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ŽThe purpose of this paper is to extend results of J. Wermer 1952, Proc. Amer.
. ŽMath. Soc. 3, 270�277 , L. Brown et al. 1960, Trans. Amer. Math. Soc. 96,

. Ž162�183 , and D. Sarason 1972, J. Reine Agnew. Math. 252, 1�15; 1966, Pacific J.
.Math. 17, 511�517 on spectral subspaces of diagonalizable operators on separable

complex Hilbert space to the class of so-called Jordan operators or infinite direct
sums of Jordan cells. � 2000 Academic Press

1. INTRODUCTION

In this paper, we are concerned with a special case of the following
general problem: Let XX be a Banach space and let T : XX � XX be a
bounded linear operator which is complete, that is, whose root vectors
have dense linear span in XX . Under what conditions will every subspace
invariant for T be the closed linear span of the root vectors for T that it

Žcontains? Recall that a closed subspace MM of a Banach space XX is
in�ariant for a bounded linear operator T : XX � XX if T MM � MM and that a
vector x in XX is a root �ector for T if there exists a complex number � and

Ž .n .a positive integer n such that T � �I x is the zero vector. Invariant
subspaces for a complete operator which are the closed linear span of the
root vectors for the operator they contain are called spectral subspaces for
the operator and complete operators all of whose invariant subspaces are
spectral are said to admit spectral synthesis.

In particular, we take XX to be a separable complex Hilbert space and T
to be the infinite direct sum of Jordan cells or a so-called Jordan operator.
Recall that a bounded linear operator T : HH � HH on a finite-dimensional
Hilbert space HH is a Jordan cell if there exists a complex number � and an
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� 4orthonormal basis e : 1 � i � m for HH such that the matrix representa-i
� 4tion for T with respect to e : 1 � i � m isi

� 1 0 ��� 0 0
� 1 ��� 0 0

� ��� 0 0
.J �, m � .Ž . . .� 0� 1

�

That is, a bounded linear operator J: HH � HH on a separable complex
Hilbert space HH is a Jordan operator if there exists a bounded sequence
� 4 � 4� of complex numbers, a sequence m of positive integers, and an n

� 4sequence HH of Hilbert spaces such that HH � �HH and for each positiven n
� Ž .integer n, the restriction J HH of J to HH is the Jordan cell J � , m .n n n n

In this paper, we seek necessary and sufficient conditions for a Jordan
operator to admit spectral synthesis.

Ž . ŽThe special case of diagonalizable Jordan operators �J � , 1 that is, ofn
. � 	complete normal operators was studied by Wermer 14 and Brown et al.

� 	 � 	2 , and was solved by Sarason 10, 11 in 1972. The following is a synopsis
of the results relevant to our study. The most important feature of the

Ž .result is the connection between condition v and the rest. Also see
� 	.Nikolskii 7, Wermer�Sarason theorem, p. 99 for additional conditions.

� 4THEOREM 1. Let � be a sequence of distinct points in the open unit discn
� � � 4 Ž .D � z 
 C : z � 1 and let D � �J � , 1 be a diagonalizable operatorn

� 4acting on a Hilbert space HH � span e . The following are equi�alent:n

Ž .i D admits spectral synthesis,
Ž . ² :ii a �ector x in HH is cyclic for D if and only if x, e � 0 for alln

positi�e integers n,
Ž . � 4iii there does not exist a sequence w of complex numbers for whichn

� � i0 � Ý w � � and Ýw � � 0 for all nonnegati�e integers i,n n n

Ž .iv the weakly closed algebra generated by D and the identity coincides
with the commutant of D, and

Ž .v there does not exist a bounded complex domain � such that
� � Ž . � 4 � � Ž . � � 44sup f z : z 
 � � sup f z : z 
 � � � for all functions f boundedn

and analytic on �.

If , in addition, the points � accumulate only on the boundary of D, thenn
these conditions are equi�alent to:

Ž . � 4vi there does not exist a sequence w of complex numbers for whichn
� � �n z0 � Ý w � � and Ýw e � 0 for all complex numbers z,n n
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Ž . � Ž . �vii the map T : H � l � from the space H of functions bounded�

Ž .and analytic on the unit disc to l � where � � Ý� is the measure� �n
� Ž .4consisting of point masses at the � defined by T : f � f � is not ann n

isometry, and
Ž .viii not almost e�ery point of the unit circle is in the nontangential

� 4cluster set of � .n

� 4Throughout this paper, we let � denote a bounded sequence ofn
� 4distinct complex numbers, we let m denote a bounded sequence ofn

Ž .positive integers, and we let J � �J � , m denote a Jordan operatorn n
� � � 4acting on a Hilbert space HH � � HH � � span e : 1 � i � m . Itn n, i nn�1 n�1

� 4is understood that for each positive integer n, e : 1 � i � m denotesn, i n
the unique orthonormal basis for HH for which the matrix representationn

� � 4 Ž .for J HH with respect to e : 1 � i � m is the Jordan cell J � , m .n n, i n n n
Ž .For distinct points � , the Jordan operator J � �J � , m has a densen n n

Ž � 	.set of cyclic vectors see 4 and moreover, the spectral subspaces of J are
� 4 � 4precisely those subspaces of the form �span e : i � d where d is anyi, j j n

Žsequence of nonnegative integers with d � m . If d � 0, then wen n n
� 4 .interpret span e : i � d as the zero subspace. We have restricted ouri, j j

attention to the case of distinct points � in order to avoid uninterestingn
complications. The techniques of the paper apply in the more general case
and yield similar results when suitably modified. The restriction that the

� 4block sizes m be bounded, however, is imposed only so our proofs aren
valid.

