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1. INTRODUCTION 

The applications of computers to biological and biomedical problem solving goes back to 
the very beginnings of computer science, automata theory[ll, and mathematical biol- 
ogy[2]. With the advent of more versatile and powerful computers, biological and biomed- 
ical applications of computers have proliferated so rapidly that it would be virtually im- 
possible to compile a comprehensive review of all developments in this field. 

Limitations of computer simulations in biology have also come under close scrutiny, 
and claims have been made that biological systems have limited information processing 
power[3]. Such general conjectures do not, however, deter biologists and biomedical 
researchers from developing new computer applications in biology and medicine. 

Microprocessors are being widely employed in biological laboratories both for auto- 
matic data acquisition/processing and modelling; one particular area, which is of great 
biomedical interest, involves fast digital image processing and is already established for 
routine clinical examinations in radiological and nuclear medicine centers. Powerful tech- 
niques for biological research are routinely employing dedicated, on-line microprocessors 
or array processors; among such techniques are: Fourier-transform nuclear magnetic res- 
onance (NMR), NMR imaging (or tomography), x-ray tomography, x-ray diffraction, high 
performance liquid chromatography, differential scanning calorimetry and mass spectro- 
metry. Networking of laboratory microprocessors linked to a central, large memory com- 
puter is the next logical step in laboratory automation. Previously unapproachable prob- 
lems, such as molecular dynamics of solutions, many-body interaction calculations and 
statistical mechanics of biological processes are all likely to benefit from the increasing 
access to the new generation of “supercomputers”. 

In view of the large number, diversity and complexity of computer applications in 
biology and medicine, we could not review in any degree of detail all computer applications 
in these fields; instead, we shall be selective and focus our discussion on suggestive 
computer models of biological systems and those fundamental aspects of computer ap- 
plications that are likely to continue to make an impact on biological and biomedical 
research. Thus, we shall consider unifying trends in mathematics, mathematical logics 
and computer science that are relevant to computer modelling of biological and biomedical 
systems. The latter are pitched at a more formal, abstract level than the applications and, 
therefore, encompass a number of concepts drawn from the abstract theory of sets and 
relations, network theory, automata theory, Boolean and n-valued logics, abstract algebra, 
topology and category theory. The purpose of these theoretical sections is to provide the 

1513 



1514 ION C. BAIANU 

means for approaching a number of basic biological questions: 
(1) What are the essential characteristics of a biological organism as opposed to an 

automaton? 
(2) Are biological systems recursively computable? 
(3) What is the structure of the simplest (primordial) organism? 
(4) What are the basic structures of neural and genetic networks? 
(5) What are the common properties of classes of biological organisms? 
(6) Which system representations are adequate for biodynamics? 
(7) What is the optimal strategy for modifying an organism through genetic engineering? 
(8) What is the optimal simulation of a biological system with a digital or analog 

computer? 
(9) What is life? 
The present analysis of relational theories in biology and computer simulation has also 

inspired a number of new results which are presented as “conjectures” since their proofs 
are too lengthy and too technical to be included in this review. In order to maintain a 
self-contained presentation definitions of the main concepts are given, with the exception 
of a minimum of simple mathematical concepts. 

2. COMPUTER MODELS OF BRANCHING PROCESSES AND TREELIKE 
MORPHOLOGY 

One of the simplest but nontrivial applications of computers in biology and medicine 
has been the generation of “trees” or patterns of branching. Such patterns of branching 
are common to arteries, bronchi, trees and rivers, and have attracted considerable atten- 
tion[4-221. Computer simulation of the geometry of trees, based on branching angles, 
length ratio of branches and differential rates of growth, has been quite successful in 
producing models which are closely resembling the morphology of biological systems[7, 
17-191. In such models of trees, the branching ratio was found to be variable and, there- 
fore, of little descriptive value. A computer program that generates dichotomously various 
branching trees was recently described[22] and it was employed to investigate if the human 
bronchial tree could be adequately modelled. 

A. Generation of trees by the computer 

According to Horsfield and Thurlbeck[22], each branch is encoded in the computer by 
providing the three-dimensional (3D) coordinates of the branch ends. Horsfield and Cum- 
ming[S] order the branches by starting at the peripheral ones, which are assigned “order 
l”, and the order is increased by 1 unit at each junction [Fig. l(a)] after Horsfield and 
Thurlbeck[22]). The asymmetry of the branching is represented by an asymmetry param- 
eter 6 which is the difference in order between the two daughter branches. An example 
of asymmetry of branching which was given by Horsfield and Thurlbeck is reproduced 
in Fig. l(b). A stem branch is generated by inputing its coordinates and stating its Horsfield 
order; the stem bifurcates in the x-y plane, the order of the major daughter branch being 
one digit less than the parent branch by definition, while the order of the minor branch 
is defined by using a value of 6. By defining the angles of branching and the lengths, the 
coordinates of the ends of the daughter branches can also be calculated. The daughter 
branches bifurcate in turn until an order 1 branch is generated recursively and then bi- 
furcation stops on that selected pathway. The value of 6 for a given bifurcation is deter- 
mined by a pseudorandom number generaied by a digital computer, and takes values 
between 0 and 9. The probability for a given value of 6 to be realized in a given tree from 
the pseudorandom string of numbers is defined on input; for example if 6 = 0, the prob- 
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Fig. 1. A-I show graphs of symmetrical trees with branching angles from 10 to 90” in steps of lo”, with a length 
ratio of 0.9; I-L represent symmetrical trees with branching angles of 90”. and length ratios changing from 0.9 
to 0.6 in steps of 0. I (redrawn from Ref. [22]). 

ability is 0.3, and if 6 = 1.0, the probability is 0.4; for all other values of 6 higher than 
2.0 the total probability is 1 .OO. A symmetrical tree is generated if the probability of 6 = 
0 is 1.00. A few selected examples of computer generated trees are shown in Figs. 2(a) 
and (b). The computed trees in Fig. 2(b) compare quite favorably in morphology with two 
intersegmental branches of a normal, human bronchial tree [Fig. 2(c)]. The form of the 
computer generated trees was found to be quite sensitive to branching angles and length 
ratio, implying that in “real” lungs the average values are closely controlled, in spite of 
the presence of a wide range of individual types of bifurcation[22]. Horsfield and Thuri- 

A B C D E 

Fig. 2. A-C represent three different trees calculated by the computer with lIRxl(H) = 0.935; D and E show 
two representations of actual human bronchial trees (redrawn from Ref. [22]). 
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beck[22] also suggested, based on their computer simulation, that an optimality principle 
might be determining the formation of the bronchial tree, such that the length of lobules 
increases by the cube root of the volume. Minimized “costs” in the formation of the 
bronchial tree may include the lumen volume, surface, frictional power loss and drag. 
Such costs are functions of the branch radius[l5, 191. The cost minimization would also 
cause the diameter, length, angle and branching pattern to be all closely inter-related; 
therefore, computer modelling may assist one in determining which functions are 
minimized[ 191. 

B. Arterial branching and arteriosclerosis 

The branching pattern of the arterial network is simiiarly presumed to be an optimal 
structure. Such optimal design considerations involve the angle of entry (8, and 0~) formed 
by the daughter branches with the axis of the parent branch. The junction angle + is simply 
(8, + &)[23]. If the radius of the parent branch is r. and the radii of the daughter branches 
are, respectively, rl and rz, then the minimum lumen volume and minimum power loss 
models yields an optimal geometry of the arterial branch, subject to the following 
constraints: 

cos 8, = 
(rd f ri - t-4) 

2&f ’ 

cos ez = cr$ :;ir, r3 , 

cos * = o-z -2;;r; r3 

(2) 

(from Ref. [23]). 
According to Zamir[24]. these equations lead us to the optimal junction angle for min- 

imal surface and drag, 

as well as to conditions for 

cos * = (1 + cx3y3 - ci* - 1 

2a 
, 

minimum volume and power loss, 

(4) 

cos * = (1 + (Y3)4’3 - cx* - 1 

201’ 
t (3 

where CL is the symmetry ratio rz/r, . 
Because drag force and power loss are flow-dependent criteria, however, a general 

flow study is necessary in order to derive the optimal geometry for drag force and power 
loss. Such considerations become particularly important in arteriosclerosis since as ar- 
teriosclerosis progresses the area ratio decreases and the power loss and drag both in- 
crease. A general flow equation[ 151 

f = kr” (6) 

needs therefore to be considered; in the above equation f is the flow, k is a constant and 
x is a parameter which is determined by the character of the flow (e.g. for laminar flow 
x = 3, while for turbulent flow x = 7/3). 



Computer models and automata theory in biology and medicine 1517 

The radius equation then becomes 

t-6 = ri + t-5. (7) 

In arteriosclerosis, x is expected to decrease markedly as turbulent flow sets in. However. 
according to Zamir[24], the range of x is large even for normal arteries. The general flow 
equation (6) yields 

cos * = (1 + cY=)2-4’r - cih-4 - 1 

2o/--* 
(8) 

for minimum drag, and 

cos JI = (1 + cYX)4-8’r - cY4X--8 - 1 

21Xx-4 
(9) 

for minimum power loss through friction. 
This approach may also be useful in conjunction with the computer generated trees of 

Horsfield and Thurlbeck[l9, 221 for modelling bronchial structures and also for detailed 
hemodynamic calculations on a digital computer. Related applications are recently con- 
cerned with artificial valve optimization by computer dynamic simulation of restricted 
blood flow in the heart caused by the presence of such valves. 

A model of arterial bifurcations related to the model discussed above was recently 
developed by Zamir[24], who reported that such structures are optimal both globally, in 
terms of the cardiovascular system as a whole, and locally, in terms of the orderly flow 
through the bifurcation. 

3. MODELS OF THE CARDIOVASCULAR SYSTEM AND ARTERIAL FLOW 

A computer model of the pressure-flow relationships for the arterial system was de- 
veloped by Weygandt, Cox, Karreman and Cole[25], in a state variable form which is 
suitable for the investigation of the control of blood pressure and flow in the mammalian 
cardiovascular system. This model involves “lumped” parameters as shown in Fig. 3. 
and was suggested to be applicable to steady state, both mean and pulsatile, as well as 
transient processes in the cardiovascular system. Two parameters in this model are par- 
ticularly important: the carotid sinus pressure, which is the major input to the neural 
control loop, and the mean renal pressure, which is the input to the renal-endocrine- 
electrolyte system. The numerical analytical method of Gear[26, 271 was employed to 
solve sets of stiff differential equations which were expressed in vector form. The com- 
puter model based on such equations yielded a simulation of the simultaneous blood 
pressures and blood flows in several arteries, for a given instantaneous output of the heart 
to such arteries. 

Examples of these computer results for pressures and flows versus time are shown in 
Fig. 4 (after Weygandt et a1.[25]). The peaks of pressure pulses in Fig. 4 occur steadily 
later because of transmission lags and increase from the ascending aorta to the femoral 
artery. This is also observed experimentally[28]. Calculated pressures in various arterial 
elements were also found to be in agreement with the experimental results. This model 
supercedes the previous models of Ncordegraafl271, Jager[29] and DePater[30], which 
were designed for analog computer modelling. A more detailed description of the Wey- 
gandt et al. model of the cardiovascular system was presented by Doubek[31], and the 
mechanisms of the vasomotor control were investigated with this digital computer model: 
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Fig. 3. 
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Structure of a model of the arterial system (from Ref. WI). 

the problem was formulated as a Riccati state regulator, and it was assumed that the 
optimization criterion is the minimization of expended energy per cardiac cycle. Analog 
electrical circuits were also employed to facilitate computation. An example of such an 
analog circuit is reproduced in Fig. 5 from Ref. [31] (see also Table 1). Both the steady state 
and the perturbed response were calculated. Examples of the simulated waveforms are 
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Fig. 4. Computer calculated graphs of pressures and flows in the arterial system as a function of time. Starting 
from the top left-hand side, pressures in mm Hg in the ascending aorta, the carotid artery, the descending aorta, 
the aorta above renal and femoral. Starting from top right-hand side, flows in cm’lsec. at the input from the 
heart, in the ascending aorta, in the carotid artery, in the descending aorta, in the aorta above renal (from Ref. 
[Zj]). 
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Fig. 5. Schematic representation of an arterial model (from Ref. [3 I]). In this model, the total arterial compliance 
C,, depends linearly on the arterial pressure p; R and Pi define the relationship between the total peripheral run- 
off and the arterial pressure. 

represented in Fig. 6,‘following Doubek[31], and were calculated for a sequence of five 
heart beats. This investigator concluded that the least energy regulation of blood pressure 
by peripheral resistance change due to carotid sinus pressure change provides an optimal 
control that involves a “proportional plus rate set point controller”. The model, however, 
did not include the necessary physiological constraint of maintaining sufficient blood flow 
to the brain, under various blood pressure conditions. 

A much simpler model with only four lumped parameters was recently employed by 
Dujardin and Van Gelder[32] to simulate the relationship between slowly changing arterial 

Table 1. Physical correspondence for block diagram in Fig. 5 (from Ref. [31]) 

SplbOl x(i) Deuription 

IfI b Preuurc in *ortic rrch 
X(2) Pressure in br8chiocephAc ~rlcry 
x13) Prezsurc in proximal utolid arrery 
X(4) Pr~surc in arond stnus 
IIS) Pressure in thorwzic wlery 
x16) Pressure in dirphrrgmrtic artery 
.r(7) Prrrrure in abdominal ancry 111 renal) 
X(8) Prnsurc u bifurcation olaona 
X(9) Pressure in kmorA artery 
Itto) Flow in brachioaphrlic artery 
IfIll flow in proximal doccoding ~OTU 
x(12) Flow in left rub&vim mcry 
x(l3J Flow in rishc sutivian wwy 
X(l4l Fiow in proxim4 cwotid rrtcry 
X(15) Flow in distal carolid artery 
x(16) Flow in carotid sinus 
x(17) Flow in mid:ddrrmding aorta 
x(18) Flow in mcvntcric and CclLc 8nerics 

Hl9J Flow in proximal abdominal artery 
X(20) flow in aorta below rmal 
x(21) Flow in renal rncry 
Xl221 flow in iiiu rnery 
x(23) Flow in crudrl l xfy 
x(24) Flow in femoral artery 

Symbol 

hmuS pcswre 
Left subclavian bed 
Right ruklavi~n bed 
C1rotid Bed 
Mnmti bed 
Renll bed 
Cwdal bed 
Fcmorrl bed 

Aonic arch longitudi4 s&on 
Br~chioaphrlii loagiirudinal section 
Proximal carotid loqitudinal Mien 
Distal arotid~longit~itul section 
Roxjxul desandiq l ona longitudinrl section 
Mid.decendin( EON loagitudirul vEtion 
Abdominal lon$vli4 sexion 
Renal iongitudirul ectioo 
Iliw longitudinal section 
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x(2) 

1 
00 1.0 3.1 5.0 

L 6 
0.0 1.0 3.0 ;*0 

x(4) 

, I , I 
00 1,o 3.0 5.0 

I I 1 1 
o)O 1.0 3.0 5.0 

0.0 1.0 3.0 5.0 

Fig. 6. Plots of normal (solid lines) and controlled 
(dashed line) x-matrix elements for five heartbeats, 
representing computer simulated waveforms (accord- 
ing to Ref. [31]). 

Fig. 7. Schematic model of the arterial system during 
diastole for a system to which an external pump is con- 
nected; the pump flow rate is ip (from Ref. [32]). 

flow and the resulting pressure change. A schematic of the simulated arterial system is 
shown in Fig. 7. 

Experimental observations of the arterial pressure decay following cardiac arrest, as 
well as the arterial pressure during heart pumping, were employed to determine the values 
of the four model parameters by a least square adjustment procedure performed by a PDP 
11-34 computer. The dynamic compliance C, which is the derivative of the aortic vol- 
ume with respect to pressure was borrowed from the earlier work of Cope[33], and is 
also related to the initial paper of Bergel[34]; other relevant models of the arterial system 
were previously reviewed by Kenner[35]. 

Related studies were concerned with blood flow in arteries, with and without sten- 
osis[36-411. The effects of the concentration profile of red cells on blood flow in the artery 
were investigated, and the arterial wall shear stress was calculated as a function of the 
relative fluidity of the blood[42]. It would seem that a more detailed computer simulation 
of hemodynamicsl flow in the artery with stenosis is warranted and is also likely to yield 
definitive results. 

4. COMPUTER MODELS OF CARCINOGENESIS AND CANCER 
CHEMOTHERAPY 

Computer simulation studies of carcinogenesis are closely related to theoretical studies 
of the cell cycle, the control of cell division and the growth of cell populations[43-521. 
In a computer model of erythroleukemia, Dtichting[Sl] considered a control process of 
cell proliferation of the form shown in Fig. 8 (also see Fig. 9). The simulation of this 
process was performed on an AEG-Telefunken TR440 digital computer using the ASIM 
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Fig. 8. Block diagram of a control model of cell proliferation (from Ref. [51]). r is the reference input, for 
examples, hormones; c is the controlled variable, such as the deviation of the number of cells from the steady- 
state value; d represents disturbances such as carcinogens: (u) represents the control signal, for example, enzymes 
with specific regulatory roles. 

computer program listed in Table 2. This program is written in the block-oriented language 
for Analogous SIMulation. 

