# Rings of Order $p^5$ Part II. Local Rings

B. Corbas and G. D. Williams

metadata, citation and similar papers at core.ac.uk

E-mail: {b.corbas, g.d.williams}@reading.ac.uk

Communicated by Peter M. Neumann

Received February 2, 1999

The structure and classification up to isomorphism of all *local* rings of order  $p^5$  are given here. This completes the determination of all rings of this order, which was begun in the companion to this paper. © 2000 Academic Press

Key Words: finite rings; local rings.

#### INTRODUCTION

The present paper is a sequel to [1] and concludes our determination of all rings of order  $p^5$ , where p is prime. In Part I we classified all except the local rings, and it is to the latter case that we now address ourselves.

Throughout *R* will denote a *local* ring of order  $p^5$  having prime subring *A*, Jacobson radical *J*, and residue field  $R/J = \mathbf{F}_{p'}$ . The notations introduced in Section 2 of [1] will remain in force. In particular *K* denotes  $\mathbf{F}_p$ ,  $\Sigma_m$  is a set of coset representatives of  $K^{*m}$  in  $K^*$ ,  $\Sigma_m^0 = \Sigma_m \cup \{0\}$ , and  $d_i$  is the dimension of  $J^i/J^{i+1}$  over R/J. As in the lower orders, we shall use the decimal numbering  $k.d_1.d_2$  to distinguish the cases,  $p^k$  being the characteristic of *R*, suppressing the  $d_i$  when they are irrelevant. In what follows we shall make frequent use of the preliminary results obtained in [1]. Recall in particular that, with the single exception of  $R = \mathbf{F}_{p^5}$ , we have r = 1, so that R/J = K and  $|J| = p^4$ . For convenience we divide our account into sections, one for each of the characteristics  $p, \ldots, p^5$ .



0021-8693/00 \$35.00 Copyright © 2000 by Academic Press All rights of reproduction in any form reserved.

### 1. CHARACTERISTIC p

In this case  $A = K = \mathbf{F}_p$ . The rings are as follows.

**1.0. F**<sub>*n*</sub><sup>5</sup>.

**1.1.**  $K[X]/(X^5)$  [1, Lemma 2.2].

**1.2.1.** Choose  $x, y, z, t \in J$  such that  $J = Kx \oplus Ky \oplus J^2$ ,  $J^2 = Kz \oplus J^3$ , and  $J^3 = Kt$ . Then  $x^2 = \alpha_1 z + \alpha_2 t$ ,  $xy = \beta_1 z + \beta_2 t$ ,  $yx = \gamma_1 z + \gamma_2 t$ ,  $y^2 = \delta_1 z + \delta_2 t$ , with coefficients in K. Now  $J^3 = Jz = Kxz + Kyz$ , so we may assume that  $Kyz \subset Kxz$ , say  $yz = \lambda xz$ . Replacing y by  $y - \lambda x$  allows us to assume that yz = 0, and, multiplying x by a scalar, we may take xz = t. Similarly  $J^3 = Kzx + Kzy$ , and so zx, zy are not both zero. If  $a, b, c \in R$ , write A(abc) for the associativity condition (ab)c = a(bc). From  $A(yx^2)$  and A(yxy) we derive  $\gamma_1 = 0$ . In the same way  $A(y^2x)$ ,  $A(y^3)$  lead to  $\delta_1 = 0$ , and A(xyx),  $A(xy^2)$  to  $\beta_1 = 0$ . Then  $\alpha_1 \neq 0$ , else  $J^2 = J^3$ . Now  $A(x^3)$ ,  $A(x^2y)$  give zx = t, zy = 0. Replacing y by  $y - \beta_2 z$  and z by  $z + \alpha_2 \alpha_1^{-1}t$  allows us to assume that  $\beta_2 = \alpha_2 = 0$ . If we now replace z, t by  $\alpha_1 z, \alpha_1 t$ , the multiplication in J is given by the table

|   | x  | у          | Z | t |
|---|----|------------|---|---|
| х | z  | 0          | t | 0 |
| у | γt | $\delta t$ | 0 | 0 |
| z | t  | 0          | 0 | 0 |
| t | 0  | 0          | 0 | 0 |

where we have written  $\gamma = \gamma_2$ ,  $\delta = \delta_2$ . One checks, conversely, that such a table does indeed define a ring *R* with basis (1, x, y, z, t), and in particular that associativity holds. Moreover the ideal *J* spanned by (x, y, z, t) is such that  $J^4 = 0$ , whence  $J \subset \operatorname{rad} R$ , and it follows that *R* is a local ring of the type under discussion, with radical *J*. If  $\gamma$ ,  $\delta$  are both non-zero, replace x, y, z, t by  $\gamma^2 \delta^{-1} x, \gamma^3 \delta^{-2} y, \gamma^4 \delta^{-2} z, \gamma^6 \delta^{-3} t$ , respectively, and then  $\gamma = \delta = 1$ . If  $\gamma \neq 0$ ,  $\delta = 0$ , replace *y* by  $\gamma^{-1} y$ , so that  $\gamma = 1$ . If  $\gamma = 0$ ,  $\delta \neq 0$ , replace *x*, *y*, *z*, *t* by  $\delta x$ ,  $\delta y$ ,  $\delta^2 z$ ,  $\delta^3 t$ , and then  $\delta = 1$ . In summary, *there are* 4 *rings in this case, given by the table above with*: (i)  $\gamma = \delta = 1$ ; (ii)  $\gamma = 1$ ,  $\delta = 0$ ; (iii)  $\gamma = 0$ ,  $\delta = 1$ , and (iv)  $\gamma = \delta = 0$ .

These are not isomorphic. The first two are not commutative, whereas the last two are. Indeed, (iii) is  $K[X,Y]/(X^4, XY, Y^2 - X^3)$  and (iv) is  $K[X,Y]/(X^4, XY, Y^2)$ . Moreover from the table one calculates that the right annihilator  $Ann_r(J) = Kt$  ( $\delta \neq 0$ ),  $Ky \oplus Kt$  ( $\delta = 0$ ). The dimension of this distinguishes the other cases.

