Rings of Order p^{5}

 Part II. Local RingsB. Corbas and G. D. Williams

metadata, citation and similar papers at core.ac.uk

E-maıl: \{b.corbas, g.d.williams\}@reading.ac.uk
Communicated by Peter M. Neumann
Received February 2, 1999

The structure and classification up to isomorphism of all local rings of order p^{5} are given here. This completes the determination of all rings of this order, which was begun in the companion to this paper. © 2000 Academic Press

Key Words: finite rings; local rings.

INTRODUCTION

The present paper is a sequel to [1] and concludes our determination of all rings of order p^{5}, where p is prime. In Part I we classified all except the local rings, and it is to the latter case that we now address ourselves.

Throughout R will denote a local ring of order p^{5} having prime subring A, Jacobson radical J, and residue field $R / J=\mathbf{F}_{p^{r}}$. The notations introduced in Section 2 of [1] will remain in force. In particular K denotes \mathbf{F}_{p}, Σ_{m} is a set of coset representatives of $K^{* m}$ in $K^{*}, \Sigma_{m}^{0}=\Sigma_{m} \cup\{0\}$, and d_{i} is the dimension of J^{i} / J^{i+1} over R / J. As in the lower orders, we shall use the decimal numbering $k . d_{1} \cdot d_{2}$ to distinguish the cases, p^{k} being the characteristic of R, suppressing the d_{i} when they are irrelevant. In what follows we shall make frequent use of the preliminary results obtained in [1]. Recall in particular that, with the single exception of $R=\mathbf{F}_{p^{5}}$, we have $r=1$, so that $R / J=K$ and $|J|=p^{4}$. For convenience we divide our account into sections, one for each of the characteristics p, \ldots, p^{5}.

1. CHARACTERISTIC p

In this case $A=K=\mathbf{F}_{p}$. The rings are as follows.
1.0. $\mathbf{F}_{p^{5}}$.
1.1. $K[X] /\left(X^{5}\right)[1$, Lemma 2.2].
1.2.1. Choose $x, y, z, t \in J$ such that $J=K x \oplus K y \oplus J^{2}, J^{2}=K z \oplus$ J^{3}, and $J^{3}=K t$. Then $x^{2}=\alpha_{1} z+\alpha_{2} t, x y=\beta_{1} z+\beta_{2} t, y x=\gamma_{1} z+\gamma_{2} t$, $y^{2}=\delta_{1} z+\delta_{2} t$, with coefficients in K. Now $J^{3}=J z=K x z+K y z$, so we may assume that $K y z \subset K x z$, say $y z=\lambda x z$. Replacing y by $y-\lambda x$ allows us to assume that $y z=0$, and, multiplying x by a scalar, we may take $x z=t$. Similarly $J^{3}=K z x+K z y$, and so $z x, z y$ are not both zero. If $a, b, c \in R$, write $A(a b c)$ for the associativity condition $(a b) c=a(b c)$. From $A\left(y x^{2}\right)$ and $A(y x y)$ we derive $\gamma_{1}=0$. In the same way $A\left(y^{2} x\right)$, $A\left(y^{3}\right)$ lead to $\delta_{1}=0$, and $A(x y x), A\left(x y^{2}\right)$ to $\beta_{1}=0$. Then $\alpha_{1} \neq 0$, else $J^{2}=J^{3}$. Now $A\left(x^{3}\right), A\left(x^{2} y\right)$ give $z x=t, z y=0$. Replacing y by $y-\beta_{2} z$ and z by $z+\alpha_{2} \alpha_{1}^{-1} t$ allows us to assume that $\beta_{2}=\alpha_{2}=0$. If we now replace z, t by $\alpha_{1} z, \alpha_{1} t$, the multiplication in J is given by the table

	x	y	z	t
x	z	0	t	0
y	γt	δt	0	0
z	t	0	0	0
t	0	0	0	0

where we have written $\gamma=\gamma_{2}, \delta=\delta_{2}$. One checks, conversely, that such a table does indeed define a ring R with basis (1, x, y, z, t), and in particular that associativity holds. Moreover the ideal J spanned by (x, y, z, t) is such that $J^{4}=0$, whence $J \subset \operatorname{rad} R$, and it follows that R is a local ring of the type under discussion, with radical J. If γ, δ are both non-zero, replace x, y, z, t by $\gamma^{2} \delta^{-1} x, \gamma^{3} \delta^{-2} y, \gamma^{4} \delta^{-2} z, \gamma^{6} \delta^{-3} t$, respectively, and then $\gamma=\delta=$ 1. If $\gamma \neq 0, \delta=0$, replace y by $\gamma^{-1} y$, so that $\gamma=1$. If $\gamma=0, \delta \neq 0$, replace x, y, z, t by $\delta x, \delta y, \delta^{2} z, \delta^{3} t$, and then $\delta=1$. In summary, there are 4 rings in this case, given by the table above with: (i) $\gamma=\delta=1$; (ii) $\gamma=1, \delta=0$; (iii) $\gamma=0, \delta=1$, and (iv) $\gamma=\delta=0$.

These are not isomorphic. The first two are not commutative, whereas the last two are. Indeed, (iii) is $K[X, Y] /\left(X^{4}, X Y, Y^{2}-X^{3}\right)$ and (iv) is $K[X, Y] /\left(X^{4}, X Y, Y^{2}\right)$. Moreover from the table one calculates that the right annihilator $\operatorname{Ann}_{r}(J)=K t(\delta \neq 0), K y \oplus K t(\delta=0)$. The dimension of this distinguishes the other cases.
1.2.2. Choose $x_{1}, x_{2}, y_{1}, y_{2} \in J$ such that $J=K x_{1} \oplus K x_{2} \oplus J^{2}, J^{2}=$ $K y_{1} \oplus K y_{2}$. Then $x_{i} x_{j}=\alpha_{i j} y_{1}+\beta_{i j} y_{2}\left(\alpha_{i j}, \beta_{i j} \in K\right)$ and these four products span J^{2}. The ring structure is determined by the pair of (2×2) matrices $M=\left(\alpha_{i j}\right), N=\left(\beta_{i j}\right)$, which are linearly independent over K. Conversely, any pair of independent matrices defines such a ring by letting R have basis (1, $x_{1}, x_{2}, y_{1}, y_{2}$) and defining $x_{i} x_{j}$ as above and all other products of the x_{i} and y_{j} to be zero. Then the ideal J spanned by $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is such that $J^{3}=0$, and again it follows that R is local, with radical J. The independence of M, N implies that $J^{2}=K y_{1} \oplus K y_{2}$.

