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The structure and classification up to isomorphism of all local rings of order p5

are given here. This completes the determination of all rings of this order, which
was begun in the companion to this paper. � 2000 Academic Press
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INTRODUCTION

� �The present paper is a sequel to 1 and concludes our determination of
all rings of order p5, where p is prime. In Part I we classified all except the
local rings, and it is to the latter case that we now address ourselves.

Throughout R will denote a local ring of order p5 having prime subring
A, Jacobson radical J, and residue field R�J � F r. The notations intro-p

� �duced in Section 2 of 1 will remain in force. In particular K denotes F ,p
� m � 0 � 4� is a set of coset representatives of K in K , � � � � 0 , and dm m m i

is the dimension of J i�J i�1 over R�J. As in the lower orders, we shall use
the decimal numbering k.d .d to distinguish the cases, pk being the1 2
characteristic of R, suppressing the d when they are irrelevant. In whati
follows we shall make frequent use of the preliminary results obtained in
� � 51 . Recall in particular that, with the single exception of R � F , we havep

� � 4r � 1, so that R�J � K and J � p . For convenience we divide our
account into sections, one for each of the characteristics p, . . . , p5.
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1. CHARACTERISTIC p

In this case A � K � F . The rings are as follows.p

1.0. F 5.p

� � Ž 5. � �1.1. K X � X 1, Lemma 2.2 .

1.2.1. Choose x, y, z, t � J such that J � Kx 	 Ky 	 J 2, J 2 � Kz 	
J 3, and J 3 � Kt. Then x 2 � � z � � t, xy � � z � � t, yx � � z � � t,1 2 1 2 1 2

y2 � � z � � t, with coefficients in K. Now J 3 � Jz � Kxz � Kyz, so we1 2
may assume that Kyz 
 Kxz, say yz � � xz. Replacing y by y � � x allows
us to assume that yz � 0, and, multiplying x by a scalar, we may take
xz � t. Similarly J 3 � Kzx � Kzy, and so zx, zy are not both zero. If

Ž . Ž . Ž .a, b, c � R, write A abc for the associativity condition ab c � a bc .
Ž 2 . Ž . Ž 2 .From A yx and A yxy we derive � � 0. In the same way A y x ,1

Ž 3. Ž . Ž 2 .A y lead to � � 0, and A xyx , A xy to � � 0. Then � � 0, else1 1 1
2 3 Ž 3. Ž 2 .J � J . Now A x , A x y give zx � t, zy � 0. Replacing y by y � � z2

and z by z � � ��1 t allows us to assume that � � � � 0. If we now2 1 2 2
replace z, t by � z, � t, the multiplication in J is given by the table1 1

x y z t

x z 0 t 0
y � t � t 0 0
z t 0 0 0
t 0 0 0 0

where we have written � � � , � � � . One checks, conversely, that such a2 2
Ž .table does indeed define a ring R with basis 1, x, y, z, t , and in particular

Ž .that associativity holds. Moreover the ideal J spanned by x, y, z, t is such
that J 4 � 0, whence J 
 rad R, and it follows that R is a local ring of the
type under discussion, with radical J. If � , � are both non-zero, replace
x, y, z, t by � 2��1 x, � 3��2 y, � 4��2 z, � 6��3 t, respectively, and then � � � �
1. If � � 0, � � 0, replace y by ��1 y, so that � � 1. If � � 0, � � 0,
replace x, y, z, t by � x, � y, � 2 z, � 3 t, and then � � 1. In summary, there are

Ž . Ž .4 rings in this case, gi�en by the table abo�e with: i � � � � 1; ii
Ž . Ž .� � 1, � � 0; iii � � 0, � � 1, and iv � � � � 0.