For a survey of the present state of the spectral synthesis problem, see
� 	 � 	Nikolskii 6 . Also see Markus 5 .

2. EQUIVALENT CONDITIONS FOR
SPECTRAL SYNTHESIS

In this section, we give several equivalent conditions for a Jordan
operator to admit spectral synthesis. These conditions are analogues of

Ž . Ž . Ž . Ž .conditions i , ii , iii , and vi of Theorem 1 on diagonalizable operators.

� 4THEOREM 2. Let � be a bounded sequence of distinct complex num-n
� 4bers, let m be a bounded sequence of positi�e integers, and let J �n

Ž . ��J � , m be a Jordan operator acting on a Hilbert space HH � � HH �n n n�1 n
� � 4� span e : 1 � i � m . The following are equi�alent:n�1 n, i n

Ž .i J admits spectral synthesis,
Ž .ii a �ector x � �x in HH is cyclic for J if and only if for each positi�en

Ž .integer n, x is a cyclic �ector for J � , m on HH ,n n n n
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Ž . � 4iii there does not exist a set w of complex numbers such thatn, j
� m � minŽ i�1, m . i i� j�1n n� � Ž .0 � Ý Ý w � � and Ý Ý � w � 0 for allj � 1n�1 j�1 n, j n�1 j�1 n n, j

nonnegati�e integers i, and
Ž . � 4iv there does not exist a set w of complex numbers such thatn, j

� m n � � � m n Ž Ž . . j�1 �n z0 � Ý Ý w � � and 0 � Ý Ý w � j � 1 ! z e for alln�1 j�1 n, j n�1 j�1 n, j
complex numbers z.

Ž . Ž .Proof. i � ii . Let x � �x be an arbitrary vector in HH � �HH andn n
� k 4denote by MM � span J x : k  0 the smallest subspace invariant for Jx

containing x. Since J admits spectral synthesis, it follows that MM �x
� kŽ . 4 � kŽ . 4�span J � , m x : k  0 . Since span J � , m x : k  0 is a sub-n n n n n n

space of H for each n, x is cyclic for J if and only if each x is cyclic forn n
Ž .J � , m on HH .n n n

Ž . Ž . � 4iii � iv . If w is any collection of complex numbers for whichn, j
� m n � � Ž . � m n Ž Ž . . j�1 �n zÝ Ý w � �, then F z � Ý Ý w � j � 1 ! z e is ann�1 j�1 n, j n�1 j�1 n, j

Ž .entire function. Moreover, F z � 0 if and only if for all nonnegative
Ž i. � minŽ i�1, m . i i� j�1nŽ . Ž .integers i, 0 � F 0 � Ý Ý � w .j � 1n�1 j�1 n n, j

Ž . Ž . � 4iii � ii . Let x be any collection of vectors for which x is an n
Ž .cyclic vector for J � , m on HH for each positive integer n. We show thatn n n

x � �x is cyclic for J on HH. By means of contradiction, assume not. Son
there exists a nonzero vector y � �y in HH such that for all nonnegativen
integers i,

² i :0 � J x , y
Ž .min i�1, m m �j�1� n ni i� j�1 ² :² :� � x , e y , e . 1Ž .Ý Ý Ýn n n , k�j�1 n n , kž /j � 1

n�1 j�1 k�1

² :² :Define w � x , e y , e for all positive integers n and all jn, j n n, k�j�1 n n , k
� 4 � m n � �in 1, 2, . . . , m . Since x and y are in HH, it follows that Ý Ý w � �.n n�1 j�1 n, j
Ž . � 4By ii , 0 � w for all positive integers n and all j in 1, 2, . . . , m . For alln, j n

Ž . ² :positive integers n, x is a cyclic vector for J � , m and so x , e isn n n n n, m n
Ž . ² :nonzero. Letting j � m in Eq. 1 yields y , e � 0. Induction onn n n, 1

² :j � m , m � 1, . . . , 1 yields y , e � 0 for all n and all j inn n n n, j
� 41, 2, . . . , m . Hence y � �y is the zero vector, a contradiction.n n

Ž . Ž . � 4ii � iii . Let w be any collection of complex numbers forn, j
� m � minŽ i�1, m . i i� j�1n n� � Ž .which Ý Ý w � � and Ý Ý � w � 0 for allj � 1n�1 j�1 n, j n�1 j�1 n n, j

nonnegative integers i. Let n be a positive integer. If w � 0 for alln, j
�nŽ .j � 1, 2, . . . , m , define x � 2 0, . . . , 0, 1 and y � 0 
 HH . Otherwise,n n n n

� 4let j denote the largest integer in 1, 2, . . . , m for which w is non-n n n, j
� � �1�2 4zero and let � � max w : 1 � j � m . Define x �n n , j n n

�1Ž . Ž .� 0, . . . , 0, w , . . . , w and define y � 0, . . . , 0, � , 0, . . . , 0 wheren n, 1 n, j n nn



STEVEN M. SEUBERT656

Ž . � �1�2the term � occurs in the m � j � 1 st coordinate. Since wn n n n, j
� � and sup m � �, x � �x and y � �y are norm convergent.n n n n
Moreover, the vectors x and y are chosen so that w �n n n, j

m �j�1n ² :² :Ý x , e y , e for all positive integers n and all j �k�1 n n, k�j�1 n n , k
² i :1, 2, . . . , m . Hence for all nonnegative integers i, we have that J x, y �n

� minŽ i�1, m . i i� j�1n Ž .Ý Ý � w � 0.j � 1n�1 j�1 n n, j

² :For each positive integer n, x , e is nonzero. Hence x is cyclic forn n n
Ž .J � , m on HH and so, by hypothesis, x � �x is cyclic for J on HH. Sincen n n n

i � minŽ i�1, m . i i� j�1n² : Ž .J x, y � Ý Ý � w � 0 for all nonnegative inte-j � 1n�1 j�1 n n, j

gers i and x is cyclic for J, we have that y � �y is the zero vector. Byn
� m n � �definition of y , it follows that 0 � Ý Ý w .n n�1 j�1 n, j

The result follows.