**1.2.2.** Choose  $x_1, x_2, y_1, y_2 \in J$  such that  $J = Kx_1 \oplus Kx_2 \oplus J^2$ ,  $J^2 = Ky_1 \oplus Ky_2$ . Then  $x_ix_j = \alpha_{ij}y_1 + \beta_{ij}y_2$  ( $\alpha_{ij}, \beta_{ij} \in K$ ) and these four products span  $J^2$ . The ring structure is determined by the pair of (2 × 2) matrices  $M = (\alpha_{ij})$ ,  $N = (\beta_{ij})$ , which are linearly independent over K. Conversely, any pair of independent matrices defines such a ring by letting R have basis (1,  $x_1, x_2, y_1, y_2$ ) and defining  $x_ix_j$  as above and all other products of the  $x_i$  and  $y_j$  to be zero. Then the ideal J spanned by ( $x_1, x_2, y_1, y_2$ ) is such that  $J^3 = 0$ , and again it follows that R is local, with radical J. The independence of M, N implies that  $J^2 = Ky_1 \oplus Ky_2$ .

If  $(x'_1, x'_2, y'_1, y'_2)$  is a new basis of J with corresponding matrices M', N', then we may write  $x'_i = p_{1i}x_1 + p_{2i}x_2 + z_i$   $(z_i \in J^2)$ , so that  $P = (p_{ij})$  is the transition matrix from the basis  $(\bar{x}_1, \bar{x}_2)$  of  $J/J^2$  to the basis  $(\bar{x}'_1, \bar{x}'_2)$ . Equally, let  $Q = (q_{ij})$  be the transition matrix from the basis  $(y_1, y_2)$  of  $J^2$ to  $(y'_1, y'_2)$ . Since  $J^3 = 0$ , calculating  $x'_i x'_j$  and comparing coefficients of  $y_i$ leads to equations which, in matrix form, are

$$\begin{cases} P^{t}MP = q_{11}M' + q_{12}N' \\ P^{t}NP = q_{21}M' + q_{22}N'. \end{cases}$$

Evidently, the problem of classifying our rings up to isomorphism amounts to that of classifying pairs of linearly independent matrices (M, N) under the above relation of *equivalence*, P and Q being arbitrary invertible matrices. This linear algebra problem has been solved over any field K in [2, 3] and we extract the results, where  $K = \mathbf{F}_p$ . If  $p \neq 2$ , let  $\varepsilon$ be a fixed non-square of K. If  $\delta = 1$  (resp.  $\varepsilon$ ), then for each  $\xi \in K$  (resp.  $K^*$ ) choose a non-zero solution  $(\alpha, \beta)$  of the equation  $\alpha^2 - \delta\beta^2 = \xi$ , and let  $\Pi_{\delta}$  be the set of these. Then, *the isomorphism classes of rings are given by the pairs of matrices* 

(i) 
$$p \neq 2$$
,

$$\begin{pmatrix} 1 & \\ & \delta \end{pmatrix}, \begin{pmatrix} & 1 \\ \sigma & \end{pmatrix} (\delta = 0, 1, \varepsilon; \sigma = \pm 1), \qquad \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}$$
$$\begin{pmatrix} 1 & & \\ 1 - \beta & \end{pmatrix} (\beta \in K^*), \qquad \begin{pmatrix} 1 & \alpha \\ -\alpha & \delta \end{pmatrix}, \begin{pmatrix} & 1 + \beta \\ 1 - \beta & \end{pmatrix}$$
$$(\delta = 1, \varepsilon; (\alpha, \beta) \in \Pi_{\delta}).$$

Hence there are 3p + 5 distinct rings in this case, with 3 commutative. (ii) p = 2,

$$\begin{pmatrix} 1 & \\ & 0 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \\ \end{pmatrix}, & \begin{pmatrix} 1 & \\ & 0 \end{pmatrix}, \begin{pmatrix} & 1 \\ 0 & \\ \end{pmatrix}, & \begin{pmatrix} 1 & \\ & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & \\ \end{pmatrix}, & \begin{pmatrix} 1 & \\ & \delta \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & 1 \end{pmatrix}, & \begin{pmatrix} 1 & 1 \\ & \delta \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \\ \end{pmatrix}, & \begin{pmatrix} \delta & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} \delta = 0, 1 \end{pmatrix}.$$

There are 10 such rings, 3 being commutative.

**1.3.** Let  $J = Kx_1 \oplus Kx_2 \oplus Kx_3 \oplus J^2$ ,  $J^2 = Ky$ . Then  $x_ix_j = \alpha_{ij}y$  ( $\alpha_{ij} \in K$ ) and these nine products span  $J^2$ . The ring structure is determined by the  $(3 \times 3)$  matrix  $M = (\alpha_{ij})$ , which is non-zero, and any non-zero matrix defines such a ring. If  $(x'_1, x'_2, x'_3, y')$  is a new basis of J with corresponding matrix M', then as above we have  $x'_i = \sum_j p_{ji}x_j + r_i y$  and y' = qy. Calculating  $x'_ix'_j$  and comparing coefficients leads to the matrix condition P'MP = qM', where P is invertible and  $q \neq 0$ . If M, M' are so related, we call them *projectively congruent*. This reduces to ordinary congruence when q = 1. The rings in the present case are evidently classified by the non-zero matrix M up to projective congruence. This matrix classification problem has been dealt with in [4, 5]. If, as before,  $\varepsilon$ denotes a non-square in K (p odd), the results are that *the isomorphism classes of rings are given by the matrices* 

(i) 
$$p \neq 2$$
,  
 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ \varepsilon \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ \varepsilon \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \mu \\ -1 \end{pmatrix}, \begin{pmatrix} \mu \\ 0 \\ 1 \end{pmatrix}, where \mu = 0, 1 and \delta \in K.$ 

There are 2p + 9 such rings, with 4 commutative. (ii) p = 2,

$$\begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 0 & & \\ & 1 & \\ & 1 & \end{pmatrix}, \begin{pmatrix} \mu & & \\ & 1 & 1 \\ & & \delta \end{pmatrix},$$
$$\begin{pmatrix} \mu & 0 & 1 \\ & & 1 \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ & & 1 \\ & & 1 & 1 \end{pmatrix}, \quad where \ \mu = 0, 1 \ and \ \delta = 0, 1.$$

There are 11 such rings, with 4 commutative.