If ($x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$) is a new basis of J with corresponding matrices M^{\prime}, N^{\prime}, then we may write $x_{i}^{\prime}=p_{1 i} x_{1}+p_{2 i} x_{2}+z_{i}\left(z_{i} \in J^{2}\right)$, so that $P=\left(p_{i j}\right)$ is the transition matrix from the basis $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ of J / J^{2} to the basis ($\bar{x}_{1}^{\prime}, \bar{x}_{2}^{\prime}$). Equally, let $Q=\left(q_{i j}\right)$ be the transition matrix from the basis $\left(y_{1}, y_{2}\right)$ of J^{2} to $\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$. Since $J^{3}=0$, calculating $x_{i}^{\prime} x_{j}^{\prime}$ and comparing coefficients of y_{i} leads to equations which, in matrix form, are

$$
\left\{\begin{array}{l}
P^{t} M P=q_{11} M^{\prime}+q_{12} N^{\prime} \\
P^{t} N P=q_{21} M^{\prime}+q_{22} N^{\prime}
\end{array}\right.
$$

Evidently, the problem of classifying our rings up to isomorphism amounts to that of classifying pairs of linearly independent matrices (M, N) under the above relation of equivalence, P and Q being arbitrary invertible matrices. This linear algebra problem has been solved over any field K in $[2,3]$ and we extract the results, where $K=\mathbf{F}_{p}$. If $p \neq 2$, let ε be a fixed non-square of K. If $\delta=1$ (resp. ε), then for each $\xi \in K$ (resp. K^{*}) choose a non-zero solution (α, β) of the equation $\alpha^{2}-\delta \beta^{2}=\xi$, and let Π_{δ} be the set of these. Then, the isomorphism classes of rings are given by the pairs of matrices
(i) $p \neq 2$,

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & \\
& \delta
\end{array}\right),\left(\begin{array}{ll}
\sigma & 1 \\
\sigma & (\delta=0,1, \varepsilon ; \sigma= \pm 1),
\end{array} \quad\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 &
\end{array}\right)\right. \\
& \left(\begin{array}{ll}
1 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
1+\beta \\
1-\beta & 1+\beta
\end{array}\right)\left(\beta \in K^{*}\right), \quad\left(\begin{array}{cc}
1 & \alpha \\
-\alpha & \delta
\end{array}\right),\left(\begin{array}{ll}
1-\beta & 1+\beta \\
1-\beta &
\end{array}\right) \\
& \left(\delta=1, \varepsilon ;(\alpha, \beta) \in \Pi_{\delta}\right) .
\end{aligned}
$$

Hence there are $3 p+5$ distinct rings in this case, with 3 commutative.
(ii) $p=2$,

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
& 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
& 1 \\
0 &
\end{array}\right), \quad\left(\begin{array}{ll}
1 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 &
\end{array}\right) \text {, } \\
& \left(\begin{array}{ll}
1 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
& 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & \\
& \delta
\end{array}\right),\left(\begin{array}{ll}
& 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
& \delta
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 &
\end{array}\right), \\
& \left(\begin{array}{ll}
\delta & 1 \\
& 0
\end{array}\right),\left(\begin{array}{ll}
& 1 \\
1 & 1
\end{array}\right)(\delta=0,1) .
\end{aligned}
$$

There are 10 such rings, 3 being commutative.
1.3. Let $J=K x_{1} \oplus K x_{2} \oplus K x_{3} \oplus J^{2}, J^{2}=K y$. Then $x_{i} x_{j}=\alpha_{i j} y\left(\alpha_{i j}\right.$ $\in K)$ and these nine products span J^{2}. The ring structure is determined by the (3×3) matrix $M=\left(\alpha_{i j}\right)$, which is non-zero, and any non-zero matrix defines such a ring. If ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y^{\prime}$) is a new basis of J with corresponding matrix M^{\prime}, then as above we have $x_{i}^{\prime}=\sum_{j} p_{j i} x_{j}+r_{i} y$ and $y^{\prime}=q y$. Calculating $x_{i}^{\prime} x_{j}^{\prime}$ and comparing coefficients leads to the matrix condition $P^{t} M P=q M^{\prime}$, where P is invertible and $q \neq 0$. If M, M^{\prime} are so related, we call them projectively congruent. This reduces to ordinary congruence when $q=1$. The rings in the present case are evidently classified by the non-zero matrix M up to projective congruence. This matrix classification problem has been dealt with in [4,5]. If, as before, ε denotes a non-square in K (p odd), the results are that the isomorphism classes of rings are given by the matrices
(i) $p \neq 2$,

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& \varepsilon & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
\mu & & \\
& -1 & 1
\end{array}\right), \\
& \left(\begin{array}{lll}
\mu & & \\
& 1 & 1 \\
& & \delta
\end{array}\right),\left(\begin{array}{lll}
\varepsilon & 1 & 2 \\
& 1 & 1
\end{array}\right),\left(\begin{array}{lll}
\mu & 0 & 1 \\
& & 1
\end{array}\right), \quad \text { where } \mu=0,1 \text { and } \delta \in K .
\end{aligned}
$$

There are $2 p+9$ such rings, with 4 commutative.
(ii) $p=2$,

$$
\left.\begin{array}{l}
\left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
0 & & \\
& & 1 \\
& 1 &
\end{array}\right),\left(\begin{array}{lll}
\mu & & \\
& 1 & 1 \\
& & \delta
\end{array}\right), \\
\\
\\
\end{array} 10 \begin{array}{l}
1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
& & 1
\end{array}\right), \quad \text { where } \mu=0,1 \text { and } \delta=0,1 . \quad . \quad .
$$

There are 11 such rings, with 4 commutative.
1.4. Choose a basis (x, y, z, t) of J. All products of these are zero and we obtain just one commutative ring: $R=K[X, Y, Z, T] /(X, Y, Z, T)^{2}$.

