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The purpose of this paper is to extend results of J. Wermer (1952, Proc. Amer.
Math. Soc. 3, 270-277), L. Brown et al. (1960, Trans. Amer. Math. Soc. 96,
162-183), and D. Sarason (1972, J. Reine Agnew. Math. 252, 1-15; 1966, Pacific J.
Math. 17, 511-517) on spectral subspaces of diagonalizable operators on separable
complex Hilbert space to the class of so-called Jordan operators or infinite direct
sums of Jordan cells.  © 2000 Academic Press

1. INTRODUCTION

In this paper, we are concerned with a special case of the following
general problem: Let 2 be a Banach space and let T: 22— %2 be a
bounded linear operator which is complete, that is, whose root vectors
have dense linear span in £ Under what conditions will every subspace
invariant for 7' be the closed linear span of the root vectors for T that it
contains? (Recall that a closed subspace .# of a Banach space £ is
invariant for a bounded linear operator T: 2 — 2 if T.# C .# and that a
vector x in &2 is a root vector for T if there exists a complex number A and
a positive integer n such that (T — AI)"x is the zero vector.) Invariant
subspaces for a complete operator which are the closed linear span of the
root vectors for the operator they contain are called spectral subspaces for
the operator and complete operators all of whose invariant subspaces are
spectral are said to admit spectral synthesis.

In particular, we take 2 to be a separable complex Hilbert space and T
to be the infinite direct sum of Jordan cells or a so-called Jordan operator.
Recall that a bounded linear operator 7: .Z — .7 on a finite-dimensional
Hilbert space /# is a Jordan cell if there exists a complex number A and an
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orthonormal basis {e;: 1 < i < m} for # such that the matrix representa-
tion for T with respect to {e;:1 <i < m} is

A1 0 0 0
Al 0 0
0 0
J(A,m) =
Al
A

That is, a bounded linear operator J: Z—.# on a separable complex
Hilbert space 7 is a Jordan operator if there exists a bounded sequence
{A,} of complex numbers, a sequence {m,} of positive integers, and a
sequence {7} of Hilbert spaces such that 7= &%, and for each positive
integer n, the restriction J [.Z, of J to .Z, is the Jordan cell J(A,, m,).

In this paper, we seek necessary and sufficient conditions for a Jordan
operator to admit spectral synthesis.

The special case of diagonalizable Jordan operators ®@J(A,, 1) (that is, of
complete normal operators) was studied by Wermer [14] and Brown et al.
[2], and was solved by Sarason [10, 11] in 1972. The following is a synopsis
of the results relevant to our study. The most important feature of the
result is the connection between condition (v) and the rest. Also see
Nikolskii [7, Wermer—Sarason theorem, p. 99]) for additional conditions.

THEOREM 1.  Let {A,} be a sequence of distinct points in the open unit disc
D={zeC:lz| <1} and let D = &J(A,,1) be a diagonalizable operator
acting on a Hilbert space # = span{e,}. The following are equivalent:

(1) D admits spectral synthesis,
(i) a vector x in Z is cyclic for D if and only if {x,e,) # 0 for all
positive integers n,
(iii) there does not exist a sequence {w,} of complex numbers for which
0 < Xlw,| < % and Xw,X, = 0 for all nonnegative integers i,
(iv) the weakly closed algebra generated by D and the identity coincides
with the commutant of D, and

(v) there does not exist a bounded complex domain Q such that
sup{lf(2)]: z € Q} = supl| f(2)|: z € Q N {A,}} for all functions f bounded
and analytic on Q.

If, in addition, the points A\, accumulate only on the boundary of D, then
these conditions are equivalent to:

(vi) there does not exist a sequence {w,} of complex numbers for which
0 < Xlw,| < w and Yw,e** = 0 for all complex numbers z,
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(vii) the map T: H” — () from the space H* of functions bounded
and analytic on the unit disc to L) where pw =18, is the measure
consisting of point masses at the A, defined by T: f — { f(AD} is not an
isometry, and

(viil) not almost every point of the unit circle is in the nontangential
cluster set of {A,}.

