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The water-soluble peridinin–chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes
in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study,
we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156.
The protein molecular mass is 32.7 kDa, revealing that the PCP is of the monomeric form. The intronless PCP
genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and
spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP,
the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC–MS/MS
analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment
analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Qy energy transfer efficiency is 95% in
this complex.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Peridinin–chlorophyll a-proteins (PCPs) are one of the major light
harvesting complexes in photosynthetic dinoflagellates [1–3]. PCP is
water-soluble and has the blue-green (470 nm to 550 nm) absorbing
carotenoid peridinin as its primary pigments. Symbiodinium, the most
commonly found endosymbiotic dinoflagellates in symbiosis with
corals [4,5], also contain PCPs as their major light harvesting complexes
[6–8]. A recent study [9] suggested that Symbiodinium PCP may play an
important role in coral bleaching, which results from the loss of
Symbiodinium cells from the coral host or the loss of photosynthetic
pigments from Symbiodinium [4]. Because coral bleaching always
follows severe photoinhibition [9–11], and moderate heat stress can
induce the algal photosystem II (PSII) photoinhibition by damaging
photosynthetic light harvesting complexes and thylakoid membranes
[9,12], it is hypothesized that increased sea surface temperature is one
of the major factors that trigger coral bleaching. The study [9] showed
that the level of PCP in a cultured thermal-sensitive Symbiodinium strain
dropped under light conditions when temperature increased, support-
ing the temperature-induced coral bleaching theory and suggesting the
connection between Symbiodinium PCP and coral bleaching.
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However, Symbiodinium PCP is poorly understood in the aspects of
structure, spectroscopic properties, energy transfer, etc. In general,
dinoflagellate PCP proteins are very diverse. The length, pigment
content, sequence and spectroscopic properties of PCP can be distinct
among different dinoflagellates or even in an individual dinoflagellate.
In the aspect of length, there are two forms of PCPs: one is a homodimer
with a monomeric molecular mass of ~15 kDa [13,14], the other is a
monomer with a molecular mass of 32–35 kDa [3,13,14]. The latter
formwas hypothesized to be the product of duplication and subsequent
fusion of the PCP gene encoding the former form [8,15]. Twomonomers
of the homodimeric PCP probably form a dimer, whose structure could
be very similar to that of the monomeric PCP monomer [3,16]. In
Amphidinium carterae, three copies of the monomeric PCP associate to
form a trimeric complex [3,17]. The species specificity of the PCP
quaternary structure has been reported [14]. Both monomeric and
homodimeric forms were detected in Symbiodinium microadriaticum,
while Symbiodinium kawagutii and Symbiodinium pilosumonly possess a
single form of PCP, monomeric and homodimeric forms, respectively
[14]. In the aspect of pigment content of PCP, the molar ratio of
peridinin and Chl a varies: the main form PCP complex (MFPCP) from
A. carterae has the pigment composition of 8:2 [3]; the high-salt PCP
(HSPCP) from the same species, eluted at higher salt concentration from
an ion exchange column, has 6 peridinins and 2 Chl a molecules in one
monomer [18]; Haxo et al. reported a 9:2 ratio for the PCP from
Amphidinium carterae Plymouth 450 [1]; PCP from Alexandrium
cohorticula may consist of 12 peridinins and 2 Chl a molecules [19].
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The PCP protein sequence is not very conserved, leading to distinct
pigment binding environments, which determine the spectroscopic
properties of a protein [20]. TheMFPCP andHSPCP from A. carterae have
a sequence similarity of ~30%, resulting in peridinin loss and
chlorophyll phytol chains rearrangement in HSPCP [18,20]. Besides,
PCP isoforms with varying isoelectric points (pIs) [1,2,5,14,15] were
observed in dinoflagellates. The major isoforms tend to be species-
specific. A. carterae and S. microadriaticummainly produce basic PCPs of
pI 7.5 and pI 7.2–7.7, respectively [1,14], while Gonyaulax polyedra PCPs
are mostly acidic of pI around 6 [15]. Small spectroscopic variations of
PCP isoforms were reported in S. microadriaticum: the Chl a Qy

absorption maxima varied from 669.8 nm to 673.4 nm and the
corresponding fluorescence emission maxima were from 673.0 nm to
676.5 nm [14].