**1.4.** Choose a basis (x, y, z, t) of J. All products of these are zero and we obtain just *one commutative ring*:  $R = K[X, Y, Z, T]/(X, Y, Z, T)^2$ .

This completes the classification in characteristic p.

# 2. CHARACTERISTIC $p^2$

Throughout this section the prime ring  $A = \mathbf{Z}_{p^2}$ . We go through the cases again:

**2.1.** Choose  $x \in J - J^2$ , so that R = A[x] and the other conclusions of [1, Lemma 2.2] hold, in particular  $p \in J^2$ . In fact  $p \in J^3$ , for otherwise  $J^2 = Rp + J^3$  and squaring gives the contradiction  $J^4 = 0$ . We split into two subcases, according to whether p belongs to  $J^4$  or not.

**2.1.a.**  $p \in J^4$ . Then px = 0 and  $x^4 = ap$ , where *a* belongs to  $A^*$ , the group of units of *A*. It follows that  $R = A[X]/(pX, X^4 - ap)$ . As for existence, one checks easily that the latter ring is indeed local of order  $p^5$  and of the type under consideration. To classify these up to isomorphism, suppose also that R = A[x'], with px' = 0,  $x'^4 = a'p$ . Then x' = bx + y  $(b \in A^*, y \in J^2)$ , and so  $x'^4 = b^4x^4$ . Thus  $a'p = b^4ap$ , whence  $a' \equiv b^4a$  (mod *p*). If, conversely, this last condition holds, replace *x* by x' = bx, and then  $x'^4 = a'p$ . This is similar to Case **2.1.1.a** in order  $p^4$  [1], and our rings are classified by  $a \in \Sigma_4$ , or more precisely by the image of *a* under the epimorphism  $A^* \to K^* \to K^*/K^{*4}$ , the first map being reduction mod *p*. To summarize, the distinct rings are given by  $R = A[X]/(pX, X^4 - ap)$ , with  $a \in \Sigma_4$ . The number of rings is 4, 2, or 1 according to whether  $p \equiv 1(4)$ ,  $p \equiv 3(4)$ , or p = 2.

 $p \equiv 3(4)$ , or p = 2. **2.1.b.**  $p \notin J^4$ . Here there is a parallel with Case **2.1.1.b** in order  $p^4$ . We have  $J^3 = Ap \oplus J^4$ ,  $J = Ax + J^2$ , and multiplying gives  $J^4 = Apx$ , so that  $J^3 = Ap \oplus Apx$ . Let  $x^3 = ap + bpx$   $(a, b \in A)$ . Then  $a \in A^*$ , else  $x^4 = bpx^2 = 0$ . If  $p \neq 3$ , we may replace x by  $x - bx^2/3a$  and so assume that b = 0. Hence  $R = A[X]/(pX^2, X^3 - ap)$ , where once again one checks without difficulty that the latter ring really does have the right properties. To classify these, suppose also that R = A[x'], with  $px'^2 = 0$ ,  $x'^3 = a'p$ . Then x' = cx + y  $(c \in A^*, y \in J^2)$ , and so  $x'^3 = c^3x^3 + 3c^2x^2y$ . But  $x'^3 - c^3x^3 \in Ap$ ,  $3c^2x^2y \in J^4$  and the sum in  $J^3$  is direct. So in fact  $x'^3 = c^3x^3$ . As above, our rings are classified by  $a \in \Sigma_3$ . If p = 3, then  $a \equiv \pm 1(3)$ , and replacing x by ax allows us to assume that a = 1, so that  $x^3 = 3 + 3bx$ . If, as before, x' = cx + y is a new generator, with  $x'^3 = 3 + 3b'x'$ , then  $x'^3 = c^3x^3 = cx^3$ . But  $3 \in J^3$ , so that 3y = 0 and 3 + 3b'cx = 3c + 3bcx. Since the sum in  $J^3$  is direct, it follows that  $b' \equiv b(3)$ . We have proved that for  $p \neq 3$  the rings are given by  $R = A[X]/(pX^2, X^3 - ap)$ ,  $a \in \Sigma_3$ . The number of rings is 3 or 1 according to whether  $p \equiv 1(3)$  or not. For p = 3 there are 3 rings:  $R = A[X]/(3X^2, X^3 - 3 - 3bX)$  with  $b = 0, \pm 1$ .

**2.2.** We observe first that  $pJ^2 = 0$ . If not, then  $pxy \neq 0$  for some  $x, y \in J$ , and so  $J^2 = Axy$ . Then px has order p in  $J^2$ , so that px = apxy. This gives the contradiction  $pxy = apxy^2 = 0$ , since  $J^4 = 0$ . We now split into five subcases, in the first three of which  $p \in J^2$  and we consider the possibilities for the chain  $J^2 \supset J^3 \supset pJ \supset 0$ .

