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1. INTR~OLJCTI~N 

Throughout this article K is a field of characteristic zero and GL(n) 
denotes the general linear group of n x n invertible matrices over K. There 
are two major reasons for the restriction to characteristic zero. First, we use 
the classical description of modules over the general linear group in charac- 
teristic zero, which identifies the Grothendieck ring of polynomial GL(n)- 
modules with the ring of symmetric functions in n variables. Second, the 
“first fundamental theorem” which describes the invariants of m vectors and 
m covectors, is not yet proved in characteristic p > 0. 

The two most basic questions one can ask about the polynomial identities 
of M,(K) are the qualitative (what are they?) and the quantitative (how 
many are there?). The first has been answered by a fundamental theorem 
proved independently by Procesi [lo] and Razmyslov [ 11) (also see Helling 
[7 1). Their theorem gives a complete description of so-called trace identities 
for M,(K), and the trace identities contain the ordinary polynomial identities 
as a proper subset. Unfortunately, it has so far proved difficult to make use 
of the identification of polynomial identities with trace identities and conse- 
quently many basic problems remain unsolved (see [5]). 

The quantitative description of identities of M,(K) is less complete. Here 
the basic results are due to Regev (e.g. [ 131) and for the most part his results 
apply to T-ideals in general rather than to the T-ideal of identities of M,(K) 
in particular. Regev associates with any T-ideal T a cocharacter series which 
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describes the finite-dimensional vector space V,,,/( V, n 7) as a module over 
S,. the symmetric group on m letters. Here 

v, = spank,,, - u,(,, I 71 E &I 

denotes the space of multilinear polynomials in a set of noncommuting 
variables U, ,..., u,. More recently, Berele [2] and Drensky [3] have initiated 
an analogous study of the cocharacter series associated with the action of 
GL(m) on the m-variable identities in T. They have shown that the 
multilinear cocharacter series determines the GL(m)-cocharacter series, in a 
sense we will shortly make precise. 

There is another series associated with a T-ideal, the Poincare series. Let 

K(U,,J =K(u,, q,..., u,,,), 

K(U)= K(u,, Us....) 

be free algebras and T a T-ideal in K(U). The free algebra has a 
multigrading relative to which T is homogeneous, so K(U)/T and 
K(U,)/(Tn U,) inherit the multigrading. The Poincare series 

P(K(U,JIV’n U,n)) and W( W/T) 

are formal power series whose coefficients count the dimensions of the 
homogeneous components of K(U,)/( Tn Or,) and K(U)/T. The former is a 
formal power series over 

A, = Z[x I,..‘, x,p, 

the ring of symmetric functions in m commuting variables. The latter series 
P(K(U)/T) may be regarded as the limit ‘of the P(K(U,)/(Tn U,)) as 
m + co. It is a formal power series over A, “the ring of symmetric functions 
in infinitely many variables.” 

Let Mod(GL(m)) be the Grothendieck ring of finite-dimensional GL(m)- 
modules, and let 

Mod(S) = @ Mod(S,) 
??I>0 

be the representation ring of the symmetric group, where Mod(S,) is the 
Grothendieck ring of finite-dimensional S,-modules. Then there is a 
commutative diagram 

Mod(S) 2 A 

I 
F;(m) 

I 
P(m) 

Mod(GL(m)) A A, 

of ring homomorphisms in which the horizontal maps are isomorphisms. 
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All four rings are graded and the homomorphisms preserve the grading, so 
they define homomorphisms of the rings of formal power series over these 
rings. If T is a T-ideal, then the series we have associated with T are formal 
power series over the above rings, and the Berele-Drensky result becomes 
(Theorem 7) the fact that 

Multilinear cocharacter series of T A P(K( U)/T) 

I P(m) I Cl(m) 
GL(m)-cocharacter series of T & P(K( U,>/( T f7 U,)). 

This paper arose as an attempt to compute the Poincare series of 
K(WI.4), h w ere OH is the T-ideal of identities of M,(K). Aside from 
the trivial case of 1 x 1 matrices only the Poincare series for identities of 
M,(K) is known [3,4]. 

The relatively free algebra K(U)/.,&(n) h as a concrete realization as the 
ring of generic matrices, which is the subring of 

Mn(K[uij(r)l) (1 < i, j< n; r= 1, 2,...) 

generated by n x n generic matrices 

utr) = CUijCr)), 

where { uij(r)} is a set of commuting variables over K. Let 

R = ring of generic matrices, 

c= ring generated by the traces of elements of R, 

E = Rc = trace ring. 

Procesi [ 10, Theorems 1.3 and 2. l] has shown that c is the fixed ring of 
an action of GL(n) on K[Uij(r)] and that R is the fixed ring of GL(n) acting 
on M,(K[ Ilij(r)]) (see Th eorem 10). This action extends to M,(K(u,(r)) in 
which case the fixed ring is the generic division ring, the quotient ring of R. 

Once it is known that C? and E are fixed rings of GL(n), the theory of 
Schur and Weyl can be applied to obtain formulas for P(c) and P(R) 
(Theorem 12). The form of these Poincare series is (taking E for 
definiteness) 

where J, varies over all partitions of length <nZ (i.e., with <n’ parts), F(1) is 
a certain integer valued function of A, and s.~ is the Schur function associated 
with A. Under the homomorphism 

Mod(S) 2 /I, 
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irreducible modules are carried to Schur functions. Hence the integer f(1) is 
the multiplicity of an irreducible module. 

We can obtain inequalities for the Poincare series of R by choosing an 
element a of R such that 

These inclusions yield more information about the Poincare series of R than 
could be expected a priori. If we write 

then r(J) = f(A) for all sufficiently large ,I (Theorem 16). (Too much should 
not be expected from this theorem; although there are infinitely many 
partitions which are “sufficiently large”, there are also infinitely many which 
are not.) 

The Procesi-Razmyslov theorem also gives a formula for P(c) and by 
setting it equal to our formula we get a combinatorial result about the group 
ring of the symmetric group which has no reference to matrices 
(Theorem 17). 

We conclude by giving explicitly the Poincare series for P(C), P(R), P(c) 
and P(R) in the case of 2 x 2 generic matrices. Formanek, Halpin and Li [4] 
have computed all of them for two 2 x 2 generic matrices and Drensky [3] 
has determined P(R) for any number of 2 x 2 matrices. The answers show 

that P(R) is even closer to P(R) than Theorem 16 predicts and that the 
difference depends very strongly on the ideal generated by evaluations of the 
Capelli polynomial. As an application of the formula for P(c), we give a 
presentation of c in the case of three 2 x 2 matrices (Theorem 22). 

The rest of the paper is organized as follows. Sections 2 and 3 collect the 
notation and results on symmetric functions and representations of the 
symmetric and general linear groups which are used later. Then Sections 4-9 
present. in order, the material summarized above. 

2. THE RING OF SYMMETRIC FUNCTIONS 

This section consists of definitions, notation and a few basic results on the 
ring of symmetric functions. We follow [9, Chapter 1 ] although we 
occasionally modify terminology. 

A degree sequence (weight) of length n is a sequence 

a = (a, ,...) a,) 
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of nonnegative integers. The total degree of a is 

lul=a, + ..* for,. 

A partition (dominant weight) of length <n is a degree sequence 
1 = (A, ,..., ,I,,) with 

/l,>f12>‘~.>1,. 

The sum of two degree sequences a and p is 

a + P = (a, + P, ,..., a, + B,). 

Sometimes we allow degree sequences and partitions to be infinite sequences 
with only finitely many nonzero terms. Then a finite sequence is identified 
with the infinite one obtained by adding infinitely many zeros. 

Let x, ,..., x, be commuting indeterminates, and let S,, the symmetric 
group on n letters, act on Z[x ,,...,- Y,,] and Z[x:‘,..., x:‘] by permuting 
variables. Set 

A, =/l,(x) = Z[x ,,..., xp, 

I,, = ;r,(x) = z ix: ’ ,..., x,’ ’ p, 

the respective rings of symmetric functions. If a = (al . . . . . a,) is a degree 
sequence, define 

For any partition A = (A, ,..., 1,) of length <n, the monomial symmetric 
function of type 1 is defined by 

m, = \’ x0. 

where the sum is over all distinct permutations a of A= (A, ,..., A,,). 
For each positive integer r. the rth elementary symmetric functiorz is 

e,=\‘ (xi, -.. xi,/ i, < i, ... < i,t 

= m,,.,, 

where (1’) = ( l...., 1) = ( l...., 1, 0 ,..., 0) (r ones). 
The fundamental theorem of symmetric functions asserts that 

-4, = Z[e,...., e,]. 

a polynomial ring in n independent variables, and it it easy to see that 

2, = Z[e, ,..., en-,, ei’], 

the localization of A,, at the powers of e,. 
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The rth complete symmetric function is 

h,= x m,. 
I.11 =r 

and the rth power symmetric function is 

pr=x; + ... +x;. 

The polynomials e,.(x, ,..., x,J and h,(x ,,..., x,) can be defined implicitly in 
terms of the generating functions E(t) and H(t), where 

E(t)=n(l +xit)= 1 +e,t+ ... +e,t”, 

H(t)=n(l-xit)-‘=1+h,t+hzt2+.... 

For any partition 2 = (A, ,..., A,) of any length one defines 

Define 

6 = 6(n) = (n - 1, n - 2 ,..., 1,O) 

and for any partition J = (,I, ,,.., ,I,) of length <n. define 

a, = a.l(x, ?..., XJ 

= x (sign rr)x;jf,) a-. x;lb,. 
TCS, 

Then 

a6 = n (xi -Xj)* 

l<i<j$n 

a, divides a,+, in Z(x, ,..., x,], and the quotient a,+,/a, is invariant 
under S,. 

The Schurfunction s-I = s.\(x, ,..., xII) is defined by 

S.L = a.1 + 6 Ia,. 