This completes the classification in characteristic p.

2. CHARACTERISTIC p^{2}

Throughout this section the prime ring $A=\mathbf{Z}_{p^{2}}$. We go through the cases again:
2.1. Choose $x \in J-J^{2}$, so that $R=A[x]$ and the other conclusions of [1, Lemma 2.2] hold, in particular $p \in J^{2}$. In fact $p \in J^{3}$, for otherwise $J^{2}=R p+J^{3}$ and squaring gives the contradiction $J^{4}=0$. We split into two subcases, according to whether p belongs to J^{4} or not.
2.1.a. $p \in J^{4}$. Then $p x=0$ and $x^{4}=a p$, where a belongs to A^{*}, the group of units of A. It follows that $R=A[X] /\left(p X, X^{4}-a p\right)$. As for existence, one checks easily that the latter ring is indeed local of order p^{5} and of the type under consideration. To classify these up to isomorphism, suppose also that $R=A\left[x^{\prime}\right]$, with $p x^{\prime}=0, x^{\prime 4}=a^{\prime} p$. Then $x^{\prime}=b x+y$ $\left(b \in A^{*}, y \in J^{2}\right)$, and so $x^{\prime 4}=b^{4} x^{4}$. Thus $a^{\prime} p=b^{4} a p$, whence $a^{\prime} \equiv b^{4} a$ $(\bmod p)$. If, conversely, this last condition holds, replace x by $x^{\prime}=b x$, and then $x^{\prime 4}=a^{\prime} p$. This is similar to Case 2.1.1.a in order p^{4} [1], and our rings are classified by $a \in \Sigma_{4}$, or more precisely by the image of a under the epimorphism $A^{*} \rightarrow K^{*} \rightarrow K^{*} / K^{* 4}$, the first map being reduction $\bmod p$. To summarize, the distinct rings are given by $R=A[X] /\left(p X, X^{4}-a p\right)$, with $a \in \Sigma_{4}$. The number of rings is 4,2 , or 1 according to whether $p \equiv 1(4)$, $p \equiv 3(4)$, or $p=2$.
2.1.b. $\quad p \notin J^{4}$. Here there is a parallel with Case 2.1.1.b in order p^{4}. We have $J^{3}=A p \oplus J^{4}, J=A x+J^{2}$, and multiplying gives $J^{4}=A p x$, so that $J^{3}=A p \oplus A p x$. Let $x^{3}=a p+b p x(a, b \in A)$. Then $a \in A^{*}$, else $x^{4}=b p x^{2}=0$. If $p \neq 3$, we may replace x by $x-b x^{2} / 3 a$ and so assume that $b=0$. Hence $R=A[X] /\left(p X^{2}, X^{3}-a p\right)$, where once again one checks without difficulty that the latter ring really does have the right properties. To classify these, suppose also that $R=A\left[x^{\prime}\right]$, with $p x^{\prime 2}=0$, $x^{\prime 3}=a^{\prime} p$. Then $x^{\prime}=c x+y\left(c \in A^{*}, y \in J^{2}\right)$, and so $x^{\prime 3}=c^{3} x^{3}+3 c^{2} x^{2} y$. But $x^{\prime 3}-c^{3} x^{3} \in A p, 3 c^{2} x^{2} y \in J^{4}$ and the sum in J^{3} is direct. So in fact $x^{\prime 3}=c^{3} x^{3}$. As above, our rings are classified by $a \in \Sigma_{3}$. If $p=3$, then $a \equiv \pm 1$ (3), and replacing x by $a x$ allows us to assume that $a=1$, so that $x^{3}=3+3 b x$. If, as before, $x^{\prime}=c x+y$ is a new generator, with $x^{\prime 3}=3+$ $3 b^{\prime} x^{\prime}$, then $x^{\prime 3}=c^{3} x^{3}=c x^{3}$. But $3 \in J^{3}$, so that $3 y=0$ and $3+3 b^{\prime} c x=$ $3 c+3 b c x$. Since the sum in J^{3} is direct, it follows that $b^{\prime} \equiv b(3)$. We have proved that for $p \neq 3$ the rings are given by $R=A[X] /\left(p X^{2}, X^{3}-a p\right)$, $a \in \Sigma_{3}$. The number of rings is 3 or 1 according to whether $p \equiv 1$ (3) or not.

