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Summary
Introduction: Periosteum osteogenic and chondrogenic properties stimulate the proliferation
then differentiation of mesenchymal precursor cells originating from its deeper layers and
from neighboring host tissues. The local mechanical environment plays a role in regulating this
differentiation of cells into lineages involved in the skeletal regeneration process.
Hypothesis: The aim of this experimental animal study is to explore the influence of cyclic
high amplitude bending-loading on skeletal tissue regeneration. The hypothesis is that this
mechanical loading modality can orient the skeletogenesis process towards the development
of anatomical and histological articular structures.
Material and methods: A vascularised periosteal flap was transferred in close proximity to each
knee joint line in 17 rabbits. On one side, the tibiofemoral joint space was bridged and loading
occurred when the animal bent its knee during spontaneous locomotion. On the other side,
the flap was placed 12 mm distal to the joint line producing no loading during bending. Tissue
regeneration was chronologically analyzed on histologic samples taken from the 4th day to the
6th month.
Results: The structure and mechanical behavior of regenerating tissue evolved over time. As a
result of the cyclic bending-loading regimen, cartilage tissue was maintained in specific areas

of the regenerating tissue. When loading was discontinued, final osteogenic and fibrogenic
differentiation occurred in the neoformed cartilage. Fissures developed in the cartilage aggre-
gates resulting in pseudo-gaps suggesting similar processes to embryonic articular development.
Ongoing mesenchymal stem cells stimulation was identified in the host tissues contiguous to
the periosteal transfer.
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Discussion: These results suggest that the pseudarthrosis concept should be reconsidered within
the context of motion induced articular histogenesis.
© 2010 Elsevier Masson SAS. All rights reserved.
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layer turned towards the knee. Particular attention was
ntroduction

ature skeletal tissue: bone, cartilage, tendons and
igaments all develop from common cell precursors: mes-
nchymal progenitor cells [1]. This is the result of a
ascade of genetically controlled cellular and molecular
vents, which control cell proliferation and differentiation
nd lead to the architectural organization and functional
pecialization of tissue. Mechanical environmental stim-
li also influence the steps of embryogenesis. In joints,
hese stimuli influence all levels of tissue organization, from
he molecular structure of the extracellular matrix [2] to
he macroscopic morphology of the organ [3,4]. Indeed,
echanotransduction modulates the metabolism and syn-

hesis of immature cells as well as their differentiation into
ifferent cell lineages.

There are numerous similarities between the process of
keletal tissue regeneration, observed in clinical and exper-
mental studies, and embryonic skeletogenesis [5—7]. The
olecular signals of intercellular communication as well as

he cascade of events during proliferation and differenti-
tion are similar during these two processes, except that
n a post-traumatic situation, an inflammatory mechanism
nitiates the process [8]. Mechanoregulation also influences
onsecutive molecular and cellular events.

Models of skeletal tissue regeneration have been devel-
ped based on studies on the effect of local mechanical
timulation on precursor cell differentiation [9]. High local
train directs precursor cell differentiation into fibrous tis-
ue. On the other hand, mild stress directs precursor cell
ifferentiation into osteochondrogenic cells with direct ossi-
cation associated with weak hydrostatic stresses while
artilage growth is favored by higher compressive stresses
10—15].

In vivo experimental models have confirmed some of
hese theoretical hypotheses. Numerous implants or exter-
al devices have made it possible to exert controlled
echanical pressure on regenerating skeletal tissue. Thus

he effects of shear stress, cyclic loading and low amplitude
ending have been studied [15—18].

However, there are no experimental studies on this histo-
enic process during cyclic high amplitude bending-loading,
imilar to that which occurs in diathrodial joints. The goal
f our study was to create this type of mechanical loading to
etermine its influence on skeletal regeneration. Thus, we
nitiated a process of skeletal regeneration by transferring

vascularised periosteal flap to the medial knee of New-
ealand rabbits. The mesenchymal precursor cells brought
o the surgical bed by the periosteum and the host tissues
roliferate before differentiating [19,20].
Our hypothesis is that the process of skeletal tissue
egeneration integrates the numerous elements of the
echanical environment that it is exposed to. As a result

his process, which is determined by the control of cell dif-

p
o
t
o

erentiation also organizes the structure of the regenerating
issue. The aim of this study was to analyze the architec-
ural and structural changes in regenerating tissue as it
volved during in vivo high amplitude mechanical articu-
ar bending-loading. In this experiment, mechanical loading
as obtained from the spontaneous knee movements of the
nimal during locomotion. We compared the neotissue that
eveloped during bending-loading to that without bending.

aterials and methods

eventeen three-month old skeletally immature New
ealand rabbits weighing 2.5 kg were used as animal mod-
ls (INRA-ENSA Montpellier France) in the surgical protocol.
abbits underwent surgery on both hind legs at once.
he surgery was performed in an accredited experimental
urgery laboratory of Montpellier Medical School, in accor-
ance with French regulations on animal care and use of
aboratory animals.