In order to understand the source and significance of PCP isoforms,
PCP protein structures and PCP genes have been explored since 1990s.
Among different PCPs, the structures of MFPCP and HSPCP from
A. carterae have been resolved to 2.0 Å and 2.1 Å, respectively [3,18]. A
higher resolution of 1.5 Å was recently resolved in refolded PCP [21].
The X-ray crystal structure of MFPCP has revealed a trimer, in which
each subunit folds in a twofold pseudosymmetry (a monomer has two
pseudo-identical domains), holding 8 peridinins and 2 Chl amolecules.
On the other hand, HSPCP crystallized as a monomer, which contains 6
peridinins and 2 Chl a molecules. The high degree of structural
similarity was observed, although sequence variations led to the
differences in the level of the protein scaffold, pigment composition,
and interaction between the pigments and their binding environment
[18]. The sequence analysis of PCP genes and transcripts based on the
data from A. carterae [22], G. polyedra [15],Heterocapsa pygmaea [16,23]
and Symbiodinium sp. [8,13,24] revealed that PCP genes are nuclear-
encoded, intronless and exist in tandem arrays. PCP gene arrays consist
of coding regions and the spacers in between. The lengths of coding
regions and spacers, as well as the copy number of PCP genes, are
species-specific. The sequences of coding regions in PCP gene arrays are
distinct among different dinoflagellate species and even in one
individual dinoflagellate. Along with the observation of multiple PCP
isoforms with varying pIs, the PCP gene heterogeneity is believed to be
the source of the isoforms. However, except for two different forms of
PCP proteins (MFPCP and HSPCP from A. carterae), which have been
detected and determined at the protein sequence and structure level
[3,16,18], there has been no report successfully relating cDNA or gDNA
sequences to their corresponding protein sequences because of
the complexity of PCP genes and the possible protein expression
preferences.

In this study, we identified the PCP gene family in Symbiodinium sp.
CS-156 [25], confirming the genetic diversity of PCP genes and the
existence of PCP tandem arrays. We further related PCP gene sequence
to its corresponding protein sequence and compared the spectroscopic
properties of Symbiodinium PCP with those of Amphidinium PCP.

2. Materials and methods

2.1. Algal culture and PCP purification

Symbiodinium sp. CS-156 cells were cultured in f/2 media under
a 14 h:10 h cycle of light:dark at 25 °C. Illumination was provided
by a white color fluorescent lamp at an intensity of 80 μmol
photon·m−2·s−1. The culture in late exponential phase was harvested
by centrifugation at 8000 g for 10 min at 4 °C. Cellswere resuspended in
50 mM tricine 20 mMKCI (pH 7.5), and broken by three passes through
a French pressure cell at 8.3×107 Pa [22]. Cell debris and unbroken cells
were removed by centrifugation at 20,000 g for 1 h. Solid ammonium
sulfate was added to the resulting supernatant to achieve 70%
saturation, followed by centrifugation at 8000 g for 15 min. The
resulting supernatant was dialyzed against 20 mM Tris–HCl (pH 8.0),
concentrated, filtered through a 0.2 μm filter, and applied to a HiLoad™
Superdex™ 200 prep grade column. The PCP fraction eluted by 20 mM
Tris–HCl (pH 8.0), was then applied to a HiTrap™ Q Sepharose™ HP
column and eluted with a linear gradient of NaCl from 0 to 0.5 M in the
same buffer. SDS-PAGEwas performed to confirm the size and purity of
PCP [26].

