p �= p0 of A. Thereafter
we replace it by the extension from Theorem 4.12. By Proposition 6.3 below the assumption on
EndK sep (ϕ|B) = R in Theorem 1.2 implies that n � 2. Thus altogether we have the following assump-
tions:

Assumptions 4.24.

(a) R := EndK (ϕ) = EndK sep (ϕ).
(b) The center of R is A.
(c) n := r/d � 2.
(d) For every integrally closed infinite subring B ⊂ A we have EndK sep (ϕ|B) = R .
(e) ρad(Ggeom

K ) ⊂ ∏
p�=p0

D1
p.

(f) There exists a prime p �= p0 of A such that all p-torsion points of ϕ are defined over K .
(g) K possesses a smooth projective model X .

4.9. Images of Galois groups

Throughout the following we let P0 denote the finite set of primes excluded by Proposition 4.11.
For any p /∈ P0 we set

Γp := ρp(G K ) ⊂ GLn(Ap), and

Γ
geom
p := ρp

(
Ggeom

K

) ⊂ SLn(Ap).

By construction the latter is a closed normal subgroup of the former and the quotient is pro-cyclic.
Combining Proposition 4.9 (c) with [Pin06a, Theorem 1.1], and applying [PT06, Lemma 3.7], we obtain:

Theorem 4.25. For any p as above Γp is Zariski dense in GLn,Fp , and Γ
geom
p is Zariski dense in SLn,Fp .

The next result concerns the image of the group ring. By [PT06, Theorem B], in the case that K
has transcendence degree 1, and by [PR09b, Theorem 0.2], in the general case, we know:

Theorem 4.26. For almost all primes p of A we have Ap[Γp] = Matn×n(Ap).
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Let kp := A/p denote the residue field of p, and let ρp : G K → GLn(kp) denote the reduction of ρp

modulo p. Theorem 4.26 immediately implies:

Corollary 4.27. For almost all primes p of A the representation ρp on kn
p is absolutely irreducible.

Theorem 4.28. For any finite set P of primes �= p0 of A, consider the combined representation

ρP := (ρp)p : G K −→
∏
p∈P

D×
p ⊂

∏
p∈P

GLr(Ap).

Then ρP (Ggeom
K ) has finite index in

∏
p∈P D1

p.

Proof. Since n � 2, Proposition 6.3 below shows that ϕ is not isomorphic over K sep to a Drinfeld mod-
ule defined over a finite field. We may thus apply [Pin06b, Theorems 6.1 and 6.2]. The subfield E given
there is contained in the center F of R ⊗A F , such that B := E ∩ A is infinite and EndK sep (ϕ|B) ⊗B E
has center E . But by Assumption 4.24 (d) we have EndK sep (ϕ|B) = R with center A. Thus we must
have E = F .

The group G Q (E Q ) described in [Pin06b, Theorem 6.2] is then the centralizer of R ⊗A
∏

p∈P Fp
in

∏
p∈P AutFp(Vp(ϕ)). In our situation it is therefore equal to

∏
p∈P (Dp ⊗Ap

Fp)× . The subgroup

Gder
Q (E Q ) is the subgroup of elements of reduced norm 1. Theorem 6.1 of [Pin06b] says that

ρP (Ggeom
K ) is commensurable to an open subgroup of Gder

Q (E Q ). Since ρP (Ggeom
K ) is already contained

in
∏

p∈P D1
p by Assumption 4.24 (e), which is an open compact subgroup of Gder

Q (E Q ), the index must
be finite, as desired. �
4.10. Ring of traces

Let Ad denote the adjoint representation of GLn . Proposition 4.15 implies that the trace
Tr Ad(ρp(Frobx)) lies in F and is independent of p. We let Rtrad denote the subring of F generated by
Tr Ad(ρp(Frobx)) for all closed points x ∈ X , and let F trad ⊂ F denote the quotient field of Rtrad.

Theorem 4.29. Either F trad = F , or n = p = 2 and F trad = F 2 := {x2 | x ∈ F }.

Proof. Applying [Pin06b, Theorem 1.2] to the Drinfeld A′-module ϕ′ from Subsection 4.3 yields a
subfield E ⊂ F ′ , which by Assumption 4.24 (d) turns out to be F . (One may equivalently combine
[Pin06b, Theorem 1.1] for ϕ′ with Theorem 4.28 above.) Thus by [Pin06b, Theorem 1.3] the subfield
generated by the traces of Frobeniuses in the adjoint representation associated to ϕ′ has the de-
sired properties. But by Proposition 4.9, those traces are just Tr Ad(ρp(Frobx)); hence this subfield
is F trad. �

As the following proposition shows, the second case in Theorem 4.29 really does occur:

Proposition 4.30. Let κ ′ ⊂ κ denote the extension of degree 2 of the constant field κ . If n = p = 2, then after
replacing K by Kκ ′ , we have F trad = F 2 .

Proof. In characteristic p = 2, let std(2) denote the pullback under Frob2 of the standard representa-
tion of GL2, and let det : GL2 → Gm denote the determinant. Then the adjoint representation of GL2 is
an extension of std(2) ⊗det−1 with two copies of the trivial representation of dimension 1. Thus for
every g ∈ GL2 we have Tr Ad(g) = Tr(g)2 · det(g)−1 + 2.

Recall from Assumption 4.24 (e) that ρp(Ggeom
K ) ⊂ SLn(Ap). Thus det ◦ρp factors through a homo-

morphism Gal(κ/κ) → A×
p . Its value on any element of Gal(κ/κ ′) is therefore a square. After replacing
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K by Kκ ′ we find that Tr Ad(ρp(Frobx)) ∈ F ∩ F 2
p = F 2 for every closed point x ∈ X . Thus now only

the second case in Theorem 4.29 is possible. �
Proposition 4.31. Let A0 be the ring of elements of F which are regular outside p0 . Then either Rtrad is a
subring of finite index of A0 , or n = p = 2 and Rtrad is a subring of finite index in A2

0 := {x2 | x ∈ A0}.

Proof. Let α1, . . . ,αn ∈ F denote the eigenvalues of ρp(Frobx). By Proposition 4.16 they have valuation
0 at all places not above p0 or ∞, and the same negative valuation at any place above ∞. Thus their
ratios αi/α j have trivial valuation at all places not above p0. The sum over all i, j of these ratios is
therefore regular at all places �= p0. This sum is just Tr Ad(ρp(Frobx)), proving that Rtrad ⊂ A0.

