
Theoretical Computer Science 426–427 (2012) 66–74

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On demand string sorting over unbounded alphabets
Carmel Kent a, Moshe Lewenstein b,∗, Dafna Sheinwald a

a IBM Research Lab, Haifa, Israel
b Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

a r t i c l e i n f o

Article history:
Received 1 June 2011
Received in revised form 1 December 2011
Accepted 2 December 2011
Communicated by M. Crochemore

Keywords:
String matching
Data structures

a b s t r a c t

On-demand string sorting is the problem of preprocessing a set of strings to allow
subsequent queries for finding the k lexicographically smallest strings (and afterward the
next k etc.) This on-demand variant strongly resembles the search engine queries which
give you the best k-ranked pages recurringly.

We present a data structure that supports this in O(n) preprocessing time, where n is
the number of strings, and answer queries inO(log n) time. There is also a cost ofO(N) time
amortized over all operations, where N is the total length of the strings.

Our data structure is a heap of strings, which supports heapify and delete-mins. As it
turns out, implementing a full heap with all operations is not that simple. For the sake of
completeness, we propose a heap with full operations based on balanced indexing trees
that supports the heap operations in optimal times.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sorting strings is a fundamental algorithmic task that has been intensively researched in various flavors. The classical
problem appears in textbooks [1,17], and variants of the problem have attracted much interest over the years, e.g.
multikey sorting [9,22,5], parallel string sorting [12,11,14] and cache-aware string sorting [3,23]. Even integer sorting can
be considered a special case of this problem.

Over the last few years, there has also been much interest in indexing structures, such as suffix trees [7,20,24,26], suffix
arrays [19] and suffix trays [6]. The strong connection between suffix tree construction and suffix sorting was stressed in [7]
and in the extended journal version [8]. In fact, suffix arrays are an array containing a lexicographic ordering of the suffixes.
One of the exciting results of this field is a linear time algorithm to construct suffix arrays, see [15,16,18]. These results are
followed along the line of the suffix tree construction of Farach [7] (note that the leaves of the suffix tree also represent a
lexicographic ordering of the suffixes of the string). Nevertheless, the linear time results hold for alphabets which can be
sorted in linear time. For unbounded alphabets, the time to sort the strings is still O(n log n), where n is the string length.

While all suffixes of an n length string (even over an unbounded alphabet) can be sorted in O(n log n) time, when it
comes to sorting strings, one needs to take into consideration also the overall length of the strings, which we denote by N .
Nevertheless, it is known that one can sort strings in time O(n log n+N), whichmatches the lower bound in the comparison
model. To achieve this time bound, one may use a weight balanced ternary search trie [21] or adapt mergesort [13] (where
the time bounds are implicit) or use balanced indexing structures [2], among others. There have also been studies of more
practically efficient methods [5,4] which adapt quicksort.

The adapted mergesort technique [13] has the advantage of using very little extra memory and works well in cache. The
weight balanced ternary search tries [21] and balanced indexing structures [2] have the advantage of being dynamic.

∗ Corresponding author. Tel.: +972 35317668.
E-mail address:moshe.lewenstein@gmail.com (M. Lewenstein).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.12.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82069759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.12.001
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:moshe.lewenstein@gmail.com
http://dx.doi.org/10.1016/j.tcs.2011.12.001

C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74 67

In the on demand setting it is required to preprocess a collection of items for output where the user controls the number
of elements it desires to see in a well-defined order. For example, a search engine query may have a long list of hits which
gets ranked in some ordering of importance. However, the search engine will return a limited (digestible) number, say k, of
the best hits to the user. If the user desires another k these will be fetched and returned.

In on demand string sorting one is given a collection of strings and desires to preprocess the strings so that subsequent
queries of ‘‘return the next k smallest lexicographically strings’’ will execute fast, consuming time proportional to, or lightly
depending on, k.

One way to solve this is to first sort the strings in one of the O(n log n + N) methods and then simply return the next k
in O(k) time. It is also possible to concatenate all the strings (separated by external symbols) to one large string S and then
to create a suffix array for S. This will work well if the alphabet size is O(|S|) = O(N) since the suffix array can then be
created in O(N) time and the desired ordering can be extracted from the suffix array ordering. However, if the alphabet is
unbounded the suffix array construction will take O(N logN) time, which is worse than the previous solutions.

In on demand sorting of numbers a heap is a natural data structure to use. We propose to do the same for strings. We
propose to use a heapwhere the elements of the heap are strings. However, a simple implementationwill lead us to running
times which can be even worse than we have just mentioned. We propose a construction of the heap in a careful manner
utilizing the longest common prefixes (lcp’s) among pairs of strings. In fact, lcp’s have been used in suffix arrays, quicksort of
strings [5,4], mergesort of strings [13] and in balanced indexing structures [2] (although they were not used in the ternary
digital search tries [21]). However, handling the lcp’s require special care with regards to heaps and we elaborate on this
later.