A vascularised periostal flap was harvested from the
edial tibia along the axis of the saphenous bundle and was

ransferred to the knee joint. In one of the two legs, which
as part of the ‘‘loaded’’ group, the flap was sutured to the
edial side of the knee to undergo mechanical loading dur-

ng knee movements, mainly cyclic bending on the saggital
lane during spontaneous locomotion of the animal. In the
ontrolateral leg, which was part of the ‘‘control’’ group,
he flap was sutured 12 mm distally so that it would not
ndergo bending-loading during regeneration (Figs. 1 and 2).
he choice of limbs for the experimental and control groups
as randomized. Tissue regeneration was analyzed chrono-

ogically under two experimental conditions: mechanical
oading from spontaneous knee movements, or no mechan-
cal bending-loading.

urgical procedure

nder general anesthesia (xylazine, intravenous ketamine)
nd strict aseptic conditions, the medial side of the tib-
as and knees were exposed by medial approach. The first
tep included the sectioning and raising a 30 mm long and
0 cm wide vascularised periosteal flap from the medial
ibia. The saphenous bundle which provides anterograde
ascularisation was interrupted distally for transplantation
f this flap near the knee joint. Both hind legs were oper-
ted on during the same operation. In the ‘‘loaded’’ group,
he flap was sutured to fibrous elements attached proxi-
ally to the femur and distally to the tibia with its deep
aid not to perforate the joint capsule. The middle third
f the flap was centered on the tibiofemoral joint space
o undergo a maximum of cyclic bending during locomotion
f the animal. The controlateral limb served as a control.
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Figure 1 ‘‘Control’’ group. The periosteal flap raised from the medial side of the midtibial diaphysis is transferred just distal
to the knee joint space to prevent bending loading. Analysis of heterotopic bone neoformation at 2 months. (A) Radiography. (B)

istol
late
Macroscopic view of bone neoformation after dissection. (C) H
The medullary cavity is formed (undecalcified, methylmethacry
The periosteum was transferred to a similar position but
was distal to the joint space so that there would be no
loading during bending. It was sutured to the medial gas-
trocnemius muscle which provided support. After suturing

t
a
f
t

Figure 2 In the ‘‘loaded’’ group, the flap bridges the femoral-tibi
section of the knee joint in a coronal plane with at its medial side the m
of the previous macroscopic section. The newly formed skeletal tiss
maintained in its midportion and at the junction of the end of the fe
intermediate magnification. The two masses of cartilage facing each
the symmetrical axis of the midsegment of this newly formed tissue.
that may persist until the end of the differentiation process, simula
ogic view of a longitudinal section of the newly formed bone.
inclusion, Goldner’s trichrome coloration, low magnification).
he skin and when the animal had awakened, they were
llowed to move around spontaneously outside their cages
or one hour per day, otherwise movement was limited to
he cage.

al joint line to be submitted to cyclic bending. (A) Macroscopic
assive newly formed skeletal tissue. (B) Very low magnification

ue is mainly composed of bone (green) with areas of cartilage
mur (arrows) (Goldner’s trichrome coloration). (C) Same view,
other are separated by fissuring fibrocartilage which constitute
(D) The coalescence of microcleft leads to macroscopic fissures
ting a joint space within the new skeletal tissue.
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istological analysis

fter a predetermined time, the rabbits were killed with
n overdose of pentobarbital. Animals were killed on the
th, 7th, 15th, 30th, 45th, 60th, 90th, and 180th day for the
hronological study of cellular events occurring during the
rocess of tissue regeneration. Once the animals had been
acrificed, tissue samples were taken for histological study.
keletal regeneration samples were cut longitudinally on
he frontal plane to obtain a histological field in relation
o the joint space. The histological study was performed on
amples fixed in formol, then decalcified and imbedded in
araffin, as well as on non-decalcified samples fixed in 80%
lcohol then imbedded in methyl methacrylate.