The digital logic device in this model ascertains and registers the presence of each cell 
in a specific compartment; the analog transfer elements were integrators and switching 
components. The model is therefore a combination of analog and digital devices, and the 
simulation process is in this case more complex than in the more popular, digital-only 
models. This model mimiced malignancy through an uncontrollable increase in compart- 
ment population, but as many other computer models of carcinogenesis, is limited by the 
lack of a detailed, experimental analysis of the parameters controlling carcinogenesis. An 
attempt to introduce such parameters into a model of malignant “stem” cell growth was 
recently made by Rittgen[53]. Rittgen’s basic model is sketched in Fig. 10, where Gr , S, 
G2, M, Qr and Q2 are cell cycle phases; Q, and Q2 are the resting phases, while S is the 
synthesis phase. Mitosis starts either after Gz or after Q2, and the daughter cells begin 
in the resting phase QI . The simulation was executed with a special stochastic system[541. 

With this model it was possible to calculate the number of malignant proliferating, 
maturing and mature cells, as a function of time. The simulated malignant cell population 
growth was exponential, with growth velocities depending on the cell cycle parameters. 

Computers and cancer chemotherapy 

A model conceptually similar to the Rittgen simulation, but simpler, was applied to the 
analysis of cancer chemotherapy (Fig. 11, after Chuang and Soong[55]). A FORTRAN 
IV program was developed for a PDP 15176 computer which was employed for simulations 
of scheduled chemical treatments with cell-cycle specific, phase specific and cycle non- 
specific drugs. It also allowed for Gompertzian tumor growth and variation of kinetic 
parameters in relation to tumor size. Typical simulated curves of synchronization and 
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Table 2. Computer program ASIM (from Ref. [51]) 

1523 

*----REGELKREIS MIT TOTZEIT UND NICHTSTETIGEM ELEMENT STRUKTUR 
Yl = SEZ(XD,A,XD) 
Y2 = I:IT(O.Yl) 
Y2A.Y2B = SA(Zl,Y2) *______----PARAMETER 

Y3A-= KlA * Y2A A=0 
Y3B = KlB * Y2B w = 100 

= Y3A + Y3B 
:il = VZl(O,KZ,Y31) 

Hl = ABS(XD) - l.E.10 
KlA = 0.02 

Y31 = Y3 KlB = 0.025 
Y62 = KB*Y61 K2 = 0.25 
Y61 = VZl(O,K7,Y45) K3A = 12 
Y42 = VZl(O,K2,Y41) K4 =l 
Y43 = VZl(O,K2,Y42) K5 =2 
Y44 = VZl(O,K2,Y43) K6A =3D 
Y44A.Y44B= SA(Z2,Y44) K6B =lO 
Y45A = K3A * Y44A K7 = 0.1 
Y45B = K3B l Y44B K8 = 0.2 
Y45 = Y45A + Y45B Zl =o 
Y5 = LZ2(K4,Y45) 22 = A6 

::A.Y6B = SA(i3.Y6) 
= LZ2(K5 Y5) 23 =o 

TZl =50 
XA = VD(O,K6A;Y6A) TZ2 = D 
XB = VD(O,K6B,Y6B) K3B =lO 
X = XA + XB 
XD = w - x *--------BEARBEITUNG 
Al =l 

t: 
= LZl(TZ1 ,Al) 
= LZl(TZ2,Al) 

A4 = SIML(O,AP) 
A5 = SIML(D,A3) 
A6 = MEMR (O,A4,A5) 

SKIP Hl 
RZEIT (0.,0,1,160.) 
PLOTTER (A4D,T/D,l5,X/ERYS,7)0.,16O.,T.= 

=200.,200.,X 
END 

thymidine blocking effects in cancer chemotherapy are reproduced in Fig. 12 from Ref. 
[W. 

Complications, not considered in this model, can arise in cancer chemotherapy due to 
the fact that tumor cells can begin to divide parasynchronously following interruption of 
the treatment. The agreement between this model and the two experimental animal tumor 
systems, L1210 leukemia and Lewis lung carcinoma, cannot yet be considered as con- 
clusive because of the paucity of experimental data available. 

In an interesting report by Swan and Vincent[56], the problem of minimizing the total 
amount of cycle nonspecific cytotoxic drug in the body of the patient was investigated. 
Their solution was in terms of optimal control theory and their theoretical results were 
compared with clinical data stored in a computer at the Arizona Medical Center. For 
patients suffering from bone cancer known as multiple myeloma, a treatment with mel- 
phalan, combined with intravenously administered cyclophosphamide, and an oral, fixed 
dosage of prednisone was pursued; then the optimal control data was compared with the 
clinical data. The optimal treatment suggested by the Swan and Vincent mode1[56] is a 
relatively small dose at the beginning, followed by a gradually increasing dose as the 
cancer cells decrease in number. The total amount of drug accummulated with such a 
treatment appears to be a minimum but the authors warn that their model assumes that 
the drug effectiveness parameter does not change significantly due to a change in the drug 
“program” ; they also suggest that clinical tests should be run to determine the nature 
and extent of variation of the drug effectiveness parameter. As in the model of Chuang 
and Soong[55], tumor growth was assumed to be Gompertzian, similarly to the earlier 
studies of Laird[57] and also as in the clinical applications of the Gompertz model by 
Sullivan and Salmon[58] to tumor growth and regression in IgG multiple myeloma in 
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Fig. 10. Cell cycle scheme for a stem cell (according 
to Rittgen[53D. Gt, 5, G2 and M are known steps of 
the cell cycle, with Gr and Ga representing the “gap” 
intervals, S representing the synthesis step, and M rep- 
resenting mitosis. Qr and Qa are resting phases. 

I P I 

Fig. 11. A model of tumor growth and of the drug treat- 
ment effects (according to Ref. [55]). The proliferative 
compartment has the four phases Gt, 5, G2 and M. 
Cells may die either naturally or because of the drug 
treatment, as determined by the functions I_+(t), i = 1, 
. . . , 5. when leaving Gt, S, Ga. M or Go such cells 
enter the dead cetl compartment D. After each binary 
fission, (2 - A) cells enter the nonpoliferative com- 
partment Go, while A cells (1 < A S 2) continue their 
proliferation cycle. Loss from the tumor site is deter- 
mined by I,,. A proportion p of Go-cells may re-enter 
the proliferative cycle at Ct. 

TPE ku~s) 

Fig. 12. Simulated CL curves of synchronization and 
thymidine blocking effects in cancer chemotherapy are 
shown together with observed values (from Ref. [55]). 

humans. In a subtle development of the optimal control approach to cancer chemotherapy, 
Zietz and Nicolini[59] proposed that the optimum treatment should keep the tumor size 
low and the normal population high, for as long as possible, during the treatment, while 
achieving tumor cell kill. Their mathematical model is also based upon the Gompertzian 
growth and the earlier studies of Nicolini and Kendal[60] and Nicolini ef af.[61]; the model 
leads to an expression of switching times for drug administration, and rest, which could 
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not be explicitly evaluated. Therefore, it was suggested that computer analysis will be 
needed to determine the optimum treatment strategy (optimal trajectory), and the nu- 
merical values of the switching function. An algorithm was then developed to uniquely 
define the switching function. This algorithm, when applied to two cell populations for a 
treatment period of 21 units, and a weighting of 4: 1 normal-to-tumor cell division rate. 
predicted that the optimum treatment would be dose administration for the first 8 time 
units, followed by a rest for the next 13 time units. It was pointed out, however, that 
additional computations will be needed to improve the algorithm. The model was claimed 
to be also suitable, with some modifications, for the optimization of chemotherapy with 
cycle-specific drugs. 

A microprocessor model of perturbed cell renewal 

Dtichting[62] reapproached the problem of computer simulation of carcinogenesis at 
the more basic level of perturbed cell renewal by considering the interactions between 
adjacent cells on a two-dimensional grid. Such questions were also considered previously 
by Gardner[63], Lindenmayer[64j, Reshodko and Bures[65], Ransom[66] and Arbib[67]. 
The approach is close to what Arbib describes as a “tessellation” model, and involves 
basic concepts from automata theory (see also Sec. IO). Diichting’s simulation of disturbed 
cell renewal[62] was carried out by means of an Intel 8080 microprocessor and we expect 
that his model could also be programmed on the now popular IBM PC/ATT microprccessor. 
The organization of the programs run by the Intel 8080 for this simulation is reproduced 
in Fig. 13 from Dtichting[62]. This simulation yielded some interesting results, such as 
the onset of metastasis after “surgery” even if only one “malignant” cell is left amongst 
the “normal” cells of the grid (Fig. 6 in Ref. [62]); in the case of no surgery, the model 
predicts that normal cells would eliminate the few malignant cells present. Related to this 

/ 
DATA INPUT - M41N PRffiRpM CoKnc~s - MEM~RI~_ING OF 

OATA 

[,,,,i- - 

I t 

bLCULATl@l OF RUNS BY 

SUBPRCGW5 

B 

Fig. 13. A. Organization of the Intel 8080 program for modelling cell renewal (according to Dikhting[62]). B. 
Grid configuration of cells, or tesselation model of cell renewal (after Dikhting[62]). 
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tessellation approach to population growth, Lieberman considered in an earlier report[68] 
a stochastic model in which the population distribution is confined within a limited space. 
The simulation was carried out with an IBM Model 360 and showed that the size and 
abundance of organisms are linked by a logarithmic relationship if the organisms are 
limited by a single resource. 

It would be interesting to adapt this model to the study of tumor growth, under con- 
ditions of limited nutrient supply since the tumor cell proliferation is strictly dependent 
upon the local availability of nutrients supplied by tumor vessels[69]. The tumor vascu- 
larization itself is, however, induced by the elaboration of a tumor antigenic factor (TAF) 
by the tumor cells[70]. In a detailed model of tumor growth, Liotta ef n1.[71] considered 
both vascularization and necrosis of tumors by taking into account both diffusion and 
proliferation of tumor cells. Coupled diffusion equations with a nonlinear source and sink 
terms described the proliferation, migration and necrosis of tumor cells. According to 
Liotta et a1.[71], their diffusion model is superior to lumped parameter models of tumor 
growth such as that of Saidel et a/.[721 because “the lumped-parameter simulation does 
not yield any information about the spatial distribution of the tumor cells and vessels in 
the tumor.” The results of the diffusion model are qualitatively similar to those determined 
by the experiment (Figs. I and 3, respectively, in Ref. 1711). One major limitation of this 
diffusion model of tumor growth is that the tumor was assumed to be spherically sym- 
metric. Other limitations of the model are discussed in Ref. [71]. 

5. BIOLOGICAL AND BIOCHEMICAL OSCILLATORS 

A number of important biological systems incorporate nonlinear oscillators. Amongst 
these are the protein biosynthetic pathway and its controllers[73], interacting populations 
of biological organisms[74, 751, and neural networks[76]. Many other biochemical and 
biological oscillators are known and have been investigated in some detaili77-811. For 
the Goodwin model, Singh[82] reported an analytical solution, while for the two-species 
Volterra system, Frame[83] obtained a convergent power series expansion for the period 
of oscillation. A detailed analysis of these two examples inspired Singh[82] to devise a 
method applicable to a large class of nonlinear oscillators which is based on the Hamil- 
tonian approach. Although such Hamiltonian nonlinear oscillators might not be repre- 
sentative of biological oscillators, their investigation may suggest new approaches to bi- 
ological problems such as neuroelectric activity and control of protein biosynthesis. 

A particularly important case of a biochemical oscillator is that of a biochemical chain 
with feedback inhibition, enzymatic removal and catalyzed input[84]. The addition of 
enzymatic removal to feedback inhibition in a biochemical chain was suggested to increase 
the possibility of enhanced oscillations[85]. In one of the simple cases considered by 
Landahl[84], the interesting feature of confocal limit cycles was found: depending upon 
the initial values of the state variables x and y, the biochemical system can either approach 
a stable point with damped oscillations or it can oscillate around that point in a state limit 
cycle. These cases are illustrated in Fig. 14 (from Landahl[84]). Such results may apply 
to a larger class of biological systems such as a population of organisms that produces a 
pollutant affecting the birth rate (cf. Landahl[84]). 

For more complex cases, such as an array of coupled, asymmetrical Van der Pol os- 
cillators, both analog and digital computer simulations were reported by Linkens[861; 
coupled Van der Pol oscillators were employed as a model of the spontaneous electrical 
rhythms recorded from the gastrointestinal tract (Fig. 15) of humans and laboratory an- 
imals. Algebraic equations were obtained for the array of coupled oscillators and a nu- 
merical simulation of such equations was carried out, followed by fast Fourier transform 
(FFT) spectral analysis. Accurate measurements of the spectral components were also 



Computer models and automata theory in biology and medicine 1527 

I ! 
*a 

r 
‘! #! ,L- 

Fig. 14. Example of a stable point (10.53, 10.53). surrounded by an unstable limit cycle (dashed curve) and a 
stable limit cycle (heavy cume), of a biochemical oscillator with parameters defined in Landahl[85]. 
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Fig. 1.5. Typical experimental recording of the electrical activity of human duodenum, showing an asymmetrical 
waveform with a small third harmonic distortion (according to Linkens[86]). 

made with a Bruel and Kjaer analog spectrum analyzer Type 2107, and the results were 
compared with the FFT of the simulated waveform[871. The procedure allowed the es- 
timation of both d.c. and all harmonic components, as well as the phase shifts. Repre- 
sentative results are reproduced in Figs. 16 and 17 from Refs. [86] and [88], respectively; 
these results show good agreement with the experimental data. The analysis can be ex- 
tended to any number of asymmetrical Van der Pol oscillators coupled together by a linear 
network comprising parallel resistive, capacitive and inductive elements (Fig. 18 from 
Ref. [88]). The method was successfully used to predict oscillation frequencies and har- 
monic content for the human, small intestine electrical activity. Further details of the 
analysis and computer simulations of the Van der Pol oscillators are found in the earlier 
papers[87-961. The original paper of Van der Pol is Ref. [97], and a generalized Van der 
Pol equation was published subsequently by Nijenhuis[98]. 

A more general formalism for biological oscillators was proposed by Rosen[99], based 
on activation-inhibition functions. Thus, if one considers a general “dynamical system”, 

2 = fi(,Kl, . . . , .K,), 

.x~ is said to activate xi in a state (x?, . . . , .rt) if the derivative ?U&~~(drJdt) = Uij(.$, . . . 
, xz) is positive[lOO], and xi inhibits .Ti if this derivative is negative when evaluated in the 
state (x?, . . . , ~2). Therefore, the functions u&,, . . . , x,) = alL$(drJdt) specify the 
relations of activation and inhibition between the state variables. For a harmonic oscillator 
drldt = y and dyldt = -x; its activation-inhibition functions are Us, = 0, lllZ = 1, uIl 
= - 1 and 11z2 = 0[99]. If one represents the state variables .Y and y by nodes and the 
functions ltij by directed paths (or channels), joining the state variables, then the acti- 
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Fig. 16. Single asymmetrical Van der Pol oscillator with E = 1.0, w = 1.25 and variable k (according to 
Linkens[86]). 

vation-inhibition pattern or graph of an undamped harmonic oscillator is 

-I 

0- IwY 0 

(cf. Rosen[99]). The previously considered Van der Pol 
inhibition pattern 

with UII = 0, ~12 = 1, u21 = -2x - k, and u22 = 1 - x2, while the simplest (prey- 

(11) 

oscillator has the activation- 

(12) 
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Fig. 17. Two inductively-coupled, asymmetrical Van der Pol oscillators showing the effect of changes in k for 
l = 0.1, w = 1.25. in-phase mode (according to Linkens[86]). 
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Fig. 18. A. Oscillations in an electronic network with two tunnel diodes: 1. the circuit; II. the characteristic of 
the tunnel diode. B. Entrainment in a chain of oscillators after 156 iterations of the map P: I. the phase velocity; 
II. the phase (from Ref. [IOS]). 
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predator) Volterra system has the pattern 

(13) 

-X 

As shown by Rosen[99], this representation of system dynamics in terms of activation- 
inhibiticn patterns, or graphs, is more general than the differential equation formalism of 
“dynamical systems” from which it was abstracted; this is so because the activation- 
inhibition graphs may be applicable to dynamics which are not simply representable by 
the flows of a vector fteld[99]. The activation-inhibition graphs are useful, for example, 
in considering the dynamics of complex, neural and genetic networks (see, for example, 
Rosen[lOll, and Sets. 7 and 8 in this report). An algorithm for generating activation- 
inhibition graphs for a given dynamical system could be executed by a computer, and the 
analysis of complex, neural and genetic networks with specified general properties could 
be, therefore, simulated on a computer. A discussion of activation-inhibition patterns of 
neural networks was presented by Rosen[lOl], who also pointed out that in spite of the 
formal similarities between such networks and a dynamical system, they cannot be directly 
represented by differential equations such as (10). On the other hand, genetic networks 
with two-state components, as modelled by Sugita[l02], are described in automata-the- 
oretic terms and, at the same time, have a corresponding representation as dynamical 
systems. Such distinctions between neural and genetic networks were also noted in sub- 
sequent reports[l03, 1041. 