For $p=3$ there are 3 rings: $R=A[X] /\left(3 X^{2}, X^{3}-3-3 b X\right)$ with $b=$ $0, \pm 1$.
2.2. We observe first that $p J^{2}=0$. If not, then $p x y \neq 0$ for some $x, y \in J$, and so $J^{2}=A x y$. Then $p x$ has order p in J^{2}, so that $p x=a p x y$. This gives the contradiction $p x y=a p x y^{2}=0$, since $J^{4}=0$. We now split into five subcases, in the first three of which $p \in J^{2}$ and we consider the possibilities for the chain $J^{2} \supset J^{3} \supset p J \supset 0$.
2.2.a. $p \in J^{2}, J^{3}=0$. Since $p J=0$ we may regard J as a K-algebra (without identity) and choose $x_{1}, x_{2}, y \in J$ such that $J=K x_{1} \oplus K x_{2} \oplus$ $J^{2}, J^{2}=K y \oplus K p$. For $\lambda \in K$, one must be careful not to confuse λp in A with $p \lambda=0$ in K. As in Case 1.2.2 we have $x_{i} x_{j}=\alpha_{i j} y+\beta_{i j} p\left(\alpha_{i j}, \beta_{i j} \in\right.$ K) and these products span J^{2}. Note also a parallel with Case 2.2.a in order p^{4}. The matrices $M=\left(\alpha_{i j}\right), N=\left(\beta_{i j}\right)$ are linearly independent, and one verifies as before that any such pair of matrices gives rise to a ring of the present type. If we change to new generators $x_{1}^{\prime}, x_{2}^{\prime}, y^{\prime}$ with corresponding matrices M^{\prime}, N^{\prime}, then $x_{i}^{\prime}=p_{1 i} x_{1}+p_{2 i} x_{2}+z_{i}\left(z_{i} \in J^{2}\right)$ and we put $P=\left(p_{i j}\right)$. If $Q=\left(q_{i j}\right)$ is the transition matrix from the basis (y, p) of J^{2} to $\left(y^{\prime}, p\right)$, we obtain as before the conditions

$$
\left\{\begin{array}{l}
P^{t} M P=q_{11} M^{\prime}+q_{12} N^{\prime} \\
P^{t} N P=q_{21} M^{\prime}+q_{22} N^{\prime} .
\end{array}\right.
$$

Our problem now boils down to that of classifying pairs of matrices over K under an equivalence relation similar to that of Case 1.2.2, but with the crucial difference that Q is restricted to be of the form (${ }_{* 1}^{*}$), since here $q_{12}=0, q_{22}=1$. This linear algebra problem has a quite different solution. The list of normal forms for the pairs (M, N) turns out to be rather extensive and is given in full in [6]. For brevity we do not repeat it here, but confine ourselves to stating the number of isomorphism classes. The numbers of distinct rings of this type are given as follows:
(i) $p \neq 2$. There are $2 p^{2}+10 p+15$ rings, of which 10 are commutative.
(ii) $p=2$. There are 23 rings, of which 6 are commutative.
2.2.b. $p \in J^{2}, J^{3} \neq 0, p J=0$. Note first that $p \in J^{3}$, for otherwise $J^{2}=A p+J^{3}$ and then $J^{3}=p J=0$. Once again we regard J as a K-algebra and write $J=K x \oplus K y \oplus J^{2}, J^{2}=K z \oplus J^{3}$ and $J^{3}=K p$. This is similar to Case 1.2.1. The argument of the first paragraph there applies,
and we may take the multiplication to be given by

	x	y	z	p
x	αz	0	p	0
y	γp	δp	0	0
z	p	0	0	0
p	0	0	0	0

where $\alpha \neq 0$. We may not, of course, renormalize p this time to take $\alpha=1$. Conversely, any such table gives rise to a ring of the present class. Note that R is commutative if and only if $\gamma=0$, and that if R is not commutative we may scale y and take $\gamma=1$. If $x^{\prime}, y^{\prime}, z^{\prime}$ are new generators with structure constants $\alpha^{\prime}, \gamma^{\prime}, \delta^{\prime}$, we have $x^{\prime}=a x+c y+e z+u$, $y^{\prime}=b x+d y+f z+v, z^{\prime}=g z+w$ with $a, \ldots, g \in K$ and $u, v, w \in J^{3}$. Then $x^{\prime} z^{\prime}=a g x z$ and $y^{\prime} z^{\prime}=b g x z$, giving $a \neq 0, b=0$ and hence $d \neq 0$, else $y^{\prime} \in J^{2}$. Computing $x^{\prime 2}, x^{\prime} y^{\prime}, y^{\prime} x^{\prime}$ and $y^{\prime 2}$ and comparing coefficients leads to the equations

$$
\begin{equation*}
\alpha^{\prime}=a^{3} \alpha, \quad \gamma^{\prime}=a d \gamma, \quad \delta^{\prime}=d^{2} \delta(\text { some } a, d \neq 0) . \tag{1}
\end{equation*}
$$

These conditions are also sufficient for the rings with structure constants (α, γ, δ) and ($\alpha^{\prime}, \gamma^{\prime}, \delta^{\prime}$) to be isomorphic, as follows by setting $x^{\prime}=a x, y^{\prime}=d y, z^{\prime}=a^{-1} z$. We now analyze the conditions (1). If R is commutative, so that $\gamma=\gamma^{\prime}=0$, then R is classified by the cube-class of α and the square-class of δ. But if R is noncommutative ($\gamma=\gamma^{\prime}=1$), then $a d=1$ and (1) becomes $\alpha^{\prime}=a^{3} \alpha, \delta^{\prime}=a^{-2} \delta(a \neq 0)$. In particular, if we fix $\delta=\delta^{\prime} \neq 0$, then $a= \pm 1$, and $\alpha^{\prime}= \pm \alpha$. We have proved that the distinct rings of this type are determined by the table above.