Note that it is sufficient to support heapify and delete-mins to capture the application of the on demand string sorting,
which we show how to support. Nevertheless, allowing insertions together with delete-mins does not work well with the
lcp solution. To solve this we use a balanced indexing structure [2].

The roadmap to our paper is as follows: in Section 2 we give preliminaries and definitions. In Section 3 we recall the
balanced indexing data structure [2] and showwhat needs to be adapted for it to sort strings (instead of suffixes mentioned
there). In Section 4 we introduce the heap (of strings) data structure and show how to implement heapify, delete-mins,
insertions, and delete-min and insertions together. In Section 5 we show how to support a heap fully using a balanced
indexing structure.

2. Definitions and preliminaries

A string S of length m over alphabet Σ is a sequence of m letters, S[1], S[2], . . . , S[m], each being a member of Σ . For
1 ≤ i ≤ j ≤ m, we denote by S[i, j] the substring S[i], S[i + 1], . . . , S[j] of length j − i + 1. When i > j, substring S[i, j]
is defined to be the empty string of length 0. We say that S1 = S2, if length(S1) = length(S2), and S1[i] = S2[i] for all
1 ≤ i ≤ length(S1). We say that S1 < S2, if S1 precedes S2 in the lexicographic order. Formally, S1 < S2, if there exists an
index 1 ≤ j < min{length(S1), length(S2)} such that S1[i, j] = S2[i, j] and S1[j+ 1] < S2[j+ 1], or if length(S1) < length(S2)
and S1 = S2[1, length(S1)].

The alphabet Σ is ordered but not bounded. Yet, we assume that any two characters of Σ can be compared in a single
computational operation, consuming a constant amount of time.

For ease of description, we assume that the strings in the underlying dataset are distinct. The modifications needed to
also allow equal strings are rather obvious.

2.1. Longest common prefix

Definition 1. Given strings S1 and S2, the largest i ≤ min{length(S1), length(S2)}, such that S1[1, i] = S2[1, i] is denoted by
lcp(S1, S2). The longest common prefix of S1 and S2 is S1[1, lcp(S1, S2)].

The following well-known folklore lemma has beenwidely used for data structures of suffixes. We prove its proof for the
sake of completeness.

Lemma 1. Given strings S1 ≤ S2 ≤ · · · ≤ Sm, then lcp(S1, Sm) = min1≤i<m lcp(Si, Si + 1).

Proof. Denoting l = lcp(S1, Sm), we have, by definition, S1[1, l] = Sm[1, l]. Since S1 ≤ Si ≤ Sm for 1 ≤ i ≤ m, we also
obtain Si[1, l] = S1[1, l] = Sm[1, l]. Hence, min1≤i<m lcp(Si, Si+1) ≥ l. If S1 = Sm the lemma is trivial. Otherwise, S1 ≠ Sm
and then one of the following happens. Either S1 is of length l or S1[l + 1] < Sm[l + 1]. In the first case, where S1 is of
length l, lcp(S1, S2) = l. In the second case, where S1[l + 1] < Sm[l + 1], there must be at least one 1 ≤ i < m such that
Si[l+ 1] < Si+1[l+ 1]. Hence, min1≤i<m lcp(Si, Si+1) ≤ l. �

Corollary 1. Given strings S1, S2, S3, with S1 ≤ S2 and S1 ≤ S3, it is easy to verify that:
[i] S2 ≤ S3 implies lcp(S1, S2) ≥ lcp(S1, S3) and lcp(S2, S3) ≥ lcp(S1, S3). Equivalently, lcp(S1, S2) < lcp(S1, S3) implies

S2 > S3.
[ii] lcp(S1, S2) > lcp(S1, S3) implies lcp(S2, S3) = lcp(S1, S3).

68 C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74

Proposition 1. Given strings S1, S2, S3, then:
[i] Identifying the smaller of S1, S2 and computing lcp(S1, S2) can be done in O(lcp(S1, S2)) time.
[ii] Identifying j such that Sj is the smallest of S1, S2, S3, and finding lcp(Si, Sj) for i ≠ j can be done in O(maxi≠j lcp(Si, Sj))

time.