The above discussion indicates that the modelling of biological and biochemical os- 
cillators leads to the consideration of more general formalisms such as the activation- 
inhibition graphs, networks and automata. Such concepts are discussed in some detail in 
the remaining sections and provide powerful means for approaching a wide array of bi- 
ological and biomedical problems. In a rather precise sense such formalisms are extensions 
and abstractions of the computer simulation approach to biology and medicine, and are, 
therefore, related to the preceding sections. To conclude this section we shall consider 
biological/biochemical oscillators which are modelled by networks similar to those dis- 
cussed in Sets. 6 and 7. Biological organs with essential electrical activities such as the 
brain and the heart are often modelled by analog electronic networks. A relatively simple 
example of such an electronic model is shown in Fig. 19, reproduced from Ref. [IOSI. For 
this simple circuit, one can write the complete system of differential equations: 

dV1 c, - = 
dt 

II - F(Vl), 

dV2 
c2 dt = II - F(Vz), (15) 

dVI 
L, - = 

dt 
E - V, - R(Z, + Zz), (16) 
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Lz % = E - V2 - R(Z, + Z2), (17) 

where V is the voltage, I is the current, R is the passive resistance, C is the capacitance 
and L is the inductance. The electric network in Fig. 19 exhibits “entrainment” behavior 
(phase locking), as shown by Gollub er af.[106], analogous to that of a special type of 
chemical oscillator called the Bruxellator[l07]; the Bruxellator comprises a set of hy- 
pothetical chemical reactions with periodic fluctuations in the reactant concentrations for 
at least some of the reactants. Such a Bruxellator was specified in Ref. [105] by the set 
of reactions 

A kl x, 
k-1 

(18) 

(19) 

X+ E. 
1 

(21) 

The Bruxellator[ 1071 exhibits an equilibrium point which is stable, an equilibrium point 
which is unstable, and the stable limit cycle shown in Fig. 20. 11 represents the concen- 
tration of X and w represents the concentrations of (X + I’), cp represents the “phase” 
and K represents the phase-difference parameter. Grassman and Jansen[ 1081 showed that 
a system of weakly-coupled Bruxellators gives rise both to bulk oscillations and stable- 

I J 

Q J,K 

PO 

Fig. 19. Electronic model of arterial flow in longitudinal section (from Ref. [lOj]). pj = input pressure, a = 
input flow, pk = longitudinal output pressure, Qk = longitudinal output flow, PO = transverse output pressure. 
(venous), a.k = transverse output flow, Lj = mass of blood (inductance), Rj = arterial resistance to flow 
(electrical resistance), Cj = elastance of arterial wall (capacitance) and Gi = damping of arterial wall 
(conductance). 

Fig. 20. Limit cycle of the Bruxellator for n = 5 and p = 7 (according to Ref. [107]). 
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phase wave patterns. Gollub et af.[ 1061 showed that coupled nonlinear oscillators exhibit 
both periodic behavior and “chaos” (which includes phase incoherence). Phase locking 
of weakly-coupled oscillators has been discussed in a number of general reports[ 108- 1111, 
as well as in relation to specific biological systems such as the cardiac cells[ 112-l 151, the 
respiratory system[ 1161, and coupled neurons[ 117- 1191. 

A group of more complex biochemical oscillators was recently considered which con- 
sists of closed, positive feedback loops of catalytic reactions between biopolymers; these 
were called “hypercyles” [120]. Such networks exhibit limit cycles characteristic of a 
biochemical clock. The computer solutions of the corresponding, coupled nonlinear dif- 
ferential equations describing these hypercycles showed that the period T,, of the n- 
component limit cycle is a multiple integer n of an elemental repeat period T. A diagram 
of the n-component hypercycle is reproduced in Fig. 21 from Ref. [ 1201. The corresponding 
computer solutions for representative hypercycles are shown in Figs. 22 and 23. 

The synchronous character and parametrization of the n-hypercycle is consistently 
approached within the limit cycle period T,, and after the decay of the initial transients 
there is an orderly build-up of phase-locked species amplitudes. Because of this phase 
coherence and phase-locking, the n-hypercycle is resistant to external perturbations in 
all cases for n 1 5. It is rather interesting that the catalytic feedback limit cycle has the 
time delay structure 

Yl(t) = Yk(f + (k - lh,), (22) 

Ydf) = Yk-cl(f + 7,), (23) 

where y are the amplitudes, t is the time and k is an integer. Equation (22) reflects the 
translational time invariance which is characteristic of ordered linear systems, although 
the hypercycles are nonlinear systems with internal feedback controls; it is precisely the 
feedback control which enables the nonlinear system of hypercycles to resist changes in 
the presence of external perturbations. Another interesting feature of the n-hypercycles 
uncovered by this computer analysis[ 1201 is that as n becomes large the periodic variation 
in .v deviates more and more from a sinusoidal oscillation, getting progressively closer to 
“localized” pulses. For n = 5, this feature is barely noticeable (Fig. 22a); on the other 
hand, for n = 10, the pulses are clearly visible (Fig. 22b). At the same time, the n = 10 
hypercycle is high!y nonlinear: y3 must increase 19 orders of magnitude to reach half- 
maximum within a period of 51 time units, reflecting the extreme steepness of the pulse 

(A) +I +I 1 N 
L_ 211 + I, 

K 

(A)+lN+IN_l --L 21+1 N N-1 

A B 

Fig. 21. Representation of the basic mechanism of catalytic hypercycles (according to Ref. [120]). Circles refer 
to self-instruction or autocatalysis and single arrows indicate a catalytic reaction. The network (B) of second- 
order autocatalytic reactions (A) forming a closed loop is called a hypercycle. 
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HYPERCYCLE ACTIVITY 

Fig. 22. Hypercycle activity for n = 5 (A) and n = 10 
(B) (according to Ref. [ 1201). 
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Fig. 23. Limit cycles found by numerical integration 
for a k = 4 hypercycle (according to Ref. [120]). A. 8, 
= e2 = 8, = eJ = 0.50; B. 8, = ez = e3 = e4 = 0.25; 
C. 8, = ez = 8, = e1 = 0.50, but with a different 
equation from that used to calculate A. 

shapes in Fig. 22b. The computer solution for the n = 13 hypercycle (Fig. 23) compares 
very favorably with the approximate, analytical solution (Table II in Ref. [120], p. 350), 
suggesting that computer solutions of the exact equations can also be trusted for higher 
n values. An elementary hypercycle was previously introduced by Eigen and Schus- 
ter[l21], with the purpose of reducing the complicated multistep polynucleotide replication 
and translation processes to the single, overall biochemical reactions. The limit cycles of 
realistic hypercycles, however, are smaller, in general, than those of elementary hyper- 
cycles and approach them in the limit of vanishingly small concentration (“infinite 
dilution”). 

The treatments of the electronic and biochemical oscillators discussed above proceed 
by solving systems of differential equations and then by analysis in detail of the analytical 
or computer solutions. Alternative approaches by means of activation-inhibition graphs 
or automata-theoretic means are more generally applicable, even to very complex net- 
works, and can provide insights into the complex oscillatory behavior of biological sys- 
tems, as discussed in Sets. 6 and 7. 

6. MODELS OF NERVE CELLS 

Neurophysiology has been a very fertile field for the application of mathematical mod- 
elling and computers to physiological problems. The celebrated work of Hodgkin and 
Huxley[l221 is an outstanding example of the precision of mathematical modelling and 
its power in unraveling the complex interactions amongst the components of nerve mem- 
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branes. The recent construction of high-speed digital computers has further stimulated 
the development of sophisticated neural models. At the same time, the ease with which 
differential equations of a neural model can be solved numerically with a computer might 
suggest that mathematical analysis without a computer is redundant; however. this is not 
so because a complex nonlinear model of a neuron will often have solutions that are 
remarkably sensitive to one or more parameter values[ll3]. Furthermore, the fact that 
the solutions of certain differential equations resemble an observed behavior of the neuron 
does not imply that the model gives an accurate representation of the mechanism causing 
that behavior. A model is considered to be adequate only if it can be used to make 
predictions that can be experimentally tested, and if the results of such testing are in 
agreement with the predictions of the model. As discussed by Plant[1231, one has to 
supplement the computer and quantitative analysis of a model with mathematical tech- 
niques from the qualitative theory of differential equations (which are not programmed 
in the computer). 

The simple case of bursting “pacemaker” neurons[l?3], which occur for example in 
the abdominal ganglia of snails and slugs, was considered from the standpoint of this 
qualitative theory. Such nerve cells as the pacemakers generate “bursts” of action po- 
tentials separated by intervals of lower or zero activity (Fig. 24); this behavior is observed 
even in isolated cells, in the absence of any external input. One of the important questions 
considered for such systems is the modelling and separation of electrical activity other 
than the action potentials in the burst. Experiments with tetrodotoxin (TTX) added to 
pacemaker nerve cells have shown that the action potentials gradually disappear and that 
only the TTX-insensitive “slow-wave” signals are left behind. The mechanism(s) for 
generating such slow-wave potentials can be identified by phase-plane analysis[ 1231. Take 
for example the mechanism of generating a voltage which contributes to its own oscillation, 
or the so-called regenerative behavior in the Hodgkin-Huxley model. The corresponding 
“autonomous” system is represented by the differential equations 

dV 
- = f”(V, .r), 
dt 

d.r 
-& = f.r(V, .r). (24) 

where x is the variable which the voltage V “oscillates against”. The behavior of the 
solutions of these equations can be followed by projecting the three-dimensional plot of 
V as a function of time t onto the (V, x) plane or “phase plane”, (Figs. 25 and 26). The 
solution of this model is a periodic oscillation such as the slow wave when the curve in 
Fig. 26 is closed. The curve is then called a limit cycle. A part of the slow-wave limit 
cycle will be below the threshold for action potentials, and the other part will be above. 
as shown in Fig. 26. If a brief perturbation, such as a strong hyperpolarizing current pulse 
is injected into the nerve cell at various times during the burst, the regenerative model 
predicts that the time interval required to return to the next burst will entirely depend on 
the point in the previous burst at which the impulse was applied. Furthermore, the impulse 
should be sufficiently strong to temporarily “kill” the burst. Strumwasser[l241 performed 
such an experiment and found that the results agreed with the predictions of the regen- 
erative model: therefore, it is likely that the major component of the generation process 
of the slow wave in pacemaker nerve cells is a regenerative one, as represented by Eq. 
(24), and discussed in Ref. [123]. Plant[123] went further than the phase-plane analysis. 
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Fig. 24. Action potentials of nerve cells that serve as pacemakers. A. TTX-insensitive “slow-wave” (from Ref. 
11231). 9. PTZ (pentylenetetrazol) effects on Aplysia neurons (from Ref. [126]): A, - upon addition of 0.5% PTZ 
the cell depolarizes and fires bursts of 2-3 spikes triggered by slow oscillations: A? - 3 min later. damped 
paroxysmal discharges; B, - control experiment by voltage-clamped LGC cell in saline (no PTZ added): BZ - 
same as BI but with PTZ added. Note the slowly developing current (I trace), and the slow tail current produced 
by IO set depolarizing or hyperpolarizing voltage pulses (V trace). Holding potential: -45 mV: voltage pulses: 
6 and 12 mV. Horizontal bars: 10 sec. 

in an attempt to identify the variable X, and employed singular perturbation theory. He 
proposed that the slow wave is generated by ions moving down their electrochemical 
gradients in response to voltage-dependent conductance changes, very similar to the 
Hodgkin-Huxley model[ 1221. With the assumptions of neglible leakage conductance and 
very slow conductance components, inwardly and outwardly flowing ions, the analysis 
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Fig. 25. Phase-plane representation (A) of the potential Kr. .v. ; ) as a function of time I and (B) \‘(x) for different 
values of I. (according to Ref. [120], redrawn figure). 

Fig. 26. Limit cycle and null points in the phase-plane representation (according to Ref. [IlO]. 

leads to the Van der Pol equations, which we already discussed in Sec. 5: 

dV 
- = v - y - x + I, 
dt 

dr 
- = r( v + a - 6x), 
dt (25) 

where a, b and I are constants. The corresponding phase-plane analysis is represented in 
Fig. 27, together with the stable limit cycle solution (dashed line in Fig. 26). Introducing 
s = t-t, Eqs. (25) become 

dV V’ 
r-=V---x+1, 

ds 3 

dr 
- = V + a - bx. 
ds (26) 
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Fig. 17. A and B. Topological portraits of the fast dynamics of Aplysia neurons obtained by numerical integration 
for two different time instants (from Ref. (2511). C. Limit cycle and threshold in the phase-plane representation 
of the voltage (D) of Aplysia neurons (according to Ref. [120]). 

In the limiting case of r = 0, called the “singular perturbation” of Eq. (26). the solution 
in the phase plane jumps from one point of the nullcline (dridt = 0.0 and dV/dt = 0.0 
curve) to another point on the same curve, in a precisely defined manner. Furthermore, 
the solution of Eq. (26) for r small but nonzero is close to the singular perturbation solution. 
The singular perturbation analysis leads to the conclusions that if the slow wave is gen- 
erated by the interaction of an outward current with very slow kinetics and an inward 
current with faster kinetics, then the effect of an injected, steady depolarizing current 
will be to decrease the amplitude of the slow wave; on the other hand, a hyperpolarizing 
current will increase the amplitude of the slow wave. The experiments of Mathiew and 
Roberge[l25] showed that the Aplysia Rl5 cell has a decreased slow wave when a de- 
polarizing current is injected into the cell, and therefore, suggest that such a mechanism 
is operating in the Aplysia Rl5 cell. The outwardly moving ion, potassium. would carry 
the very slowly changing current and, according to the mathematical analysis, should 
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have activation kinetics. Therefore, the nerve cell membrane conductance should increase 
gradually as the burst continues, but should also gradually decrease as the interburst 
interval increases. Both predictions of this nerve model were experimentally verified by 
Junge and Stephens[ 1761. 

With this solution for the slow-wave component of the potential, one can write the 
general, global equation 

dV 
- = (action potential) + (slow wave), 
dt 

(27) 

and find the numerical solution for the action potentials with a computer by employing 
the well-established Hodgkin-Huxley equations[ 1221. Computer generated solutions, ob- 
tained in this manner, were presented in Refs. [127-1283; at this point, one might be 
tempted to consider that the model adequately describes the behavior of the pacemaker 
nerve cells. Two important aspects have been, however, omitted in this analysis. The 
first omission is the presence of a hysteresis phenomenon in the Hodgkin-Huxley equa- 
tions, and was found by Hassard[l29]; a periodic solution of the equations is unstable 
and, therefore, it is never seen in computer analyses. By employing sophisticated mathe- 
matical techniques, Hassard[ 1291 and Rinzei[ 1301 calculated the unstable solution which 
corresponds to a subcritical bifurcation, occurring at the threshold steady current. As a 
consequence of hysteresis, for a certain range of current values, there are also two stable 
solutions which exist simultaneously: a rest (or equilibrium) solution and an oscillatory 
(or limit cycle) solution. A stimulus can cause the system to move from one solution to 
the other, as indeed observed experimentally. The second aspect is the involvement of 
calcium ions which plays a major role in the pacemaker oscillation[ 13 11. The model should 
therefore include a calcium-dependent potassium conductance; the corresponding equa- 
tion describing the flow of calcium ions into the nerve cell is 

and should be considered in conjunction with Eq. (26). In the above equation, c is the 
concentration of calcium ions in the immediate neighborhood of the nerve membrane. I,- 
is the ionic calcium “current” through the nerve membrane and ki, k. are constants. One 
finds that the solution for c is[l23] 

c = G(V) = (w(V) + Z)/(M’( V) - go), (29) 

where \v( V) = gjy( V) (1 - V). It is interesting that the equation for the c nullcline is 
similar to that of the V nullcline in the initial model (without calcium ions), and that the 
refined model [Eq. (29)], which incorporates the calcium-dependent potassium channel. 
exhibits similar properties to those of the initial model. 