2.2. LC/MS analysis of PCP

The PCP protein sample was analyzed by a Synapt G2 Q-IM-TOF
mass spectrometer coupled with a NanoAcuity UPLC (Waters Inc.,
Milford, MA) as previously described [27] with minor modifications.
The protein sample was directly loaded onto a home-packed
C18 column (Magic, 0.075 mm×50 mm, 5 μm, 120 Å, Michrom
Bioresources, Inc., Auburn, CA) by a six-port injection valve (IDEX
Health & Science, Oak Harbor, WA). The gradient was delivered by
NanoAcuity UPLC (0–2 min, 5% solvent B; 2–15 min, 5–95% solvent B.
Solvent A: water, 0.1% formic acid; Solvent B: acetonitrile, 0.1% formic
acid) at flow rate 1 μL/min. The protein spectrum was acquired at
sensitive mode (“v” mode) with the capillary voltage of 1.8 kV, cone
voltage of 30 V and source temperature of 100 °C.

2.3. Peptide sequencing of tryptic digested PCP

The Coomassie blue-stained band was excised and in-gel digested
with trypsin as previously described [28] with minor modifications.
After dithiothreitol reduction and iodoacetamide alkylation, 20 μg/mL
trypsin (Sigma) in 36 mM NH4HCO3, 8.1% acetonitrile, and 0.1 mM
HCl was added to the gel pieces. After incubation at 37 °C for 12 h and
centrifugation, the supernatant was collected, and the gel pellet was
extracted with 1% trifluoroacetic acid in 60% acetonitrile for 30 min.
Then supernatants were combined and dried by vacufuge. The trypsin
digested PCP sample was reconstituted in water with 0.1% formic acid
(25 μL). The sample was analyzed by LC–MS/MS using two in-
struments, a Waters Synapt G2 Q-IM-TOF and a Thermo LTQ Orbitrap
(Thermo-Scientific, San Jose, CA). The data dependent mode was used
in the LC–MS/MS experiment at Orbitrap as previously described [29]
with minor modifications. The MSE mode was used in the LC–MS/MS
experiment on the Synapt G2 [30]. The tryptic digested PCP sample
(5 μL) was loaded onto a homemade silica capillary column that
was custom packed with C18 reverse phase material (Magic,
0.075 mm×150 mm, 5 μm, 120 Å, Michrom Bioresources, Inc.,
Auburn, CA). The gradient was supplied by a Waters NanoAquity
UPLC and run from 5% solvent B (acetonitrile, 0.1% formic acid) to 50%
solvent B over 60 min, then to 95% solvent B for 2 min at 400 nL/min
flowed by a re-equilibration step with 100% solvent A (water, 0.1%
formic acid). The flow was directed by a nanospray source (Waters,
Inc., Milford, MA). In the MSE continuummode, ions were dissociated
in the trap region by ramping the trap collision energy from 14–40 V.
Spectra from 50 to 2000 m/z were acquired with scan time 1 s for
70 min in positive sensitivity mode. The MSE raw data were directly
submitted to the ProteinLynx Global Server (V2.5, Waters Inc.,
Milford, MA) to search against the NCBI and UniProt database.

2.4. PCP gene identification

Symbiodinium genomic DNA was extracted by Qiagen® DNeasy
Plant Mini Kit. PCP genes were cloned by a method previously
developed for Symbiodinium with some modifications (Fig. 1) [24].
Briefly, primer-1 and primer-2 amplified a ~200 bp fragment of PCP
gene; primer-3 and primer-4, designed according to the sequence of
the ~200 bp fragment [24], amplified a ~1.9 kb fragment containing
partial PCP genes and a linker; primer-5 and primer-6 were designed
according to the possible start and stop codon sites in the 1.9 kb
fragment. The PCR products amplified by primer-5 and primer-6 were
cloned and analyzed. Primers used for PCR are listed in Table 1. The



Fig. 1. The strategy to identify PCP genes in Symbiodinium sp. CS-156-b1 [24].
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purified PCR products were cloned and sequenced. Sequences were
analyzed by NCBI BLAST and Vector NTI®.