For R commutative, we take $\gamma=0, \alpha \in \Sigma_{3}$, and $\delta \in \Sigma_{2}^{0}$.
For R noncommutative, we take $\gamma=1$ and

$$
\begin{cases}\text { either } & \alpha \in \Sigma_{3}, \delta=0 \\ \text { or } & \alpha \in K^{*} /\{ \pm 1\}, \delta \in \Sigma_{2} .\end{cases}
$$

The numbers of rings are

	$p \equiv 1(3)$	$p \not \equiv 1(3), p$ odd	$p=2$
Commutative	9	3	2
Noncommutative	$p+2$	p	2

2.2.c. $p \in J^{2}, J^{3}=p J \neq 0$. Here $p \notin J^{3}$, else $p J=0$. Thus $J^{2}=$ $A p \oplus J^{3}$. By [1, Lemma 2.1] we have $J=A x+A y+J^{2}$, and we may assume that $p x \neq 0$. Then $J^{3}=A p x$ and $p y=r p x(r \in A)$. Replacing y by $y-r x$ allows us to take $p y=0$. Hence $R=A \oplus A x \oplus A y, J=A p \oplus A x$
$\oplus A y$, and $J^{2}=A p \oplus A p x$. The argument is now rather similar to the previous case. Let $x^{2}=\alpha_{1} p+\alpha_{2} p x, x y=\beta_{1} p+\beta_{2} p x, y x=\gamma_{1} p+$ $\gamma_{2} p x, y^{2}=\delta_{1} p+\delta_{2} p x$, where the coefficients may be taken in K. The associativity conditions $A\left(x^{2} y\right), A\left(y x^{2}\right), A\left(x y^{2}\right)$ give $\beta_{1}=\gamma_{1}=\delta_{1}=0$ and replacing y by $y-\beta_{2} p$ allows us to assume that $\beta_{2}=0$. We now consider the characteristic.
Suppose that $p \neq 2$. Replace x by $x-\frac{1}{2} \alpha_{2} p$, and then $\alpha_{2}=0$. The multiplication in R is now determined by the table

	x	y	p
x	αp	0	$p x$
y	$\gamma p x$	$\delta p x$	0
p	$p x$	0	0

where we have dropped the remaining subscripts and $\alpha \neq 0$. As usual, one checks that any such table defines a ring of the present type. If x^{\prime}, y^{\prime} are new generators with structure constants $\alpha^{\prime}, \gamma^{\prime}, \delta^{\prime}$, write $x^{\prime}=a x+c y+e p$, $y^{\prime}=b x+d y+f p$. Although this time $p x \neq 0$, there is no harm in regarding a, \ldots, f as being in K, since the new multiplication table depends only on their images $\bmod p$. From $p x^{\prime}=a p x, p y^{\prime}=b p x$ we deduce $a \neq 0$, $b=0$ and then $d \neq 0$, else $y^{\prime} \in J^{2}$. Computing $x^{\prime 2}, x^{\prime} y^{\prime}, y^{\prime} x^{\prime}, y^{\prime 2}$ and comparing coefficients leads to the equations

$$
\begin{equation*}
\alpha^{\prime}=a^{2} \alpha, \quad \gamma^{\prime}=d \gamma, \quad \delta^{\prime}=a^{-1} d^{2} \delta(\text { some } a, d \neq 0) . \tag{2}
\end{equation*}
$$

Again these conditions are also sufficient for the rings with structure constants (α, γ, δ) and ($\alpha^{\prime}, \gamma^{\prime}, \delta^{\prime}$) to be isomorphic: set $x^{\prime}=a x, y^{\prime}=d y$. By choice of a, d we may take γ, δ to be 0 or 1 and it follows from (2) that for $p \neq 2$ the distinct rings are given by the table above.

For R commutative, we take $\gamma=0$ and

$$
\begin{cases}\text { either } & \alpha \in \Sigma_{2}, \delta=0 \\ \text { or } & \alpha \in \Sigma_{4}, \delta=1 .\end{cases}
$$

For R noncommutative, we take $\gamma=1$ and

$$
\begin{cases}\text { either } & \alpha \in \Sigma_{2}, \delta=0 \\ \text { or } & \alpha \in K^{*}, \delta=1 .\end{cases}
$$

The numbers of rings are

	$p \equiv 1(4)$	$p \equiv 3(4)$
Commutative	6	4
Noncommutative	$p+1$	$p+1$

Now consider $p=2$. Then $\alpha_{1}=1$ and the multiplication table has the form

	x	y	2
x	$2+\alpha 2 x$	0	$2 x$
y	$\gamma 2 x$	$\delta 2 x$	0
2	$2 x$	0	0

Changing to x^{\prime}, y^{\prime} as before, we have here $b=0, a=d=1$ and we obtain the equations

$$
\begin{equation*}
\alpha^{\prime}=\alpha+c(\gamma+\delta), \quad \gamma^{\prime}=\gamma, \quad \delta^{\prime}=\delta . \tag{3}
\end{equation*}
$$

Once more, setting $x^{\prime}=x+c y, y^{\prime}=y+c \delta 2$ shows (3) also to be sufficient for isomorphism. If $\gamma=\delta$, then $\alpha^{\prime}=\alpha$. But if $\gamma \neq \delta$, we may then take $\alpha=0$. Thus for $p=2$ the rings are given by the previous table, where (α, γ, δ) is any triple of elements of K except for $(1,0,1)$ and $(1,1,0)$. There are 3 commutative rings and 3 noncommutative.

In the remaining cases we have $p \notin J^{2}$. As in [1, Lemma 2.1] we may write $J=A p+A x+J^{2}$. Hence $p J=A p x, J^{2}=A p x+A x^{2}+J^{3}$, and J^{3} $=A x^{3}$. Thus $J=A p+A x+A x^{2}+A x^{3}, \quad R=A+A x+A x^{2}+A x^{3}=$ $A[x]$, and R is commutative.
2.2.d. $p \notin J^{2}, p J=0$. There is clearly one such ring: $R=$ $A[X] /\left(p X, X^{4}\right)$.
2.2.e. $p \notin J^{2}, p J \neq 0$. The order of R shows that $x^{2} \neq 0$, and so both x^{2} and $p x$ have order p. Certainly $A x^{2} \neq A p x$, else $J^{3}=A x^{3}=A p x^{2}$ $=0$ and then $J^{2}=A p x$ would have order p. Hence $J^{2}=A p x \oplus A x^{2}$ and we may write $x^{3}=a p x+b x^{2}(a, b \in A)$. So $0=x^{4}=b x^{3}=a b p x+b^{2} x^{2}$, and hence $b^{2} x^{2}=0$, the sum being direct. Thus $p \mid b$ and $x^{3}=a p x$, and so $R=A[X] /\left(p X^{2}, X^{3}-a p X\right)$, where as usual one verifies that this last ring has the right properties. If $x^{\prime}=c x+d p+y\left(c \in A^{*}, d \in A, y \in J^{2}\right)$ is a new generator with $x^{\prime 3}=a^{\prime} p x^{\prime}$, one deduces easily that $a^{\prime} \equiv c^{2} a(p)$, and our rings are classified by $a \in \Sigma_{2}^{0}$. In summary, the rings are given by $R=A[X] /\left(p X^{2}, X^{3}-a p X\right)$ with $a \in \Sigma_{2}^{0}$. There are 3 rings $(p \neq 2)$ and 2 ($p=2$).