Traditional models of the neuron are essentially linear systems with a threshold which 
generates an output whenever the weighted sum of the inputs exceeds the threshold. The 
more recent models attempt to include additional processes such as nerve pulse inter- 
actions[ 1321 and time-code to space-code translations on the axon, leading to the concept 
of a “multiplex” neuron[l33]. The interactions of pulses travelling along a single fiber 
lead to velocity dispersion, while the propagation of pairs of pulses through a branching 
region leads to quantum pulse code transformations which involve the loss of entire pulses 
at axonal bifurcations. Even more complex interactions seem to occur between pulses 
on parallel fibers through which those pulses may form a pulse crssentb!\[l32]. The hy- 



Computer models and automata theory in biology and medicine 

(A): PULSE ASSEMBLY 

1539 

EXTERNAL CURRENT 

- -- --- --- 
--_- - --- 

A 
DIRECTION OF PROPAGATION 

(B): NERVE BIFURCATION 

i- 0,866cm t I.271 cm .pd 

(C): ACTION POTENTIALS NEAR BIFURCATION 

1 mr./cm- 

Fig. 7-8. Nerve pulse interactions: (A) structure of a “pulse assembly” ; (B) representation of a nerve bifurcation; 
(C) action potentials affected by the bifurcation. (From Ref. [131]). 

pathetical structure of such a pulse assembly is sketched in Fig. 28a, where the longitudinal 
pulse locking at a given time interval is acting between pulses B and D, and also between 
pulses D and E; in addition, a transverse pulse locking is acting between pulses A. B and 
C, and also between pulses E and F. Such a mechanism would provide a means for 
synchronizing the component pulses[ 1321, as required by Waxman’s “multiplex” neu- 
ron[133]. If considered in neural networks, the pulse assembly would give rise to very 
complex behavior, perhaps not unlike the observations of Scheibel and Scheibel[l34] who 
reported that the appearance of nerve bundle complexes seemed closely time locked to 
the initial developments of discrete items of motor performance in cats. Bundles were 
formed during the process of maturation by rearrangements of the dendrite shafts in 
various parts of the nervous system, such as the brain stem reticular core, the cerebral 
ccrtex, the nucleus reticularis thalami and the ventral horn of the spinal cord. 
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7. COMPUTER SIMULATION AND MATHEMATICAL MODELS OF NEURAL 
NETWORKS 

A. Stochastic processes in neurophysiologv 

From the earlv models of neural activity presented by Rashevsky[l35, 1361 and 
McCulloch and Pitts[Z], the investigation of the properties of neural networks has de- 
veloped into an area of intense research with special emphasis on stochastic aspects[ 1371 
and random nets[138]. Most modern concepts of neural networks are based on measure- 
ments of their electrical activity. The recorded potential as a function of time, V(t), may 
be the result of the activity of a large number of neurons, as in the recording of an 
electroencephalogram (EEG). One of the interesting computational problems arising in 
connection with EEG interpretation is the power requirement and distribution in such a 
neural network[ 1391. Such analyses indicate that one needs to have as an input to network 
computation, the intra- and extracellular recordings of electrical activity for at least a pair 
of nerve cells; cellular neurophysiology is in fact based on measurements of electrical 
activity of single cells. Because of technical limitations, the observation of dynamic pat- 
terns of activity of the nervous system is difficult, at best; therefore, stochastic models 
of neural networks are to a large extent deductively based on indirect evidence. Several 
reviews on stochastic processes in neurophysiology have appeared[ 140-1431 which in- 
dicate that various types of stochastic processes need to be considered in neurophysiology. 
One class of neurophysiological problems is concerned with the time series of action 
potentials, or the spike-train activity of neurons. 

Repetitive action potentials, such as those in Fig . 29, are considered as a “point pro- 
cess”, and one important problem is the generation of a continuous process (for example, 
nerve membrane noise) from point processes. For a membrane area which has N inde- 
pendent ionic channels, one can calculate the spectral densities of voltage S,,.(w) and 
current fluctuations S,(w). Furthermore, one can derive a multistate model in which there 
is only one conducting state and a number of other states, all of zero conductance. Such 
a model is in effect a gated channel with more than one gate per channel, as in the Hodgkin 
and Huxley model[ 1221 for the K’ conductance of the squid axon. The transition diagram 
of such a channel with 16 microstates is illustrated in Fig. 30 from Ref. [ 137j. If the activity 
of a channel is like a random telegraph wave, with only one conducting state, the opening 
and closing gate processes are independent stochastic processes; the activity of a channel 
can be considered as a sequence of short, random duration pulses. 

A major theme in cellular neurophysiology is the coding of analog signals as a train of 
action potentials. This corresponds to a transformation between continuous and point 
processes. A one-dimensional model for the flicker noise was proposed by Holden and 
Rubis, as illustrated in Fig. 3 1. The model involves nearest-neighbor interactions between 
channels. When a channel opens, it leads to a pulse in the membrane current. The “spec- 
trum” of the pulse train can be, therefore, calculated as the spectrum of the point process 
multiplied by the modulus squared of the Fourier transform of the pulses. A random 
process obtained by superposition of N point processes corresponding to channels will 

I 100 mV uUl_ 1 I I I- 

Fig. 29. Action potentials recorded simultaneously from two endogeneously active snail neurons. (From Ref. 
[IZOI.) 
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Fig. 30. iMicrostates for a Hodgkin-Huxley K--selective gated channel (according to Ref. [137]). 
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Fig. 3 1. One-dimensional model for the generation of flicker noise, including nearest-neighbor interactions (from 
Ref. [ 1371). 
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be characterized by an autocorrelation function 

R(T) = NRii(T) f lV(Ri.i,l(T) + Ri+,.i(T)), (30) 

with T a real number and Rii the autocorrelation function of the point process associated 
with each channel; Ri,;+ 1 and Ri, ,.i are the cross-correlation functions of a process with 
the right- and left-hand neighbors in the one-dimensional model in Fig. 3 1. The calculation 
of both the autocorrelation and cross-correlation functions of a network involve the use 
of a digital computer. It can be shown, however, analytically[l37] that R is of the form 

R(T) = &’ 1 + v) + &“I L v), (31) 

where c and d are constants. 
Using a Laplace transform, the power spectrum of the current can be calculated from 

R, and can be shown to have a dependence W-” on frequency, with a values between 0 
and 1, for larger values of time[137]. Such a model accounts for the steady-state flicker 
noise component of the spectral density of fluctuations in ionic current of a neural network; 
the model also predicted the presence of retardation currents, that is, slowly inactivating 
currents with an anomalously low temperature dependence. Local accumulation, or de- 
pletion of ions, close to the nerve membrane surface may, however, explain the obser- 
vation of such slow inactivation processes in a neural network. 

B. Reactiorz-diffiuion net\t*orks 

The “traditional” models of the brain have considered the neuron as a simple logic 
element of the on-off switch type. Such models are often statistical in nature, and are 
only applicable to large neural networks. A review of such models was provided by 
Amari[144]. The opposite case of a single but physiologically realistic neuron was con- 
sidered by Kirby and Conrad[l45]. The latter is focusing on the biochemical processes 
that may be relevant to information processing by a neuron, or by a neural network. The 
microscopic features of such a network model are the enzymatic processes in the neuron, 
while the macroscopic properties are the membrane isopotentials. Kirby and Conrad[ 1451 
presented the results of computer simulations of an “enzymatic neuron”, considered as 
a reaction-diffusion network which simulates the cyclic nucleotide system. Its implications 
for selectional learning and the relation to conventional “two-factor” models were also 
discussed. A fundamental property of the reaction-diffusion neuron is its “dual dynam- 
ics”, related to the correspondence between its microscopic and macroscopic computation 
modes. The enzymatic neuron model is defined as an abstract membrane, tessellated into 
a finite number of compartments, k = 1, 2, . . . , n. Each compartment X- exists in a 
definite state Q which may change in time. all is defined as the state of the compartment 
k at time t; the compartments are subject to external binary inputs xk(t) that may change 
their state. The neuron is also endowed with “excitases” which are enzyme-like elements 
that respond to the state and determine if the neuron fires. Furthermore, the enzymatic 
neuron has two basic properties: 

1. Its internal state LI is a linear transformation of the input signals at any given time 
t. 

2. Each compartment containing an excitase has a certain threshold and a ceiling; if 
the state L!k exceeds the threshold but does not exceed the ceiling, then the entire 
neuron will fire. 

Networks of enzymatic neurons were envisaged which differ in their excitase contents 
but share the threshold and ceiling values, as well as the contributions ItSki of inputs -Vi 
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to the states 11~. Evolutionary learning algorithms[ 1461 varied the excitase configurations 
and selected only those neurons which exhibited responses appropriately tuned to the 
environment coded by x(t). An illustration of the enzymatic neuron and its tessellated 
membrane is reproduced in Fig. 31 from Ref. [l45]. The reaction-diffusion network[l471 
is an oriented graph. the nodes of which contain the states of the network. Each node k 
has a set of neighbors V(k). The transition rule of such a system is a local one, that is 
the trajectory of a node is influenced only by the external inputs to that node, and by the 
states of its neighbors. This rule has the form 

Each lrL(t) is the state of the node, or compartment X-. ~~~ are the “transfer coefficients” 
of the reaction-diffusion network. A realization of this model was then proposed based 
on the hypothesis of cyclic 3’.5’-monophosphate (CAMP). Cyclic AMP has been shown 
to be involved in a chain of reactions which affect the membrane potential of the neu- 
ron[ 148, 1191. The hypothetical postsynaptic actions of cyclic AMP are illustrated in Fig. 
33 from Ref. [145]. Depolarization of the presynaptic membrane causes the neurotrans- 
mitter to be released in the synapse where it may bind to receptor molecules on the 

Fig. 32. The enzymatic neuron model[llj]. A. Dotted lines indicate the influence of binary input signals xc, on 
an arbitrary compartment Ic: the strength of such an influence is given by the matrix coefficient N’L,, (according 

to Ref. [1411). B. Postsynaptic actions of cyclic AMP in the enzymatic neuron model. 

; 1 ; 1 t 1’ 
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Fig. 33. Scheme of connections of a planar lattice for a special “random” network (from Ref.1 [ 1781). A module 
takes its inputs and outputs among its neighbors; the structure is completed at the boundaries by connecting 
symmetrical nodes. Directions of arrows have period :! and yield the shortest feedback loops in the network. 
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postsynaptic surface. The occupied receptors are then considered to diffuse along the 
lipid bilayer surface to reach an adenylate cyclase enzyme which triggers the formation 
of CAMP from ATP. The input, therefore, triggers a sharp CAMP gradient which lasts for 
less than IO msec. Subsequently. such a sharp gradient is dissipated as CAMP diffuses 
across the membrane into the cell. Phosphodiesterase brakes down the diffused CAMP 
inside the neuron. and one of these processes is Ca’- activated. As the neuronal membrane 
is depolarized. there is a sudden influx of Ca’- ions which activates a phosphodiesterase 
that breaks down the cyclic nucleotide. The effect of neuron firing on its state was taken 
to be 

F(r) = 1.0 3 ~r(t + dr) = /IU(?). with 0 < /I < I, 

and F being the binary firing function. Thus, in this neuronal model. the state variable is 
the CAMP concentration. By assumming Michaelis-Menten kinetics for the phosphodi- 
esterase activity, the reaction term becomes 

RL(ci) = AL - uxP/(u~ + K). (33) 

where P is the maximum rate of CAMP hydrolysis, Al, is the basal rate of CAMP production 
and K is the saturation constant. The reaction-diffusion network associated with the en- 
zymatic neuron is subject to the basic equations [I451 

dllk(r) - = AA - 
PXllk ‘I 

dt 
(I,a(t) + K) + 2 &(rr;(t) - [[x(O). 

i = 0 

ux(t + dt) = r/k(t) ((II - l)F(r) + I) + f.u,(t). (35) 

F(t) = max H(~~(t)c~ - 0,). (36) 

Equation (34) is summed over all “compartment”. or synapse, interactions. In Eq. (36). 
H is the threshold Heaviside function (H = I for positive values of the argument and 0 
elsewhere). Several computer simulations of this reaction-diffusion network were tested 
using both CSMP and FORTRAN programs. A general simulation used a patch of mem- 
brane tessellated into a 6 x 6 array of compartments, as shown in Fig. 32. In over 100 
simulations of the enzymatic neuron, the model exhibited one general type of behavior: 
the frequency of firing is directly related to the distance between the kinases and those 
compartments with high cyclase activity. An interesting property of this reaction-diffusion 
network (the “enzymatic neuron”) is that local disturbances are rapidly dissipated. As 
a result, autonomous firing of the neuron is observed in the absence of external signals 
when kinase enzymes are present in a particular compartment which has a permanently 
“excited” level of adenylate cyclase activity (which causes a constant, local production 
of CAMP). Equations (34)-(36) do not provide. however, a description of the information- 
processing capabilities of the reaction-diffusion network. To complete the reaction-dif- 
fusion network model, Kampfner and Conrad[ 1461 proposed selectional algorithms which 
result from a competition between similar networks in performing a specified task. The 
only difference allowed between networks is in their excitase configuration ;; only those 
networks whose configuration produces the most appropriate response function will sur- 
vive. The set of all inputs to the networks is a space X, which is the set of all maps s: T 
- {O, I}“. where T is the time continuum. The output space Y of the neuron is defined 
as the set of all maps F: T --, (0, I}. and the reaction-diffusion network in an excitase 
configuration ; is said “to compute a map”. R(c): X ---, Y. Clearly, such a definition is 
very similar to that of an automaton, as discussed in Sec. IO. This is not surprising since 
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neural networks were also shown to be represented by metabolic-replication [(&I, R)] 
systems[ IjO]. which have corresponding automata representations[ Ij I-l%]. The set of 
such computations of the reaction-diffusion network R will range over all n-compartment 
reaction-diffusion neurons that are subject to Eqs. (3-t)-(36). The computational power 
of such neural networks is probably less than that of an universal Turing machine since 
the latter can compute any finite state automaton[lSj], such as the enzymatic neuron. 
However, Kirby and Conrad proposed that the reaction-diffusion neurons should have a 
broader class of inputs X: T* {O. I}” than a discrete, structureless set, so that continuous 
dynamics can perform more complex computations than a universal Turing machine. With 
the introduction of such continuous dynamics, the reaction-diffusion neuron becomes 
somewhat similar to Rashevsky’s “two-factor system”[ 1561. The states of two-factor 
systems are determined by pairs of real numbers (s, , 4:) which evolve according to the 
equations 

(37) 

as discussed in Ref. [ 1571. The variable I in Eq. (37) is an external “forcing” parameter 
acting on the system such that the system “fires” when ql > 8qZ. with 8 being a threshold. 
By setting dqJdt = 0, the two-factor model acts like the enzymatic neuron: ql would be 
the CAMP, hI would represent a phosphodiesterase and q1 would be the inverse of the 
protein kinase concentration. The distinctive feature of the enzymatic neuron is its ability 
to carry out many local, microscopic computations prior to undergoing a global (macro- 
scopic) state change. Therefore, the reaction-diffusion neuron is primarily a model of 
transient processes which are extremely sensitive to input timing. If nucleotide levels are 
near threshold, the inputs into an autonomously firing neuron are essentially ignored but 
they will reset the firing rhythm if they arrive when compartments have low concentrations 
of nucleotides. Furthermore, the continuous-time version of the neuron in the reaction- 
diffusion network allows for additional computational power; the class of computations 
generated by a reaction-diffusion neuron is associated with performance in selectional 
learning algorithms. The most distinct feature of the reaction-diffusion model is that the 
mapping, or coding, from microscopic inputs to macroscopic outputs occurs at the mi- 
croscopic level via selective, continuous processes that are being controlled, however. 
by a discrete parameter-the kinase configuration. The broader meaning of this interesting 
model of the neuron is that the medium of computation is highly significant: this biological 
computation style was considered to be quite distinct from that of artificial intelligence. 
in the sense of being more powerful than finite-state logic devices in performing higher 
level tasks (also more efficient and adaptable). The future study of neural networks made 
of enzymatic neurons will be undoubtedly a challenging task for computer simulations. 

C. Cycle structure, Boolean mappings and self-organization of binary 
random netw*orks 

Random switching nets are being extensively used as models of biological systems. 
Perhaps, the most important example is that of neural net models of the central nervous 
system which were developed from formal, McCulloch and Pitts[136] “neurons”. The 
linear case was originally discussed by Pitts[l58], and a nonlinear, stochastic extension 
was analyzed by Landahl, McCulloch and Pitts[l59]. More recently, Kauffman[l60-1641 
has proposed binary random nets as models of the cell genome. Reviews of the formal, 
neural networks were presented by Griffith[l65], Arbib[166], and Szentagothai and 
Arbib[l67]. Arbib[ 1681 showed that a network of on-off formal neurons can always be 
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constructed to simulate any given finite-state sequential machine. or automaton. Even 
the randomly connected networks of formal neurons are sufficiently complex so that their 
study is “an empirical exploration using computer models” (that is. by computer simu- 
lation. cf. Muir and Warner[ 1691. Harth rt (I/.[ 170). Xmari[ I-L!]). Studies of actual neural 
systems have. however, focused on simpler networks which exhibit regularity. or sym- 
metry. Examples are studies of cerebellum and retina where structural regularities were 
discovered. Another example is that of a one-dimensional chain modelling the propagation 
of the alpha rhythm[l71]. In such a model. the inhibition strength is a function of the 
distance between neurons. Similarly, in a discrete. planar model of lateral inhibition, 
Hartline and Ratcliffll721 assummed that the inhibition is distance dependent. Sher- 
lock[ 1731 noted that the analytical limitations in the study of random switching networks 
are the major hindrance in obtaining biologically relevant so!utions. However. in certain 
cases, such as the completely random switching net, a complete mathematical analysis 
was reported. Other complete studies include those of neural networks as reviewed by 
Rashevsky[l35], von Foerster[l74] and Stubbs[l75]. as well as the propagation of exci- 
tation in the myocardium[ 1761. 

Kauffman! 1621 and Walker and Gelfand[ 1771 proved that completely random Boolean 
networks with only two or three inputs per module Lvere much more stable than networks 
made of modules with larger numbers of inputs per module. 

A random Boolean network is usually defined as a set of interconnected IV elements, 
or modules. Each module has binary response (0 or I) to inputs. and at any discrete instant 
of time t the net is in one of 2” distinct states. The net operates on a discrete time scale 
such that its state at a time t determines precisely its state at time (I + I ). The completely 
random net is in a state which is selected as equally probable from its 2,Y possible states. 
Formally, the net can be defined[ 1691 as a pair (X. b). where X is a set and 6: X x X - 
R. is a function from the product X x X to the set of real numbers R. Each element of 
X is also called a node of the net and 6 is the connection function of the net. A state of 
N is a function I: X- A C R. do. with .Y E X. is called the rrc,fi\‘ity of .r. and 0 denotes 
the set of states of the net. 

