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1. Introduction

Let E be a real Banach space and let | denote the normalized duality mapping from E into 2F given by J(x) =
{f €E*: (x,f) = x|* = ||f||2} ,X € E, where E* denotes the dual space of E and (., .) denotes the generalized duality
pairing. We use F(T) to denote the set of fixed points of the mapping T. It is well known that, if E* is strictly convex or
E is a Banach space with a uniformly Gateaux differentiable norm, then J is single valued. In what follows, we denote the
single-valued normalized duality mapping by j.

Let C be a closed convex subset of E. Recall that a mapping T : C — C is said to be L-Lipschitzian if there exists a constant
L > 0 such that

ITx =Tyl <Llx—=yll, VxyeC. (1.1)
T is said to be non-expansive if

ITx =Tyl < llx=yll, Vx,yeC. (1.2)
T is said to be pseudocontractive if there exists j(x — y) € J(x — y) such that

(Tx — Ty, j(x—y) < lx—yl*, VxyeC. (1.3)
T is said to be strongly pseudocontractive if there exists a constant 8 € (0, 1) and j(x — y) € J(x — y) such that

(Tx—Ty,j(x—y) < Bllx—ylI>. Vx,yeC. (1.4)

In a Banach space E having a single-valued normalized duality mapping j, we say that an operator A is strongly positive
if there exists a constant ¥ > 0 with the property

(Ax, jx)) =7 [Ix]1%, lal — bA|| = sup [{(al — bA)x,j(x)}| ae€[0,1], be[-1,1], (1.5)

lxll<1

where I is the identity mapping.
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Recently, the problems of convergence of an implicit iterative algorithm to a common fixed point for a family of non-
expansive mappings and its extensions to Hilbert spaces or Banach spaces have been considered by many authors; see [1-5]
for more details.

Yao [2] introduced the following Halpern-type implicit iterative algorithm,

Xn = ol + BpXp1 + YaTXy, n>1, (1.6)

and proved a strong convergence theorem under suitable conditions.

In this paper, motivated by the above facts, we introduce a new implicit iterative algorithm for a countable family of
continuous pseudocontractions in a uniformly smooth Banach space. Then, a strong convergence theorem is established
under some suitable conditions. The results presented in this paper improve and extend the corresponding results
announced in [2] and many others.

2. Preliminaries

We need the following lemmas for the proof of our main results.

Lemma 2.1 ([6]). Let E be a Banach space, C a non-empty closed and convex subset of E, and T : C — C a continuous and
strong pseudocontraction. Then T has a unique fixed point in C.

Lemma 2.2 ([7]). Let {a,} be a sequence of non-negative real numbers satisfying the property a,.1 < (1 —¥p)@n + Vufn,n > 0,

where {y,} C (0, 1) and {B8,} C R such that (i) Zsio ¥n = oo and (ii) lim sup,_, o, Bn < O. Then {a,} converges to zero as
n— oo.

Lemma 2.3 ([3]). Let C be a non-empty closed convex subset of a real Banach space E and T : C — C be a continuous
pseudocontractive map. We denote B = (21 — T)™'. Then the following hold.

(1) The map B is a non-expansive self-mapping on C.

(2) If limy_ o ||%, — TXy|| = O, then lim,—, o ||X, — Bxy|| = 0.

Lemma 2.4 ([8]). Assume that A is a strongly positive linear bounded operator on a smooth Banach space E with coefficient
¥ >0and0 < p < ||A|~ . Then ||l — pAll < 1 — p¥.