These are not isomorphic. The first two are not commutative, whereas
Ž . � � Ž 4 2 3. Ž .the last two are. Indeed, iii is K X, Y � X , XY, Y � X and iv is

� � Ž 4 2 .K X, Y � X , XY, Y . Moreover from the table one calculates that the
Ž . Ž . Ž .right annihilator Ann J � Kt � � 0 , Ky 	 Kt � � 0 . The dimensionr

of this distinguishes the other cases.
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1.2.2. Choose x , x , y , y � J such that J � Kx 	 Kx 	 J 2, J 2 �1 2 1 2 1 2
Ž .Ky 	 Ky . Then x x � � y � � y � , � � K and these four prod-1 2 i j i j 1 i j 2 i j i j

2 Ž .ucts span J . The ring structure is determined by the pair of 2 � 2
Ž . Ž .matrices M � � , N � � , which are linearly independent over K.i j i j

Conversely, any pair of independent matrices defines such a ring by letting
Ž .R have basis 1, x , x , y , y and defining x x as above and all other1 2 1 2 i j

products of the x and y to be zero. Then the ideal J spanned byi j

Ž . 3x , x , y , y is such that J � 0, and again it follows that R is local, with1 2 1 2

radical J. The independence of M, N implies that J 2 � Ky 	 Ky .1 2

Ž � � � � . � �If x , x , y , y is a new basis of J with corresponding matrices M , N ,1 2 1 2
� Ž 2 . Ž .then we may write x � p x � p x � z z � J , so that P � p isi 1 i 1 2 i 2 i i i j

� �2Ž . Ž .the transition matrix from the basis x , x of J�J to the basis x , x .1 2 1 2
Ž . Ž . 2Equally, let Q � q be the transition matrix from the basis y , y of Ji j 1 2

Ž � � . 3 � �to y , y . Since J � 0, calculating x x and comparing coefficients of y1 2 i j i

leads to equations which, in matrix form, are

P tMP � q M � � q N �
11 12

� �t½ P NP � q M � q N .21 22

Evidently, the problem of classifying our rings up to isomorphism
amounts to that of classifying pairs of linearly independent matrices
Ž .M, N under the above relation of equi�alence, P and Q being arbitrary
invertible matrices. This linear algebra problem has been solved over any

� �field K in 2, 3 and we extract the results, where K � F . If p � 2, let �p
Ž . Žbe a fixed non-square of K. If � � 1 resp. � , then for each 	 � K resp.

� . Ž . 2 2K choose a non-zero solution � , � of the equation � � �� � 	 , and
let 
 be the set of these. Then, the isomorphism classes of rings are gi�en�

by the pairs of matrices

Ž .i p � 2,

1 1 1 11, � � 0, 1, � ; � � �1 , ,Ž .ž /ž / ž / ž /�� �1 0 1

1 � � 1 � �1 1 ��, � � K , ,Ž .ž / ž /ž / ž /0 1 � � �� � 1 � �

� � 1, � ; � , � � 
 .Ž .Ž .�
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Hence there are 3 p � 5 distinct rings in this case, with 3 commutati�e.
Ž .ii p � 2,

1 1 1 1 1 0, , , , , ,ž / ž / ž / ž / ž / ž /0 1 0 0 0 1

1 0 1 1 1 1 1 1, , , , , ,ž / ž / ž / ž / ž / ž /0 1 � 1 1 � 1

� 1 1, � � 0, 1 .Ž .ž / ž /0 1 1

There are 10 such rings, 3 being commutati�e.
2 2 Ž1.3. Let J � Kx 	 Kx 	 Kx 	 J , J � Ky. Then x x � � y �1 2 3 i j i j i j

. 2� K and these nine products span J . The ring structure is determined
Ž . Ž .by the 3 � 3 matrix M � � , which is non-zero, and any non-zeroi j

Ž � � � �.matrix defines such a ring. If x , x , x , y is a new basis of J with1 2 3
corresponding matrix M �, then as above we have x� � Ý p x � r y andi j ji j i

y� � qy. Calculating x� x� and comparing coefficients leads to the matrixi j
condition P tMP � qM �, where P is invertible and q � 0. If M, M � are so
related, we call them projecti�ely congruent. This reduces to ordinary
congruence when q � 1. The rings in the present case are evidently
classified by the non-zero matrix M up to projective congruence. This