If X is a set of neurons and 6 (.r, .u’) is chosen as a measure of how strongly is the 
neuron s’ connected with neuron .Y. then the activity set of formal, McCulloch-Pitts 
neurons is A = (0. I}. Any net can be alternatively described in terms of its transition 
matrix[l78]: if the net states are placed in one-to-one correspondence with integers ranging 
from I to Z.\. one can form a 2,” x 2,” matrix T whose elements are 

Tii= : 
i 

if state i follows state j, 
otherwise. 

This transition matrix T can be also viewed as a transformation from the set into itself, 
T: R --z Q 

Computer simulations of such random Boolean nets are aimed at determining their 
“stability” and behavioral pattern. More specifically. since the number of net states is 
finite. and the state transition is deterministic, after starting the net in an initial state it 
will eventually go through a sequence of states and reach again the initial state; such a 
sequence of net states is called a cycle. The number of distinct states in the cycle is called 
the cycle length. Prior to cycling one has a “run-in” sequence. Gelfandll781 summarized 
in a recent review a series of basic properties of completely random Boolean nets: 

I. the expected number of transient states of the net is of the order of Zv: 
2. the expected number of cyclic states is of the order Z.v”; 
3. the expected number of cycles is of the order N: 
4. the probability that any particular state is cyclic is of the order 2 --.Y2: 
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- 1 . the expected number of cycles of length I’ converges to v ’ : 
6. the expected number of states on cycles of length I’ converges to I: 
7. the expected cycle length is of the order tLL’-‘) 2,V ?. 
Note that each module of a network is an automaton which computes its internal state 

with a Boolean function of two variables-its input signals. 
An alternative matrix approach to random Boolean networks was proposed by Fogel- 

man-Soulie er nl.[ 1791 who considered a network specified by the incidence matrix A with 
N columns and lines. The element A,, of A is I .O if module i has an input from module j 
and is zero otherwise. An element F, of the Boolean function matrix specifies the number 
of the Boolean function which is used to compute the output of module i (see Table I in 
Ref. [179], p. 718). Starting with an initial condition matrix X,,. which describes the states 
of all modules at time I = 0, the matrices X, . X1. . . , X,,, representing the state of the 
network at time I. 2. . . . , II, can be computed using the Boolean functions. When the 
network enters a limit cycle, after a period T. one has X,,, _ 7 = A’,,,. Kauffman[l621 showed 
that random nets (with matrices A. F and X,, set at random) with connectivity I; = 2 evolve 
toward limit cycles in relatively short periods. During the limit cycles there are some 
modules which change state at least once: these are called “oscillating” modules. An 
aggregate of closely connected oscillating modules was called a slrhr~et by Atlan et a[.[ 1801. 
In the particular case of the network of a plane lattice with connections between nearest 
neighbors such as the one shown illustrated in Fig. _ 33. the system evolves under Boolean 
mappings tovvard an organization of independent subnets uhere modules belonging to 
different subnets behave as if they had no functional modules. The network undergoes a 
partial loss of its random character. In the initial state, the network is random and its 
internal connections are also random. Once the network reaches its limit cycle, the os- 
cillation is no longer random and the network has become self-organized. A strong local 
correlation is present: a module has a high probability to oscillate if its neighbors are 
oscillating. Such subnet organization is relatively stable against perturbations, including 
the application of external noise to one module[l80]. or even “amputation”. The orga- 
nization into subnets exists, in general, for random connection networks and not only for 
planar lattices. A classification of the Boolean mappings according to their effect on the 
dynamical properties of random networks is possible[l79, 1811 and it shows some inter- 
esting correlations with the cycle structure of homogeneous networks. For example, Boo- 
lean mappings of type 6 (XOR) or 9 (equivalence) (see Table 3) lead to a period of 2” - 
I time units in a homogeneous network if the gates are appropriately selected as feedback 
inputs. The systems thus defined are pseudorandom sequence generators[l79]. These 
networks have very different behavior from Kauffman networks even though they are 
built with a random distribution of mappings and connections; there exists no stable com- 
ponent and the period of the limit cycle increases proportionally with 3,V. One-input trans- 
fer mappings, on the other hand, iead to a majority of elements oscillating during the limit 
cycles, and the period of the network is the least common multiple of the periods of the 
subnetworks[ 1791. Yet another type of mappings provide an algorithm for obtaining the 
maximum period of a homogeneous network operating either with AND or OR; such 
reducing mappings are allowing for a decomposition of the network into fully connected 
subnetworks. The dynamics of the network can be represented in this case in matrix form 

x, = AX,- ,. or X, = A’X,,, 

where X0 is the matrix of the initial conditions. The periods of such networks are related 
to the number and size of loops in the network: according to Thomas[l81], the complexity 
of the state transition graphs depends on the complexity of the feedback loops in the 
network. For inhomogeneous networks a more involved three-step algorithm is required 
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Table 3. Boolean functions numbered 0. . 15 according to the decimal 
representation of their table of values 

1 0 I 
I 

00 0 
IO 0 

0 Contradiction 

2 
I 0 I 

00 I 
IO 0 

4z 

2 
I 0 I 

00 0 
IO I 

8 AND 

2 
I 0 I 

00 I 
IO I 

I2 12 

- 0 ’ I 
I 

0 I 0 
IO 0 

I NOR 

2 
I 0 I 

OI I 
IO 0 

5 t, 

1 
I 0 I 

0 I 0 
IO I 

9 Equivalence 

z 
I 0 I 

01 I 
IO I 

13 * 

2 G 
I 

0 0 
I I 

23 

z 
I 0 

0 0 
I I 

6 XOR 

2 
I 0 

0 0 
I I 

IO f, 

2 
I 0 

0 0 
I I 

I4 OR 

0 
0 

I 

I 
0 

I 

0 

I 

I 

’ 0 
I - 

I 

0 I 0 
I I 0 

!I: 

2 
I 0 I 

01 I 
I I 0 

7 SAND 

z 
I 0 I 

0 I 0 
I I I 

ll (r 

1 

I- 0 I 
01 I 
I I I 

15 Tautolog) 

is numbered ~(2)’ + h(Z)’ + ~(2) + d. 

to follow the effects of Boolean mappings[ 1791. The first step is to decompose the network 
into fully connected subnetworks: then a search for the stable components is carried out 
by analyzing connected loops for consistency, namely, those whose connection nodes are 
in the same state. The second step was to search for the input frontier of the stable 
component. Such a frontier is made of stable elements who may have transfer or reducing 
functions as Boolean mappings. This step defines the different oscillating subnets. Finally, 
the dynamics of the oscillating subnets thus defined are directly investigated. Because 
the subnets are smaller the analysis is substantially easier. Such a Boolean mapping an- 
alysis shows also that short periods are essentially due to the presence of nodes with 
reducing or transfer mappings that allow the appearance of frontiers between oscillating 
and stable components[ 1791. 

D. Connectivity, symmetry and dyna.mics of random nets 

Connectivity of random nets has been defined in a number of different ways. reflecting 
the different approaches to network behavior. Shimbel[l82] and Rapoport[l831 defined 
the output connectivity as the number of connections sent out by each individual node 
or module in the network. They applied this concept to the study of neural networks. 
Solomonoff and Rapoport[l84] defined the total network connectivity as the fraction of 
nodes that can be reached in one or more steps from a given node. Gardner and Ashby] 1851 
showed that the stability of a network is directly related to the proportion of nodes to 
which any one node is directly connected (the *‘connectance” of the network). Another 
measure of connectivity is the expected pathlength, defined as the mean number of steps 
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between any two nodes of a network. The interrelations between the different types of 
connectivity were investigated by Stubbs and Good[ 1861. They defined an /V x :V con- 
nectivity matrix ,W for a network of N nodes. Their preferred definition of connectivity 
for a node ! of the network was the proportion of nodes to vvhich I is connected. The 
network connectivity y was then defined as the expected value of this proportion with 
respect to a probability measure defined on the smallest field containing all subsets of a 
set of N x N matrices whose row sums are equal to a constant (I. Computer simulations 
were then employed to explore the output connectivity of the neurons of the brain11861. 
The network connectivity defined as in Ref. [ 1861 was computed as a function of output 
connectivity for up to 100 000 nodes. The simulated network connectivity (Table I in Ref. 
[186]) decreased with increasing number of nodes for an output connectivity of I.0 but 
increased for output connectivities up to about 4. For output connectivities higher than 
about 5, the network connectivity was close to I .O. independently of the number of nodes. 
Computer simulation also provided the values of the expected pathlength and radius (11871. 
p. 31) as a function of the output connectivity up to 1000 (for numbers of nodes up to h 
= 10 000). For (I > I. the expected pathlength decreased with increasing output connec- 
tivity (Table II on p. 301 in Ref. (1861). The relation between the expected pathlength L 
and the connectance a/N is given by Theorem 2 in Ref. [186]. p. 299: 

If tr/iV’ - <’ > 0 when IV- *, then y > 1 and L - 1 A exp( -c). 

This theorem was verified also by numerical computation (in a computer simulation) up 
to N = 1000. If one models the human brain by a randomly connected network the number 
of nodes, the neurons. is of the order of 10’“[188]. Hunt and Stubbs[l891 determined 
experimentally that the average number of steps between two neurons is I I. With this 
value, the output connectivity of the brain for a net radius of 15 was calculated to be 
-10.5[ 1861. With this value of the output connectivity, the total connectivity of the brain 
was slightly less than 0.999999: of the IO”’ neurons in the human brain only some 
300 000 neurons would not be reached. Stubbs and Good[l86] suggested that the value 
of 10.5 for the output connectivity may mean that neural connectivity may be genetically- 
specified. 

A major concern of such direct connectivity studies of random nets is the local and 
global stability of the nets[l50- 164. 190-3951. but long-range indirect connections may 
also be important[ 196-1971. Furthermore. in real systems, regularities or symmetries do 
occur. As in the case of Boolean mappings discussed above, such symmetries are directly. 
determining the dynamics of the networks. Spatial symmetries of differentiable neural 
models were amongst the cases investigated[ 198. 1991, as were the bifurcation phenomena 
in nonlinear dynamics[100]. A group-theoretical approach to the symmetries of net dy- 
namics was recently proposed by Muir and Warner[201]. The existence of a symmetry’ 
group for a network was shown to permit ‘.motions” in which groups of neurons behave 
collectively[201]. The possibility of spontaneous symmetry breaking for homogeneous 
networks was also considered to arise as a result of external perturbations and may induce 
complex dynamics in spite of the simplicity of homogeneous networks. Such models could 
exhibit short-term memory but may be incapable of long-term memory[I!Ol. 1021. for which 
a stable cyclic pattern of activity was proposed. 

Another aspect of connectivity. which is of interest but is little investigated in the stud) 
of neural networks. is the strength of a connection between neurons: the probability for 
triggering of a neuron is related to its connections to other neurons. Muir[203] proposed 
to attach to every pair of neurons a real number representing the strength of their con- 
nection, and argued that a neural net could be treated as a group quotient. lattice-valued 
relation. A lattice-valued relation (Ivr) on a set A (such as the set of neurons) was de- 
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fined[203] as a function A: A x A ---, f.. with L being a lattice. If L = I = (0. I), with 
the partial ordering 2 one obtains a fuzzy relation on A[103]. The strength of connections 
between neurons could be represented for a neural network IV as an Ivr. f: N X N - 
L. For L = 1. this Ivr can represent a neural network with stochastic behavior (firing 
pattern). Further aspects of the Ivr theory concerning the hierarchy of biological orga- 
nization and quantitation of the strength of the relations between the components of a 
biological organism were recently discussed by Warner[ZOj]. The lvrs may be useful not 
only in the study of neural networks and hormonal control but also in the analysis of the 
genetic nets discussed in Sec. 9. For numerical lvrs the question of computing the strength 
of connections for specific classes of neural networks, or random networks, may also be 
approached with a digital computer but has not been addressed so far. 

E. N-or?: random nets 

Binary switching nets have been useful as simplified models of complex biological 
systems. Walker[ZO61 recently proposed a generalization of the Kauffman binary net]1601 
to n-at-y random nets. The n-ary random network is made of N logic elements which have 
exactly k inputs. The output of an element can be arbitrarily branched and can carry at 
a given time one of P states. Similarly, each input can carry one of P states at a given 
instant. The output state of an element in the net of time (t + I) is determined by a 
function of the state of its inputs at time t. Furthermore, all inputs in the net are inter- 
connected. Once outputs are assigned to inputs and functions are assigned to elements, 
the assignments are kept fixed while the net behavior is observed. The net behavior is 
generated in a stepwise manner from the net state and a sequence of transient states is 
produced, followed by a sequence which repeats itself. The two parts are. respectively, 
called “run-in” and “cycle” sequence, as in the case of binary nets. The length of a 
sequence is defined as the number of distinct net states in the sequence. Walker[ZO6] 
employed computer simulation to examine net behavior over a range of values of N. k 
and P. Values of N ranged from 5 to 2.50, and one hundred nets with different connections, 
etc., were simulated for each N, K and P combination: in a special case, 1000 nets were 
monitored to study the net behavior. Cycles and run-in lengths were recorded from such 
computer simulations. An example of such a computation is given in Fig. 3-I. where the 
median cycle length is plotted as a function of the log of the net size, log IV. For k = 2 
and P = 2 the median cycle lengths were somewhat different from those calculated by 
Kauffman for the binary net[l60]. The genetic control system can be considered. for 
example, as a binary net[l60]; the calculations for n-ary nets showed that small alphabet 
nets are relatively more attractive as behavioral complexity increases, but the higher- 
order nets have also higher output variety which may provide a selection advantage even 
though the alphabet size is increased. 

Although such models are well suited for size-complexity studies of neural networks, 
their applications seem to be primarily concerned with genetic control systems, or genetic 
networks. The latter are more complex than the simple, random net behavior. as discussed 
in Sec. 9. 

F. Stochastic dynamical systems 

Questions related to the behavior of neural networks[207] and the development of the 
nervous system[208] can also be approached by stochastic dynamical models. that is, by 
employing random difference and differential equations. Stochastic dynamical systems 
(SDS) can also be used to describe some of the nonequilibrium cooperative phenomena 
in open systems. Approximations of discrete stochastic models by diffusion processesl209, 
2101 also lead to stochastic differential equations. 
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Fig. 34. Median cycle length (in log scale) as a function of the net size (log A’) for selected values of the input 
connectance K, and of the output variety P. Dashed line shows the data from Kauffman[l61] for comparison. 
Straight line and full circles from Ref. [206]. 

The qualitative behavior of SDS without solving the equations has been the subject of 
studies by Friedman[Zl I], Bhattacharya[212], Hasminskii[213], Kesten and Ogura[2141, 
and Kliemann[215]. The stability of SDS was treated by Kliemann and Rumchin[2161. 
Arnold and Kliemann[217]. and Arnold et (1/.[218]. The transient behavior of SDS was 
recently discussed by Kliemann[215]. The qualitative behavior of nonlinear stochastic 
systems with colored (Markovian) noise was investigated and applications were developed 
in terms of diagrams for the state-space, transients and stationary solutions[2151, although 
the examples were noncomputable with a digital computer. 

The basic approach in previous qualitative theories of SDS was to find an appropriate 
Lyapunov function, just as in the case of deterministic systems. Kliemann’s approach]2 IS] 
was to use directly the systems and noise dynamics because this is more readily applicable 
to transient processes and stationarity in degenerate systems such as the stochastic pair 
(x, n), represented by the stochastic differentials 

du = f(.r, T) dt, 
dn = a($ dt + A(n) dW,, 

(38) 

with n being a nondegenerate diffusion process in R”‘. This qualitative SDS approach. 
although unaided by computer, is a potentially powerful tool for the investigation of re- 
action-diffusion networks as models of neural systems such as the brain. and could be of 
value to neurophysiologists for modelling the transient behavior of neural systems. 

The SDS theory is considerably more general and complex than the discrete, random 
Boolean network theory. Its relationship to the reaction-diffusion network model[ 3441 
discussed in Sec. 7B would also be of interest for further evaluation of the enzymatic 
neuron theory. 

8. COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL 
SYSTEMS 

The ability to simulate a biological organism by employing a computer is related to the 
ability of the computer to calculate the behavior of such a dynamical system, or the 
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“computability’. of the system.‘” However, the two questions of computability and simu- 
lation are not equivalent. Since the question of computability can be given a precise answer 
in terms of recursive functions. automata theory+ and dynamical systems. it will be ap- 
propriate to consider it first. The more elusive question of adequate simulation of biological 
systems by a computer will be then addressed and a possible connection between the two 
answers given vvill be considered. 

A. Arc hiologiccll sJsrous rccrrrsil~fl> cotnprirahle? 

An answer to this question was recently given by Conrad and Rosslet-]? I91 vv.ho shovv ed 
that although a system can be computation universal it may not be effectively program- 
mable if its translator has “chaotic” dynamics; such chaotic dynamics were encountered 
in certain models of biomolecular reaction kinetics[EO]. At this point. let us introduce 
the concepts of recursive function. recursive computer, computation and program in order 
to be able to formally discuss recursive computability of a system. be it biological or 
nonbiological. 

