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ABSTRACT 

The paper studies the following problem. Given a linear subspace L C R” of 
dimension k, 1 < k < n - 1, the point r E R”, x e L, and a star-shaped set A c R", 

characterize those T > 0 for which L + r touches TA, and, if this is the case, describe 
the set ~cl(A)n(L + x). Here A is star-shaped if AA CA for all 0 <A d 1, L +x 
touches TA if L + x meets TA only on the boundary, and cl(A) means the closure of 
A. The problem is solved for two kinds of sets: convex A such that the origin f3 is 
contained in the relative interior of A, and A equals to the closed unit I,-ball G, for 
some 0 < p < 1. For convex A the set LL n A* plays a crucial role, where A* := (z E 
R” : (z, y) < 1 for all y E A} is the polar of A, and L’ is the orthogonal complement 
subspace to L. For G, the problem is solved by a special geometrical construction 
based on “coordinate” subspaces R, such that L n R, = (01. 

1. INTRODUCTION 

For any set A c R”, denote by L(A) the linear hull of A (the linear 

subspace of smallest dimension containing A). Let ri(A) denote the relative 
interior of A [the set of interior points of A in L(A)], and let cl(A) be the 
closure of A. Let L c R” be a&near subspace of dimension less than n, and 
let x E R”, x +S L. By tA we mean the dilation of A by t > 0, i.e. tA := (ta : 

aEA}. 

A general problem we are dealing with is: characterize those T > 0 for 
which L + x touches TA, and if this is the case, describe the set 7 cl(A) f~ 
(L + x). Here, by definition, L + x touches 7A if 7 cl(A)n(L + x) # 0 but 
T ri(A) fI(L + x> = 0. Of course, the whole problem is meaningful only if 
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there is t > 0 such that t cl(A)n(L + x) # 0. In what follows we always 
assume that this is true. 

In the above general setting the problem is almost meaningless. We feel 
the minimal assumption such that the problem starts to be meaningml is that 
A is star-shaped, i.e. such that AA c A for all 0 < A < 1. 

We restrict ourselves to two kinds of star-shaped sets: either A is convex 
with 8 E r?(A), or A is a closed unit Z,-ball for 0 < p < 1. While the results 
for convex sets are sufficiently general to include many practically interesting 
cases, those for I,-balls, 0 < p < 1, seem to have only a “demonstrative” 
power in the sense that they are examples of star-shaped nonconvex sets for 
which the above general problem can be solved. 

The paper is divided into three more sections. Section 2 studies the cases 
of convex sets. Section 3 deals with the I,-balls, 0 < p < 1. Finally, Section 4 
contains some concluding remarks. 

There is a class of full-dimensional convex sets that is of basic importance 
in the theory of discrete approximation: the 2,-balls, 1 < p <CQ. For this class 
the general results of Section 2 can be made more exact and explicit. 
Moreover, this can be done somewhat “independently” of general convexity 
theory, using only elementary methods; see [l]. In [l] also the connections of 
I,-ball cases, 0 < p < 1, with the I,-ball case are discussed in detail. 

2. CONVEX SETS 

Let L* mean the orthogonal complement subspace to L, and for any set 
AcR”,letA*:={z~R”:(z,y)~lforally~A}bethepolarofA,where 
(z, y) is the scalar product in R”. 

LEMMA 2.1. Let KC R” be a convex set so that 8 E ri(K). Then, 

ri(K)n(L + x)# 0ifand only if (z,x) < 1 jbr all z E L’ n K*. 

Proof. The condition ri(K)n(L + x) # 0 is clearly equivalent to the 
condition 

r~ri(K)+L, (2.1) 

where ri(K) + L is the algebraic sum of the sets. Assume first that L(K) = R” 

(i.e., K is full-dimensional). If (2.1) is true, then clearly 

x+Gcri(K)+L, (2.2) 
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where G c R” is a sufficiently small Euclidean ball centered at the origin 8. 
Let 6 # y E K* n L*. Then ey E G for some E > 0; hence r + ey E I%(K)+ 
L, which implies (x,y)+e(y,y)=(a,y)+(b,y), where x+~y=a+b, 
a~ri(K), bEL. But (b,y)=O, and (a,y)<l; hence (x,y)=(u,y)- 

e(y,y) <I. 
Conversely, let x e ri(K)+ L. Then the point r may be separated from 

the convex set K + L, i.e., there are 8 z y E R” and y E R’ such that 

(Y,X> 2 y> 

(2.3) 
(y,z)<y VzEK+L. 