**2.2.a.**  $p \in J^2$ ,  $J^3 = 0$ . Since pJ = 0 we may regard J as a K-algebra (without identity) and choose  $x_1, x_2, y \in J$  such that  $J = Kx_1 \oplus Kx_2 \oplus J^2$ ,  $J^2 = Ky \oplus Kp$ . For  $\lambda \in K$ , one must be careful not to confuse  $\lambda p$  in A with  $p\lambda = 0$  in K. As in Case **1.2.2** we have  $x_ix_j = \alpha_{ij}y + \beta_{ij}p$  ( $\alpha_{ij}, \beta_{ij} \in K$ ) and these products span  $J^2$ . Note also a parallel with Case **2.2.a** in order  $p^4$ . The matrices  $M = (\alpha_{ij})$ ,  $N = (\beta_{ij})$  are linearly independent, and one verifies as before that any such pair of matrices gives rise to a ring of the present type. If we change to new generators  $x'_1, x'_2, y'$  with corresponding matrices M', N', then  $x'_i = p_{1i}x_1 + p_{2i}x_2 + z_i$  ( $z_i \in J^2$ ) and we put  $P = (p_{ij})$ . If  $Q = (q_{ij})$  is the transition matrix from the basis (y, p) of  $J^2$  to (y', p), we obtain as before the conditions

$$\begin{cases} P^{t}MP = q_{11}M' + q_{12}N' \\ P^{t}NP = q_{21}M' + q_{22}N'. \end{cases}$$

Our problem now boils down to that of classifying pairs of matrices over K under an equivalence relation similar to that of Case **1.2.2**, but with the crucial difference that Q is restricted to be of the form  $\binom{*}{*}_{*}$ , since here  $q_{12} = 0$ ,  $q_{22} = 1$ . This linear algebra problem has a quite different solution. The list of normal forms for the pairs (M, N) turns out to be rather extensive and is given in full in [6]. For brevity we do not repeat it here, but confine ourselves to stating the number of isomorphism classes. The numbers of distinct rings of this type are given as follows:

(i)  $p \neq 2$ . There are  $2p^2 + 10p + 15$  rings, of which 10 are commutative.

(ii) 
$$p = 2$$
. There are 23 rings, of which 6 are commutative.

**2.2.b.**  $p \in J^2$ ,  $J^3 \neq 0$ , pJ = 0. Note first that  $p \in J^3$ , for otherwise  $J^2 = Ap + J^3$  and then  $J^3 = pJ = 0$ . Once again we regard J as a K-algebra and write  $J = Kx \oplus Ky \oplus J^2$ ,  $J^2 = Kz \oplus J^3$  and  $J^3 = Kp$ . This is similar to Case **1.2.1**. The argument of the first paragraph there applies,

and we may take the multiplication to be given by

|   | x          | у          | z | р |
|---|------------|------------|---|---|
| x | $\alpha z$ | 0          | р | 0 |
| у | $\gamma p$ | $\delta p$ | 0 | 0 |
| z | р          | 0          | 0 | 0 |
| р | 0          | 0          | 0 | 0 |

where  $\alpha \neq 0$ . We may not, of course, renormalize p this time to take  $\alpha = 1$ . Conversely, any such table gives rise to a ring of the present class. Note that R is commutative if and only if  $\gamma = 0$ , and that if R is not commutative we may scale y and take  $\gamma = 1$ . If x', y', z' are new generators with structure constants  $\alpha', \gamma', \delta'$ , we have x' = ax + cy + ez + u, y' = bx + dy + fz + v, z' = gz + w with  $a, \ldots, g \in K$  and  $u, v, w \in J^3$ . Then x'z' = agxz and y'z' = bgxz, giving  $a \neq 0$ , b = 0 and hence  $d \neq 0$ , else  $y' \in J^2$ . Computing  $x'^2, x'y', y'x'$  and  $y'^2$  and comparing coefficients leads to the equations

$$\alpha' = a^3 \alpha, \qquad \gamma' = a d\gamma, \qquad \delta' = d^2 \delta \text{ (some } a, d \neq 0 \text{)}.$$
 (1)

These conditions are also sufficient for the rings with structure constants  $(\alpha, \gamma, \delta)$  and  $(\alpha', \gamma', \delta')$  to be isomorphic, as follows by setting x' = ax, y' = dy,  $z' = a^{-1}z$ . We now analyze the conditions (1). If *R* is commutative, so that  $\gamma = \gamma' = 0$ , then *R* is classified by the cube-class of  $\alpha$  and the square-class of  $\delta$ . But if *R* is noncommutative ( $\gamma = \gamma' = 1$ ), then ad = 1 and (1) becomes  $\alpha' = a^3\alpha$ ,  $\delta' = a^{-2}\delta$  ( $a \neq 0$ ). In particular, if we fix  $\delta = \delta' \neq 0$ , then  $a = \pm 1$ , and  $\alpha' = \pm \alpha$ . We have proved that the distinct rings of this type are determined by the table above.

For *R* commutative, we take  $\gamma = 0$ ,  $\alpha \in \Sigma_3$ , and  $\delta \in \Sigma_2^0$ . For *R* noncommutative, we take  $\gamma = 1$  and

$$\begin{cases} either & \alpha \in \Sigma_3, \, \delta = 0 \\ or & \alpha \in K^* / \{ \pm 1 \}, \, \delta \in \Sigma_2. \end{cases}$$

The numbers of rings are

|                | $p \equiv 1(3)$ | $p \neq 1(3), p \text{ odd}$ | p = 2 |
|----------------|-----------------|------------------------------|-------|
| Commutative    | 9               | 3                            | 2     |
| Noncommutative | p + 2           | р                            | 2     |

**2.2.c.**  $p \in J^2$ ,  $J^3 = pJ \neq 0$ . Here  $p \notin J^3$ , else pJ = 0. Thus  $J^2 = Ap \oplus J^3$ . By [1, Lemma 2.1] we have  $J = Ax + Ay + J^2$ , and we may assume that  $px \neq 0$ . Then  $J^3 = Apx$  and py = rpx ( $r \in A$ ). Replacing y by y - rx allows us to take py = 0. Hence  $R = A \oplus Ax \oplus Ay$ ,  $J = Ap \oplus Ax$ 

 $\oplus Ay$ , and  $J^2 = Ap \oplus Apx$ . The argument is now rather similar to the previous case. Let  $x^2 = \alpha_1 p + \alpha_2 px$ ,  $xy = \beta_1 p + \beta_2 px$ ,  $yx = \gamma_1 p + \gamma_2 px$ ,  $y^2 = \delta_1 p + \delta_2 px$ , where the coefficients may be taken in *K*. The associativity conditions  $A(x^2y)$ ,  $A(yx^2)$ ,  $A(xy^2)$  give  $\beta_1 = \gamma_1 = \delta_1 = 0$  and replacing *y* by  $y - \beta_2 p$  allows us to assume that  $\beta_2 = 0$ . We now consider the characteristic.