2.5. Spectroscopic characterization

2.5.1. Steady-state absorption spectroscopy
The PCP complex was suspended in 10 mM Tris–HCl (pH 8.0)

containing 60% glycerol. Steady-state absorption spectra at both room
temperature and 77 K were recorded using a Perkin-Elmer Lambda
950 UV–vis spectrophotometer. The OptistatDN (Oxford Instruments,
UK) liquid nitrogen cryostat was used to cool the protein sample to
77 K.

2.5.2. Fluorescence spectroscopy
The PCP complex was suspended in the same buffer as described in

0. The fluorescence emission and excitation spectra at both room
temperature and 77 K were obtained using a Photon Technology
International fluorometer. The cryostat described in 0 was used in
77 K spectra measurement. Emission and excitation monochromator
slits were set to a bandpass of 4 nm. The fluorescence excitation
spectrum was corrected using a calibrated reference photodiode. The
fluorescence excitation spectrum shown is the average of 10 individual
spectra.

2.6. Pigment determination

The purified PCP complex in 20 mM Tris–HCl (pH 8.0) was dried in
darkness by vacufuge. 200 μL methanol was added to the dry PCP,
followed by brief vortexing and centrifugation. The resulting
supernatant was collected, and the methanol extraction was repeated
4 times. All the supernatants were combined, then well mixed.
Peridinin and Chl a were extracted by methanol from Symbiodinium
whole cells, and separated by Agilent 1100 HPLC on a Zorbax Eclipse
XDB-C18 reverse phase column (250 mm×4.6 mm) [31]. Peridinin
and Chl a fractions eluted from the column were dried in darkness by
vacufuge and redissolved in methanol. The steady-state absorption
Table 1
Primers and the annealing conditions.

Primer name Primer sequence (5′–3′) Annealing

Primer-1 AAGAATTCGAAGGACGCAGCAGAAGC [24] 30 s at 52 °C
Primer-2 CAGAATTCCTTCATGTACGCTGGCAC [24]
Primer-3 TCGGTCCCCAAAGCAAAGGTCA [24] 30 s at 55 °C
Primer-4 CATTCACGGCATCCCAGTCAGC [24]
Primer-5 TGGTGCGTGGAGCAAGGAAA 30 s at 55 °C
Primer-6 TTCACCTTCAGCGCTGGGAA
spectra of the PCP methanol extract, peridinin and Chl a were
recorded using a Perkin-Elmer Lambda 950 UV–vis spectrophotom-
eter. The extinction coefficients used for the pigments ratio calcula-
tion were:

Chl a (methanol): ε665 nm=71.43 L·mmol−1·cm−1 [32]
Peridinin (methanol): ε469 nm=85.80 L·mmol−1·cm−1 [33,34].

The molar ratio was calculated according to the Beer–Lambert
Law:

A=ε·c·l (A: absorbance, c: molar concentration, l: optical path
length).

3. Results and discussion

3.1. PCP identification

The PCP of Symbiodinium sp. CS-156 was purified by ammonium
sulfate precipitation, gel filtration chromatography and ion exchange
chromatography. The purity and size of PCP were examined by SDS-
PAGE and LC/MS (Fig. 2). SDS-PAGE revealed a single band at a mass of
33 kDa, which was determined to be 32.7 kDa by LC/MS. No protein
peak around 14–16 kDawas observed by LC/MS, indicating that the PCP
of Symbiodinium sp. CS-156 is of the monomeric form. Peptide
sequencing identified multiple peptides that are part of PCP putative
preproteins in UniProt database. The one with most hits is a PCP (the
UniProtKB/Swiss-Prot entry: P51874) from Symbiodinium sp., which is
a cDNA-translated protein sequence [8]. This PCP preprotein contains a
transit peptide, and the predicted mature protein is composed of 2
almost identical repeat units. The theoretical molecular weight of the
mature P51874 PCP gene product is 32585.18 Da.