Hematoxylin-Eosin-Saffron (HES) and Giemsa stains were
sed on paraffin samples. Goldner and May-Grünwald-
iemsa (MGG) stains were used for methyl methylacrylate
amples. During microscopic study, the predominant phe-
otype of each histological field was determined. Thus, the
ollowing predominant fields were identified: blastema, car-
ilage, fibrocartilage, fibrous or bone.

esults

one of the animals died during surgery or postoperatively.
t sacrifice, none of the surgical fields was infected. The
‘loaded’’ group knees presented with at least 90◦ of flexion,
nd a swelling of various sizes along the medial side. The
embers of the ‘‘control’’ group did not seem to be affected
y the presence of a long palpable mass in the posterior
ompartment of the leg.

volution of cell differentiation in the regenerating
issue

ignificant proliferation of precursor cells constituting an
ndifferentiated blastema in the area of flap, and the first
tep in cell differentiation was found in both groups on the
th day. In the ‘‘control’’ group, the development of neotis-
ue was observed along the medial gastrocnemius (Fig. 1A).
n the ‘‘loaded’’ group, it developed on the medial side of
he knee, and remained separate from the intact joint cap-
ule (Fig. 2A). Condensation of these blastema cells provided
he morphological contours of the final regenerated tissue.

After the 4th day, chondrogenic differentiation of mes-
nchymal precursor cells, which is a key step in enchondral
ssification, was similar in both experimental groups. In
he ‘‘control’’ group, a process of ossification of the neo-
issue matrix gradually replaced all of the cartilage with
one. Between the 15th and 30th day, all the cartilage had
isappeared and was replaced either with bone or fibrous
issue. After the 30th day, a segment of long bone, whose
ean length was identical to that of the flap (27—32 mm),

ad formed in the posterior compartment of the muscle
Fig. 1B). A medullary cavity had developed and usually
ncluded bone marrow (Fig. 1C). Osteoclasts were identi-

ed on the surfaces of newly formed bone. At 6 months,
he regenerated tissue was composed of 90% bone and 10%
brous tissue.

In the ‘‘loaded’’ group cartilage and fibrocartilage, dif-
erentiation continued until the 3rd month. The presence
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f cartilage was gradually limited to the ends and to the
iddle of the newly formed tissue (Fig. 2B). These areas

xtended to the initial junction with the support bone and
o the tibiofemoral joint space, respectively. After the 3rd

onth, the newly formed skeletal tissue was detached from
t least one of its points of attachment to the support bone.
nee bending no longer caused the regenerated tissue to
end. The cartilage had completely disappeared from the
ewly formed tissues. At 6 months, a bone segment with a
edullary cavity had finally developed on the medial side of

he knee. It barely interfered with articular range of motion
ecause it was structurally separate from its initial support
one.

evelopment of microfissures

issures developed as the regenerating tissue in the
‘loaded’’ group went through the different stages of matu-
ation. They were mainly located around the tibiofermoral
oint space and at the junction between the regenerating
issue and the support bone, in the area where the carti-
age phenotype was maintained. In the early stages, they
ere microfissures organized in a strip of fibrous or cartilagi-
ous tissue. They created a symmetrical area between two
asses of cartilage facing each other, whose architectures
ere mirror images of each other (Fig. 2C). In a few cases,
oalescence of these cavities resulted in the formation of
macroscopically mobile area. In later stages of the proto-

ol, these zones were mobile areas within the new skeletal
issue or on the interface with the support bone (Fig. 2D).
his newly formed joint space was thus made up of fibrous
issue.

hanges in the host tissue

fter transfer of the periosteal flap, histological changes
ere observed in the host tissues. In the earliest stage (4th

ay), lytic activity was observed in the tissues in contact
ith the transfer. This corresponded to necrosis of the

uperficial layers of muscle in immediate contact with the
eriosteum. This first stage was followed by a process of
uscular regeneration which systematically resulted in com-
lete repair without scar tissue in less than 14 days. This
equence was mainly observed in the ‘‘control’’ group, in
articular on the surface of the medial gastrocnemius, which
upported the periosteal transfer. At the same time, sig-
ificant osteoclatic activity was observed in the cortical
nd cancellous bone located under the periosteum in the
‘loaded’’ group. Intense osteoblastic activity followed the
nitial osteolytic process, contributing to the formation of a
allus between the regenerated bone and its support bone.