Throughout this paper, we let {A,} denote a bounded sequence of
distinct complex numbers, we let {m,} denote a bounded sequence of
positive integers, and we let J = ®J(A,, m,) denote a Jordan operator
acting on a Hilbert space 7= @®,_ % = &, _ spanfe, ,:1 <i<m,} It
is understood that for each positive integer n,{e, ;:1 <i < m,} denotes
the unique orthonormal basis for /7, for which the matrix representation
for J |, with respect to {e, ;:1 <i <m,} is the Jordan cell J(A,,m,).
For distinct points A,, the Jordan operator J = @J(A,, m,) has a dense
set of cyclic vectors (see [4]) and moreover, the spectral subspaces of J are
precisely those subspaces of the form @spanfe; ;:i < d;} where {d,} is any
sequence of nonnegative integers with d, <m,. (If d, =0, then we
interpret span{e, ;:i < d;} as the zero subspace.) We have restricted our
attention to the case of distinct points A, in order to avoid uninteresting
complications. The techniques of the paper apply in the more general case
and yield similar results when suitably modified. The restriction that the
block sizes {m,} be bounded, however, is imposed only so our proofs are
valid.

For a survey of the present state of the spectral synthesis problem, see
Nikolskii [6]. Also see Markus [5].

2. EQUIVALENT CONDITIONS FOR
SPECTRAL SYNTHESIS

In this section, we give several equivalent conditions for a Jordan
operator to admit spectral synthesis. These conditions are analogues of
conditions (i), (i), (iii), and (vi) of Theorem 1 on diagonalizable operators.

THEOREM 2. Let {A,} be a bounded sequence of distinct complex num-
bers, let {m,} be a bounded sequence of positive integers, and let J =
®J(A,, m,) be a Jordan operator acting on a Hilbert space 7 = &, _ 7, =
®,_ spanfe, ;:1 <i < m,}. The following are equivalent:

(1) J admits spectral synthesis,
(i) a vectorx = ®x, in Z is cyclic for J if and only if for each positive
integer n, x, is a cyclic vector for J(A,, m,) on Z,,
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(iii) there does not exist a set {w, j} of complex numbers such that
0 < Xh_ \Xfnlw, | <o and X, TP Lm0 L )N w, =0 for all
nonnegative integers i, and

(iv) there does not exist a set {w, ;} of complex numbers such that
0< ZO,CZ:]Z;”:"]|W,I,]'| < owand 0 = 20,2:127;1(Wn’]—/(j - 1)!)21_16)\”2 fOl’ all
complex numbers z.

Proof. (i) & (ii). Let x = ®x, be an arbitrary vector in Z = &%, and
denote by .#, = span{J*x : k > 0} the smallest subspace invariant for J
containing x. Since J admits spectral synthesis, it follows that .Z, =
@span{J*(A,, m,)x, : k > 0}. Since span{J*(A,,m,)x,:k = 0} is a sub-
space of H, for each n, x is cyclic for J if and only if each x, is cyclic for
J(A,,m,) on Z,.

(i) < Gv). If {w, j} is any collection of complex numbers for which
X X0lw, ;| < o, then F(z) = X_ X0, ;/(j — DDz/"'eM* is an
entire function. Moreover, F(z) = 0 if and only if for all nonnegative

integers i, 0 = F(0) = Xj_ X bmo( D x T w,

(iii) = (). Let {x,} be any collection of vectors for which x, is a
cyclic vector for J(A,, m,) on Z, for each positive integer n. We show that
x = &x, is cyclic for J on /Z By means of contradiction, assume not. So
there exists a nonzero vector y = @y, in /2 such that for all nonnegative

integers i,

0=,y

o min(i+1,m,) ; m,—j+1
= Z Z ( ] — 1)/\lnj+1 Z <xn7en,k+j71><yn’en,k>' (1)
n=1 j=1 Y k=1

Define w, ; = {x,,¢€, ;.j—1{Y,, €, ;) for all positive integers n and all j
in{1,2,...,m,}. Since x and y are in 7 it follows that X}, _, X} [w, ;| < .
By (ii), 0 = w, ; for all positive integers n and all j in {1,2,...,m,}. For all
positive integers n, x, is a cyclic vector for J(A,,m,) and so {x,, e, ,, ) i
nonzero. Letting j = m, in Eq. (1) yields <y,,e, ;> = 0. Induction on
j=m,m,—1,...,1 yields (y,e,;> =0 for all n and all j in
{1,2,...,m,}. Hence y = @y, is the zero vector, a contradiction.