Proof. Directly from Definition 1, by simply comparing the strings character by character (two characters for [i], and three
at a time for [ii]). Note that Σ need not be bounded. �

3. Balanced indexing structures

The Balanced Indexing Structure (BIS, for short) [2] mentioned in the introduction is a balanced AVL search tree which is
an indexing structure for an online text T . It contains one suffix (of T) in each node. The BIS allows insertion of suffixes in an
online manner, spending O(log n) time inserting each new suffix while maintaining AVL balancing. The BIS supports finding
all occurrences of a pattern P (in the text T that is indexed) to be found in O(|P|+ log n+occ) time, where occ is the number
of locations where P appears.

The BIS is an lcp-based data structure. Specifically, a BIS node v is associated with a suffix S(v) and maintains pointers
to parent and children in the BIS, and to predecessor and successor in the lexicographic order of the suffixes, and to the
smallest and largest strings in the subtree rooted at v. In addition, node v maintains lcp_prev with its smaller neighbor in
the lexicographic order, and lcp_extremewhich is the lcp of the smallest and the largest strings in the subtree rooted by v.

We show here that with a bit of adaptation this data structure will work similarly as a data structure for maintaining a
collection of strings, where insert of a string S will cost O(log n + |S|), search of a string S will also cost O(log n + |S|) and
deleting a string from the collection will cost O(log n).

The first difference between an indexing structure and a data structure handling a collection of strings is that there is a
strong correlation between the suffixeswhereas the different strings in the collection are not definitely correlated.Moreover,
when seeing a string for the first time we must at least read the string (whereas, suffixes are handled one after the other,
so we are really seeing only the next character). Nevertheless, we can utilize the search procedure of [2] which finds the
location of a pattern P in the BIS and then reports all the occurrences of the pattern P within the text. We will be interested
in Theorem 7 and Lemma 9, in the paper there which states that the algorithm finds the correct place of the pattern P in
time O(|P| + log n).

Now, in our setting, when one desires to insert a string S one can utilize the procedure described there for search to
find the correct location of S in time O(log n + |S|). What is still necessary is to actually insert S into the BIS. This requires
insertion of a new node and rebalancing of the BIS. For brevity, we will give a condensed explanation of the method of the
insertion in our setting.

The following lemma of the BIS is crucial to the method.

Lemma 2 (Based on Lemma 8 of [2]). For any path p leading from a node v1 to any descendant v2 thereof, lcp(S(v1), S(u)) can
be computed for all nodes u on the path from v1 to v2 in overall O(|p|) time.

Inserting string S to a BIS rooted by string R thus starts with computing l← lcp(S, R), while determining whether S < R,
which indicates in which of R’s subtree S continues. The strings in that subtree, as well as S, are either all smaller than R or all
larger that R. Hence for each node v visited in the subtree, comparing l against lcp(S(v), R) – the lcp computed by Lemma 2,
as S goes down the tree – suffices, in case l ≠ lcp(S(v), R), to determine whether S continues down left or down right from
v. If l = lcp(S(v), R) then further characters, of S and S(v), are read from position l+1 and on until lcp(S, S(v)) is computed
while whether S < S(v) is determined, which indicates in which of v’s subtree S continues. The strings in that subtree, as
well as S, are either all smaller than S(v) or all larger. Hence, as before, with l ← lcp(S, S(v)), a comparison of l, against
lcp(S(u), S(v)) for any node u in this subtree, can tell how S should go down from u, etc. until S is added to the BIS as a leaf.
This all is done in O(log n+ |S|) time, for a BIS of size n.

Removal of a string and extraction of the smallest string from a collection are not given in [2]. However, these only require
the balancing procedure for the BIS, which was shown there for insertion, and can be done in O(log n) time. Hence,

Lemma 3. An (adapted) BIS maintains a collection of strings, where insertion takes O(log n + |S|), removal of a string takes
O(log n) and extracting minimum takes O(log n).

It follows that:

Corollary 2. A collection of strings S1, . . . , Sn, where N =
n

i=1 |Si|, can be sorted in time O(n log n+ N).

4. Heap sorting of strings

The well-known heap data structure is a full, balanced tree maintaining the following invariant:
Heap Invariant: The value of a node is larger than the value of its parent.

Definition 2. Let C be a collection of strings. A heap of strings (over C) is a full, balanced binary tree where each node v is
associated with a string S(v) ∈ C. The values of the nodes satisfy the heap invariant. Moreover, for each v an lcp(v) field is
maintained, whose value is lcp(S(v), S(parent(v))). (If v is the root, lcp(v) can be of any value.)

C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74 69

One of the main observations that we will use is that our algorithms never decrease the values of the lcp fields (having
initialized them to 0), and when nodes swap strings, they also swap lcp fields. In other words, each string ‘‘wanders around’’
the heap always accompanied by the same lcp field, whose value never decreases.