The set 

{s., 11 a partition of length <n} 

forms a Z-basis for A, over Z. An inner product ( , ) is defined on A,, by 
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making the s., an orthonormal basis, and ( , j can be extended to xn by 
demanding that 

(a. by) = (e,,a, e,,b). 

The inner product ( , > can also be defined intrinsically, following Weyl [ 16. 
pp. 198-2001. Let 

4::z[x:‘)..... Y,:‘]+z[x: ,..... Y,“] 

be the involution defined by x7 = X; ‘, and let 

be the linear functional defined by 

)‘l=l 

.I 
,yp’..* .y”n=O 

n if a ‘,..., a, are not all zero. 

Then for any a, b E I,,, 

(a, b) = ;j. ub*u,(u,)*. 

Remark. In the next section the Schur functions s., will be identified with 
irreducible GL(n)-modules. The above evaluation of ( , 1 is a translation of 
Weyl’s method of defining an inner product on modules by integrating over 
the complex unitary group U(n, C), which has the same module theory as 
GL(n). After various artifices Weyl [ 16, pp. 198-2001 obtains the inner 
product of modules as a definite integral of the form 

But of course our definition of “J” satisfies 

Finally, we define the “ring of symmetric functions in infinitely many 
variables.” It forms the most natural basis for stating results about T-ideals 
since they are ideals in a free ring with infinitely many generators. However, 
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actual calculations can always be carried out in the finitely generated rings 
A, and /i, for some n. 

z [x , ,. . . , xll] is a graded ring and A, inherits the grading. The r-the 
homogeneous component of A ,, is denoted AL. so that 

Note that e-r. h,. p-I- s-1 are homogeneous of degree ]A ]. 
Suppose that II > tn. Then 

p(n, m)(x;) = ) ii 
(1 <i<m) 
(m+ 1 <i<n) 

induces a degree preserving surjection 

The p(m, n) satisfy the compatibility condition which allows the inverse limit 
of the A,, (in the category of graded rings) to be defined. The ring of 
symmetric functions in infinitely many cariables is defined to be this inverse 
limit, and is denoted /i =A(x). Its rth homogeneous component is denoted 
A’. and A = @A’. Since 

ph. Mm& , ,..., -x,)1 = m.,(x, ,.... x,J 

and the same is true of the e,, h.,, P.~, s.,, these are all well-defined elements 
of A, and the canonical projections 

p(n): A --t A, 

carry m, to m.,(x ,,..., x,) and likewise for r.l, /I,, p-11 s.,. However, some of 
these are zero; for example, if A has length strictly greater than n, then 

m.& ,..., xn) = 0; i.e. p(n)(m,) = 0. 
The set 

forms a Z-basis for Ai. If n > r, all partitions of degree r have length <n. 
Hence if n 2 m > r, 

is an isomorphism. It follows that A’ is a free Z-module of finite rank with 
basis 
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and that 

is an isomorphism if n > r. On the other hand. if n < r. the kernel of 
p(n): /i r + /i L is the free Z-module spanned by the set 

We will need a basic combinatorial result which expresses the complete 
symmetric functions of {xi yj} in terms of symmetric functions of .yi and yj. 
If L = (A, ,...) A,) is a partition, write 

A= (1”12mqm3 . ..I 

to mean that m, is the number of Lj equal to i, and set 

z-1 = 11 imimi ! 

THEOREM 1 [9, p. 331. Ler x= (x1,x2 ,... ), y= (y,, yz ,...) be two 
distinct (finite or inj%ite) sequences of commuting variables over Z. Then 

n (I -xiyj)-’ =b,(x)s.&) - 
i.i 

= x m.,W h.,(A 

= 1 z.; ‘PA(X) P.,(Y)l 

where the sum is over all partitions 1. 

3. REPRESENTATIONS OF THE GENERAL LINEAR AND SYMMETRIC GROUPS 

In this section we summarize the results on the representations of the 
general linear group GL(n) and the symmetric group S,, which we will use 
later. They can be found in [6] and [9]. 

A polynomial homomorphism 

+: GL(n) -, GL(m) 

is a group homomorphism whose coordinate functions are given by 
polynomials. That is, 

QCaij) = (fp,(aij)) (1 <p.q<m, 1 <i,j<n), 

where each fpp(xij) is a polynomial in n’ variables. The action of GL(n) on 
A4 = K” is then called a polynomial representation of GL(n) and M is called 
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a polynomial module over GL(n). If each fP4 is a homogeneous polynomial 
of degree r, the representation is said to be homogeneous of degree r. 

Rational homomorphisms, representations and modules for GL(n) are 
defined similarly by letting the coordinate functions be rational functions 

&7/g,,. If&q and gp4 are homogeneous of degrees r and s, respectively, the 
representation is said to be homogeneous of degree r - s. 

If P is a category of GL(n)-modules. the Grothendieck Ring of F is 
defined to be the additive abelian group generated by all equivalence classes 
[Al], where M is a module in V’, modulo the relations 

PI + IN I = IQI 

if there is an exact sequence 

O-+M+Q -N-O. 

The ring structure is induced by setting 

/MI + IN] = [MO NI, 

[M][NI = [MO N], 

where GL(n) acts diagonally on n/r@ N. Set 

Mod(GL(n)) = Grothendieck ring of finite-dimensional 

polynomial GL(n)-modules 

Mod (GL(n)) = Grothendieck ring of finite-dimensional 

rational GL(n)-modules. 

Let D(n) denote the subgroup of diagonal matrices in GL(M) and let 
D(z, ,..., zn) denote the diagonal matrix whose main diagonal is z, . . . . . z,,. 
Suppose that a = (u, ,..., a,) is a degree sequence of length n and that M is a 
polynomial GL(rz)-module. Define the u-homogeneous component (a-weight 
space) of M to be 

M” = {m E M 1 D(z, ,..., z,,)m = ~7’ ... ztnm for all D E D(n)}. 

Recall that P = $1 . . . -t-z” where x , . . . . . x, are commuting indeterminates 
over Z. The next theorem describes a natural isomorphism between 
Mod(GL(n)) and A,,. 

THEOREM 2 (See [6, Chapter 31). Let M and N be jinite-dimensional 
polynomial GL (n)-modules. 

(a) M is completely reducible and is a direct sum of homogeneous 
submodules. 
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(b) As a K-vector space, M is the direct sum of its homogeneous 
components. 

(c) Define the character of M to be 

X(Mj =x dim,(M”),u”. 

where the sum is ouer the (finitely many) degree sequences a = (a, ,..., a,,) of 
length n for which M” is nonzero. Then x(M) is a symmetric polynomial in 
x , ,..., x, and if M is homogeneous of degree n. so is x(M). 

(d) Suppose P E GL(n) has eigencalues z, ,..., z, and e(P) E GL(M) is 
a matrix representing the action of P on M. Then the trace of t$(Pj is 

Tr(Wj) =x(M)@, ,..., z,,). 

(e) Two modules M and N are isomorphic if and onl], ifx(M) = x(N). 
Furthermore 

x(M 0 N) = x(M) + x(N). 

x(M 0 N) = x(M) x(N). 

(f) M is irreducible if and only ifx(M) = s.{(x, ,..., x,), where s,\ is the 
Schur function associated with a partition A = (1, ,..., A,,) of length <n. Hence 
there is a l-l correspondence between irreducible GL(n)-modules and 
partitions of length <n. 

(g) The induced map 

is a ring isomorphism between Mod(GL(n)) and A, = Z[.K I,..., x,,p. If 
Mod(GL(n)) is graded in the obvious fashion and giaen an inner product 
( , ) by demanding that the irreducible modules form an orthonormal basis. 
then x is an isometry of graded rings. 

The corresponding theorem for rational GL(n)-modules is only a slight 
modification of the above. 

THEOREM 3. (a) The only one-dimensional rational GL(n)-repre- 
sentations are 

@r: CL(n) --) K*, 

where r E Z and @,(P) = (det P)‘. The corresponding character is e:, = 
(_\I, . . . x,y* 
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(b) Let (det)’ denote the above module. Then ecery finite-dimensional 
rational GL(n)-module has the form 

(det)-‘0 M. 

where r is a non-negative integer and M is a polynomial module. Moreocer. 
(det) Pr @ M is irreducible if and on&, if M is irreducible. 

(c) Any finite-dimensional rational GL(n)-module is determined up to 
isomorphism bJ> its character as in Theorem 2. but now x(M) lies in 
/r, = A,,[e;‘], the localization of A,, at the powers of e, =I, ... x,,. 

(d) The induced map 

is a ring isomorphism between Mod (GL(n)) and i,, = Z[ : I,.... x,” ]“rl. If 
Mod (GL(n)) is Z-graded and gitlen an inner product by demanding that the 
irreducible modules form an orthonormal basis, then x is an isometqv of 
graded rings. 

We next define the representation ring of the symmetric group and give a 
natural isomorphism between it and /i, the ring of symmetric functions in 
infinitely many variables. Here we follow 19, pp. 60-681. 

For each n > 0, let 

u: Mod(S,,) + B, 

be the isomorphism between the Grothendieck ring of finite-dimensional S,- 
modules and B,, the character ring of S, (by convention, Mod(S,) = 
B, = Z). Both are free Z-modules with one generator for each partition of n. 
and the elements of B, are characters-certain functions f: S, + Z which 
are constant on conjugacy classes (but not all such functions are characters). 
Although o is a ring isomorphism, we ignore the multiplication of Mod(S,) 
and instead define a multiplication 

Mod(S,) x Mod(S,) + Mod(S,+ ,). 