(i) = (ii). Let {wn, j} be any collection of complex numbers for
which ¥, _ X7 |w, ;| < oo and X, _ ZrH b E )N w, = 0 for all
nonnegative integers i. Let n be a positive integer. If w, ; =0 for all
j=12,...,m,, define x, = 27"(0,...,0,1) and y, = 0 €.Z,. Otherwise,
let j, denote the largest integer in {1,2,...,m,} for which w, ; is non-
zero and let v, = max{lwm-ll/2 :1 <j < m,}. Define x, =

y,fl(O,...,O,wn,],...,wn,j") and define y, = (0,...,0,%,,0,...,0) where
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the term v, occurs in the (m, —j, + Dst coordinate. Since |w, jll/ :
<y, and supm, <%, x = &x, and y = &y, are norm convergent.
Moreover, the vectors x, and y, are chosen so that w, nj =
Epn s e, v i1 Vs €, 10 for all positive integers n and all j =
1,2,...,m,. Hence for all nonnegative integers i, we have that (Jix, yy =
=IZ}“='“1(’+1 "G EDNT w, = 0.
For each positive integer n,{x,, ¢, is nonzero. Hence x, is cyclic for
J(A,, m,) on Z, and so, by hypothesis, x = @x,, is cyclic for J on 7. Since

(Jix,yy = X Tt b f )X~y =0 for all nonnegative inte-
gers i and x is cyclic for J, we have that y = @y, is the zero vector. By
definition of y,, it follows that 0 = X7 _, X" |w, ;|

The result follows.

3. SUFFICIENT CONDITIONS

In this section, we show that a Jordan operator J = @®J(A,, m,) admits
spectral synthesis whenever for each positive integer i, A; is in the un-
bounded component of ({A, : k # i})".

THEOREM 3. Let {A,} be a bounded sequence of distinct complex num-
bers, let {m,} be a bounded sequence of positive integers, and let J =
®J(A,, m,) be a Jordan operator acting on a Hilbert space # = & _Z,. If
for each positive integer i, the orthogonal projection P,: % — % is in the
weakly closed algebra generated by J and the identity, then 'the Jordan operator
J = @J(A,, m,) admits spectral synthesis.

Proof. Let .# be an arbitrary invariant subspace for J and let x be an
arbitrary element of .Z. Since P, is in the weakly closed algebra gener-
ated by J and the identity, .# is invariant for J and the identity, and x is
in ./, it follows that Py x is in /.

For each positive integer n, let d, denote the largest integer j =
1,2,...,m, for which there exists a vector x in .# with (x, e, j> nonzero
(if no such vector exists, take d,, to be zero). Clearly .# C @spanfe, ;:j <
d,} (if d, = 0, we interpret spanfe, ;:j <d,} as {0}). We show equality.
Let n be any positive integer for which d, is nonzero and let x, be any
vector in .# for which (x,, e, , ) is nonzero. By the first part of the proof,
Py x, is in .#. Moreover, <P;?xn,en 02 =<x, €, ) is nonzero and so
Pz/x is a cyclic vector for J(/\ m ) restricted to span{e nj :j <d,}. Hence
M 2{p(J)Pyx,:p is a polynomial} = {p(U(A,,m,))P;x,: p is a polyno-
mial} = spanie, ;:j <d,}. So .#2> @spanfe, ;:j<d,}. That is, #=
@spanfe, ;:j <d,} is a spectral subspace of J.
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THEOREM 4. Let {A,} be a bounded sequence of distinct complex num-
bers, let {m,} be a bounded sequence of positive integers, and let J =
®J(A,, m,) be a Jordan operator acting on a Hilbert space # = &, _%Z,. Let
i be any positive integer and let {p,} be a set of polynomials. Then {p,(J)}
converges in the weak operator topology to the projection operator Py, if and

only if
RO RS
Gi) lim, p’(A) =0  forallj,k > 1, and
(i) sup, /PPN <o forallj >0
where
ifj = my,

0
(J) A )
(4) = {Pé/)()\k) ifj<my.

Proof. Suppose that the polynomials { p,} satisfy properties (i), (ii), and
(iii). We show that {p,(J)} converges in the weak operator topology to the
projection operator Py. Let x = &(x,,%,,,---,%,,) and y =
(Y, 15 Yn,25+ -5 Yu,m,) denote arbitrary elements of 7= &7, We have
that

S ACAEN Y
o My m;—j+1
=X Z)_’kj( )y —Py ])(/\k)xk,r+j—1)
k=1j=1 r=1 ( 1)'
m; m;—j+1
= j_l.)_}i,j( = mpyl)()\i)xi,rﬂl)

my—j+1 1
+ Z}"k,j( mpyl)()‘k)xk,rﬂ'l)' (2)

r=1 (

By (i), M =sup, {IpP(A)I:j=0,1,...,m, — 1} <o from which it
follows that

m;—j+1
hm Zy,,( Z —1),17((; 1)(/\i)xi,r+j—1

m;—j+1 1
Z)_}k,j( h U_—l)'pz()cr_l)(/\k)xk,r+j—l) < M(sup m,,)llx|Hyll < oe.
k+#i r=1 .
(4)
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By means of contradiction, suppose that {< p(J)x,y)} does not con-
verge to (P, X, yy>. Then there exists a sequence {a,} such that
« Pa, (D)x, y)} ‘does not converge to (P, X, y>. Hence by the dominated
convergence theorem, Eq. (4), and (iii),

my—j+1 1
lim Z .)_)k,j( Z _—D'pgill)()\k)xk,r+j1)