PCP genes were cloned and sequenced. Among 11 PCP gene clones
(see Supplementary Data), only 2 of them are identical in nucleotide
sequence (GenBank ID: JQ395029 to JQ395038), indicating that a
variation of PCP genes exist at the gene level as was found for free-
living dinoflagellates in previous studies [23,24]. The comparison of
11 genomic DNA sequences with Symbiodinium PCP cDNA sequences
in previous studies [8,13,24], showed no evidence of introns. Each
clone encodes a 365 amino acid preprotein, which corresponds to a
1095 bp coding region of the PCP gene. The predicted preproteins
have identities ranging from 96.4% to 100% when aligned with each
other. The observed identities are close to the reported values based
on the analysis of PCP cDNA clones [24], which are from 96.2% to
99.7% identical. The small variations of PCP genes increase the genetic
diversity, introducing small differences in deduced preprotein mass
(by ExPASy Compute pI/Mw tool, from 32633.52 Da to 32868.63 Da)
but relatively large differences in their predicted isoelectric points
(pIs from 5.34 to 7.91).

Sequencing the 1.9 kb clones shows that each clone contains open
reading frames that can be translated to PCP at both 5′ and 3′ ends,
and a spacer region in the middle of the two ORFs. This confirms that
PCP genes of Symbiodinium sp. CS-156 are organized in tandem arrays
as was found in other Symbiodinium strains [24]. As anticipated, the
spacer sequences are highly varied, containing several insertions and
deletions (data not shown).

In the LC–MS/MS peptide sequencing experiment, peptides from
PCP protein were fragmented in the mass spectrometer by collision-
induced dissociation. The protonated peptides fragment along the
peptide backbone to form b and y production ions. The peptide
sequences were elucidated from the match between in-silico digested
protein sequence and sequence product ions from experiment [35]. All
detected peptides were processed by MassMatrix Database Search
Engine [36,37]. The comparison of the translated PCP sequences with
peptide sequencing by LC–MS/MS, revealed that the mature protein
starts at Asp53. Protein sequence alignment of five PCP proteins (which
exist at the protein level, UniProt entries: P51873 [22], P51874 [8],
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Fig. 2. The identification of PCP by SDS-PAGE (A) and LC/MS (B). SDS-PAGE revealed a single band at a mass of about 33 kDa, which was determined to be 32.7 kDa by LC/MS.
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P51889 [19], P80483 [22] and P80484 [3]) and translated sequences in
this study shows that all mature PCPs begin at Asp53, and except for the
HSPCP of A. carterae, other proteins share a sequence of DEIGDAAK at
the N terminus. The search results also show that the sequence of the
trypsin digested sample exactlymatches the deduced sequence of clone
7 (Fig. 3). The calculated MW of the putative PCP mature protein
deduced from clone L4 is 32.8 kDa, which is in agreement with theMW
of 32.7 kDa obtained by LC/MS. Compared to other protein sequencing
methods, e.g. Edman degradation [8,13] and protein microsequencing
[15], the LC–MS/MS protein sequencing obtained a full coverage, which
is the highest to our knowledge for any PCP.