Lemma 2.5. Let C be a closed convex subset of a uniformly smooth Banach space E. Let T : C — C be a continuous
pseudocontractive mapping with F(T) % W and f : C — C be a fixed Lipschitzian strongly pseudocontractive mapping with
pseudocontractive coefficient B € (0, 1) and Lipschitzian constant L > 0. Let A be a strongly positive linear bounded operator
with coefficient y > 0. Assume that C = C C Cand 0 < B8 < y. Let {x;} be defined by

X = tf(x) + (I — tA)Tx,. (2.1)

Then, ast — O, {x;} converges strongly to some fixed point z of T such that z is the unique solution in F(T) to the following
variational inequality:

(A=f)z,j(z—p)) <0, VpeFT). (2.2)

Proof. First, we show the uniqueness of the solution of the variational inequality (2.2). Suppose bothz; € F(T)andz, € F(T)
are solutions to (2.2). We have

(A=z1,j(z1 —22)) <0
and
((A=f)z2,j(z2 — 21)) < 0.
Adding up the above two inequalities, we obtain
(A=Pz1 = (A=fz2,j(z1 — 22)) < 0.
Note that
(A=Nz1 = (A= Nz, j(z1 — 22)) = (A1 — 22),j(z1 — 22)) — (f(21) — f(22),)(z1 — 22))
> 7 llzs — zl* — B llzn — 22117
=¥ —B) lzan — 2zl = 0.

Consequently, we have z; = z;, and the uniqueness is proved. We use Z to denote the unique solution of (2.2).
Next, we prove that {x,} is bounded. Indeed, we may assume, without loss of generality, that t < ||A||~'. For p € F(T), it
follows from Lemma 2.4 that
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(t(f (xe) — Ap) + (I — tA)(Txc — p), j(xc — p))

t(f(xe) —f(P),jx —p)) + t {f(0) — Ap,j(xc — p)) + (U — tA)(Txc — p), j(Xc — P))
tBlIx — pl* + (1 —t7) Ix — plI* + t If () — Apll llx: — pll ,

which implies that ||x; — p|| < W. This shows that {x;} is bounded.

Assume that t; — 0asn — o00. Setx, = X, and define i : C — R by u(x) = LIM ||x, — x||?,x € C, where LIM is a
Banach limit on I*°. Let

2
llxe — pli

IA

K= {x € C: u(x) = minLIM ||x, —x||2} )
xeC

We see easily that K is a non-empty closed convex subset of E. Note that ||x, — Tx, || = t, ||f (x,) — ATx,|| - 0asn — oo.
From Lemma 2.3, we have that the mapping B = (2 — T)™' : C — C is non-expansive and F(T) = F(B) and
lim,_, o || X, — Bx,|| = 0, where I denotes the identity operator. It follows that

[(Bx) = LIM [, — Bx||” = LIM [|Bx, — BX||* < LIM [|x, — X[|* = (%),

which implies that B(K) C K; that s, K is invariant under B. Since a uniformly smooth space has the fixed point property for
non-expansive mapping, B has a fixed point, say z € K. Since z is also a minimizer of u over C, we have that, fort € (0, 1)
andx € C,

0 < n(z +tlx — Az)) — u(2)

- t
Xp — 2z + t(Az — X)||2 — ||x, — z]|?
LIM” n— 2+ t( t)ll llxn — 2zl
(Xn — 2,j(Xn — 2 + t(AZ — X)) + t (AZ — X, j(Xp — 2 + t(AZ — X))) — ||, — Z||°
; .

Since E is uniformly smooth, we have that the duality mapping j is norm-to-norm uniformly continuous on a bounded set
of E. Letting t — 0, we find that the two limits above can be interchanged, and obtain

LIM (x — Az, j(x, —z)) <0, xeC. (2.3)
On the other hand, we have x, — z = t,(f (x,) — Az) + (I — t,A)(Tx, — z). It follows that

% = 217 = to (f (42) = Az, j(%0 = 2)) + (U = taA) (T — 2), j(Xn — D))
ta (f (%n) — AZ, j(xa — 2)) + (1 = ta7) X0 — 2II7,

= LIM

IA

which implies that

1
lIx, — Z||2 =< ? (f ) — Az, j(x; — 2))

1 1
< 7 &) —x,j(xn — 2)) + 7 (x — Az, j(xp — 2)) . (2.4)

Combining (2.3) and (2.4), we obtain
1 1
LIM (X, — z[|* < —LIM (f (%) — X, j(%n — 2)) + —LIM (x — Az, j(x, — 2))
Y Y
1 .
f ?L[M (f(xn) - XJ(Xn - Z)) .

