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Abstract

We prove properties of a process calculus that is designed for analysing security protocols. Our long-term goal is to develop a
form of protocol analysis, consistent with standard cryptographic assumptions, that provides a language for expressing probabilistic
polynomial-time protocol steps, a specification method based on a compositional form of equivalence, and a logical basis for
reasoning about equivalence.

The process calculus is a variant of CCS, with bounded replication and probabilistic polynomial-time expressions allowed in
messages and boolean tests. To avoid inconsistency between security and nondeterminism, messages are scheduled probabilistically
instead of nondeterministically. We prove that evaluation of any process expression halts in probabilistic polynomial time and define
a form of asymptotic protocol equivalence that allows security properties to be expressed using observational equivalence, a standard
relation from programming language theory that involves quantifying over all possible environments that might interact with the
protocol.

We develop a form of probabilistic bisimulation and use it to establish the soundness of an equational proof system based on
observational equivalences. The proof system is illustrated by a formation derivation of the assertion, well-known in cryptography,
that El Gamal encryption’s semantic security is equivalent to the (computational) Decision Diffie–Hellman assumption. This example
demonstrates the power of probabilistic bisimulation and equational reasoning for protocol security.
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0. Introduction

There are many methods used in the analysis of security protocols. The main systematic or formal approaches
include specialised logics such as BAN logic [13,19,27], special-purpose tools designed for cryptographic proto-
col analysis [39], and theorem proving [55,56] and model-checking techniques using several general-purpose tools
[61,43,46,63,51]. Although these approaches differ in significant ways, all reflect the same basic assumptions about the
way an adversary may interact with the protocol or attempt to decrypt encrypted messages. This common model, largely
derived from Dolev and Yao [26] and suggestions due to Needham and Schroeder [53], allows a protocol adversary
to nondeterministically choose among possible actions (see [19]). This convenient idealisation is intended to give the
adversary a chance to find an attack if one exists. In the presence of nondeterminism, however, the set of messages
an adversary may use to interfere with a protocol must be restricted severely. Although Dolev–Yao-style assumptions
make protocol analysis tractable, they also make it possible to ‘verify’ protocols that are in fact susceptible to simple
attacks that lie outside the adversary model (see, e.g., [55,62]). A further limitation of deterministic or nondeterministic
settings is the inability to analyse probabilistic protocols.

In this paper we describe some technical properties of a process calculus that was proposed earlier [41,42,45,50,52]
as the basis for a form of protocol analysis that is formal, yet close in foundations to the mathematical setting of
modern cryptography. A recent conference paper [59] contains material excerpted from this paper. The framework
relies on a language for defining communicating polynomial-time processes [50]. The reason we restrict processes to
probabilistic polynomial time is that we can reason about the security of protocols by quantifying over all ‘adversarial’
processes definable in the language. In effect, establishing a bound on the running time of an adversary allows us to
relax the simplifying assumptions on what the adversary might do. In particular, we can consider adversaries that might
send randomly chosen messages, or perform sophisticated (yet probabilistic polynomial-time) computation to derive
an attack from messages they overhear on the network. An important aspect of our framework is that we can analyse
probabilistic as well as deterministic encryption functions and protocols. Without a probabilistic framework, it would
not be possible to analyse an encryption function such as El Gamal [28], for which a single plaintext may have more
than one ciphertext. A probabilistic setting is important also because the combination of nondeterminism and bit-level
representation of encryption keys renders any encryption function insecure [41].

Some of the basic ideas of this work are outlined in [41], with the term language presented in [50] and further
example protocols considered in [42]. Some portions of this paper are summarised in [52,59,60]. Subsequent to the
publication of [59] an error was found in the operational semantics. In fixing this problem, some rules in the proof
system given in [59] were found to be false. Fortunately, none of our major results were found to be untrue. The closest,
independent technical precursor is the Abadi and Gordon spi-calculus [2,3] which uses observational equivalence and
channel abstraction but does not involve probability or computational complexity bounds; subsequent related work is
cited in [1], for example. Prior work on CSP and security protocols, e.g., [61,63], also uses process calculus and security
specifications in the form of equivalence or related approximation orderings on processes. One important parallel effort
with similar goals, the paradigm of ‘universally composable security’, can be found in [14–18]. The relationship of
this paradigm to our process calculus framework and its compositionality is discussed in [45]. The paper [45] does
not deal with probabilistic bisimulation or the proof rules for our calculus. Another one based on I/O automata can be
found in [7,8,57,58]. Previous literature on probabilistic process calculi includes, e.g., [40,65,11]. However, asymptotic
equivalence as used in security does not appear in any of these references. There are studies of asymptotic equivalence
in the context of bisimulations though, including, e.g., [22,23]. This is an orthogonal approach since in this work
expressions represent non-terminating entities. So, when two expressions are said to be asymptotically equivalent, it
means that the probabilistic behaviour of the two expressions approach each other over the course of their (infinite)
evaluation i.e., the two expressions converge over time.