The representation ring of the symmetric group is the graded Z-module 

Mod(S) = Z @ Mod(S,) @ Mod(SJ @ ... 

with multiplication defined as follows. Let [M] E Mod(S,), [N] E Mod(S,,). 
Then MO N is an S, X S,-module with the diagonal action. Identify 
S, X S, with a subgroup of 

S m+tl = permutations of ( I,..., m + n ] 
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by letting S, act on ( l,..., m} and S, act on (m + l,..., m + n). Then 
induction of modules defines an S,+t.-module (denoted M @ NIsmVLn), and 
the product (outer product) of [hl] and [N] is defined to be 

which lies in Mod(S,+.). With this multiplication, Mod(S) is a graded 
commutative ring. 

If 1 is a partition of n (i.e., IL1 = n). let g., be an element of S,, of cycle 
type A. The set of g, form a set of representatives for the conjugacy classes 
of S,. Define the characteristic map 

ch: Mod(S,) --* An 

(where A” is the nth graded part of A = @A’) by 

where p., is the power symmetric function and z.\ is the integer defined 
before Theorem 1. 

THEOREM 4 (Fundamental theorem of the representations of the 
symmetric group [9, pp. 6 l-621). The characteristic map 

ch: Mod(S) + A 

is an isomorphism of graded rings. An S,-module M is irreducible if and onlj 
if ch[M] = s.,, the Schur function associated with a partition I. where 
(I. = n. Hence ch is an isometry prooided Mod(S) is gitlen an inner product 
by demanding that the irreducible S,-modules (for all n) form an 
orthonormal basis. 

We want to describe the homomorphisms between Mod(S) and 
Mod(GL(n)) corresponding to the homomorphisms p(n) and p(n. m) of 
Section 1. Suppose n > m. and consider the following diagram: 

Mod(S) 
ch 

-A 

LW,/’ 
/’ 

!i(rn, Mod(GL(n)) A A,, P(m) 

f7tn.m) 

1” 
0tn.m) 

‘1, _ 
Mod(GL(m)) ~ X ) A,. 
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The maps in the right hand triangle are the surjections defined in Section 1 
and the horizontal maps are the isomorphisms of Theorem 2 and 4. The left 
hand maps p are defined implicitly by requiring that the diagram be 
commutative. We now descibe them explicitly in terms of modules: 

&I, m): Mod(GL(n)) + Mod(GL(m)). 
(A) 

Suppose M is a finite-dimensional polynomial GL(n)-module, and let 

where u varies over all degree sequences CI = (a, ,.... a,,) of length n. The set 
of degree sequences of length m are a subset of these, where (u, . . . . . a,,,) is 
identified with (a, . . . . . u,,,, 0 . . . . . 0). Similarly. the map 

identifies GL(m) with a subgroup of GL(n) and 

M(n, m) = @ !12P 1 length CI < m) 

is a GL(n?)-submodule of M. Then we have 

LEMMA 5 [6, pp. 103-1041. p(n, m)[M] = [M(n, m)]: 

jf((n): Mod(S) + Mod(GL(n)). 
P) 

All homomorphisms are degree preserving, and it is enough to define P(H) 
on the homogeneous component of degree r, which is Mod(S,). Suppose we 
define 

p(r): Mod(S,) + Mod’(GL(r)) (“j 

for all r. Then we can define P(H) and p(-(m) for n > r > m via the following 
diagram using the fact that we have already defined p(tz, r) and p(r, m): 

Mod’(GL(n j) 
“,/ pr, 

Mod(&)= Mod’(GL(r)). 

F,;\ 1 ;cr.rni 

Mod’(GL(m)) 
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We need to observe that since n > r, p(n, r)-and hence also p(n, r+is an 
isomorphism, so D(H) is well-defined by the above diagram provided p(r) is 
known. Likewise, (*) is an isomorphism since p(r): A’+ A; is an 
isomorphism, so it is enough to define 

p(r)- ‘: Mod’(GL(r)) + Mod(S,). 

This is accomplished by a construction similar to that used to define D((n, m). 
Suppose M is a homogeneous GL(r)-module of degree r, and let (1’) be 

the “multilinear” degree sequence of length r. Then M”” is an S,-module, 
where S, is identified with the permutation matrices in GL(r), and we have 

LEMMA 6 [6? p. SO\. p(r)-‘[M] = [M”“]. 

4. T-IDEALS. COCHARACTER SERIES. AND POINCARE SERIES 

Let 

K(U) = K(u,, uz. u,,...:; 

be a free associative algebra over K in a countable set of variables (ui I or, 
equivalently, the tensor algebra of a vector space U of countable dimension 
with basis (uj}. Let U, denote the subspace of U spanned by (u,,..., un}, so 
that 

K(U,) = K(u, ,..., u,,). 

The general linear group GL(n) acts on U, and this action extends to an 
action as a group of homogeneous automorphisms of K(U,), where GL(n) 
acts diagonally on p’. We can write U: as a K-vector space direct sum of 
homogeneous components 

where a varies over all degree sequences a = (a,...., a,) of length n and total 
degree 1 a 1 = r. This is precisely the multigrading on K(u, ,..., u”) obtained by 
specifying that a monomial ~9’ a.. u;~& has degree sequence (a, ,..., a,). where 

aj=x (a,,I i,=j}. 

This multigrading can be extended to K(U) by letting degree sequences be 
infinite sequences with only finitely many nonzero coordinates. Even though 
K(U) is infinite dimensional, K(U)” is finite dimensional for any degree 
sequence a. 
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There is also an action of S, on K(U,) by permuting variables, and S,, 
also acts on V,,, where 

V, = span{u,,,, ... u,,,)} 1 nE S,} = (U8n)“n’. 

the set of multilinear polynomials in U, . . . . . u,,. 
A T-ideal is an ideal of K(U) which is invariant under endomorphisms of 

K(U). If T is a T-ideal, then T is invariant under the action of GL(n) for all 
n and hence is homogeneous with respect to the above multigrading. 

A number of invariants have been attached to T and K(Uj/T (see [S. 
Section 51): The S-(co)character sequence (Regev [ 131): the GL- 
(co)character sequence (Berele [2]. Drensky [3 I); and the Poincare or 
Hilbert series (Drensky [3], Formanek, Halpin, Li [4]). Berele and Drensky 
have shown that the S-cocharacter sequence determines the GL-cocharacter 
sequence. We will restate their result below in the formalism of symmetric 
functions, at the same time showing that cocharacter series become Poincare 
series under the character isomorphisms ch and x defined in Section 2. 

To avoid introducing additional notation we adopt the following 
convention: If 

is a graded ring (e.g. Mod(S), Mod(GL(n)), /1, ,4,,), we allow infinite series 

where a, E Ai. 

a=a,+a,+a,+..., 

Let T be a T-ideal in K(U). 
The S-module and comoduk series of T are, respectively, the following 

infinite series in Mod(S): 

A(T)= [T”“‘] + [T”“] + IT”“) + . . . . 

A(K(U)/T) = [ V,,/T”“‘j + [ VJT”“] + ..., 

where T”” = V,n T (and by convention, V, = K). 
The GL(n)-modufe and comodule series are, respectively, the following 

infinite series in Mod(GL(n)): 

B,(T)= [Kf-I T] + [CJ,n T] + [UT+ T] + . . . . 

B,(K(u)/T)= [K/(Kn T)] + [u,/(u,n T)] + [CJ~/(U~n T)] + . . . . 

The Poincare Series of T and K(U)/T are the following infinite series in 
A: 

P(T) =x dim,(T^).u”, 

P(K(U)/T) =x dim,(K(U)/T)“x”, 
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where a varies over all degree sequences. If we restrict to degree sequences of 
length 11, we get Poincare series for K(U,) n T and K(U,)/(K(U,j n T). 

These definitions are compatible with those of Sections 1 and 2. More 
precisely, consider the commutative diagram 

Mod(S) -% /i 

I 
iTIN, 

I 
001l 

(1) 

Mod(Gf.(n)) -5 A, 

P(K(U,) n T) is obtained from P(T) by restricting to degree sequences of 
length n-i.e., to polynomials in x, . . . . . s,,. This is how p(n) is defined. so 

p(n)(P(T)) = P(K(U,,j n T). (2) 

The map x is defined for any GL(rz)-module M by 

x[M] = \‘ dim,(W) .Y~. 

where u varies over all degree sequences of length n. Thus 

,y(B,(T)) = P(K(U,,:) n 7T. (3) 

The rth term of the series A [ Tj in Mod(S) is [ 7”“’ ] and Lemma 6 asserts 
that 

/?(n)lT”“] = [Tn UyI. 

Thus 
@W(T)) = B,,(T). (4) 

The commutativity of diagram (1) and the validity of (2). (3) and (4) for all 
n means that also 

ch(A(T)) = P(T), (5) 

since the top row of (1) is the inverse limit of the bottom row as n + co. 
Equations (2)-(5) are equally valid for K(U)/T, so we obtain the 

following version of Berele [2, Theorem 2.7 1 and Drensky [ 3. Lemma 1.11. 

THEOREM 7. Let T be a T-ideal in K(U). Then the S-comodule. GL(n)- 
comodule, and Poincare series of K(U)/T and K(U,)/(K(U,) n T) are 
related bll 

A(K(U)/T) A P(K(Uj/T) 

I 
P(n) 

I 
p(tll 

B,(K(U)/T) +L W(U,Y(K(U,) n T)). 
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In the light of Theorem 7, it makes sense to work only with Poincare 
series and we will do this from now on. Whether to choose LI or A, depends 
largely on circumstances. When a series is given in terms of the e,, h,, s,, , 
etc., /i is the natural choice. When series are expressed in terms of 
x , , x2, x, . ...’ then (1, is the natural choice since then the series may be 
expressible as a rational function of X, ,..., x,,. On the other hand, for 
computations involving rational GL(n)-modules, J,, is the on[v choice since 
there is no natural inverse limit of the /i. 

It is clear that Theorem 7 is about GL-grading and multilinearization 
rather than T-ideals. 