We explored more characteristics of PCP based on DNA and
protein sequence. As expected, the first half of the mature PCP
apoprotein (Asp53–Ala208) has 61% identity with the second half
(Pro209–Gln364). An identity of 54% was observed in previous
studies [8,15]. Along with the two-fold symmetry of PCP X-ray crystal
structure [3,18], our finding supports the hypothesis that the
monomeric form of PCPs arose by duplication and fusion of gene(s)
encoding the homodimeric form [8,15]. The transit sequence (under-
lined sequence in green in Fig. 3) adjacent to the mature PCP
sequence has two distinct hydrophobic regions when analyzed by
ExPASy ProtScale. This transit peptide (TP) shares an identity of 43%
with the G. polyedra PCP transit peptide [15,38], which contains an
additional hydroxylated amino acids (S/T)-rich region flanked with
Fig. 3. PCP protein sequence identification. The listed sequence is the predicted amino
acid sequence of a PCP gene clone (Clone 7, JQ395030). LC/MSMS experiment by UPLC-
QTOF (Waters, Synapt G2) identified multiple peptides, assembly of all of which
matches the predicted sequence of clone 7. The transit peptide is in green; the solid-
underlined sequence in green is the possible thylakoid-targeting domain; the two
boxes indicate the possible Chl a molecules binding sites; the dotted-underlined
sequences are the possible peridinin binding sites.
two distinct hydrophobic regions. The first region could guide the
nuclear-encoded protein translocation from cytosol to chloroplast,
and then be cleaved off, generating an intermediate preprotein; the
second region could lead the intermediate to thylakoids where a
thylakoidal processing peptidase (TPP) recognizes the A–X–Amotif in
TP, cleaves TP off and generates the mature apoprotein [39–41]. The
second hydrophobic regions of both G. polyedra and Symbiodinium sp.
TPs are rich in alanine, a typical feature of several TPs of nuclear-
encoded thylakoid proteins [40]. The TP sequence analysis is in
agreement with the co-crystallization of PCP and DGDG [3], which is
mostly found in the inner thylakoid membrane [42], supporting that
PCP is located in the thylakoid lumen [8,15].

To our knowledge, this is the first report that relates PCP gene
sequence to its corresponding protein sequence in the genus
Symbiodinium. Previous attempts only included cDNA sequence
[16,23], or a partial PCP protein sequence [19], or a very small portion
of PCP protein sequence that corresponds to cDNA [8,13,15], except
for the MFPCP and HSPCP from A. carterae, whose crystal structures
have been determined [3,18,22]. Only three groups have reported the
descriptions of the PCP gene organization in Symbiodinium [8,13,24],
but none of them was able to determine the PCP sequence at both
gene and protein level. The sequencing and molecular experiments
show that the major form of PCP in Symbiodinium sp. CS-156 is
monomeric, and intronless PCP genes are organized in tandem arrays.
The arrangement of PCP genes in this organism is very similar to that
of other dinoflagellates, although the DNA and protein sequences are
different from those of others. The occurrence of heterogeneity in the
PCP gene tandem repeats is also observed. The PCP gene heteroge-
neity was believed to be inconsistent with concerted evolution [24],
which leads to the sequences of related genes to co-evolve over some
period of time. However, although the variations can be detected at
both mRNA [22,24] and protein level [1,2,6,13,14], the number of
major isoforms in an individual organism seems to be very limited: an
isoform with a single pI or isoforms with subtle pI differences always
overwhelm other PCP species. This situation could also be applied to
Symbiodinium sp. CS-156: we have found that there are some other
isoforms expressed, but that the one characterized in this study is the
main one (data not shown). It is noted that the hypothesis of the
existence of major isoform(s) does not conflict with the fact
that both monomeric and homodimeric forms were detected in
S. microadriaticum [14], in which major isoforms have pIs of 7.2, 7.3,
7.6 and 7.7. Since each fraction with the same pI was able to separate
into two PCP species with distinct sizes but the same spectroscopic
properties, the monomeric form could have arisen by duplication and
fusion of gene(s) encoding the homodimeric form: the two PCPs of
different lengths but the same pI could be the products of the same
gene. In sum, there could be some posttranscriptional mechanism

image of Fig.�2


Fig. 5. The absorption spectrum of PCP at 77 K.
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that leads to the mature apoPCP expression preference. At this point,
the PCP expression pattern appears to be consistent with the
concerted evolution model.