A function is called recllr.si\~e if there is an effective procedure. or computation. for 
calculating it (p. 21 I in Ref. [ 1551). 

A rcc~~rsi~~e complrter C[l55] on the alphabet Y is a partial recursive function fc: Yz 
-_j Y;. Q = y* ,, is called the set of complete states of C. (The qualifier “partial” refers 
to the fact that the recursive function may not be defined for all its values.) If at an instant 
t the computer has II registers, the jth register containing the word Y,. one can say that 
the complete sfute of the computer is the word Yr,, ..* hY,, of Q; also if the state of the 
computer C is 5 E Q at time t, the state of C will be f<.(k) at time (t + I). and ma!- be 
therefore undefined, although not necessarily so. The computer is in a halting state < E 
Q when f&t) = 5. 

A c~omputation by the computer C[ 1551 is defined as any finite sequence &,. 5,. (1. cl, 
. . . . $,, of elements of Q such that [j+, = fJ[;) for any j < n and j 3 0: E,, = fc(<,,) 
and f:(t) is defined as the end result of a computation starting with { E Q. If fc is total. 
the end result of a computation is unique. and is always defined. 

A program P for the computer C is defined[ 1551 as a pair of mappings cy: (X*)“’ - Q. 
p: Q --, (X*)” which are partial recursive on the union set (X U Y),,. a is used to read in 
the data and appropriate instructions into memory, which will continue until the com- 
putation stops: then p is used to “read” the results from the computer registers. The 
partial recursive function f: defining the computer is related to (Y, p. and a partial function 
Cp: (X*)‘r’ + (X*)“, which is said to be “computed by C with the program P". This 
relationship is given by the following commutative diagram, which also defines CP: 

f* 
C 

Q *Q 

st IB 
(x*)m- dp- - - +(x*>“, 

That is. Cr = CY O .fF o p. 

(39,) 

x The contributions made to this section by an anonymous referee are gratefully acknowledged. 
f Please also refer to Sec. 10 where basic automata theory concepts are briefly reviewed. 
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The question at the beginning of this section is. therefore. if the function Cr = CL 0 
f:. 3 p is sufficient to mimic or simulate the dynamics of any biological system. The 
argument introduced by Conrad and Rossler[219] is that the read-in function should be a 
translator with “chaos” in order to be able to simulate certain biomolecular reactions in 
a biological system. Thus. suppose that one programs a digital computer in the usual 
sense: this can be represented by the commutative diagram (39a) above, in which Q is 
the state set. or “state space”. of the computer and with the functions OL and p being 
used by the programmer to implement the function Cr. The idea of the Conrad-RGssler 
paper[219] was to interpose a “chaotic translator” between the programmer and the com- 
puter: such a chaotic translator can be constructed, or envisioned, as follows. Let I: be 
a map X + R’ (with R’ being the three-dimensional Euclidean space), and let h: R3 - 
X be a (left) inverse of g, that is, hog = Ix. with lx being the identity map X+X and 
“0” the usual map composition law. Furthermore, let us consider a dynamical flow induced 
by the Lorenz equations QT.: R’ + R3, that is. with Q7, (I, _Y. Z) being defined as the 
point (x’, T’. ;’ ) to which the system flows after the interval of time 7,. if started at the 
point (x, _v, z). When coupled to the programming diagram (39a) such a dynamical flow 
induces the following representation: 

(3%) 

Because arbitrarily small differences will produce permanently distinct aperiodic tra- 
jectories, there is no single partial recursive function f: that will allow the computer to 
calculate the encoding function & if TV > Q 1 1,. Therefore, a system that does possess a 
dynamical flow which is induced by the Lorenz equations would not be recursively 
computable. 

B. Carl one simlrlnte all biological systems rt*ith computers? 

This important question of universal computation of biological systems can be answered 
uniquely only by giving an appropriate definition of the concept of “simulation”. If one 
defines formally “computer simulation” to be restricted to (partial) recursive computation 
of biological dynamics by a digital computer. then it would follow from Sec. 8A that such 
a simulation is not generally possible for biological systems. However. if one employs 
dynamical analogy[Zl] to define simulation. then the computer prospects for simulation 
may appear somewhat brighter since one can now define a class of systems S’ that are 
analogous to a computer Q. as represented by the commutative diagram 



3, 
i j 

n i 
L 

Q 
i’ 

S’ 

(40) 

by selecting i and i’ to be isomorphisms. If the computer is digital. then 6, = _f,*- is the 
partial recursive function defined in Sec. 8A that will allow one to compute. or “simulate”. 
the behavior of a certain class of dynamical systems; such recursively computable systems 
may be certain components or subsystems of a biological system that do not incorporate 
any chaotic behavior. Furthermore, if one were to lift the restriction that Q be a discrete 
set. and define instead a new kind of “computer” with a topological state space (incor- 
porating chaos), then a dynamic analogy can be considered between such a novel “to- 
pological computer” and an intact biological system. This type of topological computer 
may include, for example, topological automata that have topological semigroups[2221 for 
state spaces instead of algebraic semigroups as the conventional automata or sequential 
machines[l55]. The trnc&~g_~ will be replaced in this case by corlj~gac)’ tp. 508 in Ref. 
[223]) as a form of similarity between dynamical systems. A topological computer would 
thus be endowed with a topological semigroup and could simulate a biological system if 
its computation function f,. was topologically conjugate[Z] to the transition function _fz 
of the biological system (f,.& f:), that is, &fl(.~) = _fCt6 (x)). .V E T. with 6 being a 
homeomorphism 

QT 
@ + I?,, 

f 
C 

I I 

i 

(41) 

Topological conjugacy ensures that if f2& ft. for some given parameter set, then the 
functions f2 and f,. have equivalent dynamical behavior over that parameter set. The 
general case of state spaces with both algebraic and topological structure was also con- 
sidered by means of au’jointness offi~ctor~ defining dynamical equivalences between 
systems possessing such complex state spaces[224]. 

CONJECTURE. There is a universal simulation of biological systems by an algebraic- 
topological “computer,” by means of a pair of adjoint functors which defines the dy- 
namical equivalence of the computer with any selected biological system. 

9. COMPUTER SlMULATIONS AND ALGEBRA OF GENETIC NETS 

A. Binary genetic nets 

Metabolic stability and epigenesis in genetic systems were modelled by Kauffman with 
formal “binary genes” [ 1601. Such models are particularly applicable to bacterial genetic 
control systems[225]. Kauffman found that large genetic nets of binary elements which 
have very large numbers of possible states, exhibit remarkably ordered and stable behavior 
without requiring any special structural organization. Such “genetic nets” enter rapidly 
their stable limit cycles in their state space and have very few different limit cycles. 

A Kauffman (genetic) net of size N and connectivity I; consists of N interconnected 
binary elements (Fig. 35), each having k inputs and only one output. The elements of a 
Kauffman net were described[l60] as “formal genes”. The inputs and outputs of each 
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formal gene take only one of the two possible values denoted by 0 (zero) and I. at any 

instant in time r. The interconnection of formal genes is random. each input is connected 

to one and only one output, and each input has an equal chance of being connected to 

any output. Therefore. as in the case of neural binary netvvorks. the input-output relation 

of each formal gene is defined by one of 2” possible Boolean mappings of L binary vari- 

ables. Furthermore, the assignment of Boolean mappings is such that each element in the 

net has an equal chance of being assigned any of the 7“ Boolean mappings. 

The state of a Kauffman net is specified at any instant in time by the states of the /V 

element outputs. which means that this genetic net has _ 7,’ distinct states. In terms of 

automata theory (see Sec. IO) the Kauffman net is a deterministic. “autonomous”. tinite- 

state sequential machine: the machine is autonomous in the sense that there are no external 

inputs to the genetic net[ 1733. Although the Kauffman net is random. its state transitions 

are not probabilistic events. Kauffman[ 1601 also imposed the restriction that the network 

is in some well-defined state at time t. and operates on a discrete time scale. like a clock 

with a period T. The behavior of a Kauffman net can be also represented in the form of 

a state transition diagram (Fig. 36). which is a directed graph whose verte\ set is the state 

space of the net, and whose arcs are the state transitions. 

KauffmanI 1601 used computer simulation to study the behavior of genetic binary nets 

with low connectivity (r( = 2 or 3). and numbers of elements between Ii and X192. For 

L = 1. Kauffman found that the number of limit cycles I’ of a net with .I’ elements vvas I’ 
= ,\Y”, with (I = 0.3. and that the median limit cycle length was L = .L”. with 0.3 < h 

< 0.6. When N = 1000. I’ = 30. but the number of possible states is II = 3,’ - IO”“‘. 

which is astronomical. Nets with such a large number of states entered very quickly a 

very small number of very short cycles. Sherlock[ 1731 proposed an analy-tical description 

of Kauffman nets in terms of the state transition matrix. An example of such a matrix is 

Fig. 35. A Kaufrman net of connectivity X = Z and size A’ = 9 (according to Sherlock[ 1731) 

Fig. 36. A possible state transition diagram fol 

92 
I 
I Q3 

.k’ = 1 Kauffman net (from Ref. [173]). 
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reproduced from Ref. [I731 in Fig. 37. The matrix provides a complete specification of 
the state transition graph. 

The states of the Kauffman net can be represented as vectors: q( t - T) = Aqtt), where 
A is the transpose of the adjacency matrix[ 1871 specifying the state transition digraph: in 
terms of the digraph. A is defined as 

A = {a;;}, Ll;; = I (41) 

if there is an arc from the vertex j to the vertex i, and (rii = 0 otherwise. This matrix 
form is convenient for an algebraic analysis of the dynamics of the genetic nets. The 
representation also has the advantage that the matrix elements (rii of A can be calculated 
from a specified “wiring diagram” (Fig. 35) of the network, together vvith the assignment 
of the Boolean mappings to the network elements. With the matrix representation the 
number of states involved in the limit cycles are readily calculatedj 1731 through matrix 
element manipulation. Specifically, the fractional distribution f(l) of limit cycle lengths 
is 

(43) 

where 11; is the number of occurrences of integer 1 in the partition j of N,. into the sum 
N,. = c,r( which corresponds to a partitioning of 0,. into any of the sets of disjoint limit 
cycle subsets CJ that give rise to 11~ stable states, II? cycles of length 1. etc. The number 
of occurrences of cycles of length 1 was calculated[ 1731 as 

where N, is the number of different ways of distributing N,. distinct objects among the 
partitions. Using a computer algorithm, Sherlock[l73] evaluated numerically f(r) for all 
N,. up to 20. Within the 24 bit (-seven decimal digit) precision of the digital computer, 
Sherlock[ 1731 found that 

f(l) = l/l. (45) 

for I s 1 s A’,.. N,. G 20. This l/l distribution of cycle lengths is also observed in a 
computer simulation of Kauffman nets for cycle lengths up to 50 (Fig. 7 on p. 699 in Ref. 
[173]). Sherlock[l73] also found that N,. = f.‘, where L is the median cycle length and, 

Fig. 37. 

11731). 
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therefore. with L = I Ic’[I60] he obtained .V’, = .\‘. that is. for X = 2 random nets with . 
,V elements the cardinality. of the cy.cle state set is approximately equal to .I.. With this 
value of :V, . the fraction F, of the total number of states involved in the limit cy,cle is 

16) 

This relation is in agreement u ith Kauffman‘s .‘esperimental” findings[ 1601 by computer 
simulation of formal genetic nets. HoLvever. for connectivities higher than 2. the fraction 
F, calculated algebraically was no longer -1Vi2.l. as in the computer experiments (simu- 
lation of random nets). The deviation from the behavior obtained by Kauffman for ,4 = 
2 increased rapidly with the size of the net and. therefore. it is possible that biologically 
relevant models of genetic systems may not have F, = I\‘/?,’ (see Fig. 7 on p. 721 in Ref. 
[1731). but may have instead log F, - (--iv). Even more complex behavior is expected 
for n-ary genetic nets: such nets are discussed next. 

A genetic. tzet~m~k. or net. is defined as an assembly or aggregate of interacting genes. 
Genetic interactions can be either direct. as in the case of gene “clustering”. or they can 
be indirect-via intermediates. products and metabolic pathways. Perhaps the best knovin 
simple example of a genetic net is the one introduced by Jacob and hIonod[l25] for the 
genes related to lactose metabolism in the Gram-negative bacterium Escherichin coli. 
Such genes were shown to lie near one another in the same region of the bacterial chro- 
mosome and were considered to act as a functional unit, or “operon”. Within the operon. 
a “regulator” gene. three “structural” genes and an “operator” gene vvere postulated to 
exist and to play different functional roles. The three structural genes are under the control 
of the same operator gene. vv,hile the operator gene itself responds to, or is controlled by.. 
the regulator gene. In the case of tvvo interacting operons. which define a tvvo-component 
genetic net, the situation can be represented schematically as in Fig 3s. 

Let us consider the possible dynamics of the genetic network in Fig. 3s. If we postulate 
discrete states for the genes. then one can readily calculate the dynamics for “all-or- 
none” type of genes (that is. the case in which the genes are either fully active or com- 
pletely inactive). The more general case of tz discrete states, which are defined by tI discrete 
levels of gene activities, is more difficult to treat and requires the introduction of special 

SLBSTUIT 1 SUBSTRATE 2 

SUBST%q 2 . 

Fig. 38. TLvo-component gsndic net with tv.o operons CY and p (from Ref. [226]) 
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mathematical concepts. A general, two-component genetic net with n states is presented 
in Fig. 39 and the generalization to m-component genetic nets is now transparent. This 
n-state black-box representation can be used in principle to determine the behavior of 
any genetic net. However, it has the disadvantages of being tedious and limited in its 
scope for deriving general theorems concerning genetic network dynamics. An alternative 
approach was, therefore, introduced in which genetic nets and their activities are defined 
in terms of n-valued logic and their associated Lukasiewicz algebras[226]. Mainly because 
the n levels of activity of a gene are ordered (in the sense that the lowest level corresponds 
to no activity or 0, while the higher levels or corresponding states are in the order of 
increasing activity up to full activity which is labelled by I), the statements concerning 
such genetic activities are also ordered under a symbolic ordering relation C forming 
therefore a distributive lattice of a special kind. Such a distributive lattice is called an n- 
valued tukasiewicz algebra (or L-algebra). Certain maps vi: L --, L and N: L - L. which 
are endomorphisms of an L-algebra associated with an n-state genetic net[226] are em- 
ployed to model the dynamics of genetic systems in the absence of mutations. In order 
to represent genetic mutations certain transformations of L-algebras are defined. These 
are morphisms f: L, + L2 of L-algebras and possess certain specific properties such as 

f*N = N*f and f*oi = f&*f foranyi=O,l,...,n- I (47) 

(see also details on p. 254 of Ref. [227]). All “genetic” L-algebras together with the possible 
L-morphisms representing genetic mutations are then forming a subcategoc GL of the 
category Luk, of all n-valued tukasiewicz algebras and L-morphisms between them. The 
basic properties of GL were reported in Ref. [226]. In the particular case of two-state 
genes, the n-valued algebras are reduced to Boolean ones and the category Gf of such 
Boolean algebras is equivalent to a special subcategory called the category of centered 
L-algebras GE. This equivalence between G? and a full subcategory of GE is expressed 
by two adjointfirnctors C and D: 

GL- = Gf*GL, (48) 

with the functor C being full and faithful1 (see also p. 254 in Ref. [226] and references 
cited therein). The centers of a centered tukasiewicz algebra are (n - 2) elements (state- 
ments about gene activities), al, a2, . . . , a,_ I E L, for which 

O;(aj) = 

{ 

0 for 1 5 j < n - j, 
1 forn - j<iSn - 2. 

The corresponding genes would have degenerate states in the sense that (n - j) states 
will all be characterized by no activity while the remaining states will yield full activity. 
An organism at a given stage of its development may have some genes of the all-or-none 
type, as well as some nondegenerate ones. Therefore, the collection of genes of an or- 
ganism, or its corresponding genetic net, will be generally represented by a mixture of 

N-STATE GCWIC NT WITH Ml tpERcNs 

p!IzK-.:_-!.,:-i‘:: 
Fig. 39. N-state genetic net with two operons a and p. 



Computer models and automata theor! in biolog> and medicine 1559 

centered L-algebras and noncentered ones. The corresponding category of genetic ne:s 
of an organism and their dynamic transformations will be a subcategory of CL, and there- 
fore of Luk,, but will not be in general a subcategory of G?, or of Bl, the category of 
Boolean algebras. A simple example of a nondegenerate genetic net is provided by the 
multiple genes which were discovered in the lampbrush chromosomes in oocytes of the 
crested newt Triturrrs cristntlrs cnrnife.r[228]. after we postulated the genetic n-states[726]. 
The transcription of multiple genes can be readily represented as a particular dynamic 
process of an m-state genetic network with its 0 state corresponding to all multiple genes 
being inactive and the 1 state corresponding to all m genes being fully operational. There 
is strong experimental evidence that the transcription of multiple genes. or “satellite” 
DNA, on lampbrush loops in oocytes does indeed occur and correlates somehow with 
structural heteromorphism of the organism, as well as a lack of chiasma formation in the 
chromosome arm in Tritlrtxs cristatus[233]. The evolutionary significance of this “unu- 
sual” transcription of satellite DNA appears obscure at present, and further hybridization 
experiments involving DNA/ nascent RNA transcripts from clone pTcS 1 will be necessary 
in order to determine the transcription mechanism in such cases. 