A naive adjustment of the integer heap sorting to string heap sorting would replace each comparison of two integers
by a comparison of two strings, employing a sequence of as many character comparisons as the lengths of the compared
strings, in the worst case. This, however, multiplies runtime by about the average string length. In the sequel, we present
an effective use of the lcp fields in the nodes, through which we can accomplish all the needed string comparisons by only
adding a total of O(N) steps.

4.1. Heapify

Commonly, a full balanced binary tree of n nodes is implemented by an array T of length n. The left and right children
of node T [i] (if any) are T [2i], and T [2i + 1]. Given an array T of n strings, the heapify procedure changes the positions of
the strings, and their associated lcp fields, in T , so that the resulting tree is a heap of strings. As with heapifying an array of
integers in O(n) time, our algorithm proceeds for nodes T [n], T [n− 1], . . . , T [1], making a heap of strings from the subtree
rooted at the current node v = T [i], as follows:

• If v is a leaf, just initialize lcp(v)← 0.
• If v has one child u = T [2i] (which must be a leaf), compute l = lcp(S(v), S(u)), and find the smaller of the two strings.

Assign the smaller string to node v, and the larger to node u. Assign lcp(u)← l, and lcp(v)← 0.
• If v has two children, u = T [2i] and w = T [2i + 1], then, by the order we process the nodes, each child now roots a

heap of strings, and its lcp field is 0. We find the smallest, S, of the three strings S(v), S(u), S(w), and compute the lcp of
S with each of the other two.
If S = S(v), do not change strings in nodes, just assign the newly computed lcp-s: lcp(u) ← lcp(S, S(u)) and
lcp(w)← lcp(S, S(w)). Finally, assign lcp(v)← 0.

If S = S(u) (the case S = S(w) is analogous), denote the newly computed lcp by l′ = lcp(S(v), S) and then swap
S(v) with S(u) and assign lcp(u) ← l′, so that the smallest string, S, now resides in v, and the string formerly residing
in v, along with its lcp with S, now resides in u. Then assign lcp(w)← lcp(S, S(w)) (which was already computed), and
lcp(v)← 0. Note that now w still roots a heap of strings, and in addition it satisfies the heap of strings property, and that
u, and each of its children, nowmaintains an lcp of their string with S, which is smaller than all the strings in the subtree
rooted at u. Invoking SiftDown(u) (Fig. 1) ensures that the subtree rooted at u, which just replaced the string of its root,
is a heap of strings. This completes the processing of v.

Correctness of our heapify algorithm for strings follows from the known heapify for integers and Corollary 1. As for
runtime, note that we process O(n) nodes (including the nodes processed in the recursive calls), and that when nodes swap
strings, they also swap lcp-s, possibly while increasing one or two. That is, each string is clearly associated with an lcp field,
such that:
Proposition 2. [i] for every characters comparison (of two characters, or three at a time), at least one of the strings participating
in the comparison has its associated lcp field incremented. [ii] Once a string has its associated lcp field assigned the value of l, none
of its characters in positions 1, 2, . . . , l participates in any further character comparison.
Corollary 3. Heapifying into a heap of strings can be done in O(n+ N) time.

4.2. Extracting minimal string

Having built a heap of strings H of size n, we now extract the smallest string therefrom, which resides at the root ofH , and
invoke PumpUp(root(H)) which discards one node from tree H , while maintaining that the remaining nodes form a tree,
with each of them satisfying the heap of strings property (Fig. 2).

Correctness of PumpUp follows directly from Corollary 1. Observe that now H is not necessarily full and not necessarily
balanced, but its height is O(log n), and hence any further extractions of minimal string does not process more than O(log n)
nodes. Note that, as with our heapify procedure, each character comparison (here we only have comparison between two
characters, never three) results in an increment of one lcp field. None of the lcp fields decreases from the value it had at the
end of the heapify process.

In fact, if we start with heapify, and then extract smallest string by smallest (over the remaining) string, we actually sort
the set of n input strings in a lexicographic order.
Corollary 4. Sorting of n strings of total length N, over unbounded alphabet, can be implemented in O(n log n + N) worst case
time, using O(n) auxiliary space.
Proof. Based on the classic heap sort: heapify followed by sequential n extractions of the data element from the root, we
implement each data-element comparison by either a (constant time) lcp comparison, or a sequential character to character
(or three characters at a time) comparisons. For the latter, we increase at least one lcp field by the number of steps in that
sequential comparison. As the lcp fields never decrease, and the total of their maximal value is N , we conclude that the time
complexity of the sort is O(n log n + N). �

70 C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74

Require: (1) All nodes in subtree rooted by v have strings larger than the string of parent(v). (2) All these nodes, except,
possibly, one or two children of v, satisfy the heap of strings property. (3) The lcp field of v and of each of its children
reflect the lcp of their string with the string of parent(v).