� �matrix classification problem has been dealt with in 4, 5 . If, as before, �
Ž .denotes a non-square in K p odd , the results are that the isomorphism

classes of rings are gi�en by the matrices

Ž .i p � 2,

�1 1 1 1
, , , , ,0 1 � 1 1ž / ž / ž / ž / 	 00 0 0 1 �1

� � 0 1�
, , , where � � 0, 1 and � � K .1 21 1 1ž /	 0 	 01� 1

There are 2 p � 9 such rings, with 4 commutati�e.
Ž .ii p � 2,

�1 1 1 0
, , , , ,0 1 1 1 1 1ž / ž / ž / ž / 	 00 0 1 1 �

� 0 1 1 0 1
, , where � � 0, 1 and � � 0, 1.11 ž /	 0 1 11

There are 11 such rings, with 4 commutati�e.
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Ž .1.4. Choose a basis x, y, z, t of J. All products of these are zero
� � Ž .2and we obtain just one commutati�e ring: R � K X, Y, Z, T � X, Y, Z, T .

This completes the classification in characteristic p.

2. CHARACTERISTIC p2

Throughout this section the prime ring A � Z 2 . We go through thep
cases again:

2 � �2.1. Choose x � J � J , so that R � A x and the other conclusions
� � 2 3of 1, Lemma 2.2 hold, in particular p � J . In fact p � J , for otherwise

J 2 � Rp � J 3 and squaring gives the contradiction J 4 � 0. We split into
two subcases, according to whether p belongs to J 4 or not.

2.1.a. p � J 4. Then px � 0 and x 4 � ap, where a belongs to A� ,
� � Ž 4 .the group of units of A. It follows that R � A X � pX, X � ap . As for

existence, one checks easily that the latter ring is indeed local of order p5

and of the type under consideration. To classify these up to isomorphism,
� � � � � 4 � �suppose also that R � A x , with px � 0, x � a p. Then x � bx � y

Ž � 2 . � 4 4 4 � 4 � 4b � A , y � J , and so x � b x . Thus a p � b ap, whence a � b a
Ž . �mod p . If, conversely, this last condition holds, replace x by x � bx, and

� 4 � 4 � �then x � a p. This is similar to Case 2.1.1.a in order p 1 , and our rings
are classified by a � � , or more precisely by the image of a under the4

epimorphism A� � K� � K��K � 4, the first map being reduction mod p.
� � Ž 4 .To summarize, the distinct rings are gi�en by R � A X � pX, X � ap ,

Ž .with a � � . The number of rings is 4, 2, or 1 according to whether p � 1 4 ,4
Ž .p � 3 4 , or p � 2.

2.1.b. p � J 4. Here there is a parallel with Case 2.1.1.b in order
p4. We have J 3 � Ap 	 J 4, J � Ax � J 2, and multiplying gives J 4 � Apx,

3 3 Ž . �so that J � Ap 	 Apx. Let x � ap � bpx a, b � A . Then a � A , else
x 4 � bpx2 � 0. If p � 3, we may replace x by x � bx2�3a and so assume

� � Ž 2 3 .that b � 0. Hence R � A X � pX , X � ap , where once again one
checks without difficulty that the latter ring really does have the right

� � � � 2properties. To classify these, suppose also that R � A x , with px � 0,
� 3 � � Ž � 2 . � 3 3 3 2 2x � a p. Then x � cx � y c � A , y � J , and so x � c x � 3c x y.

But x� 3 � c3 x 3 � Ap, 3c2 x 2 y � J 4 and the sum in J 3 is direct. So in fact
x� 3 � c3 x 3. As above, our rings are classified by a � � . If p � 3, then3

Ž .a � �1 3 , and replacing x by ax allows us to assume that a � 1, so that
x 3 � 3 � 3bx. If, as before, x� � cx � y is a new generator, with x� 3 � 3 �
3b� x�, then x� 3 � c3 x 3 � cx 3. But 3 � J 3, so that 3 y � 0 and 3 � 3b�cx �

3 � Ž .3c � 3bcx. Since the sum in J is direct, it follows that b � b 3 . We have
� � Ž 2 3 .proved that for p � 3 the rings are gi�en by R � A X � pX , X � ap ,

Ž .a � � . The number of rings is 3 or 1 according to whether p � 1 3 or not.3
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� � Ž 2 3 .For p � 3 there are 3 rings: R � A X � 3 X , X � 3 � 3bX with b �
0, � 1.