By Theorem 4.29 the ring Rtrad must contain some non-constant element x. Then F is a finite
field extension of Fp(x). Moreover, x as an element of F is regular outside p0, and therefore p0 is the
unique place of F above the place of Fp(x) where x has a pole. This implies that A0 is the integral
closure of Fp[x] in F . It is therefore a module of finite type over Fp[x], and so Rtrad is a submodule
that is again of finite type. In particular, Rtrad is already generated by finitely many traces.

Also, it follows that Rtrad is of finite index in its normalization. Depending on the case in Theo-
rem 4.29, this normalization is either A0 or A2

0, and we are done. �
By construction any prime p �= p0 of A corresponds to a unique prime of A0. Thus there are natural

homomorphisms Rtrad ↪→ A0 ↪→ Ap � kp.

Proposition 4.32. There exists a finite set P trad of primes of A, containing p0 , such that:

(a) For any prime p /∈ P trad of A, the homomorphism Rtrad → kp is surjective.
(b) For any two distinct primes p1,p2 /∈ P trad of A, the homomorphism Rtrad → kp1 × kp2 is surjective.
(c) For any prime p /∈ P trad of A, the image of the homomorphism Rtrad → Ap is dense in Ap if F trad = F ,

respectively dense in A2
p := {a2 | a ∈ Ap} if F trad = F 2 .

Proof. Depending on the case, Proposition 4.31 implies that the annihilator of A0/Rtrad, respectively
the annihilator of A2

0/Rtrad, as an Rtrad-module contains a non-zero element x ∈ Rtrad. Then Rtrad[x−1]
is equal to A0[x−1], respectively to A2

0[x−1]. Let P trad be the finite set of primes of A consisting of p0

and all those dividing x within A0. Then P trad has all the desired properties. �
5. Proof of the main result

In this section we prove Theorem 1.2. Subsections 5.1 through 5.4 deal with the image of the
geometric Galois group Ggeom

K , while Subsection 5.5 finishes with the image of the absolute Galois
group G K . We keep all the notations from the preceding section and impose Assumptions 4.24.

5.1. Residual surjectivity at a single prime

Recall that P0 denotes the finite set of primes excluded by Proposition 4.11. For any prime p /∈ P0
of A, we let �

geom
p � �p ⊂ GLn(kp) denote the images of Ggeom

K � G K under the residual representa-
tion ρp. Thus

Γp � �p ⊂ GLn(kp),

Γ
geom
p � �

geom
p ⊂ SLn(kp),

and the quotient �p/�
geom
p is cyclic. We will prove that �

geom
p = SLn(kp) for almost all p.
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Lemma 5.1. Fix any integer c � 1, and let f denote the morphism from (2.11). Then for almost all primes
p /∈ P0 of A, the map �p → kp, δ �→ f (δc) is not identically zero.

Proof. Take any prime p /∈ P0 of A. Then by Theorem 4.25 together with Lemma 2.13, the map
Γp → Fp, γ �→ f (γ c) is not identically zero. Since this map is continuous and the images of Frobenius
elements are dense in Γp, we may fix a closed point x ∈ X such that a := f (ρp(Frobx)

c) �= 0. By the
definition of f , this value is a polynomial with coefficients in Z in the coefficients of the characteristic
polynomial of ρp(Frobx)

c . With Proposition 4.15 it follows that a lies in A and is independent of p. In
other words, having found x and a ∈ A � {0} with the help of some auxiliary prime p /∈ P0, we then
have f (ρp(Frobx)

c) = a for every prime p /∈ P0.
Thus for δ := ρp(Frobx) ∈ �p we now deduce that f (δc) = a mod p. This is non-zero whenever

p � a; hence the desired assertion holds whenever p /∈ P0 and p � a. �
Let k̄p denote an algebraic closure of kp, and set Wp := ϕ[p] ⊗kp k̄p. By Corollary 4.27 this is an

irreducible representation of �p over k̄p for all p outside some finite set of primes P irr. By The-
orem 2.26 there then exists a normal subgroup �′

p � �p of index � c′
n , such that �′

p/Z(�′
p) is a

direct product of finite simple groups of Lie type in characteristic p. We fix such a subgroup �′
p for

every p /∈ P irr.

Lemma 5.2. For almost all primes p /∈ P irr of A, we have Wp = Wp,1 ⊕· · ·⊕ Wp,mp
for pairwise inequivalent

irreducible representations Wp,i of �′
p.

Proof. Let Wp,1 be any irreducible representation of �′
p contained in Wp. Then the sum of the

conjugates δWp,1 for all δ ∈ �p is a non-zero �p-invariant subspace. By irreducibility it is therefore
equal to Wp for all p /∈ P irr. Thus Wp is the direct sum of certain conjugates δWp,1.

It remains to show that these summands are pairwise inequivalent. For this suppose that δ1Wp,1
and δ2Wp,1 are distinct but equivalent as representations of �′

p for some δ1, δ2 ∈ �p. Then for every

δ ∈ �p, we have δc′
n ! ∈ �′

p, and this element has the same eigenvalues on δ1Wp,1 and δ2Wp,1. By

Lemma 2.12 (a) we thus have f (δc′
n !) = 0. But since δ ∈ �p is arbitrary, by Lemma 5.1 with c = c′

n!
this can happen only for finitely many primes p, as desired. �

The stated properties imply that the decomposition in Lemma 5.2 is the isotypic decomposition
of Wp under �′

p. It is therefore normalized by �p, and so the permutation action is given by a
homomorphism from �p to the symmetric group Smp

on mp letters. Let σp denote the composite
homomorphism G K � �p → Smp

.

Lemma 5.3. For almost all primes p /∈ P irr of A, the homomorphism σp is unramified at all points of codimen-
sion 1 of X.