Ensure: in the subtree rooted by v, strings change nodes, and lcp-s are updated, such that the resulting subtree is a
heap of strings.

1: if v has no children or lcp(v) is greater than each child’s lcp then {S(v) is a clear smallest}
2: return
3: end if
4: if lcp(v) < lcp(child1(v)), and: either child1(v) is the only child of v or lcp(child2(v)) < lcp(child1(v)) then {child1 is a

clear smallest}
5: swap strings and lcp-s between v and child1(v)
6: SiftDown(child1(v))
7: return
8: end if
9: if lcp(v) = lcp(child1(v)), and: either child1 is the only child of v or lcp(child2(v)) < lcp(child1(v)) then {smallest is

either v or child1}
10: read S(v) and S(child1(v)) from position lcp(v) + 1 on, character by character, until l = lcp(S(v), S(child1(v))) is

computed, as the smaller of the two strings is determined.
11: lcp(child1(v))← l
12: if S(v) is larger than S(child1(v)) then
13: swap strings between v and child1(v)
14: SiftDown(child1(v))
15: end if
16: return
17: end if

{v has two children; lcp(left(v)) = lcp(v) = lcp(right(v))}
18: read S(v), S(left(v)), and S(right(v)), in parallel, from position lcp(v) + 1 on, until the smallest, S, of the three is

determined, as the lcp of it with each of the other strings is computed.
19: if S = S(v) then
20: assign respective lcp-s to children
21: else {S = S(child1(v))}
22: lcp(child2(v))← lcp(S, child2(v)) {already computed}
23: l← lcp(S, S(v)) {already computed}
24: swap strings between v and child1(v)
25: lcp(child1(v))← l
26: SiftDown(child1(v))
27: end if

Fig. 1. SiftDown(v)We denote by child1(v) and child2(v) both left(v) and right(v), as applicable by the conditions on their field values.

4.3. On-demand sorting

As construction time for a heap of strings is O(n), smaller than the O(n log n) for BIS, the heap of strings is better suited for
cases where we will need only an (unknown) fraction of the strings from the lexicographic order.

Corollary 5. On Demand Sorting of n strings of total length N can be done with the retrieval of the first result in O(n+ N1) time,
after which the retrieval of further results in O(log n + Ni) time for the i-th result, with

i Ni ≤ N.

Proof. Using heap of strings, the first result can be extracted immediately after the heapify. Further results are extracted
each following a PumpUp that rearranges the heap of strings, of height O(log n), following the previous extraction. Through
the whole process lcp fields never decrease, and each character comparison incurs an lcp increase. This implies the time
complexity. �

4.4. Find the smallest k strings

Whenwe know in advance that wewill only need the k < n smallest strings from the input set of n strings of total length
N , we can use a heap of strings of size k, and achieve the goal in O(n log k+N) time as follows. We use a heap of size kwhere
parents hold larger strings than their children, and hence the largest string in the heap resides at the root node. We heapify
the first k strings of the input set into such a heap, in analogy to our heapify process above. Then, for each string S of the
remaining n−k strings in the input, we compare S with string R at the root, while finding lcp(S, R). If S is found greater than

C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74 71

Require: (1) v has a null string and a non relevant lcp (2) All other nodes in the subtree rooted by v satisfy the
heap of strings property. (3) The lcp in each of v’s children reflects the lcp of their string with the string formerly residing
in v, which is smaller than each child’s string.

Ensure: (1) In the subtree rooted by v, along a path from v down to one leaf, strings and their associated lcp-s climb up one
node, so that the leaf node becomes redundant and can be discarded from the tree. (2) All remaining node have relevant
strings and lcp-s, and they satisfy the heap of strings property.

1: if v is a leaf then {discard this node from the tree, its contents were already copied to its parent}
2: discard v from the tree
3: return
4: end if
5: if v has only one child, child1, or lcp(child1(v)) > lcp(child2(v)) then {child1 is a clear smaller}
6: S(v)← S(child1(v)) and lcp(v)← lcp(child1(v))
7: if v has two children then
8: PumpUp(child1(v))
9: else {v has a single child}

10: discard child1(v) from the tree, and makes its children – the children of v
11: end if
12: return
13: end if

{v has two children, with equal lcp-s: l = lcp(left(v)) = lcp(right(v))}
14: read S(left(v)) and S(right(v)) from position l + 1 on, character by character, until l′ = lcp(S(left(v)), S(right(v))) is

computed, as the owner, child1, of the smaller of the two strings is determined.
15: S(v)← S(child1(v)) and lcp(v)← lcp(child1(v))
16: lcp(child2(v))← l′
17: PumpUp(child1(v))

Fig. 2. PumpUp(v)We denote by child1(v) and child2(v) both left(v) and right(v), as applicable by the conditions on their field values.