3. SUFFICIENT CONDITIONS

Ž .In this section, we show that a Jordan operator J � �J � , m admitsn n
spectral synthesis whenever for each positive integer i, � is in the un-i

cŽ .� 4bounded component of � : k � i .k

� 4THEOREM 3. Let � be a bounded sequence of distinct complex num-n
� 4bers, let m be a bounded sequence of positi�e integers, and let J �n

Ž . ��J � , m be a Jordan operator acting on a Hilbert space HH � � HH . Ifn n n�1 n
for each positi�e integer i, the orthogonal projection P : HH � HH is in theHH ii

weakly closed algebra generated by J and the identity, then the Jordan operator
Ž .J � �J � , m admits spectral synthesis.n n

Proof. Let MM be an arbitrary invariant subspace for J and let x be an
arbitrary element of MM. Since P is in the weakly closed algebra gener-HHi

ated by J and the identity, MM is invariant for J and the identity, and x is
in MM, it follows that P x is in MM.HHi

For each positive integer n, let d denote the largest integer j �n
² :1, 2, . . . , m for which there exists a vector x in MM with x, e nonzeron n, j

Ž . �if no such vector exists, take d to be zero . Clearly MM � �span e : j �n n, j
4 Ž � 4 � 4.d if d � 0, we interpret span e : j � d as 0 . We show equality.n n n, j n

Let n be any positive integer for which d is nonzero and let x be anyn n
² :vector in MM for which x , e is nonzero. By the first part of the proof,n n, dn

² : ² :P x is in MM. Moreover, P x , e � x , e is nonzero and soHH n HH n n, d n n, dn n n n
Ž . � 4P x is a cyclic vector for J � , m restricted to span e : j � d . HenceHH n n n n, j nn

� Ž . 4 � Ž Ž ..MM � p J P x : p is a polynomial � p J � , m P x : p is a polyno-HH n n n HH nn n
4 � 4 � 4mial � span e : j � d . So MM � �span e : j � d . That is, MM �n, j n n, j n

� 4�span e : j � d is a spectral subspace of J.n, j n
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� 4THEOREM 4. Let � be a bounded sequence of distinct complex num-n
� 4bers, let m be a bounded sequence of positi�e integers, and let J �n

Ž . ��J � , m be a Jordan operator acting on a Hilbert space HH � � HH . Letn n n�1 n
� 4 � Ž .4i be any positi�e integer and let p be a set of polynomials. Then p J	 	

con�erges in the weak operator topology to the projection operator P if andHHi

only if

0 if k � i ,Ž . Ž .i lim p � �	 	 k ½ 1 if k � i ,
Ž . Ž j.Ž .ii lim p � � 0 for all j, k  1, andˆ	 	 k

Ž . � Ž j.Ž . �iii sup p � � � for all j  0ˆ	 , k 	 k
where

0 if j  m ,kŽ j.p � �Ž .	̂ k Ž j.½ p � if j � m .Ž .	 k k

� 4 Ž . Ž .Proof. Suppose that the polynomials p satisfy properties i , ii , and	

Ž . � Ž .4iii . We show that p J converges in the weak operator topology to the	

Ž .projection operator P . Let x � � x , x , . . . , x and y �HH i n, 1 n, 2 n, m n
Ž .� y , y , . . . , y denote arbitrary elements of HH � �HH . We haven, 1 n, 2 n, m nn

that
² :p J x , yŽ .	

m m �j�1� k k 1
Ž r�1.� y p � xŽ .Ý Ý Ýk , j 	 k k , r�j�1ž /r � 1 !Ž .k�1 j�1 r�1

m m �j�1i i 1
Ž r�1.� y p � xŽ .Ý Ýi , j 	 i i , r�j�1ž /r � 1 !Ž .j�1 r�1

m �j�1k 1
Ž r�1.� y p � x . 2Ž . Ž .Ý Ýk , j 	 k k , r�j�1ž /r � 1 !Ž .k�i r�1

Ž . Ž .By i and ii ,
m m �j�1i i 1

Ž r�1. ² :lim y p � x � P x , y . 3Ž . Ž .Ý Ýi , j 	 i i , r�j�1 HHiž /r � 1 !	 Ž .j�1 r�1

Ž . � � Ž j.Ž . � 4By iii , M � sup p � : j � 0, 1, . . . , m � 1 � � from which itˆ	 , k 	 k k
follows that

m �j�1k 1
Ž r�1. � � � �y p � x � M sup m x y � �.Ž . Ž .Ý Ýk , j 	 k k , r�j�1 nž /r � 1 !Ž .k�i r�1

4Ž .
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�² Ž . :4By means of contradiction, suppose that p J x, y does not con-	

² : � 4verge to P x, y . Then there exists a sequence 	 such thatHH ni
�² Ž . :4 ² :p J x, y does not converge to P x, y . Hence by the dominated	 HHn i