5. THE RING OF GENERIC MATRICES AND THE TR.ACE RING 

We now consider the T-ideal H(H), the ideal of identities satisfied by 
M,(K). The relatively free algebra K(U)/ Y(n) has a concrete model, the 
ring of generic matrices. For each positive integer r. let 

u(r) = (uij(r)) 

be an n x n generic matrix over K-i.e., the ujj(r) (1 < i, j < n, r = 1, 2 ,...) 
are independent commuting indeterminates over K. Thus each U(r) is an 
n x n matrix over the polynomial ring K[u,Jr)]. The K-algebra 

R = R(n) = K[ U( l), U(2),... 1 

they generate is called the ring of n x n generic matrices and the map 
u,H U(r) gives rise to an exact sequence 

O+ X(n)+K(U)-R-,0. 

Since 8(n) is a homogeneous ideal of K(U), R inherits the multigrading 
of K(U). This of course is the GL-grading of R, where for each m, GL(m) 
acts linearly on span (U(l),..., U(m)}. We can extend the multigrading to 
K[uij(r)] and M,(K[uij(r)]) by giving each entry uij(r) of U(r) the same 
degree as U(r). Again, this is the GL-grading where for each m and fixed i 
and j, GL(m) acts linearly on span {uij(l)...., uij(m)}. 

The above action of GL(m) (m = 1,2,...) does no more than define the 
multigrading of K[uij(r)]. There is another action of GL(n) on K[ujj(r)] 
which commutes with the action of GL(m) and has greater significance. 

If P E GL(n), let 

P(uij(r))P-’ = (tiij(r)). 

Then uJr) H Uii(r) induces a K-automorphism 4’ of K[u,(r)]. The ring of 
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invariants (more precisely, the ring of simultaneous polynomial iwariants of 
n x n matrices) is by definition the fixed ring of this action. Set 

R = ring of n x n generic matrices. 

C = center of R, 

C= K[uij(r)]GLO” = ring of inuariants. 

Q(C) = quotient field of C. 

I? = CR = trace ring of R, 

Q(R) = Q(C)R = classical quotient ring of R 

= generic division ring. 

We need the following facts (see [5. Section 61). 

THEOREM 8. (a) (First fundamental theorem). c is generated 6~9 the 
traces of elements of R. 

(b) c is the center of I?= CR. 

(c) CC CC Q(C). Hence Q(C) is the quotientfield of c. 

(d) lf the action of GL(n) on K[uij(r)] is extended to its quotientfield, 
the fixed field is Q(C). Hence 

c= K[u,(r)] r‘l Q(C). 

(e) (Posner’s Theorem). Q(R) is a diaision ring of dimension n’ over 
its center Q(C). 

Remarks. The “first fundamental theorem” is a basic theorem of 
invariant theory which gives a generating set for the invariants of m vectors 
and m covectors acted on by GL(n). When translated to a theorem about 
traces, it becomes (a) (see [lo, Theorem 1.31). Parts (b) and (c) are easy 
consequences of (a) and standard properties of central simple algebras. To 
prove (d), one first shows that if f, g are relatively prime polynomials in 
K[uij(r)] and f/g is fixed by GL(n), then f and g must be relative 
invariants-that is, Kf and Kg are one-dimensional invariant subspaces of 
GL(n). But the action of GL(n) on K[uij(r)] is rational and homogeneous of 
degree zero, and the only rational one-dimensional representation of GL(n) 
of degree zero is the trivial representation (Theorem 3(a)). Hence f and g 
are fixed by GL(n). Part (e) is a standard theorem of PI-theory. 

By virtue of Theorem 8 we have the following diagram of inclusions 
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KI”ij(r) I 

/ 

/ \I 
- 

c-c- Q(C) + K(“ij(r)) 

I I I I 
- 

R-R-- Q(R) +“~(K(uij(r)))’ 

.\ / 
‘I / 

Mn(K[uij(r)l) 

We next show that Q(R) and E are also fixed rings of CL(n). a result of 
Procesi [ 10, Theorem 2.11. Procesi considers R as the ring of GL(n)- 
invariant polynomial functions /: IV-+ M,(K). where w= M,(K) X . .. X 
M,(K) (m times), a formulation equivalent to ours provided f E 
M,(K[U,(r)]) is regarded as defining a polynomial function IV+ M,(K). 
This action extends to M,(K(uij(r)), in which case the fixed ring is the 
generic division ring, the quotient ring of R. 

LEMMA 9. R = t?(R) n M,(K[ui,i(rj 1). 

Proof Clearly, RE Q(R)n M,,(K[ui,,(r)]). 
Conversely, suppose that 

f E Q(R)n Mti(K[uij(r)I) 

and let m be an integer such that f can be expressed in terms of 
U(l),.... U(m). Let Z = U(r) be an generic matrix with r > m-that is, Z is 
not involved inf: Consider the trace Tr(jZ). It lies in 

Q(C) n K[+(r) I3 

which is c, by Theorem 8(d). By Theorem 8(a), c is generated by the traces 
of elements of R. Bearing in mind that Tr(jZ) is homogeneous of degree one 
in the variable Z = U(r), this means that we can express Tr(jZ) as a K- 
linear combination 

Tr(fl)=x:a,Tr(g,) . ..Tr(g.)Tr(g,+,Z) 
4 

for some 1, where ag E K and g = (g, ,..., g,, ,) is a sequence of monomials 
(possibly constant) in the generic matrices U(l),..., U(m). But 

Tr(g,) e.. Tdg,) Tr(g,+ ,Z) = TrlTr(g,) ... Tr(g,) g,+ ,ZI. 
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Hence Tr(JZ) = Tr(f, Z), where 

A=\‘ a, Tr( g, ) ... Tr(g,) a+ I7 
Y 

which lies in R= CR. This determination off, is independent of the choice 
of Z = U(r), provided r > m. Hence 

Tr(.P(r)) = TrV, W-1) 

for all r > m. Regard the above as an equation in M,(K(uij(r))). Then the 
nondegeneracy of the trace together with the fact that the U(r) (r > m) span 
M,(K(u~,~(~))) over its center implies that f =f, . so f E R. I 

We now define a new action of GL(n) on M,(K[uij(r)]) and M,(K(u,(r))) 
which reduces to the preceding action on scalar matrices. Let P E GL(n), 
(0,) E M,(K[uij(r)] )- Th ere is an action by conjugation: 

(a,)+ P(a,)P-‘. 

There is an action extending 4’: K[uij(r) ] --t K[uij(r)]: 

tai,j) ‘+ (4P(aij))’ 

If we regard M,(K[uij(r)]) as 

M,(K) 0 KIui,j(r)l, 

then the first action is on the first factor, fixing the second, and the second 
action is vice-versa. Thus the two actions commute. Noting that the two 
actions agree on generic matrices, we define 

BP(Uij) = P- ‘(qq.7ij))P. 

This defines a representation of GL(n) since the two actions used to define 
BP commute. It is a rational representation, homogeneous of degree zero. Of 
course it extends to M,(K(uij(r))). 

THEOREM 10 [ 10, Theorem 2.11. 
M,(K[uij(r)]) by Pw BP. Then 

Let GL(n) acr on M,(K(uij(r))) and 

(a) Mn(K(uij(r)))GL(n' = Q(R), the generic division ring. 

(b) M,(K[ui,i(r)])GL’“’ = if, the trace ring. 
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ProoJ: (a) Let S = M,(K(uij(r)))GL’“‘. Each 19’ fixes every generic 
matrix U(r), so Q(R) s S. 

For the reverse inclusion, note that since Q(R) c S, S contains a basis for 
M,(K(uii(r))), so its center will consist of scalar matrices. That is, 

center(S) = (a E K(u,(r)) / OP(a) = a for all P E GL(n) 1. 

But the action of 19’ on K(u,(r)) is the same as the action of 4’. so by 
Theorem S(d, e). 

center(S) = Q(C) = center Q(R). 

Since S contains a basis for M,(K(uji(r))) it is a prime PI-ring and since 
its center Q(C) is a field it is central simple of dimension 17’ over Q(C). 
Since 

Q(C) G Q(R) E S 

and both Q(R) and S are of dimension n’ over Q(C), 

Q(R) = S = M,,(K(uii(r)))“““‘. 

(b) Using (a) and Lemma 9. 

M,(K[ui,j(r)])“““’ = M,(K(ui.j(r)))“‘-“” n M,,(K[ ui,j(r) j) 

= Q(R)n ‘fn(KIUij(r)l) 

Remark. It is clear that the preceding results on the ring of generic 
matrices remain valid for the ring generated by a finite number m > 2 of 
II X n generic matrices. 

6. POINCARE SERIES FORTHE RING OF INVARIANTS ANDTHE TRACE RING 

In the preceding section we showed that the ring of invariants and the 
trace ring of n x n generic matrices are fixed rings of GL(n), namely, 

C= K[uij(r)]““‘“‘. 

R= M,(K[uij(r)])C’~‘“‘, 

where the action of GL(n) is given, respectively, by P ++ 4’ and P+ BP, 
which were defined in the last section. We will now use this description to 
obtain their Poincare series, using the methods of Sections 2 and 3. 
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For notational simplicity. we assume that we have a finite number m of 
generic matrices, U(l),.... U(m). The Poincare series we obtain will then be 
power series over 

A,(x) = z [x, ,..., .Y,JS”. 

However, the series obtained will be independent of m in the sense that 
letting m + co defines a power series over the inverse limit A(X), from which 
the m variable Poincare series can be recovered using the canonical 
projections p(m): A(X) -A,(x). We use new variables J,..... .rn for the 
characters of the representations P w  qp, P t, 8’ of GL(n). These two 
representations are rational and homogeneous of degree zero. and their 
characters lie in 

We first handle c (i? is similar). The action of GL(n) on 

commutes with the action of GL(m). where for fixed i and j. the span of 
(uij(r) 1 1 <r< m) is the standard GL(m)-module. (In other words. the 
action of GL(m) defines the .u-multigrading of K[uii(r)l.) Equivalently. 

the symmetric algebra on M,(K) @I U,,, where GL(n) acts on M,(K) by 
conjugation (for that is how P t, $’ is defined) and U, is the standard 
GL(m)-module. 