R, it is discarded. Otherwise, R is discarded, and S finds its place in the heap using procedure SiftDown (Fig. 1) adopted for
heaps where parents hold larger strings than their children.

After this process, the heap of size k holds the smallest k strings in the collection. We can now sequentially extract the
(next) largest string therefrom, retrieving the k smallest strings in decreasing lexicographic order, using PumpUp (Fig. 2)
adopted for heaps where parents hold larger strings than their children.

As here, too, lcp fields only grow, we conclude that:

Corollary 6. Finding (and sorting) the smallest k strings of a given input set of n strings of total length N, can be done in
O(n log k + N) time, using O(k) auxiliary space.

4.5. Insertion of strings to a heap of strings

Insertion of strings is an operation that both heaps and search trees allow. As described in Section 3, a BIS allows the
insertion of strings in O(log n + |S|). With heap of strings, however, build-up linearity in number of nodes does not apply
for post build-up insertions. Namely, inserting an additional element to an existing heap of size n incurs the processing of
O(log n) nodes, not O(1). Moreover, BIS, as discussed in Section 3, allows string insertion while maintaining the tree balance
and not decreasing any lcp fields. Insertion of data elements to a heap, however, by the known heap algorithms, causes some
nodes to have their parents replace their data elements by a smaller one, without them (the children) replacing their data
elements. Hence, with a heap of strings, by Corollary 1, the lcp field of such a child node, which needs to reflect the lcp of its
string with its parent’s string, might decrease.

More specifically, here is how we can insert a string, S, to a heap of strings, H , of size n, in O(log n+ |S|) time. H remains
a full balanced heap of strings. Only a few lcp fields therein might decrease. We first add an empty leaf node, denoted by leaf
to H , such that H is still balanced, and denote by path the unique path root = n1, n2, . . . , nm = leaf from root to leaf . We
then invoke procedure InsertString which finds the right position for S in path, then pushes the suffix of path from that
point down, making room for S, while updating lcp fields of nodes out of pathwhose parents now hold smaller strings than
before.

InsertString(H, S, path)
Require: (1) A heap of strings H of size n plus a newly added empty leaf, leaf (2) a path path from H ’s root to the newly added empty leaf

node: root = n1, n2, . . . , nm = leaf (3) a string S.
Ensure: S is inserted in the right position along path, and H becomes a heap of strings of size n+ 1.

72 C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74

1: Compare S with the root string R, while computing l = lcp(S, R).
2: if S > R then
3: for i← 2 tom− 1 do
4: if l > lcp(ni) (which implies S < S(ni)) then
5: PushDown(H, S, path, i, lcp(ni), l)
6: return
7: else if l = lcp(ni) (the case l < lcp(ni) is not interesting since it must be that S > S(ni)) then
8: read strings S and S(ni) from position l+ 1 on, until l′ ← lcp(S, S(ni)) is computed and determine whether S < S(ni).
9: if S < S(ni) then
10: PushDown(H, S, path, i, l′, l)
11: return
12: end if
13: l← l′
14: end if
15: end for

{S needs to reside in the newly added leaf}
16: S(leaf)← S; lcp(leaf)← l
17: else {S < R}
18: PushDown(H, S, path, 1, l, 0)
19: end if

ProcedurePushDown actuallymodifies the heap in the sameway as the classic Sift-up process of inserting a newelement
to an existing heap. In addition, PushDown also updates lcp fields as necessary. This is where some of these fields might
decrease.

PushDown(H, S, path, i, l′, l)
Require: (1) A heap of strings H of size n plus a newly added empty leaf, leaf (2) a string S, (3) a path path from H ’s root to the newly

added empty leaf node: root = n1, n2, . . . , nm = leaf (4) an index i to a node on path such that S is to be inserted between ni−1 and
ni in the path, (5) lcp value l′ = lcp(S(ni), S), (6) lcp value l = lcp(S, S(ni−1))

Ensure: Strings and lcp-s in nodes ni, ni+1, . . . , nm−1 are pushed one node down path, and S is placed in the evacuated node, whilemaking
H a heap of strings of size n+ 1.

1: for j = m down to i+ 1 do {push down the end of the path}
2: S(nj)← S(nj−1); lcp(nj)← lcp(nj−1)
3: lcp(sibling(nj+1)) ← min{lcp(sibling(nj+1)), lcp(nj+1)} {sibling(nj+1) now has as its parent what used to be its grandparent, and

hence its lcpmight need to decrease}
4: end for
5: lcp(ni+1)← l′
6: S(ni))← S; lcp(ni)← l
7: lcp(sibling(ni+1))← min{lcp(sibling(ni+1)), l′} { sibling(ni+1) now has S as its parent instead of S(ni+1)}

The decrease in lcp values prevents from ensuring overall O(N) characters comparisons for heap buildup followed by
some string insertions, followed by string extractions. Number of node processings, however, remainsO(n) for heap buildup,
followed by O(m log(n+m)) for the insertion of additionalm strings, followed by O(log(m+ n)) for each string extraction.