Ž . Ž .convergence theorem, Eq. 4 , and iii ,

m �j�1k 1
Ž r�1.lim y p � xŽ .Ý Ýk , j 	 k k , r�j�1nž /r � 1 !n�� Ž .k�i r�1

m �j�1k 1
Ž r�1.� y lim p � xŽ .Ý Ýk , j 	 k k , r�j�1nž /r � 1 ! n��Ž .k�i r�1

� 0,

�² Ž . :4 ² :a contradiction as p J x, y does not converge to P x, y . Hence	 HHi

m �j�1k 1
Ž r�1.lim y p � xŽ .Ý Ýk , j 	 k k , r�j�1ž /r � 1 !	 Ž .k�i r�1

m �j�1k 1
Ž r�1.� y lim p � xŽ .Ý Ýk , j 	 k k , r�j�1ž /r � 1 ! 	Ž .k�i r�1

� 0. 5Ž .

Ž . Ž . ² Ž . : ² :So by Eqs. 2 � 5 , p J x, y � P x, y for arbitrary elements x and	 HHi
� Ž .4y in HH. That is, p J converges in the weak operator topology to the	

projection operator P .HHi
� Ž .4Conversely, suppose that p J converges in the weak operator topol-	

� 4ogy to the projection operator P . We show that the polynomials pHH 	i
Ž . Ž . Ž . Ž .satisfy properties i , ii , and iii . Let x � �x � � x , x , . . . , xn n, 1 n, 2 n, m n
Ž .and y � �y � � y , y , . . . , y denote arbitrary elements of HH �n n, 1 n, 2 n, m n

� Ž .4�HH . Since p J converges in the weak operator topology to P , wen 	 HHi

have that

m m �j�1� k k 1
Ž r�1.y p � xŽ .Ý Ý Ýk , j 	 k k , r�j�1ž /r � 1 !Ž .k�1 j�1 r�1

² :� p J x , yŽ .	

mi

² : ² :� P x , y � x , y � x y . 6Ž .ÝHH i i i , j i , ji
j�1

Ž .Judicious choices of coordinates for the vectors x and y in Eq. 6 show
� 4 Ž . Ž .that the polynomials p satisfy properties i and ii . Hence we need only	

� 4 Ž .show that the polynomials p satisfy property iii . To this end, fix j  0	
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� 4and let w be an arbitrary sequence in l . Define x � �x wheren 1 k
Ž � � . � �x � 0, . . . , 0, w , 0, . . . , 0 with the term w occuring in the jth' 'k k k

Ž . ŽŽcoordinate take x � 0 
 HH if j � m . Similarly, define y � j �k k k k
i arg w � Ž j.k. � � . ² Ž . : Ž .1 !e w , 0, . . . , 0 . We have that p J x, y � Ý p � w . By' ˆk 	 k�1 	 k k

�² Ž . :4 ² : � Ž j.Ž .hypothesis, p J x, y converges to P x, y . Hence Ý p � wˆ	 HH k�1 	 k ki
� 4converges for each w in l . Moreover,k 1

�
Ž j. ² : ² :lim p � w � lim p J x , y � P x , y . 7Ž . Ž . Ž .ˆÝ 	 k k 	 HHi	 	k�1

� 4 Ž� 4.For each w in l , we define a functional L : l � C by L w �k 1 	 1 	 k
� Ž j.Ž . � Ž j.Ž . � 4Ý p � w . Since Ý p � w converges for all w in l , itˆ ˆk�1 	 k k k�1 	 k k k 1

� Ž j.Ž .4�follows from the Banach�Steinhaus theorem that p � is in l .	̂ k k�1 �

� � �Hence L is a bounded linear functional on l , and, moreover, L �l	 1 	 1

�� Ž j.Ž .4� Ž . Ž� 4. � Ž j.Ž .p � . By Eq. 7 , L w � Ý p � w is bounded in 	 forˆ ˆl	 k 	 k k�1 	 k k�

� 4 � 4all w in l . Hence the sequence L of functionals on l is pointwisek 1 	 1
bounded and so uniformly bounded by the principle of uniform bounded-

� � � �� Ž j.Ž .4�ness. That is, sup L � sup p � is finite for all j  0. Theˆl l	 	 	 	 k1 �

result follows.

In general, the weak closure and the weak sequential closure of the set
� Ž . 4p J : p is a polynomial of polynomials in J do not coincide, even if J is

Ž . Ž � 	a diagonalizable operator J � �J � , 1 see Wermer 14 , the Corollaryn
� 	 .to Theorem 1 of Sarason 11, p. 511 , and the remarks following Lemma 7 .

In the following theorem, we give sufficient conditions for J to be the
weak sequential limit of polynomials in J by applying Mergelyan’s theo-
rem on polynomial approximation.

� 4THEOREM 5. Let � be a bounded sequence of distinct complex num-n
� 4bers, let m be a bounded sequence of positi�e integers, and let J �n

Ž . ��J � , m be a Jordan operator acting on a Hilbert space HH � � HH .n n n�1 n
Suppose that for each positi�e integer n, � is in the unbounded component ofn

cŽ . � 4� 4� : m � n . Then there exists a sequence p of polynomials such thatm n, i
� Ž .4p J con�erges in the weak operator topology to the projection operatorn, i

Ž .P for each positi�e integer n. In particular, J � �J � , m admits spectralHH n nn

synthesis.