Since the actions of GL(n) and GL(m) commute, K[uJr)l is a 
GL(n) x GL(m)-module which is rational as a GL(n)-module and 
polynomial as a GL(m)-module. The Grothendieck ring of finite-dimensional 
modules of this type is easily seen to be isomorphic to 

Z[y” . . . . . .I.;‘,+\. I,..., x,p 
and we will denote it by Mod(n, m). Let 

xy : Mod (GL(rt) ) 
x, : Mod(GL(m) 

be the isomorphisms of Theorems 2 and 3. Then we have the following 
analogue (or corollary) of those theorems. 

LEMMA 11. Let W be a finite-dimensional GL(n) x GL(m)-module 
which is rational as a GL(n)-module and polynomial as a GL(m)-module. 
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(a) W is completely reducible. 

(b) W is irreducible if and only if W = N @ M, where N is an 
irreducible rational GL(n)-module and M is an irreducible polynomial 
GL(m)-module. 

(c) Defining x(N 0 M) = x,.(N) x,(M) induces an isomorphisms 

x: Mod(n, m) + Z [ y: ’ . . . . . y,’ ‘, x, . . . . . x,,,Jsnxsm. 

(d) If zl,..., z,, t , ,..., t, are the respective eigemalues of P E GL(n) 
and Q E GL(m), then the trace of (P, Q) acting on N 0 M is 

x(N 0 W(z, ,..., z,, t, . . . . , t,,,) = x,(N)(z, . . . . . zn) x#f)(t, , . . . . t,). 

If W is a GL(n) x GL(m)-module, then M/GLln’, the set of GL(n) fixed 
points. is a GL(m)-module, and if W has the form N @ M as above (but is 
not necessarily irreducible), then 

(N @ M)GL(“’ = NCL’n’ @ M = ([N]. 1 ;!M, 

where ( , j denotes the inner product on Mod(GL(n)) and 1 represents the 
trivial module. 

To analyze K[uii(r)] as a GL(n) X GL(m)-module. we express it as a 
graded algebra 

K[Uij] =K@‘4,@A2@ ... 

(where each generator uij(r) has degree one) and define its Poincare series as 
a GL(n) x GL(m)-module to be 

P(K[Uij(r)])= 1 +X(A,) +X(Al) + *..a 

which is a formal power series over Z [ 4’: ‘, x~]‘~*~~. 
If P E GL(n), Q E GL(m) have eigenvalues z, ,.... z,,, t, ,..., t,,,, respectively, 

the eigenvalues of (P, Q) acting on M,(K) @ U,,, are 

(ziz/‘t,( I <i, j<n, 1 <k<m}. 

Hence? because K[u,(r)] is the symmetric algebra on M,(K) 0 U,,,, ,I#,,) is 
the w-th complete symmetric function of 

that is, the coefficient of P in the generating function 
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Now we invoke Theorem 1. which asserts that 

where the sum is over all partitions ,l. Thus 

P(K[u&)]) = K‘ s \(Yi YJ” > s.\(xk)q 

7. 

XV w) = \‘ 

I .I7 H’ 

s.l(Yi 4’/ ‘) s.\(xk)* 

It remains to determine x,(A~,~“‘). Each s.,(xk) corresponds to an 
irreducible GL(m)-module (or zero), but s.\( yi y,: ‘) in general corresponds to 
a sum of irreducibles. It is the image of s.~(z~~) (1 < i, j < n) under the 
homomorphism 

Z[Zij]s’+z[~f’,.~*, y,“lsn 

induced by zij w -ri 4tjm ‘, In any case, s.r(yiJ,:‘) =X,(N) for some rational 
GL(n)-module N, and to obtain the fixed points we replace N by 

N GLin) = ([N], 1 j . 1. 

Since xv is an isometry. 

x.&N ‘-) = b(N), 1) = (s~\(yi~/ ‘), 1). 

Thus the Poincare series of c as a GL(m)-module is 

P(C) = P(K[~ij(~j]G~‘~~j 

= 1 + &.(A CL’“‘) + Xr(~EL’n’) + . . . 

= JJ ls.L(Yi 4’)’ ‘19 l> s.i(xk)* 

To obtain P(E), we need only take account of the difference between 4’ 
and BP. As graded rings 

K[u,(r)] = K @ A, @Al @ . . . . 

Mn(K[uij(r)]) = M,(K) 0 (M,(K) 0 A,) 0 (M,(K) 0 ‘42) 0 ...* 

If P E GL(n), P acts on A,,, by 

a ++ @‘(a) 

and on M,,(K) @ AN by 

b @ a w BP(b @ a) = (P-w) 0 @P(a), 
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where a E A ,,,, b E M,(K). Hence 

and the Poincare series of E as a GL(m)-module is obtained from that of c 
by replacing (s.,( .ri .rJ: ‘), 1) by 

(This last equality uses the fact that (ab, cj = (a, b*c). where 
* : L?(V) --t X(J) is the involution defined by J” = ~“7 ‘.) 

Although P(c) and P(E) are summations over all partitions 1, s.~(J~ ~1,: ‘) 
is zero unless 1 has length <n2, so it is enough to sum over partitions of 
length <n2. And while the series are over /i,(x). they clearly converge to 
series over A(X) as m + co. Hence they can be expressed without reference to 
m. 

THEOREM 12. Let R = K[U(l), U(2),...] be the ring of n x n generic 
matrices and let 

c= K[Uij(‘pn” 

R= M,(K[uij(r)])CL’“) 

be the corresponding ring of invariants and trace ring. Then the Poincare 
series of c and E as infinite series over A(x) are 

P(C) = x .L (S,(Yi l’,: ‘), 1) S.{(.K). 

where A varies over all partitions A = (A , ,..., &,J of length <n*, s.~(Y~ y,:‘) 
denotes the evaluation of s.,(zij) (1 < i, j < n) at zij = yi yJ: ‘, and the inner 
product is evaluated on /1,(y) = Z[y:‘,..., y,“]“n. 

Remarks. (1) Other expressions for P(c) and P(E) can be obtained by 
using the other expansions of zc( 1 - xi yj) ’ in Theorem 1. For example, 

but the sum must be taken over all partitions 1 since p.l(yi y,: ‘) is nonzero 
for all partitions. The formulation in terms of the s.~ is the primary one in the 
sense that the s.“s correspond to irreducible modules. The coefficient of s.~ in 
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P(E) is what Regev calls the multiplicity of the irreducible character of S,,, 
associated with J. in the cocharacter sequence of trace identities of n x rr 
matrices [13, p. 14181. 

(2) If the number of generic matrices is finite, say m, then Hilbert’s 
theory asserts that c is finitely generated by homogeneous elements and that 
P(C) is a rational function of x, ,..., x,. Since E is a finite module over c. 
the same is true for P(E). I thank Pat Halpin for pointing this out. 

(3) Since the series involve only partitions of length <n’, the Poincare 
series in nz variables determine the Poincare series in any number of 
variables. 

(4) Our determination of P(c) and P(K) is via standard methods of 
invariant theory, which stem from Schur and Weyl. Schur solved the 
classical problem of decomposing the symmetric algebra K[ CJ,, @ U,] as a 
GL(n) x GL(m) module, where U, and U,,, are the standard modules of 
G,!,(n), GL(m), respectively. A survey article of Verma [ 151 discusses 
Schur’s solution from many points of view: Invariant theory, algebraic 
groups, coalgebras, Hopf algebras, Lie algebras. 

(5) When the number of generic matrices is finite, the Molien-Weyl 
theorem [ 17, pp. 5-61 gives equivalent formulas for P(c) and P(R) as 
integrals over the complex unitary group U(n, C) with normalized Haar 
measure ,u. For example, for m generic n x n matrices 

P(C) = ) 
. L’(fl.CI 

( fi det(1 --si@‘~‘) c@(P), 
i=l 

P(R) = 1. 
. c’(n.C) 

Tr(tiP) ( fi det(1 -xi@‘- ’ ) c@(P), 
ikl 

where for each P E U(n, C), $’ E U(n’, C) is a matrix giving the action of P 
by conjugation on M,(C). 

(6) The Poincare series of E can be obtained from that of c by the 
following device. Let Cm, Km denote the rings obtained by taking a finite 
number m of generic n x n matrices. Their Poincare series lie in 

The map 

A,(x) = Z[x, ,..*, x,p z Z[x, )..., x,]. 

f++ Tr(f. U(m + 1)) 

defines a monomorphism from E,,, onto the subspace of cm+, consisting of 
elements of degree one in U(m + l)--i.e., the sum of all homogeneous 
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components with degree sequence (a,,..., u,, 1). Translating to Poincare 
series, this means that P(R,) is the coefficient of x,+ , in P(c,+ ,), or 

induces a map 

characterized by the properties 

qh,) = A,-, . 

~(gh)=8(g)p(h)+p(g)a(h), 

where p = p(m + 1, m): A,,+ ,(x) + n,,,(x) is the standard projection. A 
derivation %: /i(x) + ci(x) is induced by letting m + co and for this derivation 

d(P(C)) = P(R). 

7. THE DISCRIMINANT AND THE CONDUCTOR 

The ring of II X n generic matrices R and its center C are subrings, respec- 
tively, of the trace ring E and the ring of invariants C. 

- 
C-C 

I I 1 - 
R-R. 

We introduce the following notation for the Poincare series of these rings 

P(C) = y c(l) s.L, P(C) = 2: F((n) s.\, 

P(R)=5 r(A)s_,, P(R) = &y F(A) s-, , 

where J. varies over all partitions of length <n’ and the coeffkients are 
nonnegative integers. 