N0 pes 1 (r

mk7j+1 1
= Z)_’k,j( )y _—) hm P(' 1)(/\k)xk,r+/—1)

k+#i r=1 (r
= O’

a contradiction as {{ p(J)x, y)} does not converge to (Pg,;x, y>. Hence

m;—j+1 1
lim Z)_’k,j( )y W Py 1)()\k)xk,r+j—1
Q@ ki r=1

m—j+1 1
= Z)_’k,j( b —)hmp(’ 1)(/\k)xk,r+j1)

k+i r=1 (r - 1!
0. (5)

So by Egs. (2)(5), {p,(J)x,y) = (P, x,y) for arbitrary elements x and
y in Z That is, {p,(J)} converges in the weak operator topology to the
projection operator P,.

Conversely, suppose that {p_(J)} converges in the weak operator topol-
ogy to the projection operator P,. We show that the polynomials {p,}
satisfy properties (i), (i), and (ii). Let x=0x,= &(x, , X, 2,5 X, )
and y = @y, = &(¥, 1, Y20+ V) denote arbitrary elements of 7 =

@7, Since {p,(J)} converges in the weak operator topology to P, we
have that

o My m—j+1 1
Y Yal T 00
k=1j=1 S R O] e
= <pa('])x’y>
m;
- <P%;x,y> = <xiayi> = in,j-)_}i,j' (6)
=1

Judicious choices of coordinates for the vectors x and y in Eq. (6) show
that the polynomials { p,} satisfy properties (i) and (ii). Hence we need only
show that the polynomials {p,} satisfy property (iii). To this end, fix j > 0
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and let {w,} be an arbitrary sequence in /. Define x = ®x, where
x;, =(0,...,0,+/lw,],0,...,0) with the term \/Iwkl occuring in the jth
coordinate (take x, =0 €7, if j > m,). Similarly, define y, = ((j —
Dle’# e /lw,],0,...,0). We have that {p,(J)x,y) = X5_, pY’ ()\k)wk By
hypothesis, {{ p,(J)x, y>} converges to (P, x,y). Hence T;_, p (A )w,
converges for each {w,} in /,. Moreover, l

lim Z PO (N )w, = lim < p, (J)x,y) = (P,x,y). (7)

For each {w,} in [, we define a functional L : I, » C by L ({wk}) =

o PPN )w,. Since Y_, pP(N)w, converges for all {w,} in [, it
follows from the Banach—Steinhaus theorem that {p(A));_, is in L.
Hence L, is a bounded linear functional 0n l,, and, moreover, ||L,ll; =
KA., By Eq. (7), L ({w,}) = X5 _, pS )(/\k)wk is bounded in « for
all {w,} in I,. Hence the sequence {L_} of functionals on [, is pointwise
bounded and so uniformly bounded by the principle of uniform bounded-
ness. That is, sup,||L,ll;x = sup,I{pL (A, is finite for all j > 0. The
result follows.

In general, the weak closure and the weak sequential closure of the set
{p(J): p is a polynomial} of polynomials in J do not coincide, even if J is
a diagonalizable operator J = @J(A,, 1) (see Wermer [14], the Corollary
to Theorem 1 of Sarason [11, p. 511], and the remarks following Lemma 7).
In the following theorem, we give sufficient conditions for J to be the
weak sequential limit of polynomials in J by applying Mergelyan’s theo-
rem on polynomial approximation.

THEOREM 5. Let {A,} be a bounded sequence of distinct complex num-
bers, let {m,} be a bounded sequence of positive integers, and let J =
®J(A,,m,) be a Jordan operator acting on a Hilbert space 7= &, _ . 7Z,.
Suppose that for each positive integer n, A, is in the unbounded component of
({A,, : m # n})‘. Then there exists a sequence { Pn.it of polynomials such that
{p,..(J)} converges in the weak operator topology to the projection operator
Py for each positive integer n. In particular, J = ®J(A,, m,) admits spectral
synthesis.