Proof. Let n be a fixed positive integer. By Theorem 4, it suffices to
� 4show that there exist polynomials p such thatn, i

0 if k � n ,Ž . Ž .i lim p � �i�� n, i k ½ 1 if k � n ,
Ž . Ž j. Ž .ii lim p � � 0 for all j, k  1, andˆi�� n, i k

Ž . � Ž j. Ž . �iii sup p � � � for all j  0ˆi, k n, i k
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where

0 if j  m ,kŽ j.p � �Ž .n̂ , i k Ž j.½ p � if j � m .Ž .n , i k k

Ž � 	.We apply Mergelyan’s theorem see Rudin 9, p. 390 . Define Kn
� 4� � : m � n . By hypothesis � is not in K and so there exists 
 � 0m n n

Ž .such that B � , 
 � K � � where here B � , 
 denotes the open ballŽ .n n n
of radius 
 with center � . Let J be any Jordan curve whose interiorn n
int J contains K and whose exterior ext J contains B � , 
 . DefineŽ .n n n n
Ž . Ž . Ž .h z � 0 on J � int J and h z � 1 on B � , 
 . Since h is continuousŽ .n n n

� 4on the compact set C � B � , 
 � J � int J and analytic on theŽ .n n n n
0 Ž .interior C � B � , 
 � int J of C , by Mergelyan’s theorem there existn n n n

� 4polynomials p converging uniformly to h on C .ñ, i n
N Ž . Ž .We show that the polynomials p � p satisfy properties i , ii , and˜n, i n, i

Ž . � Ž j. 4iii where here N � sup m . It suffices to show that for each j  0, pn n, i
Ž j. Ž .converges uniformly to h on an open set containing B � , 
�2 � K .n n

We map to the open unit disc D and apply Cauchy’s integral formula.
Since K � int J and K and J are compact, there exists an open set �n n n n n
for which K � � � � � int J . So � � J � �. By the Riemann map-n n n n n n

Ž � 	.ping theorem see Burckel 1, Theorem 9.7, pp. 299 and 303 , there exists
a conformal map � from int J onto D. Moreover, � extends to an

Žcontinuous map � : int J � D which is one-to-one on int J seeŽ . Ž .n n
� 	.Burckel 1, Lemma 9.13, p.307 . Since � is one-to-one, it follows that

Ž . Ž .� � � D. Hence there exists r in 0, 1 for which � � � B 0, r . ForŽ . Ž .n n
Ž . �1Ž Ž .. � 4any r  
 r, 1 , we have that K � � � � B 0, r  . Since p con-˜n n n, i

N� 4verges uniformly to h on int J , p converges uniformly to h � h onŽ .n n, i
�1 �1� 4 Ž .int J , and so p �� converges uniformly to h�� on B 0, r  .Ž .n n, i

d ��1 �1 �1Ž . Ž . Ž .Hence, by Cauchy’s integral formula, p �� � p �� � � n, i n, idz
d �1 �1 �1Ž . Ž . Ž . Ž .converges uniformly to h�� � h�� � �  on B 0, r  for alldz

Ž .r  
 r, 1 .
�1Since � is a conformal map from D to int J and continuous onŽ .n

�1Ž . Ž . � �Ž . � 4B 0, r  for all r  
 r, 1 , we have that inf �  : z 
 B 0, r  � 0.Ž .
� � �14 �1 Ž .Hence p �� converges uniformly to h�� on B 0, r  for alln, i

d � 	�1 �1Ž . Ž . Ž .r  
 r, 1 . So by Cauchy’s integral formula, p �� � p �� �n, i n, idz
�1 �1 �1 �1Ž . Ž . Ž . Ž .�  converges uniformly to h�� � h� � �  on � B 0, r Ž .

�1Ž . � �Ž . � 4 Ž .for all r  
 r, 1 . Since inf �  : z 
 B 0, r  � 0 for all r  
 r, 1 ,Ž .
	 �1� 4 Ž .we have that p converges uniformly to h� on � B 0, r  for allŽ .n, i

Ž . � Ž j. 4 Ž j.r  
 r, 1 . Induction yields that p converges uniformly to h onn, i
�1 �1Ž . Ž . Ž .� B 0, r  for all r  
 r, 1 and hence on � B 0, r  � � .Ž . Ž . n

� Ž j. 4 Ž j. Ž .Similarly, p converges uniformly to h on B � , 3
�4 . Hencen, i n
� Ž j. 4 Ž j. Ž .p converges uniformly to h on an open set containing B � , 
�2 �n, i n
K for each j  0. The result follows.n
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4. A NECESSARY CONDITION

In this section we give a necessary condition for a Jordan operator to
admit spectral synthesis. We begin with the following notation.

� 4Let � be a bounded sequence of distinct complex numbers and letn
� 4m be a bounded sequence of positive integers. Define R � sup m � 1.n n
We denote by AA the subalgebra

� Ž̂ i.AA � f 
 H : f � 
 l for all i � 0, 1, 2, . . . , RŽ .� 4½ 5n �

of H� where for each positive integer n,

0 if i  mnŽ i.f̂ � �Ž .n Ž i.½ f � if i � mŽ .n n

R Ž̂ i.
�� � � � �� Ž .4�and norm AA by defining f � f � Ý f � . We denote byAA H li�1 n �

BB the subalgebra

� 4 � 4 � 4 � 4BB � a , a , . . . , a : a 
 l for all i � 0, 1, 2, . . . , R and� Ž n , 0 n , 1 n , R n , i �

a � 0 for all i � m 4n , i n

R �Ž� 4 � 4.� R �� 4�of � l and norm BB by defining a , . . . , a � Ý a .BB li�0 � n, 0 n, R i�0 n, i �

LEMMA 1. If the bounded linear operator T : AA � BB defined by

Ž̂1. Ž̂R.T : f � f � , f � , . . . , f �� 4Ž . Ž . Ž .� 4 � 4ž /n n n

Ž .is an isometry, then the Jordan operator J � � � , m fails to admit spectraln n
synthesis.