We split Case $\mathbf{2 . 3}$ into three subcases:
2.3.a. $p \in J^{2}$. Let $J=K x_{1} \oplus K x_{2} \oplus K x_{3} \oplus J^{2}, J^{2}=K p$, and put $x_{i} x_{j}=\alpha_{i j} p\left(\alpha_{i j} \in K\right)$. Just as in Case $\mathbf{1 . 3}$ the ring structure is given by the non-zero matrix $M=\left(\alpha_{i j}\right)$, but this time up to congruence, since no change of basis in J^{2} is involved. From [4, 5] we thus have that the
isomorphism classes of rings are given by the matrices
(i) $p \neq 2$,
$\left(\begin{array}{lll}\nu & & \\ & 0 & \\ & & 0\end{array}\right),\left(\begin{array}{lll}1 & & \\ & \nu & \\ & & 0\end{array}\right),\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & \nu\end{array}\right),\left(\begin{array}{lll}\mu & & \\ & -1 & 1\end{array}\right),\left(\begin{array}{lll}\mu & & \\ & 1 & 1 \\ & & \delta\end{array}\right)$,
$\left(\begin{array}{ccc}\mu & & \\ & \varepsilon & 2 \varepsilon \\ & & \varepsilon\end{array}\right),\left(\begin{array}{ccc}\mu & 0 & 1 \\ & & 1\end{array}\right), \quad$ where $\mu=0,1, \varepsilon ; \nu=1, \varepsilon$ and $\delta \in K$.

There are $3 p+15$ such rings, with 6 commutative.
(ii) $p=2$,

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
0 & & 1 \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
\mu & & \\
& 1 & 1 \\
& & \delta
\end{array}\right), \\
& \left(\begin{array}{lll}
\mu & 0 & 1 \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
& & 1 \\
& 1 & 1
\end{array}\right), \quad \text { where } \mu=0,1 \text { and } \delta=0,1 .
\end{aligned}
$$

There are 11 such rings, with 4 commutative.

$$
\text { 2.3.b. } p \notin J^{2}, p J=0 \text {. Write } J=K p \oplus K x_{1} \oplus K x_{2} \oplus J^{2}, J^{2}=K y \text {, }
$$ and let $x_{i} x_{j}=\alpha_{i j} y\left(\alpha_{i j} \in K\right)$. There is some similarity this time with both Cases 2.2.a and 1.3. The ring structure is determined by the non-zero matrix $M=\left(\alpha_{i j}\right)$, and any such matrix gives a ring of this type. As before, the rings are classified by the projective congruence class of M, and we use the representatives for these classes given in [7]. Thus, the distinct rings of this type are given by the matrices

$$
\left(\begin{array}{ll}
1 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& \xi
\end{array}\right)\left(\xi \in \Sigma_{2}\right),\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
& \delta
\end{array}\right)(\delta \in K) .
$$

The number of rings is $p+4(p \neq 2)$, $5(p=2)$. In either case 3 are commutative.
2.3.c. $p \notin J^{2}, p J \neq 0$. This is very like Case 2.2.c and we have $R=A \oplus A x \oplus A y, J=A p \oplus A x \oplus A y, J^{2}=A p x$, with $p y=0$. Write x^{2} $=\alpha p x, x y=\beta p x, y x=\gamma p x, y^{2}=\delta p x$, with coefficients in K. As before, we may take $\beta=0$, and we now consider the characteristic.

Let $p \neq 2$. Replace x by $x-\frac{1}{2} \alpha p$, and then $\alpha=0$. The multiplication table is

	x	y	p
x	0	0	$p x$
y	$\gamma p x$	$\delta p x$	0
p	$p x$	0	0

The same discussion as before shows that the rings with structure constants (γ, δ) and ($\gamma^{\prime}, \delta^{\prime}$) are isomorphic if and only if

$$
\begin{equation*}
\gamma^{\prime}=d \gamma, \quad \delta^{\prime}=a^{-1} d^{2} \delta(\text { some } a, d \neq 0) \tag{4}
\end{equation*}
$$

We may thus take γ, δ to be 0 or 1 , and hence, for $p \neq 2$ the distinct rings are given by the table above, with $\gamma, \delta \in\{0,1\}$. Two are commutative, two not.

For $p=2$ the table is

	x	y	2
x	$\alpha 2 x$	0	$2 x$
y	$\gamma 2 x$	$\delta 2 x$	0
2	$2 x$	0	0

The conditions for isomorphism of two such rings are again given by (3) and thus, for $p=2$ the rings are given by the previous table, where (α, γ, δ) is any triple of elements of K except for $(1,0,1)$ and $(1,1,0)$. There are 3 commutative rings and 3 noncommutative.
2.4. Choose a basis (p, x, y, z) of J. All products of these are zero and we obtain just one commutative ring: $R=A[X, Y, Z] /(p, X, Y, Z)^{2}$.

We have now dealt with characteristic p^{2}.