Moreover, in the ‘‘loaded’’ group, we observed stimu-
ation of mesenchymal precursor cells in all of the spaces
round the periosteal transfer. It was systematically found
n neighboring muscles, in the medullary cavity of the bone,
n the bone marrow (Fig. 3A), in the joint space and in the

ubserous bursa. It appeared to be multidirectional differ-
ntiation of precursor cells into various mesenchymal cell
ines. It resulted in the spontaneous and ectopic production
f bone, elements of cartilage, pseudo-ligamental struc-
ures and even muscle tissue (Fig. 3B—D).
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Figure 3 Host tissue changes neighboring the periosteal flap transfer observed in the ‘‘flexion’’ group. (A) Stimulation of marrow
mesenchymal precursors with in situ skeletal tissue production in the distal femur (Goldner’s trichrome coloration, undecalcified
methylmethacrylate inclusion intermediate magnification). (B) A bone ossicle (green) is accompanied by smaller sparse bone ele-
ments at the periphery of this slide (high magnification). (C) Arc-shaped fibrotendinous tissue neoformation (high magnification). (D)
Characteristic appearance of newly formed cartilage (beige) and small elements of newly formed bone (green) (high magnification).
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(E) Striated muscle neoformation and elements of bone (green)

Discussion

Structural modification of regenerating tissue in
response to cyclic loading

When exposed to functional loading, the structural proper-
ties of bone tissue, and more generally, skeletal tissue adapt
to the local mechanical environment. Although the general
morphological characteristics are genetically determined,
certain anatomical details as well as the microstructure of
these tissues are influenced by the mechanical stresses and
strains they undergo during the process of modeling and
remodeling [18]. The results of our experimental study sug-
gest that this adaptive capacity is not limited to mature
skeletal tissue. The precursor cells involved in the postnatal
development of these skeletal tissues also respond to stimuli
from mechanical loading. The latter plays a role in orienting
cell differentiation and the structural organization of both
the regenerating tissue and the host tissue.

In this experimental protocol, bending-loading was begun
in the immediate postoperative period thus influencing the
mesenchymal stem cells as soon as they appeared on the site
of tissue regeneration. Continuous bending-loading main-
tained and preserved the cartilage phenotype in specific
areas of the regenerating tissue such as in the middle and
at the ends. The middle area of the regenerating tissue

extended towards the tibiofemoral joint space while the
ends were at a junction between the regenerating tissue
and the support bone. These areas were submitted to spe-
cific mechanical conditions, resulting in delayed ossification
and the maintenance of cartilage tissue until the 3rd month,

o
t
i
s
h

h magnification).

hile cartilage disappeared completely between day 15th
nd 30th day in ‘‘control’’ group neotissue.

Variations in hydrostatic pressure influence the mech-
nisms that regulate the proliferation and differentiation
f mesenchymal precursor cells. They stimulate prolifera-
ion in vitro, while [21] in vivo, they redirect differentiation
f precursors of bone tissue towards a cartilage phenotype
17].

Differentiation into chondrogenic cell lines is favored by
local mechanical environment associating high hydrostatic
ressures and mild strains [10,11]. High amplitude strain
nhibits angiogenesis thus influencing enchondral ossification
22].

In our experimental protocol, loading of neotissue by
yclic bending generated a complex mechanical environ-
ent which could be described by numerous physical

ariables such as strain, variations in pressure or fluid as
ell as shear stress or movements at the cell/matrix and
ell/cell interfaces. All of these interdependent variables
an play a role in the transduction of mechanical signals
nto a biological response. They resulted in a change in
he architecture of the regenerated tissue which, besides
aintaining a cartilage phenotype, affected its anatomi-

al organization. Indeed, the presence of identical volumes
f tissue with symmetrically arranged fissures located in
asses of cartilage (Fig. 2C), resembles the histomorphology
f early articular development in the embryo. This includes
he development of an interzone with the formation of cav-
ties, then microfissures which coalesce to form the joint
pace. These various genetically programmed stages are
ighly dependent upon mechanical strains and stresses on
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he embryo. The fissures observed in our study could be
ssociated with a biological process which resembles the
mbryonic stages of joint development generating a pseudo
‘joint space’’ by a phenomenon of cavitation. Neverthe-
ess, they could merely be the result of a purely mechanical
rocess, causing a breakdown in cartilaginous material due
o unduly high levels of strain on the tissue. Nevertheless,
ccording to existing phenomenological models, high strain
n mesenchymal tissue orients differentiation towards the
evelopment of fibrous tissue [10—14], making a fatigue
racture improbable in regenerating tissue.

isappearance of the cartilage phenotype

he structure and mechanical response of regenerating tis-
ue evolves over time. As it matures, the regenerating
issue ossifies and mineralisation occurs so that it gradu-
lly becomes rigid. This process, which is incompatible with
igh amplitude knee movements, caused the regenerating
issue to break off from the anchor points of its support
one so that bending-loading no longer occurred. We then
bserved the disappearance of neocartilage, although it had
een maintained until this event at the 3rd month. Thus,
he process of enchondral ossification was interrupted, and
he cells did not finish their differentiation into cartilage
23]. Nevertheless the deep layer of the periosteum contains
ell precursors which are engaged in chondrogenic differ-
ntiation, and which form cartilage during monoclonal cell
ultures [24].