The condition 6 E ri(K) implies G C ri(K)+ L for a sufficiently small Eu- 
clidean ball centered at 8; hence E y E ri( K) + L for some E > 0. This implies 
0 < E( y, y) < y. Let y := y/y. Then 

(s,x) z 1 
(2.4 

(C,z) <l VZEK+L. 

The second condition in (2.4) is possible only if ij E K* n Ll. But (hy, x) = 1 
for some 0 < A Q 1, and clearly hij E K* n Ll (both K* and L1 are convex 
and contain the origin 6). This proves the lemma in the case L(K) = R”. 

The correctness of the lemma in the case L(K) c R” can be derived from 
the full-dimensional case in the following way. It is clear that we can assume 
w.1.o.g. that x E Ll . Further, one can find f E L(K)n (L + x) n 
[LI + L(K)‘] such that 

ri(K)n(L+x)=ri(K)n(f,+x’), (2.5) 

where L = L(K)n L. 
Denote K* .- .-(z~L(K):(z,y)<lVy~K}and f,‘:={z~L(K):(z,y) 

= 0 Vy E Ll. By the proved full-dimensional case we get 

ri(K)n(f,+r’)#O 

if and only if 

(f,ii) -cl for all +j E R* n E’ . (2.6) 
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The equality (2.5) implies that the lemma will be proved after proving that 
the condition (2.6) is equivalent to the condition 

(x,y> < 1 for all y E K* Cl LL. (2.7) 

It is clear that K* =R* +L(K)l and L’ =[LL + L(K)‘InL(K). 

These show that 

k*ni’=k*n[LL +L(K)*] 

C[g*+L(K)+LL +L(K)I =K*nL’+L(K)l (2.8) 

and 

c [ LI + L(K) ‘1 n R* + L(K) ’ = k* n EL + L(K) I. (2.9) 

We know that 

x’=x+a=b+c, where aeL, heLL, CEL(K)? (2.10) 

The conditions (2.81, (2.91, and (2.10) imply the equivalence of (2.6) and 

(2.7). w 

LEMMA 2.2 (The characterization lemma). Let 7 > 0 be such that 

7cl(K)n(L+x)#0. (2.11) 

Then the space L + x is a touching space to rK $ and only zf 

(7,x)=7 f&-some qEK*nLl. (2.12) 

Proof It is clear that the condition 

Tri(K)n(L+x)=IZI (2.13) 
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is equivalent to the condition 

ri(K)fl L+x =0. ( 1 7 

(2.14) 

The sets K* and L’ are convex and contain 8. Hence the condition 

(77,z) 2 1 forsome q~K*nLl (2.15) 

is equivalent to 

(rl,z) = 1 forsome -q~K*nLl. (2.16) 

Using these observations, Lemma 2.1 yields the result. 

Denote 

Ext(K,L,r,T):= (z,T):zEcl(K)f-l ,qEK*nL’,(z,17)=1 

(2.17) 

[This is a set of ordered pairs (z,rZ).] 

THEOREM 2.3 (The description theorem). L + x is a touching space to 

rK if and only if Ext(K, L, x, 7) is nonempty. Zf this is the case, then 

rcl(K)n(L+x)={~z:(z,+Ext(K,L,r,r)). (2.18) 

Proof The condition (2.11) is equivalent to 

cl(K)n L+x z0. 
( i 7 

(2.19) 

Let L + x be a touching space to TK. Then L + X/T is a touching space to 
K; hence by Lemma 2.2 there is 77 E K* n L* such that (7, X/T) = 1. Let 
zEcl(K)n(L+x/T). Then Z=U+X/T, where UEL; hence (2,~)’ 

(a,77)+(x/r,77) = (X/7,77) = 1. W e see that (z, 17) E Ext. Conversely, if 
(z,q)EExt, then Z=U+X/T, UEL, (.z,q)=(x/r,~~)=l, andagain by 
Lemma 2.2 L + x/r is a touching space to K; hence L + x is a touching 
space to r K . 
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Let (2,771 E Ext. Then clearly TZ E rcl(K)n(L + xl. Conversely, if w E 
~cl(~)n(L + r) and we know that L + x touches rK, then by the Lemma 
2.2 there is q E K* n Ll such that (~,x)=T. But W=T.Z=U+X, UEL; 
hencez=cr/7+x/~and(z,77)=(x/7,77)=I,showingthat(z,77)EExt. 

n 

For fixed x, denote 

t(K):=inf{t>O:tcl(K)f7(L+x)#O} 

and 

The definitions of t(K), s(K), K”, and L’ show that 

s(K) <t(K). 