Proof. Let n be a fixed positive integer. By Theorem 4, it suffices to
show that there exist polynomials { pn,l—} such that

o {0 if k#n,
@) lim; . p, i()‘k)_{l ifk=n,

(i) lim; ., pYUA) =0  forall j,k > 1, and
(i) sup, (| pUAN) <o forall j >0
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where

0 if j > m,,

P () = )
Pr (X pflj,)i(Ak) if j <m,.

We apply Mergelyan’s theorem (see Rudin [9, p. 390]). Define K,
= {\,, : m # n}. By hypothesis A, is not in K, and so there exists € > 0
such that B(A,, €) N K, = & where here B(A,, €) denotes the open ball
of radius e with center A,. Let J, be any Jordan curve whose interior
int J, contains K, and whose exterior ext J, contains B(A,, €). Define
h(z) =0on(J, UintJ,) and h(z) = 1 on B(/\ €). Since 4 is continuous
on the compact set C, = B(A,,€) U{J, UintJ,} and analytic on the
interior C’ = B(A,, €) U int J, of C,, by Mergelyan’s theorem there exist
polynomials {p, ;} converging uniformly to 4 on C,,.

We show that the polynomials p, ; = p,; satisfy properties (i), (ii), and
(iii) where here N = sup m,. It suffices to show that for each j > 0, { P}
converges uniformly to h(” on an open set containing B(A,, €/2) UK,
We map to the open unit disc D and apply Cauchy’s integral formula.
Since K, C int J, and K, and J, are compact, there exists an open set 6,
for which K, € 6, € §,Cint J,. So 6, N J, = &. By the Riemann map-
ping theorem (see Burckel [1, Theorem 9.7, pp. 299 and 303]), there exists
a conformal map ¢ from intJ, onto D. Moreover, ¢ extends to a
continuous map ¢: (int J,) > D which is one-to-one on (intJ,) (see
Burckel [1, Lemma 9.13, p.307]). Since ¢ is one-to-one, it follows that
¢(6,) < D. Hence there exists r in (0,1) for which ¢(6,) < B(0, r). For
any r' € (r,1), we have that K, € 6, € ¢ '(B(0,r"). Since {p, ;} con-
verges uniformly to & on (int J,), {p, ;} converges uniformly to ¥ =h on
(int J,), and so {p, ;> ¢~ '} converges uniformly to 2o ¢~ ! on B, r’).
Hence, by Cauchy’s 1ntegral formula, £(p, ;o ¢~ =(p, ;o¢~)-(¢~")
converges uniformly to “£(ho ¢ 1) = (h'o 1) - (¢~ 1) on B(0,r’) for all
r' e (r,1).

Since ¢! is a conformal map from D to (intJ,) and continuous on
B(0,r") for all r’ € (r,1), we have that inf{(¢~')'|:z € B(0,r")} > 0.
Hence {p, ;> ¢~ '} converges uniformly to h'>¢~' on B(0,r’) for all
r’ € (r,1). So by Cauchy’s integral formula, £(p, ;o ¢~ ") = (p, > )"
(¢~ 1) converges uniformly to A'o ¢~ = (K")o(¢~ ') on q,‘fl(B(O,r’))
for all ' € (r, 1) Since inf{l(¢~")'|: z € B(0,r")} > 0 for all r' € (r,1),
we have that {p! ;} converges unlforrnly to i’ on ¢~ l(B(O r )) for all
r'e(r,). Induction ylelds that {p{/)} converges uniformly to 4’ on

¢ '(B(0,r")) for all r' € (r,1) and hence on ¢~ '(B(0, ")) 2 6,.

Slmllarly, {p{"} converges uniformly to A on B(A, 36/4) Hence
{p"} converges uniformly to 4 on an open set containing B(A,, €/2) U
K, for each j > 0. The result follows.
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4. A NECESSARY CONDITION

In this section we give a necessary condition for a Jordan operator to
admit spectral synthesis. We begin with the following notation.

Let {A,} be a bounded sequence of distinct complex numbers and let
{m,} be a bounded sequence of positive integers. Define R = supm, — 1.
We denote by .« the subalgebra

v ={feH :{fO(1,)} €L, foralli=0,1,2,..., R}
of H” where for each positive integer n,

i) ifi=m,
DAY = .
PP =0 o0y iti<m,

and norm &7 by defining || fll, = I fllz= + Zf=1||{f(i)()tn)}||,x. We denote by
% the subalgebra

% ={({a,.0} - {a,1},..-.{a, r} :{a, } €L foralli=0,1,2,...,R and

a, ;= 0foralli>m,}

of ®% L, and norm # by defining [({a, o}, ...,{a, Dz =T I{a, ..
LEMMA 1. If the bounded linear operator T: &/ — % defined by

T f = ({F()}{FPA)) - FR ()}

is an isometry, then the Jordan operatorJ = ®(\,, m,) fails to admit spectral
synthesis.