2.2. We observe first that pJ 2 � 0. If not, then pxy � 0 for some
x, y � J, and so J 2 � Axy. Then px has order p in J 2, so that px � apxy.
This gives the contradiction pxy � apxy2 � 0, since J 4 � 0. We now split
into five subcases, in the first three of which p � J 2 and we consider the
possibilities for the chain J 2 � J 3 � pJ � 0.

2.2.a. p � J 2, J 3 � 0. Since pJ � 0 we may regard J as a K-alge-
Ž .bra without identity and choose x , x , y � J such that J � Kx 	 Kx 	1 2 1 2

J 2, J 2 � Ky 	 Kp. For � � K, one must be careful not to confuse � p in A
Žwith p� � 0 in K. As in Case 1.2.2 we have x x � � y � � p � , � �i j i j i j i j i j

. 2K and these products span J . Note also a parallel with Case 2.2.a in
4 Ž . Ž .order p . The matrices M � � , N � � are linearly independent,i j i j

and one verifies as before that any such pair of matrices gives rise to a ring
of the present type. If we change to new generators x� , x� , y� with1 2

� � � Ž 2 .corresponding matrices M , N , then x � p x � p x � z z � J andi 1 i 1 2 i 2 i i
Ž . Ž . Ž .we put P � p . If Q � q is the transition matrix from the basis y, pi j i j

2 Ž � .of J to y , p , we obtain as before the conditions

P tMP � q M � � q N �
11 12

� �t½ P NP � q M � q N .21 22

Our problem now boils down to that of classifying pairs of matrices over
K under an equivalence relation similar to that of Case 1.2.2, but with the

�Ž .crucial difference that Q is restricted to be of the form , since here� 1

q � 0, q � 1. This linear algebra problem has a quite different solu-12 22
Ž .tion. The list of normal forms for the pairs M, N turns out to be rather

� �extensive and is given in full in 6 . For brevity we do not repeat it here,
but confine ourselves to stating the number of isomorphism classes. The
numbers of distinct rings of this type are gi�en as follows:

Ž . 2i p � 2. There are 2 p � 10 p � 15 rings, of which 10 are commu-
tati�e.

Ž .ii p � 2. There are 23 rings, of which 6 are commutati�e.

2.2.b. p � J 2, J 3 � 0, pJ � 0. Note first that p � J 3, for other-
wise J 2 � Ap � J 3 and then J 3 � pJ � 0. Once again we regard J as a
K-algebra and write J � Kx 	 Ky 	 J 2, J 2 � Kz 	 J 3 and J 3 � Kp. This is
similar to Case 1.2.1. The argument of the first paragraph there applies,
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and we may take the multiplication to be given by

x y z p

x � z 0 p 0
y � p � p 0 0
z p 0 0 0
p 0 0 0 0

where � � 0. We may not, of course, renormalize p this time to take
� � 1. Conversely, any such table gives rise to a ring of the present class.
Note that R is commutative if and only if � � 0, and that if R is not
commutative we may scale y and take � � 1. If x�, y�, z� are new genera-
tors with structure constants � �, � �, � �, we have x� � ax � cy � ez � u,
y� � bx � dy � fz � � , z� � gz � w with a, . . . , g � K and u, � , w � J 3.
Then x� z� � agxz and y� z� � bgxz, giving a � 0, b � 0 and hence d � 0,
else y� � J 2. Computing x� 2, x� y�, y� x� and y� 2 and comparing coefficients
leads to the equations

� � � a3� , � � � ad� , � � � d2� some a, d � 0 . 1Ž . Ž .

These conditions are also sufficient for the rings with structure con-
Ž . Ž � � �.stants � , � , � and � , � , � to be isomorphic, as follows by setting

� � � �1 Ž .x � ax, y � dy, z � a z. We now analyze the conditions 1 . If R is
commutative, so that � � � � � 0, then R is classified by the cube-class of

Ž � .� and the square-class of � . But if R is noncommutative � � � � 1 ,
Ž . � 3 � �2 Ž .then ad � 1 and 1 becomes � � a � , � � a � a � 0 . In particular, if

we fix � � � � � 0, then a � �1, and � � � �� . We have proved that the
distinct rings of this type are determined by the table abo�e.