Proof. This is clear for points in X , because ρp is already unramified there. So let x be one of
the finitely many generic points of X � X . Since |Smp

| � mp! � n! is bounded, Lemma 4.21 implies
that σp|I ′x is trivial for almost all p. Then I ′x stabilizes each summand Wp,i . Since I ′x acts unipo-

tently by (4.20), we deduce that W
I ′x
p,i �= 0 for every i. On the other hand Lemma 4.22 implies that

W Ix
p = W

I ′x
p for almost all p. This means that Ix acts trivially on W

I ′x
p = W

I ′x
p,1 ⊕ · · · ⊕ W

I ′x
p,mp

. But as all
these summands are non-zero, and Ix permutes them according to the restriction of the homomor-
phism σp, it follows that σp|Ix is trivial, as desired. �
Lemma 5.4. For almost all primes p /∈ P irr of A, the group �′

p acts irreducibly on Wp .

Proof. Combining Lemma 5.3, the inequality mp � n, and Theorem 4.13, we find that there are only
finitely many possibilities for the homomorphism σp. The intersection of their kernels is therefore
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equal to G K ′ for some subextension K ′ ⊂ K sep that is finite over K . Applying Corollary 4.27 with
K ′ in place of K implies that ρp(G K ′ ) acts irreducibly on Wp for almost all p. But by construction
ρp(G K ′ ) stabilizes each summand of the decomposition in Lemma 5.2; hence mp = 1 and Wp = Wp,1
for almost all p. Then �′

p acts irreducibly on Wp, as desired. �
Lemma 5.5. For almost all primes p /∈ P irr of A, there exist a finite subfield k′

p of k̄p and a model G ′
p of SLn,k̄p

over k′
p , such that �′ der

p = G ′
p(k′

p).

Proof. By Lemma 5.4 the group �′
p acts irreducibly on Wp for almost all p. On the other hand

let c be the constant from Theorem 2.21. Then for almost all p, Lemma 5.1 shows that the map
�p → kp, δ �→ f (δc′

nc) is not identically zero. Since δc′
n ∈ �′

p for all δ ∈ �p, it follows that the map
�′

p → kp, δ′ �→ f (δ′ c) is not identically zero. Together we find that �′
p satisfies the assumptions of

Theorem 2.21, and so the desired assertion follows. �
Lemma 5.6. For almost all primes p of A as in Lemma 5.5 we have kp ⊂ k′

p .

Proof. Let P ′ be the finite set of primes excluded by Lemma 5.5, and let P trad be the finite set of
primes from Proposition 4.32. We claim that the assertion holds whenever p /∈ P ′ ∪ P trad.

To prove this let Ad denote the adjoint representation of GLn . Take any element δ ∈ �p, and let
int(δ) denote the corresponding inner automorphism of GLn,kp . Then Ad(δ) is the derivative d(int(δ)),
and its trace is an element of kp.

On the other hand int(δ) induces an algebraic automorphism of SLn,k̄p
which normalizes �′ der

p =
G ′
p(k′

p). By the uniqueness in Proposition 2.24 it therefore induces an algebraic automorphism of
the model G ′

p over k′
p. The derivative of this automorphism is an automorphism of the Lie algebra

Lie G ′
p, whose trace is therefore an element of k′

p. But the fact that G ′
p is a model of SLn,k̄p

yields an

equivariant isomorphism Lie G ′
p ⊗k′

p
k̄p ∼= sln(k̄p), and so the trace in question is equal to the trace of

d(int(δ))|sln(k̄p). Together we deduce that

Tr Ad(δ) = Tr
(
d
(
int(δ)

)∣∣sln(k̄p)) + 1 ∈ k′
p.

In particular, we can apply this to δ = ρp(Frobx) for any closed point x ∈ X . Then Tr Ad(ρp(Frobx))

is the image of Ad(ρp(Frobx)) in the residue field kp. Varying x, the elements Ad(ρp(Frobx)) generate
the ring of traces Rtrad from Subsection 4.10. Thus by Proposition 4.32 (a) their images generate the
residue field kp. Since these images also lie in k′

p, we deduce that kp ⊂ k′
p, as desired. �

Proposition 5.7. For almost all primes p /∈ P0 of A, we have �
geom
p = SLn(kp).

Proof. We prove that this holds for all primes p satisfying Lemmas 5.5 and 5.6. Indeed, Lemma 5.5
shows that G ′

p(k′
p) = �′ der

p ⊂ GLn(kp)der = SLn(kp). Applying Proposition 2.22 with G = SLn,kp , this
implies that |k′

p| � |kp|. On the other hand we have kp ⊂ k′
p by Lemma 5.6; hence together we de-

duce that kp = k′
p. Applying Proposition 2.23 with G = SLn,kp then shows that G ′(k′

p) = SLn(kp). In

particular we have SLn(kp) = �′ der
p ⊂ �der

p ⊂ �
geom
p ⊂ SLn(kp), and so these inclusions are equalities,

as desired. �
5.2. Surjectivity at a single prime

Proposition 5.8. For almost all primes p /∈ P0 of A, we have Γ
geom
p = SLn(Ap).

Proof. Let P ′ be the finite set of primes p excluded by Proposition 5.7 or satisfying |kp| � 9. For all
p /∈ P ′ we have a surjective homomorphism Γ

geom
p → SLn(kp).
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Suppose first that F trad = F . Let P trad be the finite set of primes from Proposition 4.32. Then for
any prime p /∈ P ′ ∪ P trad, the set of traces Tr Ad(Γp) topologically generates Ap. Applying Theorem 3.16
to Γp ⊂ GLn(Ap) thus shows that Γ der

p = SLn(Ap).

Suppose now that F trad = F 2. Then p = n = 2 by Theorem 4.29. By Lemma 4.23 there exists a
finite set P ′′ ⊃ P0 of primes of A, such that the number of continuous homomorphisms from G K

to a finite group of order 2, which factor through the surjection ρp : G K � Γp for some p /∈ P ′′ , is
finite. The intersection of the kernels of these homomorphisms is then G K ′ for some finite extension
K ′ ⊂ K sep of K . If Γ ′

p denotes the intersection of all closed subgroups of index 2 of Γp, it follows

that for all primes p /∈ P ′′ of A we have ρp(G K ′ ) ⊂ Γ ′
p. Let P trad be the finite set of primes obtained

by applying Proposition 4.32 with K ′ in place of K . Then for any prime p /∈ P ′ ∪ P ′′ ∪ P trad, the set
of traces Tr Ad(ρp(G K ′ )), and hence a fortiori the set of traces Tr Ad(Γ ′

p), topologically generates the

subring A2
p := {a2 | a ∈ Ap}. Applying Theorem 3.17 to Γp ⊂ GL2(Ap) thus shows that Γ der

p = SL2(Ap).