3.2. Absorption spectroscopy

The absorption spectrum of PCP measured at room temperature is
shown in Fig. 4. The spectrum consists of a broad band between 400
and 550 nm, two shoulders at 420 nm and 520 nm, and three peaks at
438 nm, 476 nm and 670 nm. The peridinin S0–S2 transition results in
the dominant broad band between 400 and 550 nm with the
peridinin absorption maximum at 476 nm. The Chl a Soret band,
which overlaps with the broad peridinin band, is at 438 nm. The Chl a
Qy band peaks at 670 nm, while the weak Qx band is overlapped by
the peridinin S0–S2 transition band. The absorption spectrum taken at
77 K (Fig. 5) has a similar shape, except that the Chl a Soret band is
split into two peaks with maxima at 433 nm and 438 nm, indicating
the different protein environments of two Chl a molecules. To locate
the possible Chl a binding sites in the Symbiodinium PCP, the
Symbiodinium PCP putative protein sequence (as listed in Fig. 3)
was aligned with the A. carterae PCP (PDB ID: 1PPR), in which His66
interacts with Chl a through a water molecule in the first half of the
mature protein [43], and Leu254 along with His229 are part of the
environment of the COOH-terminal chlorophyll [3] in the second half
of the mature protein. The two boxes in Fig. 3 are very likely to bind Chl
amolecules in Symbiodinium PCP because these two fragments have the
same amino acid sequences with the PCP (PDB ID: 1PPR) Chl a binding
regions (the region around His66 and the region around Leu254 and
His229). Region 1 (AAEAHHKAIGSISGPNGVTSRADWD) and region 2
(LKAAAEAHHKAIGSIDA) share a sequence of AAEAHHKAIGSI, but have
the rest of the amino acid residues with distinct properties, resulting in
different protein environments that can be detected in 77 K absorption
spectrum.

In addition, at 77 K, the peridinin absorption maximum is red-
shifted from 476 nm to 483 nm, while the Chl a Qy band is blue-
shifted from 670 nm to 666 nm. Compared with the RT absorption
spectrum, the 77 K spectrum has more distinct shoulders at 420 nm
and 520 nm and more resolved Qy 0–1 vibronic and/or Qx transition
band between 600 nm and 650 nm [44]. This is because the lower
temperature reduces the randomness of orientation of protein
molecules in the system, thus providing more information.

In general, the steady-state absorption spectra of Symbiodinium PCP
at both temperatures are very similar to those of A. carterae PCP in the
aspects of shape and locations of peaks and shoulders except for some
Fig. 4. The absorption spectrum of PCP at room temperature.
minor differences (e.g. the ratios of peridinin absorption maximum to
Chl a Qy peak at both temperature are slightly different). The protein
sequence analysis revealed the conservative binding sites for peridinin
and Chl a molecules in Symbiodinium PCP (Fig. 3, two boxes and two
dotted-underlined sequences are the possible binding pockets for Chl a
and peridinin molecules, respectively) [3,43,45]. Symbiodinium PCP
and A. carterae PCP share AAEAHHKAIGSISGPNGVTSRADWD and
LKAAAEAHHKAIGSIDA for Chl a binding, as well as VNAALGRV and
VNAALGR for peridinin binding, leading to the almost identical
absorption spectra, which are dependent on the protein environments
of the pigments.
3.3. Fluorescence spectroscopy

The fluorescence emission spectra of PCP were taken at room
temperature and 77 K (Fig. 6). The two spectra exhibit a similar
shape, with a peak maximum at 675 nm and 674 nm, respectively,
and a broad vibronic band between 700 and 770 nm, centered around
735 nm. The 77 K spectrum is narrower than the RT spectrum: the
Fig. 6. The fluorescence emission spectra of PCP at room temperature (red) and 77 K
(black).
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Fig. 7. The overlay of fluorescence excitation (ex) spectrum at 77 K (red) with the
corresponding 1-T spectrum (black). The fluorescence excitation spectrum was
normalized at the 77 K 1-T spectrum Qy band. The calculated peridinin-to-Chl a
energy transfer efficiency is 95%.
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former has a full width at half-maximum (fwhm) value of 10 nm,
while the latter has a value of 15 nm.