Proof. We first show that T : AA � BB is not onto. By means of contra-
� 4diction, suppose that T maps AA onto BB. So for each sequence a in ln �

� Ž .there exists a function f in AA � H for which T f �
Ž� 4 � 4 � 4 � 4.a , a , a , . . . , a where a � 0 for all n  1 and all i �n n, 1 n, 2 n, R n, i

Ž . � 41, 2, . . . , R. Hence f � � a for all positive integers n, and so � is ann n n
interpolating sequence for H�. Let B denote any interpolating Blaschke

� 4 RŽ .product having simple zeros � . Then B z is in AA and since T is ann
� R � � Ž R.� �Ž� 4 � 4.�isometry, we have that 1 � B � T B � 0 , . . . , 0 � 0, aAA BB BB

contradiction. Hence T : AA � BB is not onto.
Let CC denote the subalgebra

� 4 � 4 � 4 � 4CC � a , a , . . . , a : a 
 l for all i � 0, 1, 2, . . . , R and� Ž .n , 0 n , 1 n , R n , i 1

a � 0 for all i � m 4n , i n
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R �Ž� 4 � 4.� R �� 4�of � l and norm CC by defining a , . . . , a � Ý a .CC li�0 � n, 0 n, R i�0 n, i 1

Then BB � CC*. We show that the range of T is weak-star closed in BB. By
Ž � 	.the Krein�Smulian theorem see Conway 3, Corollary 12.7, p. 165 , it

suffices to show that the range of T is weak-star sequentially closed. To
� 4 � Ž .4this end, let f be any sequence of functions in AA for which T fk k

Ž� 4 � 4 � 4.converges weak-star to some vector a , a , . . . , a in BB. Sincen, 0 n, 1 n, R
� Ž .4 �� Ž .� 4T f converges weak-star, T f is bounded. But T is an isometry,BBk k

�� � 4 � � � � � �� � �4and so f is bounded. Since f � f , f is bounded andAA H AA Hk k
� 4 � 4so by Montel’s theorem, there exists a subsequence f of f whichk kr

converges uniformly to some function g on every compact subset of the
� Ž .4 Ž� 4 � 4 � 4.unit disc. Since T f converges weak-star to a , a , . . . , a ink n, 0 n, 1 n, R

Ž̂ i. Ž i.Ž . Ž .BB, it follows that a � lim f � � g � for all positive integersˆn, i r �� k n nr
Ž� 4 � 4 � 4.n and i. Hence a , a , . . . , a � Tg is in the range of T and son, 0 n, 1 n, R

the range of T is weak-star closed.
Since T : AA � BB is not onto and the range of T is weak-star closed in

BB, by the Hahn�Banach theorem there exists a nonzero weak-star contin-
uous functional on BB annihilating the range of T. That is, there exists a

Ž� 4 � 4 � 4.nonzero vector u , u , . . . , u in CC such thatn, 0 n, 1 n, R

� R
Žk .ˆ0 � u f � 8Ž . Ž .Ý Ý n , k n

n�1 k�0

Ž .for all f in AA. Define w � u j � 1 ! for all positive integers n andn, j n, j�1
all j � 1, 2, . . . , R. Hence

m� � Rn

� � � � � �� 4 � 4w � u k!� R! u , . . . , u � �.Ž .Ý Ý Ý Ý CCn , j n , k n , 0 n , R
n�1 j�1 n�1 k�0

Ž . iFor each nonnegative integer i, the function f z � z is in AA. Moreover,i

i!� i�k� if 0 � i � k and k � mn nŽk . � i � k !ˆ Ž .f � �Ž .i n
Ž i.�f � otherwise.Ž .n

Ž .Hence for each nonnegative integer i, we have by Eq. 8 that

Ž .min i�1, m� R � n iŽk . i�j�1ˆ0 � u f � � w � ,Ž .Ý Ý Ý Ýn , k i n n , j nž /j � 1
n�1 k�0 n�1 j�1

and so J fails to admit spectral synthesis by Theorem 2.
It is not known if the converse of Lemma 1 is true.
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5. SUNDBERG’S EXAMPLE

� 	In this section, we outline an example due to Sundberg 13 of a
� 4bounded sequence � of distinct complex numbers for which the diago-n

Ž .nalizable operator D � �J � , 1 admits spectral synthesis but the corre-n
Ž .sponding Jordan operator J � �J � , 2 consisting of two-by-two Jordann

cells does not.

� 	LEMMA 2. Let n  2 and d in 1�2, 1 be gi�en, and let k and � be
Ž . � Ž .4positi�e numbers for which ln � � ln 2n � ln 2 � ln d ln n � ln 2n and

'k  16 2 n��. Define

� �S � a � ib �k : a, b 
 Z; a � ib �k � 1�2 .� 4Ž . Ž .k

� � � � Ž . �If f is any function in H for which f � n and f  z � � for all z 
 S ,� k
� Ž . Ž . � � �then f z � f 0 � 1�n for z � d.