In our setting, expressions denote families of terminating processes indexed by a security parameter, since we wish to
model security protocols. Security properties are specified as observational equivalences. Specifically, P�Q means that
for any context C[ · ], the behaviour of expression C[P] is asymptotically (in the security parameter) computationally
indistinguishable from the behaviour of expression C[Q]. If P is a protocol of interest, and Q is an idealised form
of the expression that uses private channels to guarantee authentication and secrecy, then P�Q is a succinct way of
asserting that P is secure. We have found this approach, also used in [14–18,58], effective not only for specifying
security properties of common network protocols, but also for stating common cryptographic assumptions. For this
reason, we believe it is possible to prove protocol security from cryptographic assumptions using equational reasoning.
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The possibility is realised in this paper by proving security of El Gamal encryption from the standard Decision Diffie–
Hellman assumption, and conversely.

Several advances over our previous efforts [41,42,45,52] were needed to make these formal equational proofs possible.
First, we have refined the operational semantics of our process calculus. Most importantly, we define protocol execution
with respect to any probabilistic scheduler that runs in polynomial time and operates uniformly over certain kinds of
choices (to avoid unrealistic collusion between the scheduler and a protocol attacker), and we give priority to private
(‘silent’) actions by executing private actions before public communications. Second, we develop a form of probabilistic
bisimulation that, while not a complete characterisation of asymptotic observational equivalence, gives a tractable
approximation. Third, we present an equational proof system and prove its soundness using bisimulation. Finally, the
material in Section 7 dealing with computational indistinguishability, semantic security, El Gamal encryption, and
Decision Diffie–Hellman is entirely new.

Although our main long-term objective is to base protocol analysis on standard cryptographic assumptions, this
framework may also shed new light on basic questions in cryptography. In particular, the characterisation of ‘secure’
encryption function, for use in protocols, does not appear to have been completely settled. While the definition of
semantic security [34] appears to have been accepted, there are stronger notions such as non-malleability [25] that
are more appropriate to protocol analysis. In a sense, the difference is that semantic security is natural for the single
transmission of an encrypted message, while non-malleability accounts for vulnerabilities that may arise in more
complex protocols. Our framework provides a setting for working backwards from security properties of a protocol
to derive necessary properties of underlying encryption primitives. While we freely admit that much more needs to
be done to produce a systematic analysis method, we believe that a foundational setting for protocol analysis that
incorporates probability and complexity restrictions has much to offer in the future.

0.1. Preliminaries

In this section we establish several basic notions that we will require throughout this monograph. We start by
introducing a notion of probabilistic function tailored to our needs. Next we recapitulate standard treatments and
establish notation and terminology for probabilistic Turing machines, equivalence classes and multisets.

Probabilistic functions. Let f : X × Y → [0, 1] be a function satisfying:

(1) ∀x ∈ X : ∑
y∈Y f (x, y)�1 and

(2) ∀x ∈ X : |{y ∈ Y | f (x, y) > 0}| ∈ N.

Then f is a probabilistic function from X to Y, written as f : X- ->Y . The second condition in the definition ensures that
the sum in the first condition is well-defined by stipulating that only a finite number of terms in the sum in the first
condition are non-zero.

We will say that the domain of f is the set X, the codomain of f is the set Y, and the range of f is the set {y ∈ Y | ∃x ∈
X : f (x, y) > 0}. We will write f (x)

p
- -> y or Prob [f (x) = y] = p just when f (x, y) = p. A stochastic probabilistic

function f : X- ->Y is one in which ∀x ∈ X : ∑
y∈Y f (x, y) = 1.

The composition g ◦ f : X × Z → [0, 1] of two probabilistic functions f : X- ->Y and g : Y - ->Z is defined as the
function satisfying

∀x ∈ X.∀z ∈ Z : (g ◦ f )(x, z) = ∑
y∈Y

f (x, y) · g(y, z).