Since Γ der
p ⊂ Γ

geom
p ⊂ SLn(Ap), the proposition follows in either case. �

5.3. Residual surjectivity at several primes

For any finite set P of primes p �= p0 of A, we let

�
geom
P � �P ⊂

∏
p∈P

(Dp/pDp)
×

denote the images of Ggeom
K � G K under the combined representation induced by ρp. Recall that

(Dp/pDp)× ∼= GLn(kp) and �
geom
p ⊂ SLn(kp) whenever p /∈ P0. Thus whenever P ∩ P0 =∅, we have

�
geom
P ⊂

∏
p∈P

SLn(kp).

Proposition 5.9. There exists a finite set P1 of primes of A containing P0 , such that for any finite set of primes
P of A satisfying P ∩ P1 = ∅, we have �

geom
P = ∏

p∈P SLn(kp).

Proof. Let P ′ be the finite set of primes p excluded by Proposition 5.7 or satisfying |kp| � 3. Let P trad

be the finite set of primes from Proposition 4.32, and set P1 := P ′ ∪ P trad. We claim that the assertion
holds whenever P ∩ P1 = ∅.

For any p ∈ P abbreviate PSL(n,kp) := SLn(kp)/Z(SLn(kp)). The assumption |kp| > 3 implies that
this is a non-abelian finite simple group and that SLn(kp) is perfect. Let

�
geom
P ⊂

∏
p∈P

PSL(n,kp)

denote the image of �
geom
P . Then it suffices to prove that this inclusion is an equality.

Assume otherwise. From Proposition 5.7 we know that �
geom
P surjects to all factors. Since these

factors are non-abelian simple groups, Goursat’s lemma implies that �
geom
P lies over the graph of

an isomorphism between two factors, say associated to distinct primes p1,p2 ∈ P . Then the situation
persists after replacing P by {p1,p2}; hence we may without loss of generality assume that P =
{p1,p2}.

The isomorphism PSL(n,kp1 )
∼−→ PSL(n,kp2 ) is induced by a field isomorphism σ : kp1

∼−→ kp2 and
a corresponding isomorphism of algebraic groups α : σ ∗ PGLr,kp1

∼−→ PGLr,kp2
(see [Pin00, Lemmas 9.4

and 9.5]). Since SLn(kp1 ) × SLn(kp2 ) is a central extension of PSL(n,kp1 ) × PSL(n,kp2 ), the derived
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group (�
geom
P )der of �

geom
P depends only on �

geom
P . It is therefore the graph of the isomorphism

SLn(kp1 )
∼−→ SLn(kp2 ) induced by the unique isomorphism α̃ : σ ∗ SLr,kp1

∼−→ SLr,kp2
lifting α.

The uniqueness of the model from Proposition 2.23 implies that the isomorphism α̃ depends only
on (�

geom
P )der. Thus its graph depends only on (�

geom
P )der. Since �P normalizes (�

geom
P )der by con-

struction, it thus also normalizes the graph of α̃. In other words, for every δ = (δ1, δ2) ∈ �P , the
following diagram commutes:

σ ∗ SLr,kp1

α̃

σ ∗ int(δ1)

SLr,kp2

int(δ2)

σ ∗ SLr,kp1

α̃
SLr,kp2

.

Taking traces and recalling that the trace on gln is the trace on sln plus 1, we deduce that
σ(Tr Ad(δ1)) = Tr Ad(δ2).

In particular, we can apply this when δ is the image of Frobx for any closed point x ∈ X .
Then Tr Ad(δi) = Tr Ad(ρpi (Frobx)) is the image of Ad(ρpi (Frobx)) in the residue field kpi , where
Ad(ρpi (Frobx)) ∈ Rtrad is independent of i. Thus Tr Ad(δ) = (Tr Ad(δ1),σ (Tr Ad(δ1))) is the image of
Ad(ρp1 (Frobx)) ∈ Rtrad in the product of the residue fields kp1 ×kp2 . Since the elements Ad(ρp1 (Frobx))

for all x generate the ring of trances Rtrad, it follows that the image of the reduction map Rtrad →
kp1 ×kp2 is contained in the graph of σ . But since P ∩ P trad = ∅, this contradicts Proposition 4.32 (b).

Therefore �
geom
P cannot be a proper subgroup, and we are finished. �

Lemma 5.10. There exists a finite set P2 of primes p �= p0 of A containing P0 , such that for every finite P ⊃ P2
and every p /∈ P , we have

�
geom
P∪{p} = �

geom
P × SLn(kp).

Proof. Let P1 be the finite set of primes excluded by Proposition 5.9. Let N be the maximum of the
orders of all Jordan–Hölder constituents of the finite group �

geom
P1

. Let P2 be the union of P1 with the
set of primes p for which |PSL(n,kp)| � N or |kp| � 9. We will prove the assertion whenever P ⊃ P2.

Consider the natural inclusion

�
geom
P∪{p} ⊂ �

geom
P1

× �
geom
P�P1

× SLn(kp).

By definition the image of �
geom
P∪{p} under the projection to the second and third factors is the subgroup

�
geom
(P�P1)∪{p} ⊂ �

geom
P�P1

× SLn(kp) ⊂
∏

p′∈P�P1

SLn(kp′) × SLn(kp).

These inclusions are equalities by Proposition 5.9. Therefore the projection homomorphism �
geom
P∪{p} →

�
geom
P�P1

× SLn(kp) is surjective. From this it follows that

E := �
geom
P∪{p} ∩ (

�
geom
P1

× {1} × SLn(kp)
)

surjects to SLn(kp). In particular PSL(n,kp) is a Jordan–Hölder factor of E . The assumption p /∈ P1
implies that the order of PSL(n,kp) is greater than the order of any Jordan–Hölder constituent of
�

geom
P . Thus PSL(n,kp) cannot be a Jordan–Hölder constituent of the image of E in �

geom
P . It must
1 1
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therefore be a Jordan–Hölder factor of �
geom
P∪{p} ∩({1}×{1}×SLn(kp)). Since SLn(kp) is perfect, it follows

that

{1} × {1} × SLn(kp) ⊂ E ⊂ �
geom
P∪{p}.