In particular,
PLUM [[%, — 2| < LIM (f (xa) — f (%), j(%a — 2)) < BLIM [Ix, — 2%

Hence, (y — B)LIM ||x, — z||* < 0. Since y > B, we have LIM ||x, — z||?> = 0, and hence there exists a subsequence which

is still denoted {x,} such that x, — z.
Next, we prove that z solves the variational inequality (2.2). Since x; = tf (x;) + (I — tA)Tx;, we have

(A=) = = (= )0~ .

On the other hand, note that, forallx, y € C,

(I =T)x = (A =Ty, jx=y) = llx =ylI* = (Tx = Ty, j(x = )
lx = yl* = Ix = ylI> = 0.

v
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Forp € F(T), we have

—_

(A=Pxe j&xe = p)) = —— (I = tAYT = T)x;, j(xc — p))

N

=7 (I =T)xe — A = T)p,jx: — p)) + (AU — T)x, j(xc — p))
(Ad = T)x,, j(xc — p)) .

Replacing t with t, letting n — o0, and noting that (I — T)x;, — (I — T)z = 0, we have that ((A — f)z, j(z — p)) < 0.That
is,z € F(T) is a solution of (2.2). Then z = Z. In summary, we have that each cluster point of {x,} converges strongly to z as
t, — 0.This completes the proof. O

IA

Lemma 2.6. Let C be a non-empty closed convex subset of a real Banach space E which has a uniformly Gdateaux norm. Let
T : C — C be a continuous pseudocontractive mapping with F(T) # # and let f : C — C be a fixed Lipschitzian strongly
pseudocontractive mapping with pseudocontractive coefficient 8 € (0, 1) and Lipschitzian constant L > 0. Let A be a strongly
positive linear bounded operator with coefficient > 0. Assume that C & C C C and that {x;} converges strongly to z € F(T)
ast — 0, where x, is defined by x; = tf (x;) + (I — tA)Tx;, where y > 0 is a constant. Suppose that {x,} C C is bounded and
that limy— o [|Xn — Txp|l = 0. Then lim sup,,_, o, ((f — A)z, j(x, — z)) < 0.

Proof. We note that
X — Xp = tf (%) + Txe — tATx; — X,
= t(f(x) — Ax¢) + (Tx — Xy) — t(ATx; — Ax;)
= t(f(x) — Ax) + (Txe — Txy) + (Txy — Xp) + °A(f (X)) — ATX,).
It follows that
% — xall> = (f (x¢) — Axe, j(Xe — Xn)) + (Txe — T, jXe — X0)) + (TXn — Xn, j(Xe — Xn))
+ 2 (A(f (%) — ATX,), j(% — Xn))
t(f(xe) — Axe, j(xe — X)) + X — Xall> 4+ 1 Tx0 — Xall Ixe — X
+ 2 A (%) — AT || [Ixe — Xall

IA

which implies that

. ”Txrz - Xn”
(F(xe) — Axe, j(xn — x¢)) < — llxe — xnll + € A (Xe) — AT || [Ixe — Xnll - (2.5)
Since {x;} , {x,} and {Tx,} are bounded and x,, — Tx,;, — 0, taking the upper limit as n — oo in (2.5), we get that
limsup (f(x;) — Axe, j(xn — X¢)) < t [A(f (X)) — ATx,) || limsup [|x; — xn]| . (2.6)
n—oo n—oo

Taking the upper limit as t — 0in (2.6), we obtain

lim sup lim sup (f (x;) — Ax¢, j(x, — x;)) < 0. (2.7)

t—0 n—o00

Since E has a uniformly Gateaux norm, we obtain that j is single valued and strong-weak* uniformly continuous on a
bounded set of E. We get that

[{f(2) — Az, j(xn — 2)) — (F(xe) — Axe, j(Xn — X0))]
= {f(2) —Az,j(xn — 2) —j(xn — %)) + (F(2) — F(x) + A — Az, j(Xn — x0))]
< {f (@) — Az, j(xn — 2) — j(xn — X)) + (If @) — F RO + 1A% — Az]]) [|%n — Xe |l
— 0 ast— 0.