3. CHARACTERISTIC p^{3}

This time the prime ring $A=\mathbf{Z}_{p^{3}}$, and once more we consider the cases. Note that here we cannot have $d_{1}=4$, else $J^{2}=0$ and then $p^{2}=0$.
3.1. Choose $x \in J-J^{2}$, so that $R=A[x]$ and the other conclusions of [1, Lemma 2.2] hold. Thus $J=A x+J^{2}$ and $J^{2}=A p+J^{3}$, since $p^{2} \neq 0$ and hence $p \notin J^{3}$. Multiplying gives $J^{3}=A p x+J^{4}, J^{4}=A p^{2}$ and so $J=A p+A x$. But $p^{2} x \in J^{5}=0$, so x has order p^{2}, and it follows that $R=A \oplus A x, J=A p \oplus A x, J^{2}=A p \oplus A p x$. Let $x^{2}=a p+b p x(a, b \in A)$. Then $a \in A^{*}$, else $x^{2} \in J^{3}$. If $p \neq 2$, we may complete the square and take $b=0$. Hence $R=A[X] /\left(p^{2} X, X^{2}-a p\right)$, where one checks as usual that the quotient is indeed a ring of the right type. If also $R=A\left[x^{\prime}\right]$, with $p^{2} x^{\prime}=0, x^{\prime 2}=a^{\prime} p$, then putting $x^{\prime}=c x+d p\left(c \in A^{*}\right)$ leads to the condi-
tion $a^{\prime} \equiv c^{2} a\left(p^{2}\right)$. Conversely, if this holds for some c, then putting $x^{\prime}=c x$ gives $x^{\prime 2}=a^{\prime} p$. Thus our rings are classified by the image of a under reduction in $\mathbf{Z}_{p^{2}}^{*} / \mathbf{Z}_{p^{2}}^{* 2}$, itself isomorphic to $K^{*} / K^{* 2}$ via reduction $\bmod p$. Put another way, the congruence condition above may be replaced by congruence $\bmod p$. As usual, we say that the rings are classified by $a \in \Sigma_{2}$.

Now let $p=2$, so that $x^{2}=2 a+2 b x$ with $4 x=0$, and we may take $a= \pm 1, b=0,1$. Changing to a new generator $x^{\prime}=c x+2 d$ as above leads to the conditions

$$
\begin{equation*}
b^{\prime}=b, \quad a^{\prime} \equiv a+2 b d+2 d^{2}(4)(\text { some } d) \tag{5}
\end{equation*}
$$

The cases $(a, b)=(1,0)$ and $(-1,0)$ are equivalent, as follows by putting $x^{\prime}=x+2$. But if $b=1$, then (5) gives $a^{\prime} \equiv a(4)$ and the other cases are inequivalent. In all, for $p \neq 2$ there are 2 rings: $R=A[X] /\left(p^{2} X, X^{2}-a p\right)$, $a \in \Sigma_{2}$.
For $p=2$ there are 3 rings: $R=A[X] /\left(4 X, X^{2}-2 a-2 b X\right)$ with $(a, b)=(1,0),(1,1)$, or $(-1,1)$.
We divide Case 3.2 into two, noting first that $p \notin J^{2}$, else $p^{2}=0$.
3.2.1. $J^{3} \neq 0$. We show first that $p^{2} J=p J^{2}=0$. Suppose that $p^{2} J \neq$ 0 . Then $p^{2} z \neq 0$ for some $z \in J$, and so $J^{2}=A p z$. But p^{2} has order p in J^{2}, so that $p^{2}=a p^{2} z$, leading to the contradiction $p^{2} z=a p^{2} z^{2}=0$. Hence $p^{2} J=0$ and the argument at start of Case 2.2 now applies to show that $p J^{2}=0$.

Let $J=A p+A x+J^{2}$, so that $J^{2}=A p^{2}+A p x+A x^{2}+J^{3}$ and $J^{3}=$ $A x^{3}$ from above. Suppose $p x \notin A$. Then $J^{2}=A p^{2} \oplus A p x$, giving the contradiction $J^{3}=J J^{2}=0$. So $p x \in A$ and we have $p x=b p^{2}(b \in A)$. Replacing x by $x-b p$ allows us to take $p x=0$. Equally $x^{3} \in A$, else $J^{2}=A p^{2} \oplus A x^{3}$ and again $J^{3}=0$. Thus $x^{3}=a p^{2}\left(a \in A^{*}\right)$. We now have $R=A \oplus A x \oplus A x^{2}=A[X] /\left(p X, X^{3}-a p^{2}\right)$. One classifies these rings as usual and finds that the rings are given by $R=A[X] /\left(p X, X^{3}-a p^{2}\right)$, with $a \in \Sigma_{3}$. The number of rings is 3 or 1 according to whether $p \equiv 1(3)$ or not.
3.2.2. $J^{3}=0$. Let $J=A p+A x+J^{2}$, so that $J^{2}=A p^{2}+A p x+A x^{2}$ and $p J=A p^{2}+A p x$. Now $A p^{2} \subset p J \subset J^{2}$ and we split into two cases.
3.2.2.a. $\quad p J \neq J^{2}$. Here $p J=A p^{2}$ and we put $p x=a p^{2}$. Replacing x by $x-a p$ allows us to assume that $p x=0$. Then $J=A p \oplus A x \oplus A x^{2}$, $R=A \oplus A x \oplus A x^{2}$, and there is thus one ring: $R=A[X] /\left(p X, X^{3}\right)$.
3.2.2.b. $p J=J^{2}$. This time $J^{2}=p J=A p^{2} \oplus A p x$ and hence $J=$ $A p \oplus A x, R=A \oplus A x$. Let $x^{2}=a p^{2}+b p x(a, b \in A)$. If $p \neq 2$, we may complete the square and take $b=0$. Thus $R=A[X] /\left(p^{2} X, X^{2}-a p^{2}\right)$ and the usual checks show that R is classified by the square-class of a
$(\bmod p)$. If $p=2$, then $x^{2}=4 a+2 b x, 4 x=0$, and we may take $a, b=0$ or 1 . Changing to $x^{\prime}=c x+2 d$ this time leads to the conditions