The short exact sequence

1 −→ {1} × {1} × SLn(kp) −→ �
geom
P∪{p} −→ �

geom
P −→ 1

and the 5-Lemma then show that �
geom
P∪{p} = �

geom
P × SLn(kp), as desired. �

5.4. Adelic openness

For any finite set P of primes p �= p0 of A, we let Γ
geom
P denote the image of the combined

homomorphism

(ρp)p∈P : Ggeom
K −→

∏
p∈P

D1
p.

Recall that D1
p

∼= SLn(Ap) whenever p /∈ P0.

Lemma 5.11. There exists a finite set P3 of primes p �= p0 of A containing P0 , such that for every finite P ⊃ P3
and every p /∈ P , we have

Γ
geom
P∪{p} = Γ

geom
P × SLn(Ap).

Proof. Let P ′ be the finite set of primes p excluded by Proposition 5.8 or satisfying |kp| � 9. Let P3
be the union of P ′ with the set of primes P2 from Lemma 5.10. We will prove the assertion whenever
P ⊃ P3.

For this we consider the commutative diagram

Γ
geom
P∪{p} ⊂ Γ

geom
P × SLn(Ap)

�
geom
P∪{p} ⊂ �

geom
P × SLn(kp).

The inclusion in the lower row is an equality by Lemma 5.10. Thus if H denotes the kernel of the
surjection Γ

geom
P � �

geom
P , it follows that Γ

geom
P∪{p} ∩ (H × SLn(Ap)) surjects to {1} × SLn(kp). But by

construction H is a pro-p-group, and SLn(kp) has no Jordan–Hölder factor of order p. Since all groups
in question are pro-finite, we deduce that

Γ ′
p := Γ

geom
P∪{p} ∩ ({1} × SLn(Ap)

)
also surjects to SLn(kp).

By construction Γ ′
p is a closed normal subgroup of Γ

geom
{p}∪P , and the conjugation action of Γ

geom
{p}∪P

on it factors through the projection Γ
geom
{p}∪P � Γ

geom
p ⊂ SLn(Ap). Since p /∈ P ′ , the last inclusion is an

equality by Proposition 5.8. Together this implies that Γ ′
p is normalized by SLn(Ap).
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Combining this with the assumption |kp| > 9 and the fact that Γ ′
p surjects to SLn(kp), Proposi-

tion 3.8 now implies that Γ ′
p = {1} × SLn(Ap). The short exact sequence

1 {1} × SLn(Ap) Γ
geom
P∪{p} Γ

geom
P 1

and the 5-Lemma then show that Γ
geom
P∪{p} = Γ

geom
P × SLn(Ap), as desired. �

Proof of Theorem 1.2 (a). Let P3 be as in Lemma 5.11. Then induction on P shows that for every
finite P ⊃ P3, we have

Γ
geom
P = Γ

geom
P3

×
∏

p∈P�P3

SLn(Ap).

In the limit this implies that

ρad
(
Ggeom

K

) = Γ
geom
P3

×
∏
p/∈P3

SLn(Ap).

But Γ
geom
P3

has finite index in
∏

p∈P3
D1
p by Theorem 4.28. Therefore ρad(Ggeom

K ) has finite index in∏
p�=p0

D1
p, as desired. �

5.5. Absolute Galois group

Proof of Theorem 1.2 (b). Recall that R := EndK (ϕ) = EndK sep (ϕ) by Assumption 4.24 (a), and that
Dp was defined as the commutant of Rp := R ⊗A Ap in EndAp

(Tp(ϕ)). Thus ρad(G K ) is contained in∏
p�=p0

D×
p . We will look at its image under the determinant map.

Let F ′ be a maximal commutative F -subalgebra of R ⊗A F , let A′ denote the integral closure of A
in F ′ , and choose a Drinfeld A′-module ϕ′ : A′ → K {τ } and an isogeny f : ϕ → ϕ′|A, as in Subsec-
tion 4.3. The characteristic of ϕ′ is then a prime p′

0 of A′ that divides p0. By Anderson [And86, §4.2],
there exists a Drinfeld A′-module ψ ′ : A′ → K {τ } of rank 1 and characteristic p′

0 whose adelic Galois
representation is isomorphic to the determinant of the adelic Galois representation associated to ϕ′ .
With Proposition 4.9 it follows that the composite homomorphism

detρad : G K
ρad ∏

p�=p0
D×
p

det ∏
p�=p0

A×
p

∏
p′�p0

A′×
p′

describes the Galois representation on the Tate modules
∏

p′�p0
Tp′ (ψ ′).

Without loss of generality we may assume that ψ ′ is defined over the finite field κ . Let m denote
the degree of κ over Fp . Then Frobκ = τm lies in the center of κ{τ }. In particular it commutes with
ψ ′

a′ for all a′ ∈ A′ and is therefore an endomorphism of ψ ′ . As ψ ′ has rank 1, its endomorphism ring
is equal to A′; hence Frobκ represents an element a′ ∈ A′ . The action of Frobκ as an element of the
Galois group Gκ on all Tate modules of ψ ′ is then just multiplication by a′ . Since a′ is the single
eigenvalue of Frobκ associated to ψ ′ , Proposition 4.16 implies that a′ is divisible by p′

0 but not by any
other prime of A′ .

For every element σ ∈ G K whose restriction to κ is Frobκ we thus have detρad(σ ) = a′ diagonally
embedded into

∏
p′�p0

A′×
p′ . But it also lies in the subgroup

∏
p�=p0

A×
p , whose intersection with the

diagonally embedded A′ is A. Thus a′ is actually an element of A, divisible by p0 but not by any other
prime of A. Moreover, we have detρad(G K ) = 〈a′〉, the pro-cyclic subgroup topologically generated
by a′ .