Hence,Ve > 0,38 > OsuchthatVt € (0, §), for all n, we have
(f@) —Az,j(xn — 2)) = (F(x0) — AX;, j(xn — X0)) + €.
By (2.7), we get that
limsup (f(z) — Az, j(x, — z)) = limsuplimsup (f (z) — Az, j(x, — z))

n—oo t—0 n—o0o
< limsup lim sup (f (x;) — Ax;, j(X, — X¢)) + € < €.
t—0 n—o0o

Since € is arbitrary, we get that lim sup,_, ., (f(z) — Az, j(x, — z)) < 0. The proof is complete. [
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Lemma 2.7 ([9]). Let C be a non-empty closed convex subset of a Banach space E. Let Ty, T, ... be a sequence of mappings
of C into itself. Suppose that Z;’il sup {||Tpy1x — Tpx|| : x € C} < oo. Then, for each y € C, {T,y} converges strongly
to some point of C. Moreover, let T be a mapping of C into itself defined by Ty = lim,_ o Ty, for ally € C. Then
lim, oo SUp {||Tx — Tyx|| : x € C} = 0.

3. Main results

Theorem 3.1. Let C be a non-empty closed convex subset of a real uniformly smooth Banach space E such that C £ C C C. Let
{T;}2, be a countable family of continuous pseudocontractive mappings from C into itself such that F = N, F(T;) # @. Let
f : C — C be a fixed Lipschitz strongly pseudocontractive mapping with pseudocontractive coefficient B € (0, 1) and Lipschitz
constant L > 0. Let A : C — C be a strongly positive linear bounded operator with coefficient y > Osuchthat0 <y — 8 < 1.
Let {x,} be a sequence generated by the following iterative process:

X0 € C, Xn = of (Xn) + Baxn—1 + ((1 — B)I — 0y A) Ty, (3.1)
where {«,,} and {8, } are two sequences in (0, 1) satisfying the following conditions:
(i) limp_ 00 @y = limy_ 00 By = 0;
(i) 202 ity = oo

Assume that Ziil SUPyep ITh1X — Tnx|| < oo for any bounded subset D of C, let T be a mapping of C into itself defined by
Tx = limy_. o Ty, for all x € C, and suppose that F(T) = N5, F(Ty,). Then, {x,} converges strongly to a fixed point z of F such
that z is a unique solution in F to the following variational inequality:

(f —A)z,j(p —2)) <0 forallp €F. (3.2)

Proof. By condition (i), we may assume, without loss of generality, that o, < (1 — 8,) |Al ™.
Since A is a strongly positive linear bounded operator on C, by (1.5), we have

lAll = sup { [{Au, jw)| : u € C, |lull = 1}.
Observe that

(1= B — A, j(u)) = 1— By — an (Au, j(u))
1= By —an Al
0.

IV 1V

It follows that
(1 = Bl — Al = sup {{((1 = B)] — anA)u, j(w)) :u € C, Jlull = 1}
= sup {1 — By —an (Au, j(w) :u € C, Jlull =1}
<1—Bp—any.
Next, we show that {x,} is well defined. For each n > 1, define a mapping S,, : C — C by
Sux = anf (X) + Bpxn—1 + (1 = B — 0, A)Tx, Vx €C.
For every x, y € C, we have
(Snx = Sny, jx = y)) = o (F(X) = F),J(x =) + (1 = B)] — atnA)(Tnx — Thy), j(x — ¥))
< B llx—yI> + (1 = Bo — anp) lIx — yl1?
[1—Bn— (¥ — BlIIx—ylI*.
Therefore, S, is a continuous strong pseudocontraction for each n > 1. By Lemma 2.1, we see that there exists a unique fixed
point x,, for each n > 1 such that
Xn = onf (%) + Baxn—1 + (1 — B)I — cnA)Tixy.
That is, the sequence {x,} is well defined. Next, we prove that {x,} is bounded. Let p € F. We have

llXn — p”2 = o (f(xn) — Ap, j(Xn — D)) + Bn (Xn—1 — P, j(%a — D)) + (((1 — B)] — cwA)(TuXn — D), j(xn — D))
on (f(Xn) = F(P),j(Xn — P)) + an (F(P) — AP, j(xn — D)) + B lIXn—1 — Pl [IXa — P

+ (1= Bo— an?) lIxa — plI?