Proof. We first show that T: &/ — % is not onto. By means of contra-
diction, suppose that 7 maps ./ onto %. So for each sequence {a,} in [,
there exists a function f in & < H® for which T(f) =
({a,}a, }Aa, ), ... {a, g}) where a, ;=0 for all n>1 and all i=
1,2,..., R. Hence f(A,) = a, for all positive integers n, and so {A,} is an
interpolating sequence for H”. Let B denote any interpolating Blaschke
product having simple zeros {A,}. Then B®(z) is in . and since T is an
isometry, we have that 1 = ||BR||,, = |[T(B®)||s = [I{0},...,{0Dll&z =0, a
contradiction. Hence T: & — % is not onto.

Let & denote the subalgebra

& ={({an.o}.-{a,},----{a, r}):{a,,;} €1, foralli=0,1,2,...,R and

a, ;= 0foralli>m,}
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of ®% (L, and norm % by defining [({a, o},...,{a, Dlle = T {a, .
Then % = #*. We show that the range of T is weak-star closed in .%. By
the Krein—Smulian theorem (see Conway [3, Corollary 12.7, p. 165)), it
suffices to show that the range of 7 is weak-star sequentially closed. To
this end, let {f,} be any sequence of functions in & for which {T(f,)}
converges weak-star to some vector ({an o) {an heda, &) in Z. Since
{T(f,)} converges weak-star, {||T(f,)ll 5} is bounded. But T is an isometry,
and so {llf,ll;} is bounded. Since || fllz= < || fll, Ul fillz=} is bounded and
so by Montel’s theorem, there exists a subsequence { fk,} of {f,} which
converges uniformly to some function g on every compact subset of the

unit disc. Since {T(f,)} converges weak-star to (a, 1 {a, },... . {a, gD in
A, it follows that a, ; = lim, _, , fk(’)()\ ) =89, ) for all posmve integers
n and i. Hence ({an,()} {a,},.. {an,R}) = Tg is in the range of T and so

the range of T is weak-star closed.

Since T: & — & is not onto and the range of T is weak-star closed in
%, by the Hahn—Banach theorem there exists a nonzero weak-star contin-
uous functional on % annihilating the range of 7. That is, there exists a
nonzero vector ({u,, o}, {u, 1}, ... ,{umR}) in # such that

Y Y u, S9N ®)

n=1k=0

for all f in . Define w, ; = u, ;_,(j — D! for all positive integers n and
all j =1,2,..., R. Hence

m 00

" R
Y lw, ;I = ) lu, (k< RU{uy o). {u, g))lle < .

1j=1 n=1k=0

n

For each nonnegative integer i, the function f,(z) = z' is in .. Moreover,

i!
fioay = | G0y
FON) otherwise.

Ni—k if0 <i—kand k <m,

Hence for each nonnegative integer i, we have by Eq. (8) that

o min(i+1,m,) (

> Zu W) = B Z W

i i—j+1
j-1 ) M
n=1k=0 n=1
and so J fails to admit spectral synthesis by Theorem 2.
It is not known if the converse of Lemma 1 is true.
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5. SUNDBERG’S EXAMPLE

In this section, we outline an example due to Sundberg [13] of a
bounded sequence {A,} of distinct complex numbers for which the diago-
nalizable operator D = ®J(A,, 1) admits spectral synthesis but the corre-
sponding Jordan operator J = @J(A,,2) consisting of two-by-two Jordan
cells does not.

LEMMA 2. Let n > 2 and d in [1/2, 1] be given, and let k and & be
positive numbers for which In 8§ <In(2n) — In2-Ind{ln n + In(2n)} and
k > 16V2n /8. Define

Sc={(a+ib)/k:a,beZ;l|(a+ib)/kl<1/2}.

If fis any function in H” for which ||fll. < n and |f'(z)l < 8 forall z € S,,
then |f(z) — f(0)| < 1/n for |z| < d.

Proof. By Cauchy’s integral formula, we have that |f”(z)| < 16n for
|zl <1/2. If |z| <1/2, then there exists a point a in S, such that
lz—al <1 /(\/5 k). It follows from Cauchy’s integral formula that |f'(z)|
< 28 for |z| < 1/2, and so |f(z) — f(0)| < & for |z] < 1/2.