� Ž . �Proof. By Cauchy’s integral formula, we have that f � z � 16n for
� � � �z � 1�2. If z � 1�2, then there exists a point a in S such thatk'� � Ž . � Ž . �z � a � 1� 2 k . It follows from Cauchy’s integral formula that f  z

� � � Ž . Ž . � � �� 2� for z � 1�2, and so f z � f 0 � � for z � 1�2.
Ž . Ž . Ž . � �The function g z � ln 2n � ln 2n�� ln z �ln 2 is harmonic on

� � � 4 � � � �z : 1�2 � z � 1 . Since g is increasing in z for 1�2 � z � d, we have
Ž . � � � Ž . Ž . �that g z � �ln n for 1�2 � z � d. Since ln f z � f 0 is subharmonic

� � � 4 � Ž . Ž . � Ž . � �on z : 1�2 � z � 1 , ln f z � f 0 � ln � � g z for z � 1�2, and
� Ž . Ž . � Ž . Ž . � � � Ž . Ž . �ln f z � f 0 � ln 2n � g z for z � 1, we have that ln f z � f 0 �
Ž . � � � Ž . Ž . � � �g z � �ln n for 1�2 � z � d. Hence f z � f 0 � 1�n for 1�2 � z

� d.

� 4Construction of the Points �n

n�1 n�1 2'For each n � 2, 3, 4, . . . , define d � 2 �� 1 � 4 � and choosen
any pair of positive numbers � and k satisfying the hypotheses ofn n

�Ž 4.Ž 2 . Ž 2 .24 � 2Ž 2 .4Lemma 2. Since � � 1 � r 1 � d � 1 � r � 2 r 1 � d tendsn n n
Ž .to one as r tends to one, there exist numbers r in 0, 1 for whichn

Ž .8n 1 � r � � andn n

2�1 4 2 2 2 2m � 2��cos 1 � r 1 � d � 1 � r � 2 r 1 � d 9Ž .Ž . Ž . Ž . Ž .Ž .½ 5ž /n n n n n n

is an integer. Define z � r e2� i k � m j for k � 0, 1, . . . , m � 1 and definej, k j j
� 4 � m j�1S as in Lemma 2. Let � be an enumeration of E � � � Ek n n�2 j�0 n, jn

�Ž . Ž . 4where E � z � z � 1 � z z : z 
 S .n, j n, j n, j k n

� � � � Ž . �LEMMA 3. If f is any function in H for which f � n, and f z � 1�

� Ž . � m n�1 � Ž . � � �and f  z � n for all z in � E , then f z � 1 � 1�n for z � r .j�0 n, j n
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Proof. We first show that for all n  2 and all j � 0, 1, . . . , m � 1, then
�Ž . Ž . �hyperbolic distance � � z � z � 1 � z z between zn n, j n, j�1 n, j n, j�1 n, j

Ž . �Ž 4.Ž 2 .and z is d . One readily checks that cos 2��m � 1 � r 1 � �n, j�1 n n n n
Ž 2 .24 � 2Ž 2 .4 Ž . Ž . �Ž� 1 � r � 2 r 1 � � . Moreover, by Eq. 9 , cos 2��m � 1 �n n n n

4.Ž 2 . Ž 2 .24 � 2Ž 2 .4 �Ž 4.Ž 2 . Žr 1 � d � 1 � r � 2 r 1 � d . Hence 1 � r 1 � � � 1 �n n n n n n n
2 .24Ž 2 . �Ž 4.Ž 2 . Ž 2 .24Ž 2 .r 1 � d � 1 � r 1 � d � 1 � r 1 � � from which it fol-n n n n n n

lows that d � � as asserted.n n
� � � � Ž . �Let f be any function in H for which f � n, and f z � 1 and�

m �1n� Ž . � Ž . ŽŽ . Ž ..f  z � n for all z in � E . Define g z � f z � z � 1 � z zj�0 n, j n, j n, j
Ž . ŽŽ . Ž .. Ž . Žso that f z � g z � z � 1 � z z . If z is in S , then z � z � 1n, j n, j k n, jn

.� z z is in E and son, j n, j

2 2� �z � z 1 � z 1 � rn , j n , j n
� �g  z � f  � � n � �Ž . n2 2ž /1 � z z � � � �1 � z z 1 � zŽ .n , j n , j

� Ž . Ž . � � �by choice of r . So by Lemma 2, g z � g 0 � 1�n for z � d . Hencen n
� �for all z between z and z with z � d , we have thatn, j n, j�1 n

� � � � � �f z � f z � f z � f zŽ . Ž . Ž . Ž .n , j n , j

z � zn , j� 1 � g � g 0 � 1 � 1�nŽ .ž /1 � z zn , j

�Ž . Ž . � � Ž . � � �since z � z � 1 � z z � � � d . Hence f z � 1 � 1�n for z �n, j n, j n n
r .n

� � Ž . �LEMMA 4. If f is any function in H and f  z is bounded on E � ��
� � � Ž . �E , then f � sup f z . In particular, the Jordan operator J ��n, j E

Ž . � 4�J � , 2 ha�ing eigen�alues � � E fails to admit spectral synthesis.n n

� � �Proof. Let f be any function in H for which sup f  � �. TheE
Ž . Ž . � � � � �function g z � f z �sup f is in H with sup g � 1. For any n �E E

Ž� � � � � � � �. � � � �max f �sup f ; sup f  �sup f , we have that g � n and sup g � �E E E E
� Ž . � � �� n. Hence by the preceding lemma, g z � 1 � 1�n for z � r . By then

� Ž . � � �maximum modulus principle, g z � 1 � 1�n for z � r . Letting n tendn
� � � � � �to � yields g � 1 on the unit disc. That is, f � sup f and so J fails� E

to admit spectral synthesis by Lemma 1.