Suppose that  $p \neq 2$ . Replace x by  $x - \frac{1}{2}\alpha_2 p$ , and then  $\alpha_2 = 0$ . The multiplication in R is now determined by the table

|   | х           | у           | р  |
|---|-------------|-------------|----|
| x | αp          | 0           | px |
| у | $\gamma px$ | $\delta px$ | 0  |
| р | px          | 0           | 0  |

where we have dropped the remaining subscripts and  $\alpha \neq 0$ . As usual, one checks that any such table defines a ring of the present type. If x', y' are new generators with structure constants  $\alpha', \gamma', \delta'$ , write x' = ax + cy + ep, y' = bx + dy + fp. Although this time  $px \neq 0$ , there is no harm in regarding  $a, \ldots, f$  as being in K, since the new multiplication table depends only on their images mod p. From px' = apx, py' = bpx we deduce  $a \neq 0$ , b = 0 and then  $d \neq 0$ , else  $y' \in J^2$ . Computing  $x'^2, x'y', y'x', y'^2$  and comparing coefficients leads to the equations

$$\alpha' = a^2 \alpha, \qquad \gamma' = d\gamma, \qquad \delta' = a^{-1} d^2 \delta \text{ (some } a, d \neq 0 \text{)}.$$
 (2)

Again these conditions are also sufficient for the rings with structure constants  $(\alpha, \gamma, \delta)$  and  $(\alpha', \gamma', \delta')$  to be isomorphic: set x' = ax, y' = dy. By choice of *a*, *d* we may take  $\gamma$ ,  $\delta$  to be 0 or 1 and it follows from (2) that for  $p \neq 2$  the distinct rings are given by the table above.

For R commutative, we take  $\gamma = 0$  and

$$\begin{cases} either & \alpha \in \Sigma_2, \, \delta = 0 \\ or & \alpha \in \Sigma_4, \, \delta = 1. \end{cases}$$

For R noncommutative, we take  $\gamma = 1$  and

$$\begin{cases} either & \alpha \in \Sigma_2, \, \delta = 0 \\ or & \alpha \in K^*, \, \delta = 1. \end{cases}$$

The numbers of rings are

|                | $p \equiv 1(4)$ | $p \equiv 3(4)$ |
|----------------|-----------------|-----------------|
| Commutative    | 6               | 4               |
| Noncommutative | p + 1           | p + 1           |

Now consider p = 2. Then  $\alpha_1 = 1$  and the multiplication table has the form

|   | x               | у           | 2  |
|---|-----------------|-------------|----|
| x | $2 + \alpha 2x$ | 0           | 2x |
| у | $\gamma 2x$     | $\delta 2x$ | 0  |
| 2 | 2x              | 0           | 0  |

Changing to x', y' as before, we have here b = 0, a = d = 1 and we obtain the equations

$$\alpha' = \alpha + c(\gamma + \delta), \quad \gamma' = \gamma, \quad \delta' = \delta.$$
 (3)

Once more, setting x' = x + cy,  $y' = y + c\delta^2$  shows (3) also to be sufficient for isomorphism. If  $\gamma = \delta$ , then  $\alpha' = \alpha$ . But if  $\gamma \neq \delta$ , we may then take  $\alpha = 0$ . Thus for p = 2 the rings are given by the previous table, where  $(\alpha, \gamma, \delta)$  is any triple of elements of K except for (1, 0, 1) and (1, 1, 0). There are 3 commutative rings and 3 noncommutative.

In the remaining cases we have  $p \notin J^2$ . As in [1, Lemma 2.1] we may write  $J = Ap + Ax + J^2$ . Hence pJ = Apx,  $J^2 = Apx + Ax^2 + J^3$ , and  $J^3 = Ax^3$ . Thus  $J = Ap + Ax + Ax^2 + Ax^3$ ,  $R = A + Ax + Ax^2 + Ax^3 = A[x]$ , and R is commutative.

**2.2.d.**  $p \notin J^2$ , pJ = 0. There is clearly one such ring:  $R = A[X]/(pX, X^4)$ .

**2.2.e.**  $p \notin J^2$ ,  $pJ \neq 0$ . The order of R shows that  $x^2 \neq 0$ , and so both  $x^2$  and px have order p. Certainly  $Ax^2 \neq Apx$ , else  $J^3 = Ax^3 = Apx^2 = 0$  and then  $J^2 = Apx$  would have order p. Hence  $J^2 = Apx \oplus Ax^2$  and we may write  $x^3 = apx + bx^2$  ( $a, b \in A$ ). So  $0 = x^4 = bx^3 = abpx + b^2x^2$ , and hence  $b^2x^2 = 0$ , the sum being direct. Thus  $p \mid b$  and  $x^3 = apx$ , and so  $R = A[X]/(pX^2, X^3 - apX)$ , where as usual one verifies that this last ring has the right properties. If x' = cx + dp + y ( $c \in A^*$ ,  $d \in A$ ,  $y \in J^2$ ) is a new generator with  $x'^3 = a'px'$ , one deduces easily that  $a' \equiv c^2a(p)$ , and our rings are classified by  $a \in \Sigma_2^0$ . In summary, the rings are given by  $R = A[X]/(pX^2, X^3 - apX)$  with  $a \in \Sigma_2^0$ . There are 3 rings ( $p \neq 2$ ) and 2 (p = 2).