The function g(z) = In(2n) + In(2n/8)In|z|/In2 is harmonic on
{z:1/2 <|z] < 1}. Since g is increasing in |z| for 1/2 < |z| < d, we have
that g(z) < —Inn for 1/2 < |z| < d. Since In|f(z) — f(0)| is subharmonic
on {z:1/2 <|z| <1}, In|f(z) — f(0)] <In § = g(z) for |z|=1/2, and
In|f(z) — f(0)] < In(2n) = g(z) for |z| = 1, we have that In|f(z) — f(0)] <
g(z) < —Inn for 1/2 < |z| < d. Hence |f(z) — f(0)l < 1/n for 1/2 < |z]
<d.

Construction of the Points {A,}

For each n = 2,3,4,..., define d, = 2""'w/ V1 + 4"*'72 and choose
any pair of positive numbers §, and k, satisfying the hypotheses of
Lemma 2. Since vy, = {(1 + r )1 — d?) — (1 — r?)*} /{2r*(1 — d?)} tends
to one as r tends to one, there exist numbers r, in (0,1) for which
8n(1 —r,) < §, and

m, = 2m/cos (1 +r)(1 = d2) = (1= r2))/(22(1 = d2))} (9)

is an integer. Define z; , = r;e*™"*/™ for k = 0,1,...,m; — 1 and define
S, as in Lemma 2. Let {A,} be an enumeration of E = U;,_,U74,'E, ;
where E, ; ={(z+z, )/(1 +2,,;2):z€ 8 }.

LEMMA 3. If fis any function in H* for which ||fll. < n, and |f(2)| < 1
and |f' (D < n forall zin U2 'E, ;, then |f(2)| <1+ 1/n for |zl =r,.

n, j>
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Proof. We first show that for all n > 2 and all j=0,1,. — 1, the
hyperbolic distance p, =z, ; =z, ;.1)/0 = Z, ; n1+1)| between z,
and z, ;. is d,. One readily checks that cosQm/m,) = {1 + rH(1 — p; )

-1 - rz)z}/{2r2(1 — pH)}. Moreover, by Eq. (9), cosQm/m,) ={(1 +

rH(1 —d?) - —rH?/2r2(1 — d?)}). Hence {(1 +rH( — an) -1 -
rnz)z}(l - dﬁ) ={0+rHA -d>) - A -r)}1 — p?) from which it fol-
lows that d, = p, as asserted.

Let f be any function in H” for which | f|l.. < n, and |f(z)| < 1 and
|f' (D) < nforall zin UJxg'E, ; Deflne g =f(z+z, )/ +z,,2)
so that f(z) =g((z — z,, ])/(1 p 20 Iz is in Sy then (z +z, ])/(1
+2,,;z)isin E, ; and so

z+2z,;
1+2z .z

n,j

11—z, |? 1—r2

n,j

T 5 <n 5 < 6,
Zn,jz| (1 _|Z|)

lg'(2)] =‘f’

by choice of r,. So by Lemma 2, |g(z) — g(0)| < 1/n for |z| < d,. Hence
for all z between z, ; and z, ;. with |z| = d,, we have that

(DI <1f(z, DI+ 11(2) = f(2,,))]

z2—2z,; 0
1-2z, .z 8(0)

n,j

<1+|g <1+1/n

since [(z — zn’j)/(l - En’jz)l <p,=d,. Hence |f(z)l <1+ 1/n for |z| =

T,

LEmMA 4. If fis any function in H” and |f'(2)| is bounded on E = U U
E, ;, then |fll. =supgl|f(2)l. In particular, the Jordan operator J =
®J(A,,2) having eigenvalues {),} = E fails to admit spectral synthesis.

Proof. Let f be any function in H” for which supg|f’| < «. The
function g(z) = f(2)/supglf| is in H” with sup.lgl= 1. For any n >
max(|| f |l /supg| f1; supgl f'l/supg| f), we have that |Igll. < n and sup,|g’l
< n. Hence by the preceding lemma, |g(z)| < 1 + 1/n for |z| = r,. By the
maximum modulus principle, |g(z)] < 1 + 1/n for |z| < r,. Letting n tend
to o yields |g| < 1 on the unit disc. That is, || f|l. < supg|f] and so J fails
to admit spectral synthesis by Lemma 1.

LEMMA 5. The diagonalizable Jordan operator D = ®J(A,,1) having
eigenvalues {A,} = E admits spectral synthesis.