1620 A. Devic, R. Pink / Journal of Number Theory 132 (2012) 1583–1625
Now both a′ and the a0 in Theorem 1.2 are elements of A that are divisible by p0 but not by
any other prime of A. Thus the corresponding ideals are (a′) = pi

0 and (a0) = p
j
0 for some positive

integers i and j. Together it follows that (a′ j) = p
i j
0 = (ai

0), and so a′ j/ai
0 is a unit in A× . As the group

of units is finite, we deduce that a′ j
 = ai

0 for some positive integer 
. Thus the subgroup 〈a′〉 is

commensurable to 〈a0〉.
On adjoining to K a suitable finite extension of the constant field κ we can replace a′ by any

positive integral power. We can therefore reduce ourselves to the case that 〈a′〉 ⊂ 〈an
0〉 with n as in

Assumption 4.24 (c). Then det(a0) = an
0, and from this we see that the middle row in the follow-

ing commutative diagram is exact and the upper right rectangle is cartesian. This together with the
inclusion 〈a′〉 ⊂ 〈an

0〉 yields the inclusions in the lower half of the diagram:

1
∏

p�=p0
D1
p

∏
p�=p0

D×
p

det ∏
p�=p0

A×
p

‖ ∪ ∪
1

∏
p�=p0

D1
p 〈a0〉 · ∏p�=p0

D1
p 〈an

0〉 1

∪ ∪ ∪
1 ρad(G K ) ∩ ∏

p�=p0
D1
p ρad(G K ) 〈a′〉 1.

Theorem 1.2 (a) implies that the inclusion at the lower left is of finite index. By the above the same
is true for the inclusion at the lower right. Since the bottom row is also exact, it follows that the
inclusion at the lower middle is also of finite index. This shows that ρad(G K ) is commensurable to
〈a0〉 · ∏p�=p0

D1
p, finishing the proof of Theorem 1.2 (b). �

6. Arbitrary endomorphism ring

As in Section 1, we let K be a field that is finitely generated over a finite field κ and let ϕ :
A → K {τ } be a Drinfeld A-module of rank r over K of special characteristic p0. We keep the relevant
notations of Section 1, but do not impose any other restrictions. Set R := EndK sep (ϕ) and F := Quot(A).
Then R ⊗A F is a division algebra of finite dimension over F . Let Z denote its center and write

dimZ (R ⊗A F ) = d2 and [Z/F ] = e.

Then de divides r by Proposition 4.7.

6.1. The isotrivial case

Definition 6.1. We call ϕ isotrivial if over some field extension it is isomorphic to a Drinfeld A-module
defined over a finite field.

Clearly this property is invariant under extending K .

Proposition 6.2.

(a) ϕ is isotrivial if and only if it is isomorphic over K sep to a Drinfeld A-module defined over a finite subfield
of K sep .

(b) Let ϕ′ be another Drinfeld A-module over K that is isogenous to ϕ . Then ϕ is isotrivial if and only if ϕ′ is
isotrivial.

(c) Let B be any integrally closed infinite subring of A. Then ϕ is isotrivial if and only if ϕ|B is isotrivial.
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Proof. In (a) the ‘if’ part is obvious. For the ‘only if’ part assume that L is a field extension of K such
that ϕ is isomorphic over L to a Drinfeld A-module ψ defined over a finite subfield 
 ⊂ L. By the
definition of isomorphisms there is then an element u ∈ L× such that ϕa = u ◦ ψa ◦ u−1 in L{τ } for
all a ∈ A. Choose a prime p �= p0 of A and, after replacing L by a finite extension, a non-zero torsion
point t ∈ ϕ[p](L). Then t is separably algebraic over K . On the other hand ut is a non-zero torsion
point of ψ and therefore algebraic over 
. Since 
 is finite, ut is actually separable over 
. Thus the
subfiend K
(u, ut) ⊂ L is separably algebraic over K and can therefore be embedded into K sep. Then
u = ut/t defines an isomorphism ϕ ∼= ψ over K sep, as desired.

In (b) by symmetry it suffices to prove the ‘if’ part. So assume that L is a field extension of K such
that ϕ is isomorphic over L to a Drinfeld A-module ψ defined over a finite subfield 
 ⊂ L. Then ϕ′
is isogenous to ψ over L. By the definition of isogenies this means that there is a non-zero element
f ∈ L{τ } such that ϕ′

a ◦ f = f ◦ ψa for all a ∈ A. Its scheme theoretic kernel ker( f ) is then a finite
subgroup scheme of Ga,L that is mapped to itself under ψa for all a ∈ A. Its identity component is
a finite infinitesimal subgroup scheme of Ga,L and therefore the kernel of some power of τ . On the
other hand all its geometric points are torsion points of ψ and therefore algebraic over 
. Together
it follows that ker( f ) is defined over some finite extension 
′ ⊂ L of 
 and is therefore the kernel
of some non-zero element g ∈ L{τ }. Since ker( f ) = ker(g), it now follows that f = u ◦ g for some
element u ∈ L× . Consider the Drinfeld A-module ψ ′ : A → L{τ } defined by ψ ′

a := u−1 ◦ ϕ′
a ◦ u. Then

the relation ϕ′
a ◦ f = f ◦ψa implies that ψ ′

a ◦ g = g ◦ψa for all a ∈ A. Since g and ψa have coefficients
in 
′ , this relation implies that ψ ′

a also has coefficients in 
′ . In other words ψ ′ is really defined
over 
′ , and since ϕ′ ∼= ψ ′ , it follows that ϕ′ is isotrivial, as desired.

In (c) the ‘only if’ part is obvious. For the ‘if’ part assume that L is a field extension of K such
that ϕ|B is isomorphic over L to a Drinfeld B-module ψ ′ defined over a finite subfield 
 ⊂ L. By the
definition of isomorphisms there is then an element u ∈ L× such that ϕb = u ◦ψ ′

b ◦ u−1 in L{τ } for all
b ∈ B . Consider the Drinfeld A-module ψ : A → L{τ } defined by ψa := u−1 ◦ ϕa ◦ u. By construction it
satisfies ψ |B = ψ ′; hence it defines an embedding B ↪→ EndL(ψ

′). Thus by Proposition 4.1 applied to
ψ ′ over 
 the coefficients of ψa for all a ∈ A lie in some fixed finite extension 
′ of 
. This means that
ψ is really defined over 
′ , and since ϕ ∼= ψ , it follows that ϕ is isotrivial, as desired. �
Proposition 6.3. The following assertions are equivalent:

(a) ϕ is isotrivial.
(b) ρad(Ggeom

K ) is finite.