In our study, the segments of new cartilage sandwiched
etween two ossifying structures were not in a physiochem-
cal environment that favored the stability of the cartilage
henotype. The molecular constituents of the extracellular
atrix send signals of differentiation to its mesenchymal
recursor cells [25,26]. Thus, although the environment of
he articular cavity and the new cartilaginous tissue are
hondrogenic, contact with the extracellular bone matrix
irects precursors towards osteogenic differentiation [27].
oreover, the elasticity of the extracellular matrix is a
hysical factor which influences the differentiation of the
esenchymal stem cells that it contains. Its increasing rigid-

ty directs cells towards the development of osteogenic cell
ines [28]. As a result, under our experimental conditions,
he maintenance of the cartilage phenotype became depen-
ent upon continued cyclic mechanical loading.

odification of host tissues

he general notion of tissue regeneration is based upon
eterministic models of differentiation in which regenerat-
ng tissue adapts to functional and anatomical locoregional
rerequisites. However, to obtain the complete integra-
ion rather than the simple adhesion of newly formed
issue to preexisting tissue, the surrounding host tissue must
lso adapt to the regenerating tissue [29]. Muscular necro-
is/regeneration as well as osteoclastic/osteoblastic bone

ctivity can probably be explained by this essential recipro-
al, ‘‘preadaptation’’.

Host tissues do not passively submit to tissue develop-
ent from the periosteum they are in contact with. Host

issue makes a quantitative contribution to the histogenic

r
h
u
t
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rocess by providing precursor cells [20]. This mechanism
ould be stimulated by the diffusion of growth factors from
he periosteal transfer or proliferating blastemic cells [30].
he bone and articular capsule which was left intact dur-

ng periosteal transfer were probably an anatomical barrier
gainst cell migration. Thus the recruiting and multidi-
ectional differentiation of mesenchymal precursor cells
bserved inside the articular cavity and the medullary cav-
ty suggests that these factors are influencing resident [31]
r circulating [32] stem cells.

ritical analysis of the experimental model

o identify the influence of mechanical loading on tissue
egeneration, the periosteal flap was placed in different
natomical positions. In the ‘‘loaded’’ group, the deep
ayer of the periosteum was placed upon the articular cap-
ule, while in the ‘‘control’’ group, it faced the medial
astrocnemius fascia. The aim of this choice was to main-
ain normal range of motion in both knees with identical
uscular activity, and probably similar vascular flows. This

eemed important because partial oxygen pressure seems to
nfluence chondrogenic differentiation. However, this choice
ay have influenced the regeneration process, because the

issue environments of the transfers were different.

onclusion

his is a purely descriptive experimental study. Indeed, the
imited number of samples at each phase of the study made
t impossible to perform a statistical analysis. Nevertheless,
hese results support mechanobiological theories and sug-
est that the mechanical factors of the cell environment
lay a significant role in regulating cell differentiation during
n vivo skeletal regeneration. In this study, mechanical load-
ng from cyclic physiological knee movements, temporarily
avored chondrogenic differentiation of mesenchymal pre-
ursors in selective areas of neotissue. Moreover, besides
ell differentiation, the complex local mechanical environ-
ent also contributed to the architectural organization of

he regenerating tissue.
Numerous models of pseudarthrosis have been described

n the literature based on reproducing the mechanical
nvironment observed under therapeutic conditions of
nsuccessful internal fixation or primary fixation of implants
revision arthroplasty). They include bending-loading or
hear stress at relatively limited amplitudes. The tissues
bserved under these conditions are mainly fibrous. Our
odel is original because it produces a mechanical environ-
ent with high amplitude bending-loading. Knee range of
otion in rabbits resulted in at least 90◦ flexion throughout

he experiment, applied to regenerating tissue immediately
nd until the third month. Our model can also be used
or hypertrophic pseudarthrosis but under specific mechani-
al conditions of high amplitude cycle bending-loading. Our

esults raise the question of the conceptual definition of
ypertrophic pseudarthrosis. Normally seen as unsuccessful
nion of two bone segments, the results of this experimen-
al study suggest that it may be the result of incomplete
rticular genesis.
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This is a classic histological study. To better under-
stand the routes of differentiation and the determinism
of these steps of tissue maturation, a phenotypical study
of regenerating tissue could be performed as the tissue
matures. Moreover, technical modifications could be made
when attaching the regenerating tissue to prolong bending-
loading throughout the entire experiment.
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