4.6. Inserting strings without decreasing lcp-s

One way to avoid decreasing of lcp-s is to insert single-childed nodes. This comes, however, at the expense of tree
balancing. Before invoking InsertString, do not prepare an empty leaf node. Rather, once the right point in path, between
ni−1 and ni is found by InsertString, instead of invoking PushDown, add a new, empty node toH , and place S there, making it
ni−1’s child instead of ni, and making ni its only child. As before, number of characters processing does not exceed |S|. Now,
however, no lcp field needs to decrease. Let n denote the size of the heap upon its build up, and m the number of strings
thus inserted the heap post build up. It is easy to see that further extractions, using our PumpUp above, would not incur
more than O(log n) node processing, since this procedure stops once a single-childed node is reached. Further insertions,
however, although not exceeding O(|S|) character comparisons, might incur the processing of O(log n + m) nodes, much
greater than O(log(n+m)) which is the number of nodes processed by BIS.

5. Heap of strings embedded with binary search trees

In this section we circumvent the non-balancing introduced in Section 4.6. Generally speaking, we embed chains of
single-childed nodes on a BIS, which is lcp based. We start with heapify a heap of strings from the initial set of n strings.
Then, for each string arriving post heapifying, we insert it as in Section 4.6. The path of single-childed newly born nodes,
which hold strings in increasing order, is arranged on a BIS and is not considered part of the heap of strings. See Fig. 3.

C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74 73

Fig. 3. Heap of strings embedded with Balanced Indexing Structure.

The BIS thus born is pointed at from both nodes of the heap of strings, above and below it. The smallest node in that BIS
will maintain, in its lcp_prev field, the lcp of its string and the string of the heap of strings node above the BIS.

As in Section 4.6, before calling InsertString we do not prepare an empty leaf node. Rather, when InsertString finds the
right point to insert S, between ni−1 and ni of the heap of strings, instead of invoking PushDown, S will join the BIS that resides
between these two nodes (or start a new BIS if there is not any) as described in Section 3. When we are about to insert S to
the BIS ‘‘hanging’’ between ni−1 and ni, we have already computed l = lcp(S, S(ni−1)). All the BIS strings, as well as S, are
larger than S(ni−1), and the lcp fields maintained in the BIS suffice to compute, in constant time, the value of lcp(R, S(ni−1)),
for the BIS root R. Hence, the first step of inserting S to the BIS, namely the comparison against R, can be donewithout reading
S[1, l] again. Thus, the insertion of string S to a heap of strings that was heapified with n strings, incurs O(log n+ logm+|S|)
time, with m denoting the size of the BIS that is to include S.

Extracting of strings from the root of the heap can continue as before, using PumpUp, which now, if visits a node v of
the heap of strings which has a BIS leading from it to its child in the heap of strings, sees the smallest node of the BIS as v’s
single child, and pumps this child up to take the place of v. This child is removed from BIS and becomes a member of the
heap of strings, and this completes the execution of PumpUp (it does not go further down). The removal of a node from BIS
of size m takes O(logm) time, and our PumpUp incurs the processing of O(log n) nodes plus reading as many characters as
needed, while increasing lcp fields.

Note that a string that arrives post heapifying may spend ‘‘some time’’ in a node of a BIS, but once removed from there
and joined the heap of strings, it will never go into any BIS again. Only newly arriving strings may go into a BIS. We conclude
that:

Theorem 1. It is possible to construct a heap of n strings in O(n) time and support insertion and extraction of theminimal string in
O(log(n)+ log(m)) time, with an additional O(N) amortized time over the whole sequence of operations, where m is the number
of strings inserted post heapifying and were not extracted yet.

For further reading

[10,25].

Acknowledgement

This work was partially supported by the Israel Science Foundation, grant no. 1484/04.