We split Case 2.3 into three subcases:

**2.3.a.**  $p \in J^2$ . Let  $J = Kx_1 \oplus Kx_2 \oplus Kx_3 \oplus J^2$ ,  $J^2 = Kp$ , and put  $x_ix_j = \alpha_{ij}p$  ( $\alpha_{ij} \in K$ ). Just as in Case **1.3** the ring structure is given by the non-zero matrix  $M = (\alpha_{ij})$ , but this time up to *congruence*, since no change of basis in  $J^2$  is involved. From [4, 5] we thus have that *the* 

isomorphism classes of rings are given by the matrices

(1) 
$$p \neq 2$$
,  
 $\begin{pmatrix} \nu & \\ & 0 & \\ & & 0 \end{pmatrix}, \begin{pmatrix} 1 & \\ & \nu & \\ & & 0 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 1 & \\ & & \nu \end{pmatrix}, \begin{pmatrix} \mu & & \\ & 1 & \\ & -1 & \end{pmatrix}, \begin{pmatrix} \mu & & \\ & 1 & 1 \\ & & \delta \end{pmatrix},$ 
 $\begin{pmatrix} \mu & & \\ & \varepsilon & 2\varepsilon \\ & \varepsilon & \varepsilon \end{pmatrix}, \begin{pmatrix} \mu & 0 & 1 \\ & 1 & \\ & 1 & \end{pmatrix}, \quad where \ \mu = 0, 1, \varepsilon; \ \nu = 1, \varepsilon \text{ and } \delta \in K$ 

There are 3p + 15 such rings, with 6 commutative.

(ii) p = 2,

$$\begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 0 & & \\ & 1 & \\ & 1 & \end{pmatrix}, \begin{pmatrix} \mu & & \\ & 1 & 1 \\ & & \delta \end{pmatrix},$$
$$\begin{pmatrix} \mu & 0 & 1 \\ & & 1 \\ & & 1 \\ & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ & & 1 \\ & & 1 & 1 \end{pmatrix}, \quad where \ \mu = 0, 1 \ and \ \delta = 0, 1.$$

There are 11 such rings, with 4 commutative.

**2.3.b.**  $p \notin J^2$ , pJ = 0. Write  $J = Kp \oplus Kx_1 \oplus Kx_2 \oplus J^2$ ,  $J^2 = Ky$ , and let  $x_i x_j = \alpha_{ij} y$  ( $\alpha_{ij} \in K$ ). There is some similarity this time with both Cases **2.2.a** and **1.3**. The ring structure is determined by the non-zero matrix  $M = (\alpha_{ij})$ , and any such matrix gives a ring of this type. As before, the rings are classified by the projective congruence class of M, and we use the representatives for these classes given in [7]. Thus, *the distinct rings of this type are given by the matrices* 

$$\begin{pmatrix} 1 & \\ & 0 \end{pmatrix}, \begin{pmatrix} 1 & \\ & \xi \end{pmatrix} (\xi \in \Sigma_2), \begin{pmatrix} & 1 \\ -1 & \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ & \delta \end{pmatrix} (\delta \in K).$$

The number of rings is p + 4 ( $p \neq 2$ ), 5 (p = 2). In either case 3 are commutative.

**2.3.c.**  $p \notin J^2$ ,  $pJ \neq 0$ . This is very like Case **2.2.c** and we have  $R = A \oplus Ax \oplus Ay$ ,  $J = Ap \oplus Ax \oplus Ay$ ,  $J^2 = Apx$ , with py = 0. Write  $x^2 = \alpha px$ ,  $xy = \beta px$ ,  $yx = \gamma px$ ,  $y^2 = \delta px$ , with coefficients in *K*. As before, we may take  $\beta = 0$ , and we now consider the characteristic.

 $\sim$ 

Let  $p \neq 2$ . Replace x by  $x - \frac{1}{2}\alpha p$ , and then  $\alpha = 0$ . The multiplication table is

|   | x           | у           | р  |
|---|-------------|-------------|----|
| x | 0           | 0           | px |
| у | $\gamma px$ | $\delta px$ | 0  |
| р | рх          | 0           | 0  |

The same discussion as before shows that the rings with structure constants  $(\gamma, \delta)$  and  $(\gamma', \delta')$  are isomorphic if and only if

$$\gamma' = d\gamma, \qquad \delta' = a^{-1} d^2 \delta \text{ (some } a, d \neq 0\text{)}.$$
 (4)

We may thus take  $\gamma$ ,  $\delta$  to be 0 or 1, and hence, for  $p \neq 2$  the distinct rings are given by the table above, with  $\gamma$ ,  $\delta \in \{0, 1\}$ . Two are commutative, two not.

For p = 2 the table is

|   | x           | у           | 2  |
|---|-------------|-------------|----|
| х | $\alpha 2x$ | 0           | 2x |
| у | $\gamma 2x$ | $\delta 2x$ | 0  |
| 2 | 2x          | 0           | 0  |

The conditions for isomorphism of two such rings are again given by (3) and thus, for p = 2 the rings are given by the previous table, where  $(\alpha, \gamma, \delta)$  is any triple of elements of K except for (1,0,1) and (1,1,0). There are 3 commutative rings and 3 noncommutative.

**2.4.** Choose a basis (p, x, y, z) of J. All products of these are zero and we obtain just *one commutative ring*:  $R = A[X, Y, Z]/(p, X, Y, Z)^2$ .

We have now dealt with characteristic  $p^2$ .

### 3. CHARACTERISTIC $p^3$

This time the prime ring  $A = \mathbf{Z}_{p^3}$ , and once more we consider the cases. Note that here we cannot have  $d_1 = 4$ , else  $J^2 = 0$  and then  $p^2 = 0$ .