For R commutative, we take � � 0, � � � , and � � �0.3 2
For R noncommutative, we take � � 1 and

either � � � , � � 03
�½ � 4or � � K � �1 , � � � .2

The numbers of rings are

Ž . Ž .p � 1 3 p � 1 3 , p odd p � 2

Commutati�e 9 3 2
Noncommutati�e p � 2 p 2

2.2.c. p � J 2, J 3 � pJ � 0. Here p � J 3, else pJ � 0. Thus J 2 �
3 � � 2Ap 	 J . By 1, Lemma 2.1 we have J � Ax � Ay � J , and we may

3 Ž .assume that px � 0. Then J � Apx and py � rpx r � A . Replacing y by
y � rx allows us to take py � 0. Hence R � A 	 Ax 	 Ay, J � Ap 	 Ax
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	 Ay, and J 2 � Ap 	 Apx. The argument is now rather similar to the
previous case. Let x 2 � � p � � px, xy � � p � � px, yx � � p �1 2 1 2 1
� px, y2 � � p � � px, where the coefficients may be taken in K. The2 1 2

Ž 2 . Ž 2 . Ž 2 .associativity conditions A x y , A yx , A xy give � � � � � � 0 and1 1 1
replacing y by y � � p allows us to assume that � � 0. We now consider2 2
the characteristic.

1Suppose that p � 2. Replace x by x � � p, and then � � 0. The2 22

multiplication in R is now determined by the table

x y p

x � p 0 px
y � px � px 0
p px 0 0

where we have dropped the remaining subscripts and � � 0. As usual, one
checks that any such table defines a ring of the present type. If x�, y� are
new generators with structure constants � �, � �, � �, write x� � ax � cy � ep,
y� � bx � dy � fp. Although this time px � 0, there is no harm in regard-
ing a, . . . , f as being in K, since the new multiplication table depends only
on their images mod p. From px� � apx, py� � bpx we deduce a � 0,
b � 0 and then d � 0, else y� � J 2. Computing x� 2, x� y�, y� x�, y� 2 and
comparing coefficients leads to the equations

� � � a2� , � � � d� , � � � a�1 d2� some a, d � 0 . 2Ž . Ž .

Again these conditions are also sufficient for the rings with structure
Ž . Ž � � �. � �constants � , � , � and � , � , � to be isomorphic: set x � ax, y � dy.

Ž .By choice of a, d we may take � , � to be 0 or 1 and it follows from 2 that
for p � 2 the distinct rings are gi�en by the table abo�e.

For R commutative, we take � � 0 and

either � � � , � � 02½ or � � � , � � 1.4

For R noncommutative, we take � � 1 and

either � � � , � � 02
�½ or � � K , � � 1.

The numbers of rings are

Ž . Ž .p � 1 4 p � 3 4

Commutati�e 6 4
Noncommutati�e p � 1 p � 1
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Now consider p � 2. Then � � 1 and the multiplication table has the1
form

x y 2

x 2 � � 2 x 0 2 x
y � 2 x � 2 x 0
2 2 x 0 0

Changing to x�, y� as before, we have here b � 0, a � d � 1 and we
obtain the equations

� � � � � c � � � , � � � � , � � � � . 3Ž . Ž .

� � Ž .Once more, setting x � x � cy, y � y � c� 2 shows 3 also to be
sufficient for isomorphism. If � � � , then � � � � . But if � � � , we may
then take � � 0. Thus for p � 2 the rings are gi�en by the pre�ious table,

Ž . Ž . Ž .where � , � , � is any triple of elements of K except for 1, 0, 1 and 1, 1, 0 .
There are 3 commutati�e rings and 3 noncommutati�e.

2 � �In the remaining cases we have p � J . As in 1, Lemma 2.1 we may
write J � Ap � Ax � J 2. Hence pJ � Apx, J 2 � Apx � Ax2 � J 3, and J 3

� Ax3. Thus J � Ap � Ax � Ax2 � Ax3, R � A � Ax � Ax2 � Ax3 �
� �A x , and R is commutative.

2.2.d. p � J 2, pJ � 0. There is clearly one such ring: R �
� � Ž 4.A X � pX, X .