(2.20) 

(2.21) 

(2.22) 

In general, neither t(K) nor s(K) is attained, but we have 

COROLLARY 2.4. The infimum in (2.20) is attained if and only if 

Ext(K, L, x, t(K)) is nonempty. lf this is the case, then also the supremum in 
(2.21) is attained and 

s(K) = t(K). (2.23) 

Proof. The first part of the corollary is true because if t(K)cl(K) n 

(L + x) #0, then clearly L + x touches t(K)K. As to the second part, if Ext 
is nonempty, then (.z,Yj) = 1 for some 7j E K* n Ll. But z = a + x/t(K), 
a E L; hence (a, ?j) = (r, ?j)/ t(K) = 1; consequently (77, X) = t(K), imply- 
ing t(K) B s(K), so (2.23) holds by (2.22). n 

The condition (2.23) is true without any additional assumptions. 

THEOREM 2.5 (The duality theorem). 

s(K) = t(K). (2.24) 
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Proof. Clearly, for any sufficiently small E > 0 we have 

[t(K)-~]cl(K)n(L+x)=I?; 

hence 

[t(K)-.5]ti(K)n(L+x)=0, 

I.e., 

( X 
ri(K)n L+ 

t(K)-& 
= 0. 

By Lemma 2.1 there is T(E)= K* n L’ such that 
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(2.25) 

(2.26) 

(2.27) 

hence (T(E), x) = t(K)- E. This implies that for any E > 0, s(K) 2 t(K)- E, 
yielding (2.24) by (2.22). l 

There are easy examples to show that the i&mum in (2.20) is not 
attained but the supremum in (2.21) is. It is clear that this can happen only if 

K is not bounded. Theorem 2.3 gives a “parametric” description of touching 
points, where the Ext plays the role of the parameter set. There are two 
“levels” of investigation of this set. The first is to find those z E cl(K), 

77 E K* such that (z, 7) = 1 [it is clear that (.a,~) Q 1 for any z E cl(K), 
77 E K*]. This may give useful criteria for the touching points. The second 
step is to find those pairs determined in the first step such that z E L + X/T, 
17 E L I. The more “concrete” is the K, the more “concrete” description of 

Ext can be given. This approach leads to surprisingly good results in the case 
when K is the unit closed I,-ball, 1 Q p <m (hence K* equals the unit closed 

$-ball, l/p + l/g = 1) [ll. 

3. THE l,-BALL, 0 < p < 1 

Let K := K, := (z E R” : X~_ilzilp < l), 0 < p < 1. This set is closed, 
bounded, and star-shaped. 
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Given L c R”, x E R”, x E L, for any index set T ~(1,2,. . . , n) denote 

R, := (x E R” : xi = 0 for i @ T) , (3.1) 

9-(L):=(T~{1,2,...,n}:LnRr={~}}, (3.2) 

9,&(L):={TEY(L):RTfI(L+x)Z0and 

R,,n(L+x)=0forallT’cT,T’EY(L)), (3.3) 

and 

q(L):={ TE~~~(L):IIRT~(L+~)II,= 

(3.4) 

0 < p < 1, where 

One can see easily that if R, n (L + r > is 
unique point. Denote this point by y(T). 

THEOREM 3.1. Let O<p<l. Let L-c 
r>O. Then 

z E R”. (3.5) 

nonempty, then it consists of a 

x be a touching space to 7 K ,,, 

7K,,n(L+x)=(y(T):TEq(L)}. 

Proof. Denote HP := rKp n (L + xl. First we prove that 

~,ETtuL)Pbw+*)l. 

Let z E L + x be such that 

zl u [RTn(L+x)]. 
T E 9-m 

(3.6) 

(3.7) 

(3.8) 
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We claim that there is w E L + x such that 

IblIp < 11~11,. (3.9) 

The (3.9) implies (3.7). Indeed, that L + r touches rKp means that 

7’zq-@+x)=0 for all r1 Cr. (3.10) 

Hence, for any point y E H,, necessarily llyllP = 7. So, if z belonged to H,, 
then llzllP = r and by (3.9) we would have llwllP = T’ < r, which contradicts 
:3.1oj. 