It is easy to verify that the composition g◦f : X×Z → [0, 1] of two probabilistic functions f : X- ->Y and g : Y - ->Z

is a probabilistic function.
Probabilistic Turing machines. Our presentation follows standard treatments (see e.g., [54,6]). A random Turing

machine (RTM) is a Turing machine with an extra random-tape and three extra states qrand, qone and qzero. Initially,
the machine starts with the input on the working tape and an infinite sequence of bits on the random-tape. When the
machine enters state qrand, control passes to state qone if the bit to the right of the current position of the random-tape
head contains a 1 and to state qzero if the bit to the right contains a 0. Given a probabilistic Turing machine M we will
write M(�r, �a) for the result of M on input �a using random bits given by �r .
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The RTM M runs in probabilistic poly-time if there exists a polynomial q(�x) such that M(�r, �a) halts in time q(|�a|)
for all sequences �r of bits on the random-tape. We note that if M runs in probabilistic polynomial time, then M reads
at most q(�x) bits of the random-tape. We can view this M as a probabilistic poly-time Turing machine (PPTM) if we
choose the bits on the random-tape uniformly at random from the space of bitstrings that M can read in its timebound
of q(�x). In particular, we will write that M(�a) = a with probability p if, choosing a sequence of q(�a) bits uniformly
at random, the probability that M(�r, �a) = a is p.

We say that a PPTM M computes a probabilistic function f : X- ->Y if for all inputs x ∈ X for all outputs y ∈ Y ,
we have Prob [f (x) = y] = Prob [M(x) = y]. A probabilistic function f : X- ->Y is poly-time computable, or just
poly-time, if it is computed by a PPTM. We note that every function computed by a PPTM satisfies condition 2 in the
definition of a probabilistic function and is, therefore, a probabilistic function.

Equivalence relations: An equivalence relation R on X is a subset R of X × X such that:

(1) R is reflexive i.e., ∀x ∈ X : 〈x, x〉 ∈ R;
(2) R is transitive i.e., ∀x, y, z ∈ X : 〈x, y〉, 〈y, z〉 ∈ R 
⇒ 〈x, z〉 ∈ R; and
(3) R is symmetric i.e., ∀x, y ∈ X : 〈x, y〉 ∈ R 
⇒ 〈y, x〉 ∈ R.

For any set X, element x ∈ X, and equivalence relation R ⊆ X × X, [x]R is the equivalence class of x with respect to
R and X/R is the set of equivalence classes of X induced by R. Let E ∈ X/R be an equivalence class of X under the
relation R. We write rep E for a representative element of E i.e., any x ∈ E.

1. A probabilistic poly-time process calculus

We assume a countable set Var of variables, a distinguished variable � not in Var, a countable set Channel of channel
names partitioned into two countable sets Unbindable and Bindable, a set Poly = {q : N → N | ∀a ∈ N : q(a)�0}
of positive polynomials, a total function width : Channel → Poly, and a symbol ≡ denoting syntactic identity.

1.1. Terms

We assume the existence of a class of basic terms � for probabilistic poly-time numeric functions of arbitrary -arity,
and a probabilistic function ↪→: � × N∗ → N called basic term reduction, such that:

(1) if � is a basic term with k arguments, then there exists a probabilistic poly-time Turing machine M� with k inputs

such that M�(a1, . . . , ak) returns a with probability p iff �(a1, . . . , ak)
p
↪→ a with probability p; and,

(2) for each probabilistic poly-time function f : Nk → N, there exists a k-ary basic term � such that M� computes f.

The first condition guarantees that all basic terms are computable in polynomial time, while the second condition
guarantees that any probabilistic poly-time function of type Nk → N can be expressed by some basic term. One
example of such class of terms is the term calculus OSLR studied in [50] (based in turn on [9,37]). As a consequence of
these two conditions, we will, henceforth, freely move between terms and functions. Whenever we need to explicitly
specify a basic term, we will use a notation styled on �-calculus. For example, �x.�y.(x + y) denotes the basic term
that computes the sum of its two inputs.

Definition 1 (Terms). Letting � range over basic terms and x range over Var ∪ {�}, the class Term of terms is given
by the grammar:

T ::= x|�|rand|(�) T1, . . . , Tk where � is a basic term of k arguments.

We emphasise that the distinguished variable � is treated just like any ordinary free variable of the term. We can
define the term reduction of terms with no variables inductively:

(1) The term rand reduces to either 0 or 1 with uniform probability. We use rand as a source of truly random bits.
(2) The term (�) T1, . . . , Tk is reduced by first reducing T1, . . . , Tk yielding the values a1, . . . , ak and then reducing

�(a1, . . . , ak).
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Given a term T with variables x1, . . . , xk (where there might exist i such that xi is �) we write [a1, . . . , ak/x1, . . . , xk]T
for the term obtained by substituting ai (1� i�k) for each free occurrence ofxi in T.We will write T(a1, . . ., ak)

p−→term a

just when [a1, . . . , ak/x1, . . . , xk]T reduces to a with probability p.
A term T is an atom just when it has no free variables and reduces to itself with probability 1. It is easy to see that

the terms representing the natural numbers are all atoms. Given a term T all of whose variables are among x1, . . . , xk ,
it is easy to construct a probabilistic polynomial-time Turing machine MT with k inputs such that MT(a1, . . . , ak) = a

with probability p just when T(a1, . . . , ak)
p−→term a.