The coeffkients F(I) and F(L) are given by Theorem 12. The main object 
of this section is to give estimates for c(A) and r(1) in terms of F(A) and $1). 
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Of course c(L) < f?(L) and r(L) < F(L). so the problem is to find lower 
bounds. The idea is to take the number of generic matrices to be n’--which 
does not affect the coefficients-and then find an element u in C which 
satisfies: 

(a) The one-dimensional subspace Ka is invariant under GL(n’). I.e.. 
a is a relative incariant. 

(b) aRL R. 

These two properties imply that 

is a series of inclusions of GL(n’)-modules and hence that 

where we say that 

(“) 

if a(l) Q 6(L) for all partitions A. (This condition is strictly stronger than 
demanding that 

J-(-y , ,..., x,J = x (a(1) - b(A))s, 

has nonnegative coefficients as an element of Z[x,...., x,,~]. For example, 
S&,) x2) = x: + x,x* + x:. s (,,I) (x,, x2) = x,x,.) 

Although a priori (*) only gives bounds for the coefficients of P(R), a 
fortunate event occurs: For all sufficiently large partitions 1, the multiplicity 
of Sag in P(aK) equals 31). its multiplicity in P(E). Hence r(L) = f(h) for 
these partitions. 

For the rest of this section we assume that 

R = K[U(l),.... U(n’)] 

is the generic matrix ring generated by n2 generic n x n matrices. Since the 
Poincare series of I? (when expressed as a formal power series in the Schur 
functions sA) only involves partitions of length <n’, the results we obtain on 
Poincare series will be valid for any number of n x n generic matrices. 

The Poincare series 

P(E) = x F(A) sn(x, ,...) xnJ 
gives the structure of R as a GL(n’)-module, where 8= (e,,) E GL(n’) acts 
on 

M,(K[uJr)I) = M,(K) 0 K[uij(r)I 
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by acting trivially on M,(K) and acting on K[u,(r)] by 

O(Uij(r)) = x B,,Uij(S)m 

In other words, for fixed i and j, the K-vector space spanned by 

(“ij(r)l 1 <r<n’I 

is the standard GL(n’)-module and (B,,) is the n’ x 11’ matrix giving the 
action of 8 (acting from the left on column vectors) relative to the ordered 
basis 

(Uij( I),..., Z~ij(n*)). 

Similarly. 8 acts on R as a linear transformation of the K-vector space 
spanned by U(l),..., U(n’): 

e( U(r)) = y e,, U(s). 

The action of GL(n’) is a polynomial action and there are no absolute 
GL(n’)-invariants (fixed points) of positive degree. But there are relative 
invariants-i.e., one-dimensional GL(n*)-modules. These are all powers of 
the determinant (Theorem 3(a))--more precisely, let (det)’ denote K as a 
GL(n’)-module with action 

e(a) = (det 19)~a. 

This module is homogeneous of degree rn’ and its character is 

( x, . . . x,:)’ = (e,J = s,,,,:,, 

where (rn2) = (r,..., r) (n’ times). 
Let 

,a = (l”?), a= (n2 - 1, rz? - 2 )..., 1,O) 

and recall (Section 2) that the Schur function s., = s.\(x, ,..., x,?) is defined. 
for any partition A = (A, ,..., A,,) of length Qn*, by 

where 

a.,@, ,..., x,4 = x (sign rc) xi;,, . . . x$$, , 
neS,z 
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Since a,,, =x, .e. x,la.lr 

s,s.L =x, ... x,za,,+, Ia, 

=a u+.l+b 1% 

= S, +.I’ 

We can use this to derive information about the coefficients c(A), F(A). By 
Theorem 12, 

F(J) = (S.k( 4’; I’,: ‘). 114 

where sdL( .I’~ J,: ‘) denotes the image of s.~(x, ,.... x,J under the 
homomorphism 

Z[x I,...’ x,p + Z[Jy ’ ,..., y; ‘IS, 

obtained from the specialization 

t-u , )..., X”?) w ( yi y,: ’ / 1 < i, j < n). 

(The statement of Theorem 12 used variables ( zij 1 1 < i. j < n) instead of 
ix ,,..., x,>).) Since .sll(yi j’,,: ‘) = 1. 

and similarly F(,LA + A) = F(A). Moreover, for the empty partition 0. 

F(O)= (1, I:)= 1, 

F(0) = (l, S(I)(.Yi ?‘J”)) 

= (1, S,,j(Yi)S(l,(Yi’)j 

= (S,r)(J7i)l sfl)(Yi)) = ‘* 

Hence we have 

LEMMA 13. Let P(c) = C@)s.t, P(R) = C+)S.~, and let lu = (1”‘). 
Then 
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(a) For all partitions 1 = (A, ,..., A,,>) of length <n2, 

F(p + A) = F(l). qa + 1) = $/I). 

(b) For all m > 0, ?(mp) = f(m,u) = 1. 

Remark. Any partition 1 = (A, . . . . . 1,:) of length <n’ can be written 

1 = (A,:) ,a + A’, 

where 1’ = (I., - ,I,,,,..., 1,z-, - ,I,,?, 0) has length <n2 - 1. Hence, module 
Lemma 13, the Poincare series for c or E in any number of variables is 
determined by the series in n2 - 1 variables. 

Part (b) of the lemma asserts that in c (or E) there is a unique relative 
invariant of degree mn’ for each m > 0. This implies that all the relative 
invariants are powers of a single relative invariant of degree n’, which we 
now describe. Set 

A = A(CJ( l),.... U(n’)) 

u,,(l)u,z(l) 
= det i 

i u,,(n’) u12(nz) ... u,,(n’), 

= det ;i/. 

the determinant of the n’ x nz matrix 2’ whose rows are V(l),..., U(n’) 
written as 1 x n* row vectors. The generic matrices U(r) (1 < r ,< nz) form a 
basis for M,(K(ui,i(r))) over its center and A is the discriminant of this basis. 

Suppose P E GL(n) and 8= (8,,) E GL(rz2). Let $’ denote the linear 
transformation of M,(K) defined by 

q?jP(A) = PAP-‘. 

and let (#&) be the matrix of 4’ relative to the ordered basis e,,, e,,,..., enn 
(acting on row vectors from the right, while (13,~) acts on column vectors 
from the left). As usual, 4’ and 8 also act as automorphisms of K[u,(r)]. 
Then 

~p(~,,w) 
#‘(A) = det 

i 
i 

~Ph(n2N 

= deW(&N 

= (det W)(det 9’) 

=A. 
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= det((O,,)W) 

= (det O)(det 2) 

= (det B)d. 

The first equation says that 

A E K[uJr)]““‘” = c 

and the second says that it is a relative invariant of degree nz for GL(n’). 
Hence A is the unique relative invariant in c of lowest degree. and all other 
relative invariants in c or I? are powers of A. 

Since A E c, the first fundamental theorem (Theorem 8(a)) asserts that it 
can be expressed in terms of traces. The following expression for A was 
found by Procesi and me in 1975. 

Suppose that I = (A, :.... Ak) is a partition with 

For each such A, define A,, = A,(U( 1) ,..., U(n’)) by 

A, = 5 (sign r)Tr(U(rc(l)) ..a U(?@,))] 
XES,Z 

Tr[U(rc@, + 1)) .a. U(rc(I, + A]))] 

Tr[U(n(A, + ... +Akmm, + 1)) ... U(n(n’))]. 

It is easy to see that since A can be expressed in terms of traces of 
monomials in U(l),..., U(n’) and is multilinear and alternating as a function 
of U(l),..., U(n’), it can be written as a K-linear combination 

A=~a(k)A,. 

(Given any expression A = f(U(r)), where f is a polynomial in traces of 
monomials in U(l),..., U(n’), throw away the terms which are not multilinear 
and then replace f by the formally alternating function 

1 _1 
f’(W)) = pjj n&n1 (sign ~)f(W(r))). 

Then f’=A and f’=~u(~jA~,.j 
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Conversely, each A, is a multilinear alternating function of 

U(l),..., U(n*)--thus a relative invariant of GL(n’) of degree n*-thus a 
scalar multiple of A. The real problem is to discover which A, are nonzero. 
The following observations show that all A, except one are zero and hence 
that A is a scalar multiple of the remaining one. 

Let A = (3, ,,..., A,), ]I] = n2. 

(a) If any li is even, then A,1 = 0, since the trace of any standard 
identity of eoen degree is zero, and A, can be expressed as a sum of 
products, each having the trace of the standard identity of degree Ai as a 
factor. 

(b) If two 1;s are odd and equal, then A., = 0 since it is alternating. 

(c) If A, > 2n, then A,l = 0 since the ring of n x n generic matrices 
satisfies the standard identity of degree 2n (Amitsur-Levitzki theorem). 

This shows that A,l = 0 uness the parts Ai of 1 are distinct, odd, and less 
than 2n. But there is only one way to express n’ as a sum of distinct odd 
integers less than 2n, namely, 

n’=1+3+5+...+2n-1. 

Hence A., is nonzero only for 1, = (2n - 1, 2n - 3 ,..,, 3, I). 
We summarize the above remarks as 

LEMMA 14. Suppose U(r) (1 < r < n’) are n x n generic matrices, and c 
and l? are the associated ring of invariants and trace ring. Let GL(n’) act 
on c and i? as above, and let A and A.,0 be defined as above, where 
A,, = (2n - 1, 2n - 3 ,..., 3,‘l). Then 

(a) KA is a GL(n’)-invariant subspace of c. 

(b) The o&y one-dimensional GL(n2)-invariant subspaces of c and l? 
are the subspaces KA”(m = 0, 1, 2 ,... ). 

Cc) A = cA.io, where c is a nonzero scalar depending only on n. 