(c) ρp(Ggeom
K ) is finite for every prime p �= p0 of A.

(d) ρp(Ggeom
K ) is finite for some prime p �= p0 of A.

(e) de = r.

Proof. (Compare [Pin06b, Proposition 2.2].) The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are obvious. For
the rest of the proof we may assume that EndK (ϕ) = R after replacing K by a finite extension, using
Proposition 4.1. Let F ′ be a maximal commutative F -subalgebra of R ⊗A F , let A′ denote the integral
closure of A in F ′ , and choose a Drinfeld A′-module ϕ′ : A′ → K {τ } and an isogeny f : ϕ → ϕ′|A, as
in the proof of Proposition 4.7. Then ϕ′ has rank r/de and endomorphism ring EndK (ϕ′) = A′ .

If (d) holds, there exist a prime p �= p0 of A and a finite extension K ′ ⊂ K sep of K such
that ρp(Ggeom

K ′ ) is trivial and hence ρp(G K ′ ) is abelian. After replacing K by K ′ we may there-
fore assume that ρp(G K ) is abelian. Moreover, as in (4.8) we have a G K -equivariant isomorphism
Vp(ϕ) ∼= Vp(ϕ

′|A) ∼= ∏
p′|p Vp′(ϕ′). Thus for any prime p′|p, the image ρp′(G K ) of the Galois represen-

tation ρp′ on Vp′(ϕ′) is abelian, and so the subring F ′
p′ [ρp′(G K )] of EndF ′

p′ (Vp′ (ϕ′)) is commutative.
By the semisimplicity and Tate conjectures for Drinfeld modules (see [Tag95,Tam94a,Tam94b,Tam95])
this subring is the commutant of EndK (ϕ′) ⊗A′ F ′

p′ . But as EndK (ϕ′) = A′ , this commutant is equal
to EndF ′

p′ (Vp′ (ϕ′)). It is therefore commutative if and only if r/de = dimF ′
p′ (Vp′ (ϕ′)) � 1. Thus (d)

implies (e).
If (e) holds, then ϕ′ is a Drinfeld A′-module of rank 1 and of special characteristic. Since the mod-

uli stack of Drinfeld A′-modules of rank 1 is finite over Spec A′ , the Drinfeld module ϕ′ is isomorphic
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to one defined over a finite field, i.e., isotrivial. By Proposition 6.2 the same then also follows for ϕ′|A
and for ϕ . Thus (e) implies (a), and we are done. �

To determine the images of Galois up to commensurability for an isotrivial Drinfeld module we
may reduce ourselves to the case of a Drinfeld module defined over a finite field. In that case the
situation is as follows:

Proposition 6.4. Suppose that ϕ is defined over a finite field κ . Let C denote the center of Endκ (ϕ) and C ′ the
normalization of C . Then there exists an element c0 ∈ C with the properties:

(a) c0 generates a positive power of a unique prime p′
0 of C ′ above p0 .

(b) ρad(Frobκ ) coincides with the action of c0 on
∏

p�=p0
Tp(ϕ).

(c) ρad(Gκ ) = 〈c0〉, the pro-cyclic subgroup topologically generated by c0 .

Proof. Let m denote the degree of κ over Fp . Then Frobκ = τm lies in the center of κ{τ }. In particular
it commutes with ϕa for all a ∈ A and is therefore an endomorphism of ϕ , and more specifically it
lies in the center C of Endκ (ϕ). As such let us denote it by c0. The action of Frobκ as an element
of the Galois group Gκ on all Tate modules of ϕ is then the same as that obtained from the natural
action of c0 as an endomorphism. This directly implies (b) and (c).

For (a) we apply Proposition 4.3 to S := C and S ′ := C ′ , obtaining a Drinfeld C ′-module ϕ′ : C ′ →
κ{τ } and an isogeny f : ϕ → ϕ′|A. The characteristic of ϕ′ is then a prime p′

0 of C ′ above p0. Also,
the endomorphism Frobκ of ϕ′ still corresponds to the same element c0 ∈ C . Since c0 acts as a scalar
on the Tate modules of ϕ′ , it constitutes the single eigenvalue of Frobκ . Thus Proposition 4.16 implies
that c0 is divisible by p′

0 but not by any other prime of C ′ . This shows (a), and we are done. �
6.2. The non-isotrivial case

To determine the images of Galois in the general non-isotrivial case, we will use some reduction
steps which end in the situation of Theorem 1.2. Recall that Theorem 1.2 involves two conditions,
namely that A is the center of R := EndK sep (ϕ) and that the endomorphism ring does not grow under
restriction of A. We will achieve the first condition by enlarging A, and then the second condition
by shrinking A again until the endomorphism ring stops growing. That this process terminates is a
non-trivial fact from [Pin06b].

To enlarge A we first choose a finite extension K ′ ⊂ K sep of K such that R = EndK ′ (ϕ). Recall that
Z denotes the center of R ⊗A F ; hence C := Z ∩ R is the center of R . Let C ′ denote the normaliza-
tion of C . Applying Proposition 4.3 to S := C and S ′ := C ′ over K ′ , we obtain a Drinfeld C ′-module
ϕ′ : C ′ → K ′{τ } and an isogeny f : ϕ → ϕ′|A over K ′ . The characteristic of ϕ′ is then a prime p′

0
of C ′ above p0. Since R ⊗A F ∼= EndK sep (ϕ′) ⊗A F , the construction implies that C ′ is the center of
EndK sep (ϕ′). Also, the isogeny f induces a G K ′ -equivariant inclusion of finite index

∏
p�=p0

Tp(ϕ) ↪→
∏
p�=p0

Tp

(
ϕ′∣∣A

)
. (6.5)

Next we restrict ϕ′ to suitable subrings B of C ′ . By Theorem 6.2 of [Pin06b] there is a canonical
choice for which the endomorphism ring of ϕ′|B is maximal:

Proposition 6.6. If ϕ is not isotrivial, there exists a unique integrally closed infinite subring B of C ′ with the
following properties:

(a) The center of EndK sep (ϕ′|B) is B.
(b) For every integrally closed infinite subring B ′ of C ′ we have EndK sep (ϕ′|B ′) ⊂ EndK sep (ϕ′|B).
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With B as in Proposition 6.6 we abbreviate ψ := ϕ′|B and S := EndK sep (ψ). The characteristic of ψ

is q0 := B ∩ p′
0 and hence a maximal ideal of B . By Proposition 3.5 of [Pin06b] we have:

Proposition 6.7. The prime p′
0 is the unique prime of C ′ above q0 .