Proof. One readily checks that LX(1 — |z, ;) = Em,(1 —r}) < .
That is, the points {z, ;} form a Blaschke sequence and so the nontangen-
tial cluster set of {z, j} has measure zero on the unit circle (see Brown et
al. [2, Remark 2, p. 170]). Since the points comprising E, ; are hyperboli-
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cally within 1/2 of z, ;, it follows that the nontangential cluster set of E
has measure zero on the unit circle. Hence the diagonalizable operator
D = &J(A,, 1) admits spectral synthesis by [2, Theorem 3, p. 167].

6. ALGEBRAS ASSOCIATED WITH
JORDAN OPERATORS

In this section, we study some algebras of operators associated with a
Jordan operator J. In particular, we identify the commutant and double
commutant of J and the weakly closed C*-algebra 77*(J)
= {p(J,J*): p is a polynomial} generated by J and the identity. We also
give sufficient conditions for the weakly closed algebra 77(J)
= {p(J): p is a polynomial} generated by J and the identity to coincide
with the commutant of J.

The proof of the following result identifying the commutant of a Jordan
operator, being routine, is omitted.

LEMMA 6. Let {A,} be a bounded sequence of distinct complex numbers,
let {m,} be a bounded sequence of positive integers, and let J] = ®J(A,, m,)
be a Jordan operator acting on a Hilbert space 7 = ®,_ 7%, =
®,_ spanfe, ;:1 <i <m,}. A bounded linear operator T: % — % on #
commutes with J if and only if T = © T, where for each positive integer n, the
matrix representation for T, = T | %, with respect to {e, ;:1 <i <m,} is
upper triangular and constant on diagonals.

As a consequence of Lemma 6, we have that the double commutant {J}"
of J consists of those operators S = ®S, on Z for which the matrix
representation for each S, = S| with respect to {e, ;:1 <i <m,} is
upper triangular and constant on diagonals. Also as a consequence of
Lemma 6, we have that the commutant of the adjoint J* = @J*(A,, m,)
of the Jordan operator J consists of those operators S = @S, on 7 for
which the matrix representation for each S, = S| with respect to {e, ;:1
< i < m,} is lower triangular and constant on diagonals. Hence a bounded
linear operator 7, on /Z, commutes with both J(A,, m,) and J*(A,, m,) if
and only if 7, is a multiple «, I of the identity I on /Z,. By Lemma 6, the
double commutant {J,J*}" of {J,J*} is {J,J*} ={@a,l:a, € C} =
{©T,:T, is a bounded linear operator on /Z}. Hence by the double
commutant theorem (see Radjavi and Rosenthal [8, Theorem 7.5, p. 119)),
the weakly closed C*-algebra 777*(J) generated by J and the identity is

v*(J) ={J,J*}" ={&T,:T, is abounded linear operator on .7} .

A related problem is to identify the weakly closed algebra #(J) gener-
ated by the Jordan operator J and the identity. Certainly, 7(J) c {J}'.
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Since each subspace .7 reduces J, each orthogonal projection P: .7 — .7
commutes with J. The converse is also true.

LEMMA 7. Let {A,} be a bounded sequence of distinct complex numbers,
let {m,} be a bounded sequence of positive integers, and let J] = ®J(A,, m,)
be a Jordan operator acting on a Hilbert space # = ®;,_ Z,. Then {J} = w{J}
if and only if for each positive integer i, the orthogonal projection Py: 7 — Z;
is in 7 (J).

Proof. Suppose that {J}' = 7(J). For each positive integer i, the
subspace % reduces J and so P is in {JY =w7(J).

Conversely, if P, is in {J}' =7(J) for each positive integer i, then
J(A;, m;) = JP, is in 7(J) for each positive integer i. Hence {J(A;, m,)}’
= {p(J(A,,m,)): p is a polynomial} C #7(J) for each positive integer i and
so{J} ={&T,:T. € {(J(A,, m}'} c7(J).

By Theorem 3 and Lemma 7, a necessary condition for {J}' = 7(J) is
that J admit spectral synthesis. The converse is true for any diagonalizable
Jordan operator D = &J(A,,1). (By the remarks following Lemma 6,
{D} = 7*(D), and by Sarason [11, corollary to Theorem 1, p. 511], the
weakly closed algebra generated by a normal operator is a star-algebra if
and only if every invariant subspace for the normal operator is reducing.
Hence 7(D) = {D}’ if and only if D admits spectral synthesis.) So, in
general, 7(J) # {J}'. Sufficient conditions for #(J) = {J}' are given in
Theorem 5. An open question is under what additional conditions on {A,}
and {m,}, if any, does the spectral synthesis of J imply {J}' = 7(J)?
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