The conductor from R to R is the largest ideal of R which is also an ideal 
of E, namely, 

- - 

The Capelli polynomial was introduced and exploited by Razmyslov [ 121, 
who showed that all evaluations of the n2th Capelli polynomial lie in the 
conductor. The mth Capelli polynomial is the polynomial in noncommuting 
variables ui, oi defined by 

Cm(U1,.-, Urn, VI,..., Urn) = s (sign 7r) u,(,~v, ... u,,,~v,. 
nes, 



212 EDWARD FORMANEK 

Remarks. (a) Let V(l),..., V(n’) be a new set of n x n generic matrices 
and let R(V) denote the trace ring associated with them. Consider 

z = C,,(U(l) ,..., U(n’), V( 1) . ...) V(n?)). 

which is known to be nonzero [ 121. Since Z is alternating and multilinear in 
U(l),..., U(n*)? Z can be factored 

z = A(w-))f(V(r)). 

where f(V(r)) lies in E(V) and is multilinear in V(l),..., V(n’) (see [ 1, 3.21). 
It would be useful to known that f(V(r)) is, particularly in connection with 
the conjecture of Regev given following Theorem 16. 

(b) The Procesi-Razmyslov theorem on trace identities implies that c 
is generated as a K-vector space by all products 

W4 ... Tr@,) 

of n traces, where the pi are monomials in the generic matrices. The point is 
that the number of factors needed is uniformly bounded. If we take R to be 
generated by an infinite number of generic matrices (so that for any element 
f of R, there are “other” generic matrices not involved in f), it follows that 
f=f(~(l),..., WV) 1 ies in the conductor if and only if 

Tr(Z,) ... TG,) f E R, 

where Z, ,..., Z, are distinct generic matrices different from U(l),.... U(k). 
This formulation shows that if we let 

(if: R) =J/..fl(n) G K(U)/=X(n) = R, 

then J is a T-ideal in K(U) and again it would be useful to know what it is. 
The next lemma suggests that J may be generated by all evaluations of the 
n*th Capelli polynomial, at least modulo S H(n). The lemma is valid without 
any hypothesis on the number of generic matrices, except that there must be 
at least two. 

LEMMA 15. (a) The Capelli polynomial C,,> is not a polynomial identity 
for M,,(K) but it is a polynomial identity for M,_,(K). 

(b) The K-vector space D generated by all evaluations of C,,on R is 
an ideal of R. In particular, D is contained in the conductor from R to R. 

(c) Let M be the ideal of R generated by’ the identities of M,-,(K). 
Then the discriminant A = A(U(r)) lies in RM. 

(d) There is an integer k such that Ak lies in D. Hence AkRc R. 
AkCc C. 
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Proof: (a) and (b) are due to Razmyslov [ 121 (see also [ 1. Theorem 6 
and Corollary 81). 

(c) Set 

A, = \‘ (sign 71) Tr[U(rc( l))] Tr[CT(n(2)) U(n(3)) Cr(7r(4))] 
TES,,? 

. . . Tr[U(n(n - 2)’ + 1) ... fJ(~(n- 1)‘)) 

U(7r(n - 1)2 + I) ... (1(7r(nJ)). 

Since A, is alternating and multilinear in V(l)..... [[(n’), it is a GI.(n’) 
relative invariant and hence a scalar multiple of A. by the uniqueness of A. 
But 

Tr(A,) = A,,0 = CA. 

where A, u and c # 0 are as in Lemma 14. Hence A, = cd/n. 
By suitably collecting terms, A, can be expressed as a sum of products of 

traces and evaluations of the standard identity of degree 2n - 1. which lies in 
M. Thus A,-and also A-lies in EM. 

(d) Consider the finitely generated PI-algebra E/D. If P is a prime 
ideal of R, then (a) implies that P 2 M (i.e. E/P has PI-degree <n) if and 
only if P 2 D. Hence 

Prime radical (D) 2 l?&f, 

so A lies in the prime radical of D. The prime radical of any ring is a nil 
ideal, so Ak E D for some k. I 

Using Lemma 15, we can now show that for suffkiently large partitions 1, 
the multiplicity of s.~ is the same in P(C) as in P(c), and the same in P(R) as 
in P(R). 

THEOREM 16. Let k be an integer such that Akl?g R. AkCs C (k exists 
by Lemma 15), and let 

W)=~:c(O,, P(F) = r F(l) s-i, 

P(R) = 5 4) s-4, P(R) = y f(l) s-1. 

Suppose that 1 is a partition such that 1 > (k”‘) = kp, where 
,u = (l”?) = (l,..., 1). Then c(l) = F(A), r(n) = F(A). 

Proof: We show that c(n) = F(A); the proof that r(1) = F((n) is the same. 
Note that since Ak is a GL(n’) relative invariant 

AkCcC~C (1) 
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is a series of inclusions of GL(n’)-modules. Let 

P(A kc) = 5 c’(A) s., . 

Then (1) implies that 

for all partitions 1. 
Since KAk has character sku = (x, ... x,Jk and F((kp + A) = F(A) for all 

partitions A (Lemma 13(a)), 

P(Akc?) = x(KAk) P(c) 

= SkL, x yn) s.t 

= ” p(kp + A) Sk,, +.I 

=y {F(A)s,IA>kp}. 

Hence c’(n) = E(A) for any 1 > kp, and then (2) implies that c(J) = F((n). fl 

Remark. Regev [ 13, Conjecture 2.41 has conjectured that the polynomial 

is not a polynomial identity for M,(K) and verified his conjecture for 
n = 2, 3. Since f is multilinear and alternating, its value under the 
substitution of n x n generic matrices U, = U(r), c, = V(r) must be a scalar 
multiple of A(U(r)) A(V(r)). If Regev’s conjecture is true, the scalar is 
nonzero and we can take k = 2 in Theorem 16. 

On the other hand, for n > 1, A does not lie in R since it would necessarily 
be an evaluation of the standard identity of degree n’, which vanishes on R. 

8. COMPARISON WITH THE PROCESI-RAZMYSLOV THEOREM 

A fundamental theorem proved independently by Procesi [lo] and 
Razmyslov [ 111 gives an explicit description of all multilinear “trace iden- 
tities” for n x n matrices. Their result leads to an expression for P(C) which 
is different from that of Theorem 12, and setting the two equal yields a result 
about the representations of S, which has no reference to matrices or iden- 
tities (Theorem 17). To give complete details of the derivation of this 
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alternate expression for P(c) requires a considerable amount of new 
definitions and notation, so we will only sketch it. For more details the 
reader is referred to [5, Sections 4-5 and especially Theorem 23 and the 
subsequent discussion]. 

Recall that the usual tensor product of modules with diagonal group 
action defines a multiplication 

Mod@,,,) x Mod(S,) + Mod(S,), 

the inner product, which we ignored in Section 2. Using the characteristic 
map ch: Mod(S,) + A,(x) we define the inner product on A”(x) and denote 
by 

[M] * [N] and a * b 

the two inner products on Mod(S,), A,(x), respectively. The inner product 
on A ,Jx) is not easy to describe in terms of the s.~, but in terms of the p.L it 
has the following simple form [8, p. 1451 ( z+~ is the integer defined before 
Theorem 1). 

PA * PA = Z.L P.i * 

PA * P, = 0 (1 f P). 

The group algebra KS, is a direct product of simple factors J.L, one for 
each partition A such that ]A I= m. For J-t as an S,-module by left 
multiplication, denoted f(J.I), 

where a, = (dim,(J.,))’ “. But as an S,-module where S, acts by 
conjugation, denoted simply J.{, 

ch[J.,] = s., * s.~. 

The Procesi-Razmyslov theorem implies that if c is expressed as a graded 
ring 

then (cm)“““, the multilinear part of cm, is isomorphic as an S,-module to 

1 {J.,]]A]=m, lengthA<n}, 

where S, acts by conjugation. In analogy with Theorem 7 the Poincare 
series of c can be defined using the multilinear parts of Cm and the charac- 
teristic map. Thus we obtain 
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THEOREM 11. Let c be the ring of invariants of n x n matrices. Then 

P(C) = \‘ SI(X) * s.,(x), 

where A varies over all partitions of length <n. Hence for each m, 

where the left sum is over partitions A such that / 11 = m and length 1 < n. 
and the right sum is over partitions 1 such that IA/= m and length A < n’ . 
and the coeflcients are those of Theorem 12. 

It is also possible to derive a formula for P(R) in a similar way, but it 
does not yield anything more about the inner product on /im(-y). 

9. 2 x 2 GENERIC MATRICES 

In this section we give two expressions for P(C), P(R), P(C) and P(E) in 
the case of 2 x 2 generic matrices: As formal power series of the Schur 
functions sI, with the coefficient of s.~ given as a simple function of A: and as 
rational functions in four variables X, , x7, xj, x4 when the number of generic 
matrices is assumed to be four. 

The determination of P(C) and P(E) is formal modulo Theorem 12, and in 
principle can be carried out for matrices of any size. In practice the 
computations already appear formidable for 3 x 3 matrices. In contrast, the 
determination of P(C) and P(R) relies on an analysis of how R sits inside E. 
and it is not clear how to carry out such an analysis for larger matrices. This 
was the method of [4] for two 2 x 2 matrices. Drensky [3, Theorem 2.l(iii)] 
has given a formula equivalent to expressing P(R) as a formal power series 
of Schur functions. As an application of the formula for P(C). we give a 
presentation for C as a ring when the number of matrices is three 
(Theorem 22). It is a polynomial ring in ten variables modulo a principal 
ideal. 

As in Section 7, let 

P(C) = s c(l) S.L 3 P(C) = y F(A) s.i ) 

P(R)=x r@)s.,, P(R) = K’ $I) s.t. - 

The coefficients in P(C) and P(R) can be computed using Theorem 12. 
The process is lengthy but routine and the conclusion will be given later 
(Theorem 21). For the present, we examine the difference between P(R) and 
P(R). Set 

R, = K[ U( l)...., U(m)], 
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where the U(r) are 2 x 2 generic matrices, and let C,, cm. Rm denote the 
corresponding center, ring of invariants? and trace ring. By analyzing 
R, c R3 and R, c R, we will obtain the difference F(A) -r(J), first for 
partitions of length <3, then for partitions of length 4. The next lemma 
reduces the problem to commutator ideals. 