To prove (3.9) denote Z,(z) := {i : zi = 01, Z(z) := (i : zi # O}, Z+(z) := 
{i : zi > 0}, Z_(z) := {i : zi < O}. The condition (3.8) implies Z(z) G Y(L); con- 
sequently 

LnZG,z,+(@). (3.11) 

One can see easily that there is 8 # u E L r-l R,(,, satisfying the following 
conditions: 

Z(u) Cl(z), (3.12) 

z+puEL+x, -l<P<l, (3.13) 

and 

zi + pui > 0 vi E Z+(z), .q+pu,<o ViEZ_(z) (3.14) 

forall -lgp<l. 
Denote 

Ip( P) ‘= 2 lzi + P”ilp> -1<p,<1. (3.15) 
i=l 

For this function and its first two derivatives we have 

q(p) = C’(Zi + PUi)” + C”( -zi -P"i)', (3.16) 
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where X’ and F mean summation over index sets Z+(z), Z_(z) respectively. 
If q’(O) > 0, th en cp(p) < (p(O) for /3 < 0 sufficiently near to zero. If 

(p’(O) < 0, then &3) < cp(O) for sufficiently small p > 0. If cp’(0) = 0, then 
q”(O) < 0 implies that cp(/3) h as a local maximum at 0; consequently cp(/3) < 

~(0) for small ~3. We see that there is /3 such that w := z + PU fulfills (3.9). 
This proves (3.7). 

We can easily see that 

U [R,n(L+x)l=IY(T)‘TE~i”(L)J. (3.19) 
T E P-U,) 

Indeed, if T E F(L), then there is T’ c T such that T’ E Fmin(L) and 
R,, n(L + x) # 0. But R,, C R,; hence y(T) = y(T’). 

It is clear that lly(T)ll, is constant for all T E T(L). Denote this 
constant by 7. The (3.10) implies that ? > r. But Ily(T)II, > 7 for all 

T E Ymi,,(L)\ .3$(L); consequently, by (3.7) and (3.19) we see that y(T) E HP 
for such T. This implies H, G {y(T) : T E T(L)}; hence 7 = T, and from this 

(y(T): T E 3$(L)} G H,. n 

Let K, be the K, for p = 1 (the closed unit Ii-ball), and let Y1(L) be the 
set (3.4) for p = 1. Let extr(C) denote the set of extreme points of a compact 
convex set C. A result of [l] implies that if L + x is a touching space to TK~, 

then 

extr(rK<,n(L+ x)) = {y(T):T EF~(L)}; (3.20) 

hence 

rKin(L+r)=conv((y(T):T~Y~(L))). (3.21) 

This description can be compared to that deriving from the general “theory” 

in the previous section. 

4. REMARKS 

Let Il.11 be a norm in R”, and ll.ll* be its dual norm. Let K be the closed 
unit ball of I[*([. Then K* is the closed unit ball of II*ll*. Let L,x be as in 
the previous sections. For 77 E K*, denote 

~(~~):={zER”:zEK,(z,~~)=~]. (4.1) 
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The main result of [2] can be transformed into the following form: if 
L + x touches TK, then 

7Kfl(L+x)=(L+r)n 
i 

u d?(T) . 
WELL 1 

(4.2) 

For the proof of (4.2) the following classical duality theorem of the 11. (I-norm 
approximation (see, e.g., [3]) has been used: 

(17,x) 
min llyll= max - 

y-eL+x 7JGLl lIdI* . (4.3) 

The first part of the paper [l] deals with a deeper study of the whole 
problem for I,-norms, 1~ p <a. In these cases the general result (4.2) can 
be made more exact and explicit via the precise description of the I?(T). An 
interesting feature of the results in [l] is that their proofs do not use the 
duality theorem (4.3) but only elementary considerations. 

The second part of [I] d al e s with the Z,-norms for 0 < p B 1. For 
0 < p < 1 the methods and results of [l] are analogous to those of Section 3. 
In [l] a deeper study of the case p = 1 and its relation to the cases 0 < p < 1 

can also be found. 
The results of [l] are especially sharp, “complete,” and convincing (for all 

0 < p <ml when the dimension of L is rz - 1. For lower-dimensional L the 
“formulas” of [l] are not so complete. This phenomenon can be observed also 
in the more general result (2.18). Namely, if L is (n - I)-dimensional, then 
LA is one-dimensional; hence one can easily prove, changing the T, the 
nonemptiness of Ext. We can say that the “complexity” of proving the 
nonemptiness of Ext and finding all elements of it decreases with increasing 
dimension of L. 
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