$$
\begin{equation*}
b^{\prime}=b, \quad a^{\prime} \equiv a+b d+d(2)(\text { some } d), \tag{6}
\end{equation*}
$$

and it follows that there are three distinct rings. In summary, for $p \neq 2$ there are 3 rings: $R=A[X] /\left(p^{2} X, X^{2}-a p^{2}\right), a \in \Sigma_{2}^{0}$.
For $p=2$ there are 3 rings: $R=A[X] /\left(4 X, X^{2}-4 a-2 b X\right)$ with $(a, b)=(0,0),(0,1)$, or $(1,1)$.
3.3. Again $p \notin J^{2}$ and we write $J=A p+A x_{1}+A x_{2}+J^{2}$, where $J^{2}=K p^{2}$. We may as usual modify the x_{i} so that $p x_{i}=0$. Then $R=A \oplus$ $K x_{1} \oplus K x_{2}, J=A p \oplus K x_{1} \oplus K x_{2}$. The situation is now similar to several previous cases, such as Cases 2.3.a and 2.3.b. If $x_{i} x_{j}=\alpha_{i j} p^{2}\left(\alpha_{i j} \in K\right)$, then the ring structure is determined by $M=\left(\alpha_{i j}\right)$, which may here be any matrix, including zero, and the rings are classified by M up to congruence. From [7] we therefore have that the distinct rings of this type are given by the matrices
(i) $p \neq 2$,

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
& 0
\end{array}\right),\left(\begin{array}{ll}
\varepsilon & \\
& 0
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& \varepsilon
\end{array}\right),\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right),\left(\begin{array}{cc}
\varepsilon & 2 \varepsilon \\
& \varepsilon
\end{array}\right), \text { and } \\
& \left(\begin{array}{ll}
1 & 1 \\
& \delta
\end{array}\right) \quad(\delta \in K) .
\end{aligned}
$$

There are $p+7$ rings, with 5 commutative.
(ii) $\quad p=2$, the same but omitting the representatives involving ε. There are 6 rings, with 4 commutative.

4. CHARACTERISTICS p^{4}, p^{5}, AND CONCLUSION

In characteristic p^{4}, [1, Proposition 2.3] applies and the rings are as follows:
4. $A[X] /\left(p X, X^{2}-a p^{3}\right)$ with $a \in \Sigma_{2}^{0}$. There are 3 rings $(p \neq 2)$ and $2(p=2)$.

In characteristic p^{5} there is, of course, just one ring:

$$
\text { 5. } \mathbf{Z}_{p^{5}}
$$

This completes the classification of all local rings of order p^{5}, and hence of all rings of order $p^{n}(n \leq 5)$, when taken in conjunction with Part I.

TABLE I
The Numbers of Indecomposable Rings of Order $p^{n}(n \leq 5)$

Order	Char						
	p		p^{2}		p^{3}	p^{4}	p^{5}
p	1						
p^{2}	2	1					
p^{3}	31	$\left\{\begin{array}{l}3 \\ 2\end{array}\right.$			1		
p^{4}	$7 \quad\left\{\begin{array}{l}p+7 \\ 8\end{array}\right.$	$\left[\begin{array}{l}13 \\ 11\end{array}\right.$	$\left\{\begin{array}{l}p+4 \\ 4\end{array}\right.$		$\left\{\begin{array}{l}3 \\ 2\end{array}\right.$	1	
p^{5}	$12\left\{\begin{array}{l}5 p+27 \\ 34\end{array}\right.$	$\left(\begin{array}{l}48 \\ 40 \\ 44 \\ 36 \\ 27 \\ 38\end{array}\right.$	$2 p^{2}+16 p+$	$\left(\begin{array}{l}33 \\ 31 \\ 33 \\ 31 \\ 5 \\ 31\end{array}\right.$	$\left[\begin{array}{l}14 \\ 12\end{array}\right\} \begin{aligned} & p+4 \\ & 4\end{aligned}$	$\left\{\begin{array}{l}3 \\ 2\end{array}\right.$	1

For reference, we conclude with Table I giving the total number of indecomposable rings in each of the orders p, \ldots, p^{5}. Table I is divided into columns according to the characteristic. The columns for characteristics p, p^{2}, p^{3} are further divided into two, the left giving commutative rings and the right noncommutative. In characteristics p^{4} and p^{5} the rings are all commutative. To save space, we use the notation $\left\{\begin{array}{l}a \\ b\end{array}\right.$ to represent the value $a(p \neq 2), b(p=2)$. Similarly $\left[\begin{array}{l}a \\ b\end{array}\right.$ represents $a(p \equiv 1(3)), b$ ($p \not \equiv 1(3)$) and a vertical sextuplet preceded by a parenthesis distinguishes, respectively, the cases $p \equiv 1,5,7,11(12), p=2$, and $p=3$.

REFERENCES

1. B. Corbas and G. D. Williams, Rings of order p^{5}. Part I. Nonlocal rings, J. Algebra
2. B. Corbas and G. D. Williams, Congruence of two-dimensional subspaces in $M_{2}(K)$ (characteristic $\neq 2$), Pacific J. Math. 188 (1999), 225-235.
3. B. Corbas and G. D. Williams, Congruence of two-dimensional subspaces in $M_{2}(K)$ (characteristic 2), Pacific J. Math. 188 (1999), 237-249.
4. B. Corbas and G. D. Williams, Matrix representatives for three-dimensional bilinear forms over finite fields, Discrete Math. 185 (1998), 51-61.
5. G. D. Williams, Projective congruence in $M_{3}\left(\mathbf{F}_{q}\right)$, preprint, University of Reading, 1997.
6. G. D. Williams, On a class of finite rings of characteristic p^{2}, preprint, University of Reading, 1998.
7. G. D. Williams, Congruence of (2×2) matrices, Discrete Math. (2000), in press.