**3.1.** Choose  $x \in J - J^2$ , so that R = A[x] and the other conclusions of [1, Lemma 2.2] hold. Thus  $J = Ax + J^2$  and  $J^2 = Ap + J^3$ , since  $p^2 \neq 0$  and hence  $p \notin J^3$ . Multiplying gives  $J^3 = Apx + J^4$ ,  $J^4 = Ap^2$  and so J = Ap + Ax. But  $p^2x \in J^5 = 0$ , so x has order  $p^2$ , and it follows that  $R = A \oplus Ax$ ,  $J = Ap \oplus Ax$ ,  $J^2 = Ap \oplus Apx$ . Let  $x^2 = ap + bpx$   $(a, b \in A)$ . Then  $a \in A^*$ , else  $x^2 \in J^3$ . If  $p \neq 2$ , we may complete the square and take b = 0. Hence  $R = A[X]/(p^2X, X^2 - ap)$ , where one checks as usual that the quotient is indeed a ring of the right type. If also R = A[x'], with  $p^2x' = 0$ ,  $x'^2 = a'p$ , then putting x' = cx + dp  $(c \in A^*)$  leads to the condi-

tion  $a' \equiv c^2 a(p^2)$ . Conversely, if this holds for some *c*, then putting x' = cx gives  $x'^2 = a'p$ . Thus our rings are classified by the image of *a* under reduction in  $\mathbb{Z}_{p^2}^*/\mathbb{Z}_{p^2}^{*2}$ , itself isomorphic to  $K^*/K^{*2}$  via reduction mod *p*. Put another way, the congruence condition above may be replaced by congruence mod *p*. As usual, we say that the rings are classified by  $a \in \Sigma_2$ .

Now let p = 2, so that  $x^2 = 2a + 2bx$  with 4x = 0, and we may take  $a = \pm 1$ , b = 0, 1. Changing to a new generator x' = cx + 2d as above leads to the conditions

$$b' = b$$
,  $a' \equiv a + 2bd + 2d^2(4)$  (some d). (5)

The cases (a, b) = (1, 0) and (-1, 0) are equivalent, as follows by putting x' = x + 2. But if b = 1, then (5) gives  $a' \equiv a(4)$  and the other cases are inequivalent. In all, for  $p \neq 2$  there are 2 rings:  $R = A[X]/(p^2X, X^2 - ap)$ ,  $a \in \Sigma_2$ .

For p = 2 there are 3 rings:  $R = A[X]/(4X, X^2 - 2a - 2bX)$  with (a, b) = (1, 0), (1, 1), or (-1, 1).

We divide Case 3.2 into two, noting first that  $p \notin J^2$ , else  $p^2 = 0$ .

**3.2.1.**  $J^3 \neq 0$ . We show first that  $p^2J = pJ^2 = 0$ . Suppose that  $p^2J \neq 0$ . Then  $p^2z \neq 0$  for some  $z \in J$ , and so  $J^2 = Apz$ . But  $p^2$  has order p in  $J^2$ , so that  $p^2 = ap^2z$ , leading to the contradiction  $p^2z = ap^2z^2 = 0$ . Hence  $p^2J = 0$  and the argument at start of Case **2.2** now applies to show that  $pJ^2 = 0$ .

Let  $J = Ap + Ax + J^2$ , so that  $J^2 = Ap^2 + Apx + Ax^2 + J^3$  and  $J^3 = Ax^3$  from above. Suppose  $px \notin A$ . Then  $J^2 = Ap^2 \oplus Apx$ , giving the contradiction  $J^3 = JJ^2 = 0$ . So  $px \notin A$  and we have  $px = bp^2$  ( $b \notin A$ ). Replacing x by x - bp allows us to take px = 0. Equally  $x^3 \notin A$ , else  $J^2 = Ap^2 \oplus Ax^3$  and again  $J^3 = 0$ . Thus  $x^3 = ap^2$  ( $a \notin A^*$ ). We now have  $R = A \oplus Ax \oplus Ax^2 = A[X]/(pX, X^3 - ap^2)$ . One classifies these rings as usual and finds that the rings are given by  $R = A[X]/(pX, X^3 - ap^2)$ , with  $a \notin \Sigma_3$ . The number of rings is 3 or 1 according to whether  $p \equiv 1(3)$  or not.

**3.2.2.**  $J^3 = 0$ . Let  $J = Ap + Ax + J^2$ , so that  $J^2 = Ap^2 + Apx + Ax^2$  and  $pJ = Ap^2 + Apx$ . Now  $Ap^2 \subset pJ \subset J^2$  and we split into two cases.

**3.2.2.a.**  $pJ \neq J^2$ . Here  $pJ = Ap^2$  and we put  $px = ap^2$ . Replacing x by x - ap allows us to assume that px = 0. Then  $J = Ap \oplus Ax \oplus Ax^2$ ,  $R = A \oplus Ax \oplus Ax^2$ , and there is thus *one ring*:  $R = A[X]/(pX, X^3)$ .

**3.2.2.b.**  $pJ = J^2$ . This time  $J^2 = pJ = Ap^2 \oplus Apx$  and hence  $J = Ap \oplus Ax$ ,  $R = A \oplus Ax$ . Let  $x^2 = ap^2 + bpx$   $(a, b \in A)$ . If  $p \neq 2$ , we may complete the square and take b = 0. Thus  $R = A[X]/(p^2X, X^2 - ap^2)$  and the usual checks show that R is classified by the square-class of a

(mod *p*). If p = 2, then  $x^2 = 4a + 2bx$ , 4x = 0, and we may take a, b = 0 or 1. Changing to x' = cx + 2d this time leads to the conditions

$$b' = b, \qquad a' \equiv a + bd + d (2) \text{ (some } d), \tag{6}$$

and it follows that there are three distinct rings. In summary, for  $p \neq 2$  there are 3 rings:  $R = A[X]/(p^2X, X^2 - ap^2), a \in \Sigma_2^0$ .