2.2.e. p � J 2, pJ � 0. The order of R shows that x 2 � 0, and so
both x 2 and px have order p. Certainly Ax2 � Apx, else J 3 � Ax3 � Apx2

� 0 and then J 2 � Apx would have order p. Hence J 2 � Apx 	 Ax2 and
3 2 Ž . 4 3 2 2we may write x � apx � bx a, b � A . So 0 � x � bx � abpx � b x ,

and hence b2 x 2 � 0, the sum being direct. Thus p � b and x 3 � apx, and so
� � Ž 2 3 .R � A X � pX , X � apX , where as usual one verifies that this last

� Ž � 2 .ring has the right properties. If x � cx � dp � y c � A , d � A, y � J
� 3 � � � 2 Ž .is a new generator with x � a px , one deduces easily that a � c a p ,

and our rings are classified by a � �0. In summary, the rings are gi�en by2
� � Ž 2 3 . 0 Ž .R � A X � pX , X � apX with a � � . There are 3 rings p � 2 and 22

Ž .p � 2 .

We split Case 2.3 into three subcases:

2.3.a. p � J 2. Let J � Kx 	 Kx 	 Kx 	 J 2, J 2 � Kp, and put1 2 3
Ž .x x � � p � � K . Just as in Case 1.3 the ring structure is given by thei j i j i j

Ž .non-zero matrix M � � , but this time up to congruence, since noi j
2 � �change of basis in J is involved. From 4, 5 we thus have that the
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isomorphism classes of rings are gi�en by the matrices

Ž .i p � 2,

� � 1 1
, , , , ,0  1 1 11ž /ž / ž / 	 0 	 00 0 �1 �

� 0 1�
, , where � � 0, 1, � ;  � 1, � and � � K .1� 2�ž / 	 0� 1

There are 3 p � 15 such rings, with 6 commutati�e.
Ž .ii p � 2,

�1 1 1 0
, , , , ,0 1 1 1 1 1ž / ž / ž / ž / 	 00 0 1 1 �

� 0 1 1 0 1
, , where � � 0, 1 and � � 0, 1.11 ž /	 0 1 11

There are 11 such rings, with 4 commutati�e.
2.3.b. p � J 2, pJ � 0. Write J � Kp 	 Kx 	 Kx 	 J 2, J 2 � Ky,1 2

Ž .and let x x � � y � � K . There is some similarity this time with bothi j i j i j

Cases 2.2.a and 1.3. The ring structure is determined by the non-zero
Ž .matrix M � � , and any such matrix gives a ring of this type. As before,i j

the rings are classified by the projective congruence class of M, and we use
� �the representatives for these classes given in 7 . Thus, the distinct rings of

this type are gi�en by the matrices

11 1 1 1, 	 � � , , � � K .Ž . Ž .2ž / ž / ž /ž /	0 �1 �

Ž . Ž .The number of rings is p � 4 p � 2 , 5 p � 2 . In either case 3 are
commutati�e.

2.3.c. p � J 2, pJ � 0. This is very like Case 2.2.c and we have
R � A 	 Ax 	 Ay, J � Ap 	 Ax 	 Ay, J 2 � Apx, with py � 0. Write x 2

� � px, xy � � px, yx � � px, y2 � � px, with coefficients in K. As before,
we may take � � 0, and we now consider the characteristic.



LOCAL RINGS OF ORDER p5 701

1Let p � 2. Replace x by x � � p, and then � � 0. The multiplication2

table is

x y p

x 0 0 px
y � px � px 0
p px 0 0

The same discussion as before shows that the rings with structure
Ž . Ž � �.constants � , � and � , � are isomorphic if and only if

� � � d� , � � � a�1 d2� some a, d � 0 . 4Ž . Ž .
We may thus take � , � to be 0 or 1, and hence, for p � 2 the distinct rings

� 4are gi�en by the table abo�e, with � , � � 0, 1 . Two are commutati�e, two
not.

For p � 2 the table is

x y 2

x � 2 x 0 2 x
y � 2 x � 2 x 0
2 2 x 0 0

Ž .The conditions for isomorphism of two such rings are again given by 3
Ž .and thus, for p � 2 the rings are gi�en by the pre�ious table, where � , � , �

Ž . Ž .is any triple of elements of K except for 1, 0, 1 and 1, 1, 0 . There are 3
commutati�e rings and 3 noncommutati�e.