Another particularly interesting example of tz-state transcription units was recently 
reported for the rDNA gene sequences of Physnrum[229]. In this case. the subunits on 
the ribosomal gene transcription unit were shown to be in a molecular configuration which 
was distinct (in some unspecified way) from the oligomers of the nucleosomes present on 
the inactive rDNA regions. Different chromatin subunit structures could be isolated from 
different functiona. regions of a single gene[229]. These experiments open up the exciting 
possibility of carrying out detailed kinetic studies of individual genetic activities and should 
allow for a direct comparison with the theoretical predictions based on abstract molecular 
models of such genetic systems. In particular. the polymerase binding rates and certain 
transient conformational changes of nucleosomes on functional genes could be derived 
from computer simulations. 

10. AUTOMATA THEORY AND METABOLIC-REPLICATION MODELS IN 
BIOLOGY 

Before considering the applications of automata theory in biology we shall introduce 
the basic concepts needed for such models. 

A. Algebraic theory of nutomatn[230, IS.51 

An automaton is a quintuple M = (X, Y, Q, 6, A), where X is a finite input alphabet. 
or set of inputs {a,, oz. . . , , a,,}, Y is a finite set of outputs {F,, y2. . . . , y,,}. (2 is 3 
finite set of memory states {q,, q2, . . . , (I~}, 6: Q x X- Q is the next state (transition) 
function and h: Q x X -+ Y is the output function. 

Automata can also be represented by state transition graphs, similar to those of random 
nets, or by Boolean matrices and output vectors. A more powerful, algebraic represen- 
tation of an automaton is its description as a semigroup of state transition maps; the state 
transition maps associated with single-input symbols can be multiplied to find the state 
transition maps produced by input sequences (strings of inputs). The set of state transition 
maps of the automaton when endowed with the multiplication operation of the transition 
maps has a semigroup structure. The algebraic theory of automata which deals with such 
semigroup structures is useful for solving the following problems: 

I. automata decomposition into the simplest, “irreducible” components; 
2. finding the standard version of any automaton; 
3. classifying automata according to their most general and essential properties. 
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B. Basic theorem for decomposition of automata 

The state transition maps are of two basic types: 
(a) collapsers -two distinct states are carried onto the same next state under the input: 
(b) permutations -states are being only permuted under such maps: the permutations 

are I-I onto functions of the state set. 
Krohn, Rhodes and Tilson[Z3I, 1321 have found the basic decomposition theorem of 

automata: any automaton can be decomposed into irreducible components that have either 
only permutations or are amongst four types of elementary collapser automata. Per- 
mutations form a group and, therefore, the automata decomposition theorem states that 
any automaton, or “machine” semigroup, can be decomposed into a group and collapser 
semigroups of four basic types. 

C. Tessellation automata and biological de\~elopmerlt 

Cellular automata have been used as models for the development and growth of bio- 
logical organisms. An example, provided by Arbib[2?3] will be used to illustrate this 
approach. In a similar vein is the precedin g work of Smith[234]. Wagner[235] and 
Arbib[236]. 

A “module” equipped with 72 instructions. a bit register. BR. and a number of inputs 
is the basic unit (Fig. IO. I on p. 352 in Ref. [233]) of a tessellation structure. Copies of 
the module are placed at a lattice point, in a planar configuration. An array of modules 
defines the tessellation. Directions within the tessellation are defined using the coordinates 
(~7. H! for each module: 

II = up, defined by increasing II: 

d = down. defined by decreasing tl; 

r = right, defined by increasing 171: 

I = left, defined by decreasing 171. 

For example, a group of four neighbor modules, or “cells”, in such a tessellation structure 
will have the coordinates Cm - I, n), (171, n). (m, II - I). and (~1 -I- I, II). The tessellation 
is a “tissuelike” structure where a collection C of cells is como\.ing if (Y E C + (3 E C 
@ W(CY, PI, with W being the relation of “welding” on cells: W(a, p) G cr and p are 
welded neighbor cells, that is, 3 y such that W(cr, y) and W(y, (3). The neighboring cells 
are said to be welded if either of the cells is joined to its neighbor, so that they “change” 
their position together in the array; “moving a cell” in direction .Y means in fact moving 
the contents of the cell registers in the .Y direction. The comoving set, therefore, is really 
a pattern rather than a set of cells in the tessellation. The basic idea is that if any cell 
moves in one direction all the cells in the comoving set move in the same direction. 
Arbib[233] showed that any finite automaton or Turing machine can be simulated by a 
tessellation structure. Tessellation structures can be used not only to generate new cell 
configurations but also to construct automata by acting on neighboring squares. A tes- 
sellation structure capable of constructing and simulating a Turing machine was called a 
“CT-machine”[233]. Arbib proved the existence of a CT which is also self-reproducing 
(p. 370 in Ref. 11331). Figure 40 shows such a CT-machine, with P being its program and 
3 being its tape configuration; the reproduced machine (3‘. %. %‘I, which is the “off- 
spring”, also includes the program to reproduce itself. 

Such abstract constructions were designed to address the question: how can a complex. 
multicellular organism grow from a single cell assumming that each cell behaved like an 
automaton and executed a finite program? 
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I 
‘EXWSTED PARENT 

Fig. 40. Model of self-reproduction in the form of a CT-machine (according to Arbib[233]). 

The process represented in Fig. 40 shows how a multicellular organism can reproduce 
itself but it does not indicate how a multicellular organism can grow and develop from a 
single cell. 

The tessellation model presents a number of differences from the behavior of a real 
biological organism: the program of the machine is contained in a string of automata rather 
than in a single cell, the specification of the machine is complete within each module but 
it is incomplete in a biological cell, and the construction assummes that the modules are 
passive, in the sense that any subassembly will remain fixed and inacti1.e until the whole 
tessellation structure is complete. Biological development, however, is an active process. 
generated through the multiple interactions and “induction” between the subassemblies. 
In the tessellation model, growth is simulated by an increase in the number of cells in a 
comoving set; cell division is mimiced by modular activity at the construction site in the 
tessellation. When a module “divides” the original module is preserved at the initial site. 
while its replica has been produced at a neighboring location in the lattice. In such a 
model, a module t(A) produces initially a copy of itself which is rendered “dormant”. 
that is nondividing. Then, P(A) produces c(A) which builds A, and before A is turned 
loose, it is attached to the copy of c(A). Upon reaching “maturity”, module A reproduces 
by releasing such a copy P(A) into the tessellation. The design of a differentiated organism 
would be, however, much more complex than such a tessellation process: one would have 
to use subroutines to build differentiated tissues and employ higher-level routines to as- 
semble such differentiated tissues in the correct anatomical position. 

Models employing molecular automata rather than cellular ones may be closer to the 
molecular biology approach to differentiation, growth and development. A category of 
such models comprises metabolic-replication, or (M, R), systems and was designed b) 
Rosen[ lSO]. 

D. (M, R)-Systems 

The simplest (M, I?) system[l51] is defined by a set of mappings HA, B) of the form 
f: A + B, together with a set of mappings H(B, H(A, B)) of the form 0: B - MA, B). 
such that o,(6) = f for f(a) = b. A is the set of inputs and B is the set of outputs of the 
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(.tf. R 1 system. By defining the mappings f as states of the (Jf. f?) system. one can 
associate with each (,Lf. R) system an automaton]151 1. A set of mappings p: H(A. B) --) 
H(B. H(A. B)) ensures the “self-reproduction” of the (.CI, RI system since it associates 
with a mapping f the correspondin g @r mapping that replicates f. In a more recent 
version(2371. (,M, R) systems have an associated dynamical realization so that their state 
space is a topological structure rather than a discrete set. An example of the simplest (/Cf. 
R) system is given in Fig. 41, which also contains a proposed realization of such an (&I. 
R) system in molecular terms. (;\I. R) systems were shown to form a category] I5 II which 
is a subcateogry of the category of all automata[l33. 1541. The basic algebraic properties 
of this category of (M, RI systems were considered in relation to their possible biological 
realizations[lj3, 1541, and a generalized form of Otl, R) systems with variable algebraic 
and topological structure was proposedl2381. Such extensions of ticI. RI-systems theory 
will be discussed in Sec. I I together with other organismic structures and molecular set 
theory. 

An interesting possibility is the computer simulation of dynamical realizations of spe- 
cific f/21. RI systems vvith structures selected to simulate a particular group of biological 
organisms. The approach would be similar to the computer simulation of Kauffman nets 
and one may expect to obtain from such a simulation biologically relevant results. 

I I. NATURAL TRANSFORMATIONS OF ORGANISMIC STRUCTURES 

In a recent report. relational theories of organismic sets[239], metabolic-replication 
systems[l37] and molecular “sets” [240] were shown to have a similar foundation. and 
thus can be studied within a unified theory which employs a categorical framework[lll]. 
This is possible because all relational theories have a molecular basis. Complex structures 
such as genomes, living cells, organs and organisms were mathematically represented in 
terms of molecular properties and molecular entities such as “molecular sets”. The defi- 
nition of organismic sets. for example. requires that certain quantities are determined 
from experiments: these quantities are specified by a special set of values of general 
observables which is derived from physicochemical data[241]. Such observables are di- 
rectly represented by IW~~IYII t,v7n.~fo,.,nrrrions in category theory, and are also encountered 
in theories of metabolic-replication [(M. R)] systems, as well as molecular set theory (Ref. 
12401). 

Since the problem of uniquely decomposing stich organismic structures into simpler, 
functional (or active) components appears to be an unsolvable one in the general case, 
we have adopted a complementary procedure which begins by building up specific struc- 
tures corresponding to specific biochemical, genetic or organismic systems. We have then 
examined their properties in terms of their mathematical representations such as the gen- 
erating formalisms[741]. It is interesting that energetic considerations ultimately lead to 
molecular models and natural transformations]241 . 1421 or natural equivalences in par- 
ticular cases[243]. A detailed investigation of the natural transformations of organismic 
structures is therefore necessary in order to understand certain basic themes of relational 

E N Z ‘I n E S m- . t- , r- , RNA’s CNA/GENONE 

Fig. 41. Diagram representation of the simplest (.\I. R) system (according to Ref. [238]) 
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theories in biology, such as observability of molecular processes. realizability conditions 
for relational models’theorems, unicity of representation. dynamics /kinetics of biomo- 
lecular reactions and molecular evolution. 

When attempting to compare mathematical results of relational theories with recent 
advances and experimental observations in molecular biology one invariably finds that a 
theoretical-molecular model approach. such as the procedure adopted by us, is really 
needed in order to be able to realize the experimental implications of relational results. 

Most theoretical studies of molecular models are, however. taking a very different 
course and are merely the result of formalizing a fixed set of experimental observations. 
without pursuing its wider implications for a synthesis of theoretical knowledge in biology. 
On the other hand, relational theories are still developing and may reach a stage when 
their predictions will make a strong impact on the molecular biologist’s veiw, which so 
far has been “to divide and conquer.” Our abstract molecular models of organismic and 
genetic structures in terms of natural transformations could help bridge the gap between 
relational and molecular biology. 

We showed in an early report[242] that energetic considerations of nerve excitation 
and conduction lead to a physical, molecular model of these processes. and allow one to 
analyze in physical terms the behaviors of neurons and neuronal networks. From quite 
a different standpoint we later considered tl-state genetic networks[226] using /r-valued 
logic in categories, and derived general theorems concerning the decomposition and dy- 
namic properties of such networks in a general fashion. Some of these properties were 
found to be similar to those of neuronal networks, but the analogy was far from being 
complete. In these two partially analogous biological networks we found that a full. general 
treatment required the use of the mathematical theory of categories and functors[X6]. 
Recently, it became possible to derive a synthesis of the three different approaches to 
relational biology-the organismic set theory[239], the theory of (‘11, R) systems[237] and 
the molecular set theory[l40]. In our synthesis[241], natural transformations of organismic 
structures play a central role. The unifying concept of natural transformation is provided 
by the standard theory of categories and functors, initially developed as a general theory 
of natural equivalences[244] by Eilenberg and MacLane in 1945. 

A simple introduction of such a synthesis is based on set-theoretical models of chemical 
transformationsJ2401. Consider the simple case of ~rnimolcc~rlar chrtt~icc~l 
trclnsfortnl2tiotzs[240]: 

T:AxI-+Bxl. 

where A is the original sample set of molecules, I = [0, t] is a finite segment of the real 
time axis and A x f denotes the indexing of each A-type molecule by the instant of time 
at which each molecule CI E A is actually transforming into a B-type molecule [see also 
Eq. (3) in Ref. [240]). B x I denotes the set of the newly formed B-type molecules which 
are indexed by their corresponding instants of birth. As a flexible means of formalization. 
any chemical component-molecular set A of a biochemical subsystem in a living organism 
may be regarded as a variable quantity. or as a molecular set variable (msv). which spans 
certain allowable molecular sets (that is. those which are actually observed or realized if 
a molecular model was considered). The functional dependence of these msvs on time 
(in the mathematical sense) was then regarded as a kind of G”relation” from the time 
axis to the class of molecular subsets as “range”*. This was termed the “wide-sense’. 
kinetics of molecular set theory[240]. The transitions from one possible value (or state) 
of an msv to the next allowable value (s) will occur with some definite probabilities-in 



1564 IOU C. B-\I.\vL 

a statistical sense. While the concentration, or cardinality, of a molecular set component 
is constant, the set itself can change continuously its composition: this is the biologically 
significant factor in the operation or functioning of an organism. 

At this point, one can easily categorize the transformations of a molecular set A by 
simply using the endomorphisms f: Y! --f A and by considering the new set of all possible 
transformations of A, which will be denoted by MA, A). The molecular sets and their 
transformations can now be organized into a ccltegory M and certain functors hX between 

such categories of molecular sets can now be defined. (For definitions of the concepts of 

category and functor please see Ref. [245].) Specifically, the functor hA: M ---* Set. with 
Set being the category of sets, is defined by 

hA(X) = H(A, X) for any X in M as object, and hA(r) = m: H(A, A) -+ H(A, B) for any morphism 
f: A + B in M, and B a molecular set of reaction products of type “B.” 

The flexible notion of molecular set variable (msv) is exactly represented by the morph- 
isms 1’ in the diagram 

Ax1 

(51) 

where morphisms v are induced by the inclusion mappings A L A x I and the com- 
mutativity conditions h,’ = 16. The naturality of this diagram simply means that such 
conditions hold for any functor hA defined as above. 

The unimolecular chemical reaction is thus represented by the natural transformations 
h” ---& hB, as one can readily check in the commutative diagram 

hA(A) = H(A, A)--~~-+hB(A) = H(B, A) 

h”(t) he(f) (3’) 

J & 
h”(B) = H(A, B)---=-+hS(B) = H(B, B) 

if the states of the molecular sets A,, = n, , . . . . CI,, and B,, = 6,. . . . . b, are represented 
by certain endomorphisms in H(A, A) and H(B, B), respectively. In the case of multi- 

molecdar reactions, the canonical functor of category theory 

h: M - - - -9 [Ad, Set] (53) 

assigns to each molecular set A the functor h” and to each chemical transformation 
A L B the natural transformation hA 1 hB. As an example, let us consider the “rep- 
lication maps” of (M, R)-system theory. These “maps” were shown to be representable 
by natural transformations (details are given in Ref. [238]). The machinery associated with 
metabolic and genetic activities of the “simplest”, or primordial organism, could be simply 
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visualized as in Fig. 11. This is. of course. Robert Rosen’s simplest (.Cf, R) system. 
Molecular candidates for the components of this metabolic-replication model are indicated 
at the top of the diagrams in Fig. -I I. The corresponding molecular model is well established 
in molecular biology on an experimental basis. One quantity often omitted from this model 
is energy. Energy could be readily introduced into the model as an input/output element 
for each component of the (&I. R) system. A more physical approach would, however. 
introduce energy by defining an observation process on a molecular set and then convert 
it into the molecular set formalism by defining the appropriate natural transformations. 
A few details of this formalization are given below and full details will be presented 
elsewhere. An observation process on a molecular set will involve the preparation of a 
certain msv, A, (with preparation in the quantum-mechanical sense) into a selected state, 
or field of states, AZ. The process is described by a morphism (Y: H(A, A) - R. For the 
chemical product “B” of a reaction, y: H(B, B) --;, R is an observable of the msv B, which 
is measured in some specially prepared state (or field of states) Bz. The preparation itself 
can be subject to an uncertainty 6 in the set of real numbers R. cx and y are connected 
together in the commutative diagram 

(34) 

with c being “uniquely” defined as a morphism c: AT - - - B,?, within the uncertaint) 
range 6. Among such observables of an msv, energy is an essential one since it places 
limits on the possible reactions and products, although it changes such restrictions to 
probabilistic statements. In our formalism, therefore, energy is represented as a morphism. 
and has quite general properties. In specific cases it will be necessary to define more 
precisely the energy and the statistical conditions related to the uncertainty range 6. Our 
definition of energy as a morphism is natural both formally and conceptually. Formally. 
the diagram (54) is natural both in CY and y, as well as certain “reactions” c. Conceptually. 
energy is one of the general observables of any organismic structure (for details please 
see pp. 433-434 in Ref. [24l] and literature cited therein). As shown previously, the general 
observables of any organismic structure are natural in the categorical sense[244]. Natural 
transformations thus establish a formal and energetic link between organismic structures. 
(M, R) systems and molecular sets. By employing the canonical functors f and the 
natural transformations ;1 as a translation device between (&I, R) systems. molecular and 
organismic sets, once a result is obtained in one ofthese theories it can be readily translated 
into the others without losing generality. The translation in terms of molecular set theory 
is particularly important for physicochemical representations of abstract molecular 
models, such as the (M, R) systems, because molecular-set models have relatively direct 
interpretations in experimentaliphysicochemical terms. In practice, one is still left with 
the question of deciding which abstract model is actually realized in molecular biology. 
that is, defined by experimental data. 