For p = 2 there are 3 rings:  $R = A[X]/(4X, X^2 - 4a - 2bX)$  with (a, b) = (0, 0), (0, 1), or (1, 1).

**3.3.** Again  $p \notin J^2$  and we write  $J = Ap + Ax_1 + Ax_2 + J^2$ , where  $J^2 = Kp^2$ . We may as usual modify the  $x_i$  so that  $px_i = 0$ . Then  $R = A \oplus Kx_1 \oplus Kx_2$ ,  $J = Ap \oplus Kx_1 \oplus Kx_2$ . The situation is now similar to several previous cases, such as Cases **2.3.a** and **2.3.b**. If  $x_ix_j = \alpha_{ij}p^2$  ( $\alpha_{ij} \in K$ ), then the ring structure is determined by  $M = (\alpha_{ij})$ , which may here be any matrix, including zero, and the rings are classified by M up to *congruence*. From [7] we therefore have that *the distinct rings of this type are given by the matrices* 

(i) 
$$p \neq 2$$

$$\begin{pmatrix} 0 & \\ & 0 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 0 \end{pmatrix}, \begin{pmatrix} \varepsilon & \\ & 0 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & \\ & \varepsilon \end{pmatrix}, \begin{pmatrix} -1 & \\ -1 & \end{pmatrix}, \begin{pmatrix} \varepsilon & 2\varepsilon \\ & \varepsilon \end{pmatrix}, and \begin{pmatrix} 1 & 1 \\ & \delta \end{pmatrix} \quad (\delta \in K).$$

There are p + 7 rings, with 5 commutative.

(ii) p = 2, the same but omitting the representatives involving  $\varepsilon$ . There are 6 rings, with 4 commutative.

## 4. CHARACTERISTICS $p^4$ , $p^5$ , AND CONCLUSION

In characteristic  $p^4$ , [1, Proposition 2.3] applies and the rings are as follows:

**4**.  $A[X]/(pX, X^2 - ap^3)$  with  $a \in \Sigma_2^0$ . There are 3 rings  $(p \neq 2)$  and 2 (p = 2).

In characteristic  $p^5$  there is, of course, just one ring:

5. 
$$Z_{p^5}$$
.

This completes the classification of all local rings of order  $p^5$ , and hence of all rings of order  $p^n$  ( $n \le 5$ ), when taken in conjunction with Part I.

TABLE I The Numbers of Indecomposable Rings of Order  $p^n$  ( $n \le 5$ )

|                       |    | Char                                     |                                   |                                     |                                  |                                   |                                     |                                   |   |
|-----------------------|----|------------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|---|
| Order                 |    | р                                        | $p^2$                             |                                     | $p^3$                            |                                   | $p^4$                               | $p^5$                             |   |
| р                     | 1  |                                          |                                   |                                     |                                  |                                   |                                     |                                   |   |
| $p^2$                 | 2  |                                          | 1                                 |                                     |                                  |                                   |                                     |                                   |   |
| $p^3$                 | 3  | 1                                        | $\begin{cases} 3\\ 2 \end{cases}$ |                                     |                                  | 1                                 |                                     |                                   |   |
| $p^4$                 | 7  | $\begin{cases} p+7\\ 8 \end{cases}$      | [ 13<br>[ 11                      | $\begin{cases} p+4\\ 4 \end{cases}$ |                                  | $\begin{cases} 3\\ 2 \end{cases}$ |                                     | 1                                 |   |
| <i>p</i> <sup>5</sup> | 12 | $\begin{cases} 5p + 27\\ 34 \end{cases}$ | 48<br>40<br>44<br>36<br>27<br>38  | $2p^2 + 16p +$                      | (33<br>31<br>33<br>31<br>5<br>31 | 14<br>12                          | $\begin{cases} p+4\\ 4 \end{cases}$ | $\begin{cases} 3\\ 2 \end{cases}$ | 1 |

For reference, we conclude with Table I giving the total number of indecomposable rings in each of the orders  $p, \ldots, p^5$ . Table I is divided into columns according to the characteristic. The columns for characteristics  $p, p^2, p^3$  are further divided into two, the left giving commutative rings and the right noncommutative. In characteristics  $p^4$  and  $p^5$  the rings are all commutative. To save space, we use the notation  $\{^a_b$  to represent the value  $a \ (p \neq 2), b \ (p = 2)$ . Similarly  $[^a_b$  represents  $a \ (p \equiv 1(3)), b \ (p \neq 1(3))$  and a vertical sextuplet preceded by a parenthesis distinguishes, respectively, the cases  $p \equiv 1, 5, 7, 11(12), p = 2$ , and p = 3.

#### REFERENCES

- 1. B. Corbas and G. D. Williams, Rings of order p<sup>5</sup>. Part I. Nonlocal rings, J. Algebra
- 2. B. Corbas and G. D. Williams, Congruence of two-dimensional subspaces in  $M_2(K)$  (characteristic  $\neq$  2), *Pacific J. Math.* 188 (1999), 225–235.
- 3. B. Corbas and G. D. Williams, Congruence of two-dimensional subspaces in  $M_2(K)$  (characteristic 2), *Pacific J. Math.* **188** (1999), 237–249.
- B. Corbas and G. D. Williams, Matrix representatives for three-dimensional bilinear forms over finite fields, *Discrete Math.* 185 (1998), 51–61.
- 5. G. D. Williams, Projective congruence in  $M_3(\mathbf{F}_a)$ , preprint, University of Reading, 1997.
- 6. G. D. Williams, On a class of finite rings of characteristic  $p^2$ , preprint, University of Reading, 1998.
- 7. G. D. Williams, Congruence of  $(2 \times 2)$  matrices, *Discrete Math.* (2000), in press.