Ž .LEMMA 5. The diagonalizable Jordan operator D � �J � , 1 ha�ingn
� 4eigen�alues � � E admits spectral synthesis.n

Ž � � 2 . Ž 2 .Proof. One readily checks that ÝÝ 1 � z � Ým 1 � r � �.n, j n n
� 4That is, the points z form a Blaschke sequence and so the nontangen-n, j

� 4 Žtial cluster set of z has measure zero on the unit circle see Brown etn, j
� 	.al. 2, Remark 2, p. 170 . Since the points comprising E are hyperboli-n, j
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cally within 1�2 of z , it follows that the nontangential cluster set of En, j
has measure zero on the unit circle. Hence the diagonalizable operator

Ž . � 	D � �J � , 1 admits spectral synthesis by 2, Theorem 3, p. 167 .n

6. ALGEBRAS ASSOCIATED WITH
JORDAN OPERATORS

In this section, we study some algebras of operators associated with a
Jordan operator J. In particular, we identify the commutant and double

Ž .commutant of J and the weakly closed C*-algebra WW * J
� p J , J* : p is a polynomial generated by J and the identity. We also� 4Ž .

Ž .give sufficient conditions for the weakly closed algebra WW J
� p J : p is a polynomial generated by J and the identity to coincide� 4Ž .
with the commutant of J.

The proof of the following result identifying the commutant of a Jordan
operator, being routine, is omitted.

� 4LEMMA 6. Let � be a bounded sequence of distinct complex numbers,n
� 4 Ž .let m be a bounded sequence of positi�e integers, and let J � �J � , mn n n

be a Jordan operator acting on a Hilbert space HH � �� HH �n�1 n
� � 4� span e : 1 � i � m . A bounded linear operator T : HH � HH on HHn�1 n, i n

commutes with J if and only if T � �T where for each positi�e integer n, then
� � 4matrix representation for T � T HH with respect to e : 1 � i � m isn n n, i n

upper triangular and constant on diagonals.

� 4As a consequence of Lemma 6, we have that the double commutant J �
of J consists of those operators S � �S on HH for which the matrixn

� � 4representation for each S � S with respect to e : 1 � i � m isHHn n, i nn

upper triangular and constant on diagonals. Also as a consequence of
Ž .Lemma 6, we have that the commutant of the adjoint J* � �J* � , mn n

of the Jordan operator J consists of those operators S � �S on HH forn
� �which the matrix representation for each S � S with respect to e : 1HHn n, in

4� i � m is lower triangular and constant on diagonals. Hence a boundedn
Ž . Ž .linear operator T on HH commutes with both J � , m and J* � , m ifn n n n n n

and only if T is a multiple 	 I of the identity I on HH . By Lemma 6, then n n
� 4 � 4 � 4 � 4double commutant J, J* � of J, J* is J, J* � � �	 I : 	 
 C  �n n

� 4�T : T is a bounded linear operator on HH . Hence by the doublen n n
Ž � 	.commutant theorem see Radjavi and Rosenthal 8, Theorem 7.5, p. 119 ,

Ž .the weakly closed C*-algebra WW * J generated by J and the identity is

� 4 � 4WW * J � J , J* � � �T : T is a bounded linear operator on HH .Ž . n n n

Ž .A related problem is to identify the weakly closed algebra WW J gener-
Ž . � 4ated by the Jordan operator J and the identity. Certainly, WW J � J .



STEVEN M. SEUBERT666

Since each subspace HH reduces J, each orthogonal projection P : HH � HHi HH ii

commutes with J. The converse is also true.

� 4LEMMA 7. Let � be a bounded sequence of distinct complex numbers,n
� 4 Ž .let m be a bounded sequence of positi�e integers, and let J � �J � , mn n n

� � 4 � 4be a Jordan operator acting on a Hilbert space HH � � HH . Then J  � WW Jn�1 n
if and only if for each positi�e integer i, the orthogonal projection P : HH � HHHH ii

Ž .is in WW J .

� 4 Ž .Proof. Suppose that J  � WW J . For each positive integer i, the
� 4 Ž .subspace HH reduces J and so P is in J  � WW J .i HHi

� 4 Ž .Conversely, if P is in J  � WW J for each positive integer i, thenHHi
Ž . Ž . � Ž .4J � , m � JP is in WW J for each positive integer i. Hence J � , m i i HH i ii
� Ž Ž .. 4 Ž .� p J � , m : p is a polynomial � WW J for each positive integer i andi i
� 4 � � Ž .4 4 Ž .so J  � �T : T 
 J � , m  � WW J .i i i i

� 4 Ž .By Theorem 3 and Lemma 7, a necessary condition for J  � WW J is
that J admit spectral synthesis. The converse is true for any diagonalizable

Ž . ŽJordan operator D � �J � , 1 . By the remarks following Lemma 6,n
� 4 Ž . � 	D  � WW * D , and by Sarason 11, corollary to Theorem 1, p. 511 , the
weakly closed algebra generated by a normal operator is a star-algebra if
and only if every invariant subspace for the normal operator is reducing.

Ž . � 4 .Hence WW D � D  if and only if D admits spectral synthesis. So, in
Ž . � 4 Ž . � 4general, WW J � J . Sufficient conditions for WW J � J  are given in

� 4Theorem 5. An open question is under what additional conditions on �n
� 4 � 4 Ž .and m , if any, does the spectral synthesis of J imply J  � WW J ?n
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