LEMMA 18 (cf. [4, Theorem 61). 

(a) R, = R,[Tr(U(l)),.... Tr(U(m))] = K[U(r), Tr(U(r)) 1 1 < r < m]. 

(b) R,/[R,, %,I is a po!vnomial ring ocer K in 2m independent 
variables, the images of U(l)..... U(m) and Tr(U(l)),..., Tr(U(m)). 

(~1 P(RrnI[Rm,RrnI)= FIY=l(l -*vi)-’ =Crn,>~~crn,). 

Cd) P(R,/[R,,R,l)=n~=~1(1-~~i)-‘=Cm,.m2~~(m~ + l)~t~,+,,.~~). 

Proof. (a) By definition, R,,, = R,,, c,,, is generated over R,,, by all Tr(X). 
for X a monomial in R,,,. The multilinear Cayley-Hamilton theorem for 
2 x 2 matrices says that 

Tr(XY) = Tr(X) Tr( Y) - Tr( Y) X - Tr(X) Y + XY + YX. 

A simplejnduction on the degree of X shows that Tr(U(l)),..., Tr(U(m)) 
generate R, over R,. 

(b) By (a), it suffices to find a commutative homomorphic image of 
I?,,, in which the images of U(r), Tr(U(r)) (1 < r < m) are algebraically 
independent. Specializing the off-diagonal entries of the U(r) to zero gives 
such a homomorphic image. 

(c) is clear, and (d) follows from (b). 1 

Set 

A =A(u(:), U(2), U(3), U(4)), 

A,=A(U(l). U(2). U(3),1), 

the discriminants of the indicated bases for M,(K(uJr))). Note that A is a 
relative invariant for GL(4) acting on R, and A, is a relative invariant for 
GL(3) acting on R,. Define 

the ideal of R, generated by all Tr(Y) - 2Y. The motivation for introducing 
A, is the fact that the fourth Capelli polynomial has the evaluations 
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C,(Vl), U(2), U(3), U(4), y,, y,, y,, Y,) 

=d([Tr(Y2)Tr(Y,)-Tr(Y,Y,)l[Tr(Y,)- ?I 
- [Tr(Y,)Tr(Td - WY, Yz)11Tr(Y4-Y,1~ Y,, 

c,(ql), U(2), U(3), U(4), K z,z, 0 

= d(Tr(Y) - 2Y), 

which lie in, and generate, AA, as Y, Y, ,..., Y, vary over R,. It follows, 
using s_tandard properties of the Capelli polynomial (e.g. [ 1, Coroll_ary 8)) 
that AA, is an ideal of R, and is contained in [R,,, R4]. Similarly, A,A, is an 
ideal of R 3 contained in [R 3, R 3 1. 

Using Lemma 18(b), it is easy to see that 

LEMMA 19. (a) F,,,/x,,, z K[Tr 11(l)),..., Tr(u(m))], a polynomial ring 
over K in m idependent variables. 

(b) P(R,/~m)=nY=~(l -Xi)-‘=Cm,>OS<,,)- 

The next lemma is the crucial step in obtaining P(R,) - P(R,) in terms of 
known Poincare series. Its proof involves lengthy computations which we 
omit. 

LEMMA 20. (a) [R,, R3] + A,R, = [R,. R,]. 

(b) [R,,R,] nA& =4,&. 
(c) R,nAEd=A&. 

Consider the following diagram of inclusions of GL(3)-modules 

By Lemma ZO(a, b) 

Using this equation and the Poincare series of Lemma 18(c, d) and Lem- 
ma 19(b) as well as the fact that A, us a relative invariant for GL(3) with 
character x,x2x3 = s,,,~,~, , we have 
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Equation (1) tells us i=(1) - r(A) for partitions of length <3. Since P(R) 
only involves partitons of length <4, we need only find +I) - r(A) for 
partitions whose length is exactly four. Here we are aided by the fortunate 
circumstance that A is the unique relative invariant of lowest degree in IiJ 
(c.f. Lemma 13). This implies that AI4 is the GI.(4)-submodule of I?~ 
generated by irreducible modules corresponding to partitions of length 
exactly four. or 

P(AR,) = x (f(1) s,\ / length /I = 4 }. 

Using Lemmas 19(b) and 20(c) and the fact that A is a G,!,(4) relative 
invariant with character x,.Y,.Y~.Y, = s,, , , ,,, we have . . . 

2 ((F(A) - r(A)) s., / length 1 = 4) = P(AR,/(R, n AEd) 

= P(AR,/AA,) 

\‘ =L Svn,t 1.1.1.1)' 

ml>1 

(2) 

We now turn to P(C). For the coefficients of the partitions of length <2, 
we use the determination of P(C2) in [4. Theorem 91: 

P(C,) = 1 + x;xfP(c,) 

= 1 + S,?.?) x C(l) s.1 

Note that since C = R n C, C/C is a GL-submodule of l?jR. Hence 

for all partitions. Since f((n) - r(A) = 0 for most partitions of lengths 3 and 4 
and i=(A) - r(A) = 1 for the remaining ones, all that remains to be decided is 
whether F((n) - c(A) is 0 or 1 for the partitions 

rl=(m,+ 1.1.1) cm, 2 O), 

A= (m, + 1. 1. 1. 1) cm, 2 0). 

In case A = (m, + 1, I, 1), Eq. (1) shows that the multiplicity 1 of s.\ in 
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R,/R, is represented by the module dOI?,/d,xJ. Hence to show that s.~ also 
has multiplicity 1 in CX/C3 is sufftces to show that 

c, +A& z!A,&. 

But by Lemma 19(a), 

&+C,=&, 

SO 

A,& +A& = A&. 

A similar argument works for ,I = (m, + I, 1, 1. 1). The net result is 

If ,I is a partition of length 3 or 4. 

F(A) - c(A) = F(l) - r(L). 
(4) 

Using Eqs. (l)-(4), P(C) and P(R) can be computed from P(c) and P(R). 
The next theorem gives the coefficients of these Poincare series. As noted 
earlier, the details of the computation of P(c> and P(R) are not included, 
and the details of the translation to a rational function of four variables are 
also omitted. 

THEOREM 2 1. For 2 x 2 generic matrices, the coefficients of 

P(C) = y c(A) s.\. P(C) = \‘ F(L) s., , 

P(R)=Z: r(L)s.,, P(R) = \‘ $I) s.i - 

are given by the following formulas. In all cases the summations are over all 
partitions ,I of length <4, where 

= Cm, + m2 + m3 + m,, mz + m, + m4, m3 + m,). 

(a) f(A) = (m, + l)(mz + l)(m, + 1) 

(b) F(A) = :(7(A) + d(A)), where d(L) depends on the paritv of 
m, , m,. m, according to the following table: 

(m,, ml, m.,) (mod 2) $4 

(0, 0.0) m+m,+mj+3 
(Lao) m, + 1 

(0, 190) -h + 1) 
(O,O, 1) m,+l 

all others 0 
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table(c) r(A) and 44 are given in terms of F(A) and C(A) by the following 

4) c(J) 

(m, + mz, m,, 0.0) (mz > 2) 
(m, + 1, 1, 1,O) 
(m, + 1. 1, 1. 1) 

all others 
q:(n) - 1 q;., - 1 

V) C(A) 

(d) When the number of 2 x 2 generic matrices is four. the Poincare 
series are gicen by the following rational functions 

P(l&) = 
1 - S,.Y~X,X, 

n( 1 - x$rc( 1 - qs;) ’ 

P(R,)=P(R,)- ’ + 
1 - ~.Yi.Yj.X, 

7r( 1 - xi)z n(1 -xi) ’ 

P(C,) = P(c,) - 
1 + c xi xi + .Y, XI x3 XJ s XiXjXk 

n(1 -.q)(l -xi) - n(l -x;) 
+ 1. 

(The sums and products are ouer 1 < i < 4. 1 < i < j < 4, 1 < i < j < k < 4, 
respectice!s. ) 

Finally, we use the Poincare series for CL in conjunction with a result of 
Siberskii [ 141 to gve a presentation for C,. Siberskii showed that CJ is 
generated by the following 10 elements 

Tr(U(i)), det(U(i)) (l<i<J), 

Tr(W) WI) (1 <i< jG3). (*) 

Tr(Vl) u(2) u(3)). 

These elements are homogeneous of degrees 

(‘7 0, om 1.Q (0.0, I), (LO, 0). (0, 2,O). (0, 0, 2), 

(1, ‘,O), (1.0, l), (0, 1, I), (1. 1, 1). 
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The Poincare series of a commutative polynomial ring generated by 
independent elements of the above degrees is 

1 

Q= (1 -x,xzx.l)71(1 -q)(l -x;)~(l -x;xj). 

Specializing x4 = 0 in Theorem 21(d) shows that 

P(C) = 
1 + ?c,X?Xj 

n(1 -xi)(l -.+r(l -q.yI) 
= (1 - (.q.x~.~~)‘)Q. 

Hence if we show that the ten elements (*) satisfy a homogeneous relation of 
degree (2, 2, 2). it will follow easily that f?, is isomorphic to a polynomial 
ring in ten variables modulo this relation. The desired relation is 

where Ai = Tr(U(i)). Bi = det(U(i)). Ci = Tr(U(j) U(k)) (i # j. k; j # k). 
E = Tr(U( 1) U(2) U(3)). 

THEOREM 22. Let c, denote the ring of incariants of three 2 x 2 
matrices. Then c, is generated bJ* the ten elements in (*) modulo the prin- 
cipal ideal generated by the relation (* *). Alternatiae!,~, c3 is a free module 
of rank 2 (with basis 1, Tr(U(1) U(2) U(3))) ouer the polynomial ring free69 
generated by the first 9 of the elements in (*). 
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