Symbiodinium PCP fluorescence emission spectra at both temper-
atures are very similar to A. carterae MFPCP and HSPCP spectra, as
well as the spectra of Chl a in 2-MTHF [20] (Fig. 6). All the spectra are
typical of monomeric Chl species [20]. However, the fluorescence
emission maxima of 3 PCPs are different (Table 2). The Symbiodinium
PCP spectrum maximum only blue-shifts by 1 nm upon cooling to
77 K, as opposed to 4 nm of the MFPCP spectrummaximum. Although
the HSPCP spectrum red-shifts by 1 nm, the spectral maxima are
closest to those of Symbiodinium PCP.

The fluorescence excitation spectrum taken at 77 K was overlaid
with the corresponding 1-T spectrum, as shown in Fig. 7. The
fluorescence excitation spectrum was normalized with the 77 K 1-T
spectrum Qy band. The height difference between the peridinin
absorption peaks of both spectra indicates the peridinin-to-Chl a
energy transfer loss. The calculated energy transfer efficiency is 95%,
which is very close to the reported peridinin-to-Chl a energy transfer
efficiencies [20].

3.4. Stoichiometry of pigments in PCP

The molar ratio of peridinin to Chl awas determined by measuring
the steady-state absorbance of the PCP methanol extract. The UV–vis
absorption spectra of peridinin and Chl a fractions eluted from HLPC
were confirmed by comparison with literature values [31,46] (data
not shown). The spectra of the PCP methanol extract and Chl a in
methanol were normalized at the Chl a Qy band. The contribution of
Chl a absorbance at 469 nm was deducted from the PCP methanol
extract absorbance at the same wavelength (Fig. 8). The calculated
value of the molar ratio is 4.07, which is very close to 4. This result
along with the spectroscopic properties indicates that Symbiodinium
PCP is very likely to share the same structure of A. carterae MFPCP,
although the sequence identity is ~83% based on the alignment of the
Symbiodinium PCP sequence (listed in Fig. 3) with the A. carterae PCP
(PDB ID: 1PPR). The pigment stoichiometry and the conservative
pigment binding sites suggest that there is consistently high energy
transfer efficiency in dinoflagellate PCPs.

4. Conclusion

In this study, we identified and characterized PCP and its gene
organization in Symbiodinium sp. CS-156. We found that this strain
possesses the monomeric form of PCP of 32.7 kDa, encoded by the
PCP gene cassette composed of 1095-bp coding regions and spacers in
between. Despite the occurrence of the PCP gene heterogeneity, a
single form of PCP was identified and sequenced, indicating the
possible existence of a PCP major form. The resulting sequence
matches the deduced sequence of PCP gene clone 7. The detection of
PCP protein and its corresponding gene is first reported in the
dinoflagellate Symbiodinium and may provide an important hint for
future evolutionary studies. The protein sequence analysis, along with
the spectroscopic studies, revealed the conservative pigment binding
sites, which may be one of the key factors that determine the
Table 2
The comparison of Symbiodinium PCP, Amphidinium carterae MFPCP and HSPCP [20],
and Chl a (in 2-MTHF) [20] fluorescence emission spectra at room temperature and
77 K.

Peak maximum at RT Peak maximum at 77 K

Symbiodinium PCP 675 nm 674 nm
Amphidinium carterae MFPCP 673 nm 669 nm
Amphidinium carterae HSPCP 674 nm 675 nm
Chl a in 2-MTHF 668 nm 671 nm
consistently high peridinin-to-Chl a energy transfer efficiency in
dinoflagellate PCPs.
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