B. Nuturcll trnnsformcltions in protein biosynthesis nnd embqogenesis 

As a particular example of protein biosynthesis let us consider the synthesis of ap- 
proximately 50 different ribosomal proteins (or r-proteins) in the Gram-negative bacterium 
E. coli. The r-protein genes are arranged in many different operons, apparently placed at 
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separate locations on the E. co/i chromosome[246]. The r-protein biosynthesis is very 
well coordinated in E. coli and the question of how this is achieved is an important one. 
From a theoretical standpoint, this system is a good example of a genetic network. The 
experiments indicate that the overall regulation of r-protein biosynthesis responds to 
changes in growth conditions and these may be primarily mediated by changes in the rate 
of transcription of the r-protein genes. By comparin g, however, the transcription rates of 
r-protein mRNA in haploid and merodiploid strains, it was found that the expression of 
r-protein genes in the str-spc region is controlled by a post-transcriptional mechanism[246]. 
Such a mechanism could involve the inactivation and degradation of the excess of r-protein 
mRNA. Nevertheless, it is equally possible that the translation of intrinsically active r- 
protein mRNA is blocked by other means: the “overproduced” mRNA could be more 
labile and this may impair its participation in r-protein biosynthesis. This example leads 
to an abstract molecular model similar to the one shown in Fig. 41. Thus, if the set of r- 
proteins is denoted by H(A, B) then the set of r-protein mRNAs will be represented by 
some subset of H(B, H(A. B)): the genome region which is transcribed into r-protein 
mRNAs will be then represented by a subset of H(H(A, B), H(B. H(A, B)), as in the 
standard (M, R)-system theory. As shown by Rosen[ ISO], the “metabolic” components, 
such as the r-proteins, can be reorganized into a finite category M. Let any two sets of 
M be X and Y, and let t: X--, Y be a mapping of M. If Set is the category of all sets and 
mappings of sets, then one can define a special functor hS: M --f Set as 

1 
hS( Y) = H(X, Y) for any set Y in M, 
/P(f) = m: H(X, X) + H(X, Y) for any t: X 4 Y, (55) 
P(g)(t) = gt: H(X, X) + H(X, Y’) for any g: Y + Y’ in M, 

where X is a certain fixed object in M. The functor hx carries Y into H(X. Y) without 
acting on the elements of Y. A family of functors of the type P’. which is obtained by 
varying X in M. will produce all sets of the form H(X, Y). The set of r-proteins H(A, B) 
can thus be generated by considering hA(B) for A and B sets in M. In order to construct 
the sets H(B, H(A, B)) which represent the r-protein mRNAs, one can use the canonical 
functor II: M --+ [M, Set]. The functor h is defined by the assignments 

s - h X and t w h” + h ‘, 06) 

where f: X - Y and [M, Set] is a category of functors from IV to Set. An embedding t: 
M ---, Set. carries any X of M into the same set X of Set, and any morphism t: X --, Y of 
iti, into the corresponding mapping of Set. The nntural transformations Ip: I * hX with 
X varying in M now define the “genetic” maps c$~, that is, the elements of H(X, H(X, 
YJ). In the particular case of certain natural transformations +,.: I --z hA, we obtain a 
representation of the r-protein mRNAs; kinetic calculations derived from such a model 
and the “wide-sense” kinetics of molecular set theory are in broad agreement with the 
experimental observations of r-protein biosynthesis in E. coli. A categorical representation 
of r-protein biosynthesis thus consists of a functor h”-generating models of the r-pro- 
teins-and certain natural transformations +,.: I-+ h” -generating the models of r-protein 
mRNAs. The generalization of this formalism to any protein biosynthetic process is im- 
mediate by considering the appropriate h’ functors and c$I~: I --f h’ natural transforma- 
tions. During protein biosynthesis the composition of the biological system will vary as 
a result of certain multimolecular reactions taking place; such processes induce certain 
natural transformations u: c1-+ CY* and w: y + y*, with CY, (Y*: Set + R and y, y*: Set -+ 
R being certain special functors. From the definitions of natural transformations and mul- 
timolecular reactions [relations (52) and (53). respectively] one obtains the commutative 
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diagram 

(57) 
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Set 
a. a”. y. y*. . . 

3. 
r” 

’ L 

with L playing the role of a generalized observable. In this diagram. the canonical functor 
h assigns to each molecular set A the functor II-’ and to each chemical transformation t: 
A + B, the natural transformation ~1: hA - 11’. The advantages of employing natural 
transformations over the use of the standard maps t: A --+ B of molecular set theory are: 

(I) the natural transformations T are not restricted to mappings; and 
(2) A and B can be truly varying structures rather than simple discrete sets. 

This generalization of molecular set theory, (M. R)-systems theory and organismic set 
theory is important for kinetic modelling of protein biosynthesis since the states of mo- 
lecular structures (previously discrete sets) can be defined in quantum-mechanical terms. 
for example. Calculation of transition probabilities between such states may be thus pos- 
sible starting from physical first principles, in favorable cases: such calculations vvJould 
employ standard quantum-mechanical approaches, such as the Dirac or the Heisenberg 
representation. Even without making use of such detailed formalisms it is possible to 
derive some of the basic properties of protein biosynthetic processes. For example. the 
msv associated with the final form of a synthesized polypeptide. can 0~ shown to be 
representable as the direct limit of the intermediate forms in its synthesis (for a definition 
of direct limit and an example see p. 482 in Ref. [224]). On the other hand, a cell at the 
end of its synthesis stage will be represented by the projective limit of certain metabolic- 
replication systems associated with selected intermediate stages. This projective limit is 
constructed as a Cartesian product of sets of states/inputs/outputs and transition/output 
functions of the corresponding (M, R) automata or sequential machines (for details of the 
construction and the relevant definitions see Ref. [IS]). The cell dynamics, including 
protein biosynthetic processes, are thus subject to the following natural restriction: 

is commutative for any i, j, k belonging to an ordered set I, and such that i 5 j 5 k. The 
ordered set in this case corresponds to the set of cellular events. and the _LI,T components 
are some selected (M. RI systems which represent certain cell stages at which different 
mRNAs are being synthesized. In this model, a complete cell, or organism, can be built 
from certain intermediate stages as a Cartesian product of the sets defining the selected 
stages. The problem is, of course. one of defining experimentally such stages. In the case 
of developing embryos, tests for nuclear equivalence showed that somatic nuclei from 
the blastula stage to early stages of organogenesis become progressively restricted in their 
ability to promote “normal” development when transplanted into enucleated eggs[ll7]. 
Up to a certain stage, however. the nuclei were equivalent, in the sense of being capable 
of inducing normal development. From a dynamic viewpoint such nuclei are adjoint. that 
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is. their associated dynamical systems have en adjointness relation between them, which 
is unique up to an isornorphism (Proposition I in Ref. [X4]). Essentially, there exist certain 
adjoint functors[218] between the categories defining any tvvo such dynamical systems. 
These adjoint functors are present only if there exists a certain natural equivalence (see 
relation (1) on p. 479 and related details in Ref. [X4]). When the nuclei become pro- 
gressively restricted in their ability to induce normal development, the associated dy- 
namical systems become only weakly adjoint (see also Theorem 3 on p. 483 in Ref. [214]) 
because the dynamic isomorphisms of the kind 

S[A. U(B)] - S’[K(A ). Bl. (59) 

vvhich existed for equipotent nuclei. are now replaced by certain dynamic epimorphisms 

ax. C’( Y)] * S’[ W(X). Y] 

(vvhich are related to two weakly adjoint functors V and W: S z S’ 5 S). The 

categories S and S’ generate the dynamical systems D and D’. respectively. 
Since a weak adjoint functor is not necessarily a proper functor (as it may be multivalued 

on morphisms). weak adjointness does not generally require the existence of a certain 
natural equivalence. or even of certain natural transformations. At this point, we con- 
jecture that the weak adjoint functors which represent embryological development are in 
fact proper functors. that is they are not multivalued on morphisms. We expect that certain 
natural transformations can be always defined to model the development of an organism 
because we were able to show their involvement in the construction of molecular sets, 
(.\I. RI systems and organismic structures. If we consider certain functors 1: So ---f So 
w:hich define a dynamic transformation of an organismic structure (such as a cell or an 
embryo) then the natural transformations between such functors are a means of recovering 
the effects of dynamic transformations at the level of the components in the organismic 
structure So. 

While natural transformations appear to be universally present and provide useful 
means for unifying relational theories of biological systems-starting from the molecular 
level and including the cellular and organismic levels-any molecular models in molecular 
biology will require additional specific assumptions and restrictions. The wide-sense ki- 
netics of molecular set theory[240] is one such assumption. Since it only requires that 
transitions between molecular set variables occur with definite probabilities, the approach 
will be valid for most chemical and biological systems that are multistable or metastable, 
but may run into difficulties for systems with chemical chaos. 

The remarkable stability of certain genome regions results in a series of fundamental 
properties which are preserved not only throughout the development of an organism but 
also during evolution. In the case of embryological development, adjoint functors, natural 
equivalences. weakly ajoint functors and epimorphic transformations provide descriptions 
of biodynamics in algebraic terms. Mathematical theorems can be therefore proven al- 
gebraically for developing organisms. Another example of the remarkable stability of 
certain grnome regions is provided by the sequence “homology” existing between 16s 
rDNA from Zecr /ncrys chloroplasts and the 16s rRNA of E. coli[249]. Although these two 
biological systems are separated by a large phylogenetic distance, extensive homology 
between them was observed; out of 1541 residues from E. co/i 16s rRNA, I I44 positions 
are identical in maize 16s rDNA. Unlike this “structural” region of the cistron. the 
immediately adjacent “spacer” region containing the nucleotide positions 3542-1729 were 
quite distinct in the two systems. Such observations have implications for genetic engi- 
neering attempts: an in \.itro system from E. cdi can be used for efficient translation of 
plant chloroplast mRNAs. Our natural transformation models can be employed to predict 
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such homologies in molecular biology and could be therefore used in conjunction with 
genetic engineering experiments. Related experiments in the more complex organisms are 
the tests for nuclear equivalence in nuclear transplant experiments. We have presented 
an analysis of such experiments from a relational viewpoint by means of natural equiv- 
alences and adjoint functors. and derived the consequences of nuclear transplant exper- 
iments for theories in relational biology. 

11. V-VALUED LOGIC IN hlATHEMXTICAL hfEDIClNE 

An early attempt to model the diagnostic process in medicine ivas made ten years ago 
using Boolean algebras, two-valued logic and computer simulations of the diagnostic pro- 
cess[250]. This approach pictures diagnosis as a series of yes and no decisions based on 
the examination of the patient which finally involves two types of statistical variables: a 
continuous type representing numerically the results of biochemical and clinical tests. 
and a discrete or macroscopic qualitative type variable which represents the patient’s 
condition and his/her case history. Another important ingredient of the medical diagnostic 
process which was, however, ignored previously is the logical concept of contingent, 
sometimes assimilated with the logical category of “possible”. The degrees of possibility 
are readily represented in n-valued logic by taking the value 0 for false. 1 for true, and 
by allowing for (n - 2) degrees of possibility between false and true. The manipulation 
of logical statements with n possible truth values (in the logical sense) is conveniently 
carried out by algebraic means. These play the role which Boolean algebras played for 
two-valued logic. Thus, an n-valued tukasirwic z algebra is a distributive lattice with a 
first element (0) and a last element I, which is subject to the following axioms: 
(I) There exists a map N: L + L so that ,V(N(X)) = X, V(X u Y) = LV(X) n !V( Y). 

and V(X II Y) = IV(X) U V(Y) for any X, Y E L and vvith U and fl being the 
composition laws of the lattice. The symbol U stands for the nonexclusive logical 
OR and fl stands for the logical conjunction AND; IV is the logical negation. 

(II) There exist (n - I) maps ui: L ---, L with the following properties: 
(a) U;(O) = 0, u,(I) = I for any i = I, 1. . . . , 12 - I; 
(b) oi(X U Y) = U;(X) U U;(Y), a;(X n Y) = oi(X) n a,( Y) for any X. Y E L and 

anyi= l,1,....12- I; 
(c) u,(X) C u?(X) C ... C u,,_ i(X) for any X E L. and with C being the canonical 

order in the lattice; 
(d) ulr * crx = ux for II. X: = I. 3, . . , (II - 1): 
(e) ui(X) U NUi(X) = 1, u;(X) fl IV(u,(X)) = 0 for any X E L; 
(f) If u,(X) = oi( Y) forany i = 1, 2, . . . , n - I, then X = I’; 
(g) ui(N(X)) = /V(u,(X)) for i + j = II (Ref. [327]). 

While the maps CT, can be used to put order amongst the possible choices according to 
the results of diagnostic tests, one will still need to be able to change the type of tests. 
their significance, or the degree of possibility for a given choice to be true. In order to be 
able to model such significance changes we need to introduce morphisms of L-algebras: 
these are mappings f: L, - L2 with the following properties: 

(Ml) f(O) = 0, f(l) = I, f *iv= /v*f; (60) 
(M2) RX U Y) = f(X) u f(Y), fcx n Y) = f(x) n f(Y) for any X. Y E L: 

(61) 
(M3) f * u; = u; * f, for any i = 0. 1, . . , (12 - I). (6’) 
The aggregate of all L-algebras and morphisms between them can be organized as a 

category. Luk,,. In our model of medical diagnosis, Luk,, represents both the process of 
ordering possible diagnostics according to their degree of possibility (or. if necessary, prob- 
ability of occurrence). or the choice of a new significance for specific results/data in the 
case history. The probabilities can be readily introduced through lvrs as discussed in the 
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previous section and in Ref. [ 1691. The special case of centered L-dyebms. that is. those 
algebras which have (n - 2) elements called centers. encompasses the previous model 
of Boolean algebras in medical diagnosis. An efficient diagnostic procedure would impose 
a number of restrictions on the structure of the subcategory D,, of Luk,, which represents 
the diagnostic decisions. For esample, D,, should perhaps be loop-free in the sense that 
a chain of morphisms w,ith the same orientation must not have the same beginning and 
end L-algebra. Such loops were previously called cycles[226]. This restriction on D,, cor- 
responds to unalterable decisions. that is, decisions which cannot be reversed. From a 
practical viewpoint, this restriction may appear too severe; parallel reasoning and intuitive 
jumps are, however, permitted, and in this respect, too, our present model is an extension 
of the previous Boolean approach. 

Categorical structures such as Luk,, could be hardwired on a digital computer as an 
azuregate of interconnected n-state black boxes, or else coded in numerical form using cc 
appropriate software. Such developments will be considered elsevvhere. 

We conclude that an algebraic model of medical diagnosis is now possible by taking 
into account the rather subtle aspects of diagnosis, such as parallel reasoning and con- 
tingent thinking. Our model is effectively a subcategory D,, of Luk,,, the category of all 
L-algebras. Further developments will be needed to render some of our algebraic struc- 
tures computable on a digital computer. Our approach thus opens the possibility of detailed 
analyses of medical diagnosis using n-valued logic and L-algebras. 

CONCLUDING REMARKS 

Computer simulations in biology and medicine are of increasing variety. subtlety and 
importance: the number of computer simulations in these fields is increasing almost e.x- 
ponentially. Selected examples of such simulations, ranging from branching studies of 
arteries to biochemical oscillators. neural networks , genetic nets and molecular automata 
were discussed with a view to the underlying, or unifying trends. 

Automata theory and other algebraic models of biological systems provide sophisticated 
means for simulating the behavior of real biological systems. Dynamical systems and 
analogs of biological organisms are now considered which have complex state-space struc- 
tures and exhibit novel behavior when compared with the simpler networks that have 
become traditional in theoretical biology. 

A unifying view of theoretical models in biology was discussed and new applications 
of natural transformations were presented. Conjectures were made indicating new possible 
developments of computer applications. 

Limitations of present digital computers for mimicing biological dynamics were con- 
sidered in relation to “chaos” and n-ary networks based on n-valued logic. 

The need for n-valued logical models in medical diagnosis was discussed and the role 
of previous Boolean models in mathematical medicine was briefly reviewed. 

The underlying theme of all examples considered is a search for more general algo- 
rithms, better suited for modelling complex biological systems, and in which computer 
simulation and automata-theoretic approaches play a key role. 

il[,krro~~,lec~~,nr,lr-The kind permission by several authors to reproduce figures is gratefully acknowledged 
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