< anBllxa — plI* + (1 = Bo — an?) %0 — PI* + &tn (F(P) — AP, j(n — P)) + Bu IXn—1 — PIl X0 —
(1= Bu— an(7 = B)) lIXa = P> + ca If (0) — APl X0 — PIl + Bu lIXa—1 — Il lIXa — P,

IA
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which implies that

o pl < — Py T =B I — Apl
! T Butany—B) Botan(7—B) v—-B
By induction, we obtain
—A
X, — pll < maX{HXO -ol. M} .
y—B

Therefore, {x,} is bounded. We observe that

IXp — Tuxnll = ”Oln(f(xn) — ATuxn) + Bn(Xn—1 — Toxp) |l

< oy If %n) — ATuXnll + Bn IXn—1 — Tuxall . (3.3)

It follows from condition (i) and (3.3) that

lim ||x, — Tpxy]| = 0. (3.4)

n—oo
On the other hand, we have

”xn - TX,,H = ”Xn - Tnxn” + ||Tan - Txn” . (3-5)
From Lemma 2.7, (3.4) and (3.5), we have

lim [|x, — Txa|| = O. (3.6)
n—oo

Letx; = tf (x;) + (I — tA)Tx.. It follows from Lemmas 2.5 and 2.6 that {x;} converges strongly toz € F(T) = N2, F(T;)) =F
and

limsup ((f — A)z,j(x, —z)) <O0. (3.7)

n—oo

Finally, we show that x, — z as n — o0o. We observe that

[0 — 211> = ot (f (%n) — Az, j(Xn = 2)) + B (¥n—1 — 2, j(Xn — 2)) + (((1 = B)] — €aA) (Tonxn — 2), j(Xn — 2))
< (1= B — o) X0 — 211> + B lIxac1 — 2l X — zll 4 et (f (xa) — £ (2). j(xa — 2))
+ o (f(z) — Az, j(x, — 2))
< (1= B — o) X0 — 211> + B lIxa—1 — 21X — zll + 2B %0 — zII* + otn (f (2) — Az, j(Xa — 2))

< (1= B — (@ = B) X0 — zII* + il il

> -1 —z|* + 5 X = z|* + an (f(2) — Az, j(xa — 2))

= (1 - % — oy — ﬂ)) 1% — zII* + % 01 = 2I* + an (f(2) — Az, j(x0 — 2)) ,
which implies that
. 2 /311 o 2 20[,1 _ ; _
ll%n —2zII* < Bt 200 — B) %01 = 2]I” + Bt 200G — B) {f(2) — Az, j(xn — 2))
_ [1 _ 2 —p) } oy — 2|+ 2T =B (@)= Azj6 —2)) (38)
Bn + 20, (y — B) Bn + 2a,(y — B) y—B
We note that
20[11()7 - ,B) 205,,(]_/ - ﬁ) _ s Oy
YT > =¥ -8 .
Oln(y _ﬂ)+ﬂn 2an+2ﬂn an+an

o0 2on(y=p)

Therefore, condition (ii) yields >~ 3= Franthn

completes the proof. O

= 00. Applying Lemma 2.2 to (3.8), we have that x, — z asn — 0. This

Remark 3.1. Put o, = % Bn = nll Then {«,} and {B,} satisfy conditions (i) and (ii) of Theorem 3.1. But we note that
g—: =n— oo.

Remark 3.2. Theorem 3.1 extends and improves Theorem 3.1 of Yao [2] in the following aspects.

(i) uisreplaced by a Lipschitz strongly pseudocontractive mapping.
(ii) One continuous pseudocontractive mapping is replaced by a countable family of continuous pseudocontractive
mappings.
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(iii) Condition ‘;—: — 0is weakened to o, — 0 and 8, — 0,asn — oo.
(iv) We add a strongly positive linear operator A in our iterative algorithm.
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