Ž .2.4. Choose a basis p, x, y, z of J. All products of these are zero
� � Ž .2and we obtain just one commutati�e ring: R � A X, Y, Z � p, X, Y, Z .

We have now dealt with characteristic p2.

3. CHARACTERISTIC p3

This time the prime ring A � Z 3 , and once more we consider the cases.p
Note that here we cannot have d � 4, else J 2 � 0 and then p2 � 0.1

2 � �3.1. Choose x � J � J , so that R � A x and the other conclusions
� � 2 2 3 2of 1, Lemma 2.2 hold. Thus J � Ax � J and J � Ap � J , since p � 0

and hence p � J 3. Multiplying gives J 3 � Apx � J 4, J 4 � Ap2 and so
J � Ap � Ax. But p2 x � J 5 � 0, so x has order p2, and it follows that

2 2 Ž .R � A 	 Ax, J � Ap 	 Ax, J � Ap 	 Apx. Let x � ap � bpx a, b � A .
Then a � A� , else x 2 � J 3. If p � 2, we may complete the square and

� � Ž 2 2 .take b � 0. Hence R � A X � p X, X � ap , where one checks as usual
� � �that the quotient is indeed a ring of the right type. If also R � A x , with

2 � � 2 � � Ž � .p x � 0, x � a p, then putting x � cx � dp c � A leads to the condi-
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� 2 Ž 2 .tion a � c a p . Conversely, if this holds for some c, then putting
x� � cx gives x� 2 � a� p. Thus our rings are classified by the image of a
under reduction in Z�

2�Z� 2
2 , itself isomorphic to K��K � 2 via reductionp p

mod p. Put another way, the congruence condition above may be replaced
by congruence mod p. As usual, we say that the rings are classified by
a � � .2

Now let p � 2, so that x 2 � 2 a � 2bx with 4 x � 0, and we may take
a � �1, b � 0, 1. Changing to a new generator x� � cx � 2 d as above
leads to the conditions

b� � b , a� � a � 2bd � 2 d2 4 some d . 5Ž . Ž . Ž .
Ž . Ž . Ž .The cases a, b � 1, 0 and �1, 0 are equivalent, as follows by putting

� Ž . � Ž .x � x � 2. But if b � 1, then 5 gives a � a 4 and the other cases are
� � Ž 2 2 .inequivalent. In all, for p � 2 there are 2 rings: R � A X � p X, X � ap ,

a � � .2
� � Ž 2 .For p � 2 there are 3 rings: R � A X � 4 X, X � 2 a � 2bX with

Ž . Ž . Ž . Ž .a, b � 1, 0 , 1, 1 , or �1, 1 .
We divide Case 3.2 into two, noting first that p � J 2, else p2 � 0.

3.2.1. J 3 � 0. We show first that p2 J � pJ 2 � 0. Suppose that p2 J �

0. Then p2 z � 0 for some z � J, and so J 2 � Apz. But p2 has order p in
J 2, so that p2 � ap2 z, leading to the contradiction p2 z � ap2 z 2 � 0.
Hence p2 J � 0 and the argument at start of Case 2.2 now applies to show
that pJ 2 � 0.

Let J � Ap � Ax � J 2, so that J 2 � Ap2 � Apx � Ax2 � J 3 and J 3 �
Ax3 from above. Suppose px � A. Then J 2 � Ap2 	 Apx, giving the con-

3 2 2 Ž .tradiction J � JJ � 0. So px � A and we have px � bp b � A . Re-
placing x by x � bp allows us to take px � 0. Equally x 3 � A, else

2 2 3 3 3 2 Ž � .J � Ap 	 Ax and again J � 0. Thus x � ap a � A . We now have
2 � � Ž 3 2 .R � A 	 Ax 	 Ax � A X � pX, X � ap . One classifies these rings as

� � Ž 3 2 .usual and finds that the rings are gi�en by R � A X � pX, X � ap , with
Ž .a � � . The number of rings is 3 or 1 according to whether p � 1 3 or not.3

3.2.2. J 3 � 0. Let J � Ap � Ax � J 2, so that J 2 � Ap2 � Apx � Ax2

and pJ � Ap2 � Apx. Now Ap2 
 pJ 
 J 2 and we split into two cases.
3.2.2.a. pJ � J 2. Here pJ � Ap2 and we put px � ap2. Replacing

x by x � ap allows us to assume that px � 0. Then J � Ap 	 Ax 	 Ax2,
2 � � Ž 3.R � A 	 Ax 	 Ax , and there is thus one ring: R � A X � pX, X .