References

[1] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms, Addison Wesley, Reading, MA, 1974.
[2] A. Amir, T. Kopelowitz, M. Lewenstein, N. Lewenstein, Towards real-time suffix tree construction, in: Proc. of Symp. on String Processing and

Information Retrieval, SPIRE, 2005, pp. 67–78.
[3] L. Arge, P. Ferragina, R. Grossi, J.S. Vitter, On sorting strings in external memory, in: Symposium of Theory of Computing, STOC, 1997, pp. 540–548.
[4] J.-L. Baer, Y.-B. Lin, Improving quicksort performance with a codeword data structure, IEEE Transactions on Software Engineering 15 (1989) 622–631.
[5] J.L. Bentley, R. Sedgewick, Fast algorithms for sorting and searching strings, in: Proc. of Symposium on Discrete Algorithms, SODA, 1997, pp. 360–369.
[6] R. Cole, T. Kopelowitz, M. Lewenstein, Suffix trays and suffix trists: structures for faster text indexing, in: Proc. of International Colloquium on

Automata, Programming and Languages, ICALP, 2006, pp. 358–369.
[7] M. Farach, Optimal suffix tree construction with large alphabets, in: Proc. 38th IEEE Symposium on Foundations of Computer Science, 1997,

pp. 137–143.
[8] M. Farach-Colton, P. Ferragina, S. Muthukrishnan, On the sorting-complexity of suffix tree construction, Journal of the ACM 47 (6) (2000) 987–1011.
[9] G.H. Gonnet, R. Baeza-Yates, Handbook of Algorithms and Data Structures, Addison-Wesley, 1991.

[10] R. Grossi, G.F. Italiano, Efficient techniques for maintaining multidimensional keys in linked data structures, in: Proc. 26th Intl. Col. on Automata,
Languages and Programming, ICALP, in: LNCS, vol. 1644, 1999, pp. 372–381.

74 C. Kent et al. / Theoretical Computer Science 426–427 (2012) 66–74

[11] T. Hagerup, Optimal parallel string algorithms: sorting,merging and computing theminimum, in: Proc. of Symposiumon Theory of Computing (STOC),
1994, pp. 382–391.

[12] T. Hagerup, O. Petersson, Merging and sorting strings in parallel, in: Mathematical Foundations of Computer Science, MFCS, 1992, pp. 298–306.
[13] B.R. Iyer, Hardware assisted sorting in IBM’s DB2 DBMS, in: International Conference on Management of Data, COMAD 2005b, Hyderabad, India,

December 20–22, 2005.
[14] J.F. JaJa, K.W. Ryu, U. Vishkin, Sorting strings and constructing difital search tries in parallel, Theoretical Computer Science 154 (2) (1996) 225–245.
[15] Juha Kärkkäinen, Peter Sanders, Simple linear work suffix array construction, in: Proc. 30th International Colloquium on Automata, Languages and

Programming, ICALP 03, in: LNCS, vol. 2719, 2003, pp. 943–955.
[16] D.K. Kim, J.S. Sim, H. Park, K. Park, Linear-time construction of suffix arrays, in: Proc. of 14th Symposium on Combinatorial PatternMatching, in: LNCS,

vol. 2676, 2003, pp. 186–199.
[17] D. Knuth, The Art of Computer Programming, in: Sorting and Searching, vol. 3, Addison-Wesley, 1973.
[18] P. Ko, S. Aluru, Space efficient linear time construction of suffix arrays, in: Proc. of 14th Symposium on Combinatorial Pattern Matching, in: LNCS,

vol. 2676, 2003, pp. 200–210.
[19] U. Manber, E.W. Myers, Suffix arrays: a new method for on-line string searches, SIAM Journal on Computing 22 (5) (1993) 935–948.
[20] E.M. McCreight, A space-economical suffix tree construction algorithm, Journal of the ACM 23 (1976) 262–272.
[21] K. Mehlhorn, Dynamic binary search, SIAM Journal on Computing 8 (2) (1979) 175–198.
[22] J.I. Munro, V. Raman, Sorting multisets and vectors inplace, in: Proc. of Workshop on Algorithms and Data Structures, WADS, 1991, pp. 473-479.
[23] R. Sinha, J. Zobel, D. Ring, Cache-efficient string sorting using copying, Journal of Experimental Algorithmics 11 (2006) 1084–6654.
[24] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995) 249–260.
[25] Jeffrey Scott Vitter, External memory algorithms, in: Handbook of massive data sets, Kluwer Academic Publishers, Norwell, MA, USA, 2002,

pp. 359–416.
[26] P. Weiner, Linear pattern matching algorithm, in: Proc. 14th IEEE Symposium on Switching and Automata Theory, 1973, pp. 1–11.

	On demand string sorting over unbounded alphabets
	Introduction
	Definitions and preliminaries
	Longest common prefix

	Balanced indexing structures
	Heap sorting of strings
	Heapify
	Extracting minimal string
	On-demand sorting
	Find the smallest k strings
	Insertion of strings to a heap of strings
	Inserting strings without decreasing lcp-s

	Heap of strings embedded with binary search trees
	For further reading
	Acknowledgement
	References