Let P ′
0 denote the finite set of primes of C ′ lying above p0; then in particular p′

0 ∈ P ′
0. Let Q 0

denote the finite set of primes q of B such that all primes of C ′ above q lie in P ′
0. Then Propo-

sition 6.7 implies that q0 ∈ Q 0. Combining the natural isomorphisms Tq(ψ) ∼= ∏
p′|q Tp′ (ϕ′) for all

primes q /∈ Q 0 of B and the natural isomorphisms Tp(ϕ′|A) ∼= ∏
p′|p Tp′ (ϕ′) for all primes p �= p0

of A, we obtain a natural G K ′ -equivariant surjection

∏
q/∈Q 0

Tq(ψ) ∼=
∏
q/∈Q 0

∏
p′|q

Tp′
(
ϕ′) �

∏
p′ /∈P ′

0

Tp′
(
ϕ′) ∼=

∏
p�=p0

Tp

(
ϕ′∣∣A

)
. (6.8)

For every prime q /∈ Q 0 of B let Dq denote the commutant of S ⊗B Bq in EndBq
(Tq(ψ)). As in

Proposition 4.9 (a) this is an order in a central simple algebra over the quotient field of Bq. The
product of these rings acts on the left hand side in (6.8).

Lemma 6.9. The kernel of the surjection (6.8) is a
∏

q/∈Q 0
Dq-submodule, and the induced action of

∏
q/∈Q 0

Dq

on the quotient
∏

p�=p0
Tp(ϕ′|A) is faithful.

Proof. For every prime q /∈ Q 0 of B , the isomorphism Tq(ψ) ∼= ∏
p′|q Tp′ (ϕ′) is the isotypic decom-

position of Tq(ψ) under C ′ ⊗B Bq. Since C ′ is contained in S , the definition of Dq shows that the
actions of C ′ ⊗B Bq and Dq commute; hence the decomposition is Dq-invariant. As the kernel of the
surjection (6.8) is a product of certain factors Tp′ (ϕ′), this implies the first assertion of the lemma.
For the second note that, by the construction of Q 0, for every prime q /∈ Q 0 of B there exists a prime
p′ /∈ P ′

0 of C ′ with p′|q. Then Tp′ (ϕ′) is a non-trivial module over Dq , and it remains so after tensoring
with the quotient field of Bq; hence Dq acts faithfully on it. Taking the product over all q /∈ Q 0 proves
the second assertion. �

Let D denote the stabilizer in
∏

q/∈Q 0
Dq of the image of the homomorphism (6.5). By construction

this is a closed subring of finite index, and Lemma 6.9 implies that D acts faithfully on
∏

p�=p0
Tp(ϕ).

For each q /∈ Q 0 let D1
q denote the multiplicative group of elements of Dq of reduced norm 1. Then

D1 :=D× ∩ ∏
q/∈Q 0

D1
q is a closed subgroup of finite index of

∏
q/∈Q 0

D1
q. We can identify D× and D1

with closed subgroups of
∏

p�=p0
AutAp

(Tp(ϕ)).
Finally let c0 be any element of C ′ that generates a positive power of p′

0. Let c′ ⊂ C ′ be the an-
nihilator ideal of the cokernel of the inclusion (6.5). Then c′ �⊂ p′

0; hence it is relatively prime to c0.
Thus after replacing c0 by some positive power we may assume that c0 ≡ 1 modulo c′ . Then mul-
tiplication by c0 is an automorphism of

∏
p�=p0

Tp(ϕ′|A) that maps the image of (6.5) to itself. We
can thus view it as an element of

∏
p�=p0

AutAp
(Tp(ϕ)). Let 〈c0〉 denote the pro-cyclic subgroup of∏

p�=p0
AutAp

(Tp(ϕ)) that is topologically generated by it. Since c0 ∈ C ′ ⊂ S , this subgroup commutes

with the action of D and hence with D1.

Theorem 6.10. Let ϕ be a non-isotrivial Drinfeld A-module over a finitely generated field K of special charac-
teristic p0 . Let D1 and 〈c0〉 denote the subgroups of

∏
p�=p0

AutAp
(Tp(ϕ)) defined above. Then

(a) ρad(Ggeom
K ) is commensurable to D1 , and

(b) ρad(G K ) is commensurable to 〈c0〉 ·D1 .

Proof. By Proposition 6.6 the assumptions of Theorem 1.2 are satisfied for the Drinfeld B-module
ψ over K ′ . Let ρ

ψ

ad : G K ′ → ∏
q/∈Q D×

q denote the homomorphism describing the action of G K ′ on

0
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∏
q/∈Q 0

Tq(ψ), and let b0 be any element of B that is divisible by q0 but not by any other prime

of B . Then Theorem 1.2 implies that ρ
ψ

ad(Ggeom
K ′ ) is commensurable to

∏
q/∈Q 0

D1
q and ρ

ψ

ad(G K ′ ) is

commensurable to 〈b0〉 · ∏q/∈Q 0
D1
q.

Viewing b0 as an element of C ′ , Proposition 6.7 implies that b0 is divisible by p′
0 but not by

any other prime of C ′ . The same argument as in Section 5.5 for a′ and a0 shows here that some
positive power of b0 is equal to some positive power of c0. Thus ρ

ψ

ad(G K ′ ) is commensurable to
〈c0〉 · ∏q/∈Q 0

D1
q.

By (6.8) and Lemma 6.9 the group G K ′ acts on
∏

p�=p0
Tp(ϕ′|A) through the composite of ρ

ψ

ad with

the faithful action of
∏

q/∈Q 0
Dq. Combining this with (6.5) and the construction of D1 we deduce

that ρad(Ggeom
K ′ ) is commensurable to D1 and ρad(G K ′ ) is commensurable to 〈c0〉 · D1. Since K ′ is a

finite extension of K , the same then follows with K in place of K ′ , as desired. �
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