3.2.2.b. pJ � J 2. This time J 2 � pJ � Ap2 	 Apx and hence J �
2 2 Ž .Ap 	 Ax, R � A 	 Ax. Let x � ap � bpx a, b � A . If p � 2, we may

� � Ž 2 2 2 .complete the square and take b � 0. Thus R � A X � p X, X � ap
and the usual checks show that R is classified by the square-class of a
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Ž . 2mod p . If p � 2, then x � 4a � 2bx, 4 x � 0, and we may take a, b � 0
or 1. Changing to x� � cx � 2 d this time leads to the conditions

b� � b , a� � a � bd � d 2 some d , 6Ž . Ž . Ž .

and it follows that there are three distinct rings. In summary, for p � 2
� � Ž 2 2 2 . 0there are 3 rings: R � A X � p X, X � ap , a � � .2

� � Ž 2 .For p � 2 there are 3 rings: R � A X � 4 X, X � 4a � 2bX with
Ž . Ž . Ž . Ž .a, b � 0, 0 , 0, 1 , or 1, 1 .

3.3. Again p � J 2 and we write J � Ap � Ax � Ax � J 2, where1 2
J 2 � Kp2. We may as usual modify the x so that px � 0. Then R � A 	i i
Kx 	 Kx , J � Ap 	 Kx 	 Kx . The situation is now similar to several1 2 1 2

2 Ž .previous cases, such as Cases 2.3.a and 2.3.b. If x x � � p � � K ,i j i j i j

Ž .then the ring structure is determined by M � � , which may here be anyi j
matrix, including zero, and the rings are classified by M up to congruence.

� �From 7 we therefore have that the distinct rings of this type are gi�en by the
matrices

Ž .i p � 2,

0 1 � 1 11 � 2�, , , , , , , andž / ž /ž / ž / ž / ž / ž /� �0 0 0 1 �1

1 1
� � K .Ž .ž /�

There are p � 7 rings, with 5 commutati�e.
Ž .ii p � 2, the same but omitting the representati�es in�ol�ing � . There

are 6 rings, with 4 commutati�e.

4. CHARACTERISTICS p4, p5, AND CONCLUSION

4 � �In characteristic p , 1, Proposition 2.3 applies and the rings are as
follows:

� � Ž 2 3. 0 Ž .4. A X � pX, X � ap with a � � . There are 3 rings p � 2 and2
Ž .2 p � 2 .

In characteristic p5 there is, of course, just one ring:

5. Z 5.p

This completes the classification of all local rings of order p5, and hence
n Ž .of all rings of order p n  5 , when taken in conjunction with Part I.
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TABLE I
n Ž .The Numbers of Indecomposable Rings of Order p n  5

Char
2 3 4 5Order p p p p p

p 1
2p 2 1

33p 3 1 1½ 2

p � 7 p � 413 34p 7 1½½ ½11 28 4

48 33
40 31

5p � 27 p � 444 33 14 35 2p 12 2 p � 16 p � 1½½ ½12 236 3134 4
27 5	 	
38 31

For reference, we conclude with Table I giving the total number of
indecomposable rings in each of the orders p, . . . , p5. Table I is divided
into columns according to the characteristic. The columns for characteris-
tics p, p2, p3 are further divided into two, the left giving commutative
rings and the right noncommutative. In characteristics p4 and p5 the rings

a�are all commutative. To save space, we use the notation to representb
aŽ . Ž . � Ž Ž ..the value a p � 2 , b p � 2 . Similarly represents a p � 1 3 , bb

Ž Ž ..p � 1 3 and a vertical sextuplet preceded by a parenthesis distinguishes,
Ž .respectively, the cases p � 1, 5, 7, 11 12 , p � 2, and p � 3.
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