Since terms are essentially substitution instances of basic terms, it is easy to see that all terms always terminate in
polynomial time (since the basic terms are precisely the set of probabilistic polynomial time functions).

1.2. Syntax

Definition 2 (Expressions). Letting T range over Term, x range over Var, c range over Channel, c range over Bindable,
and q(·) range over Poly, the class Expr of expressions of the probabilistic poly-time calculus (PPC) is given by the
grammar:

P ::= � (empty)
�(c).(P) (channel binding)
in(c, x).(P) (input)
out(c, T).(P) (output)
[T].(P) (match)
(P | P) (parallel composition)
!q(�).(P) (bounded replication).

Intuitively, � is the empty process that does nothing. The channel binding �(c).(P) binds the channel name c in P .
Only channels in Bindable can be bound to a � operator. Essentially, we have two kinds of channel names: channels
in Unbindable that cannot be bound which we call unbindable channels, and channels in Bindable that can be bound
which we call bindable channels. We will use bindable channels to create various secure primitives (such as secure
authenticated channels). To this end, we will stipulate that messages on bindable channels occur with higher priority
than messages on unbindable channels, i.e., bindable channels will be used to construct internal channels of protocols.
Additionally, when a bindable channel is bound to a �, no entity outside the scope of the � will be able to interact with the
channel, i.e., a bound channel produces no observable behaviour and cannot be read from or written to by an adversary.
We emphasise that all free channels (which include bindable channels that have not been bound) produce observable
behaviour. For simplicity we will assume that all bound channel names are distinct from each other and from unbound
channel names. The input expression in(c, x).(P) binds all free occurrences of the variable x in P . Intuitively, the input
expression receives an input value a on the channel c and then substitutes a for all free occurrences of the variable x
in P . The output expression out(c, T).(P) first reduces T to some atom a and then transmits that value on the channel c

before proceeding with P . We note that both the input operator and the output operator act as guards on the expression
affixed as a suffix since, for example, P in the expression out(c, T).(P) cannot be evaluated until the output out(c, T)

is performed. In PPC all computation is performed using terms; the process expressions simply move values around
between the various “islands of computation” that the terms embody. The picture here is meant to conform closely to
the picture of a network (modelled by PPC) connecting various computers (modelled by terms). The match expression
[T].(P) guards the expression P by only allowing the evaluation of P if the guarding term T reduces to the atom 1.
Otherwise, the match evaluates to �. The expression �(c).(out(c, T1

?= T2).(�) | in(c, x).([x ?= 1].(P) | [x ?= 0].(Q)))

can be used to implement an “if–then–else–if” construct. The parallel composition (P1 | P2) allows the expression on
the left to evaluate independently of the expression on the right. Alternatively, the two expressions can communicate
with each other by one sending a message (via an output) to the other (who receives it via an input on the same
channel). We assume that | associates to the left. Finally, the bounded replication !q(�).(P) is simply the q(�)-fold
parallel composition of P . The parameter � is supposed to signify a security parameter, a basic notion in cryptogra-
phy that allows one to characterise the ‘strength’ of a cryptosystem (see [31,44]). We assume that the value for the
security parameter is given in unary—this is standard practice in the community and has the nice effect of ensuring
that |�| = �.
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Example 3. Here are some sample expressions.

(1) We assume that we have terms rsaParams that generates the public values of an RSA cryptosystem parameterised
by � and randMsg that generates a random message of length determined by �. The expression

(in(c1, x).(in(c2, y).(out(d, rsa(x, y)).(�)))

| (out(c1, rsaParams).(�) | out(c2, randMsg).(�)))

computes the RSA ciphertext of the message y in the RSA cryptosystem determined by x.
(2) The expression

!2�.(out(c, rand).(�))

can potentially transmit 2� random bits given a suitable number of inputs on the channel c to receive the bits.
(3) Writing ‖ for concatenation, we can guess �-length keys using

(out(c, rand).(�) | !�.(in(c, x).(out(c, x‖rand).(�))))

Definition 4 (Contexts). Letting T range over Term, x range over Var, c range over Channel, c range over Bindable,
and q(·) range over Poly, the class CExpr of context expressions of PPC is given by the grammar:

C[ · ] ::= [ · ] (hole)

�(c).(C[ · ])
in(c, x).(C[ · ])
out(c, T).(C[ · ])
[T].(C[ · ])
(P | C[ · ])
(C[ · ] | P)

!q(�).(C[ · ]).

We define the substitution of the expression P into the context expression C[ · ], written as C[P], inductively in an
entirely straightforward manner: for the basis we stipulate that [P] ≡ P . Similarly, we can define the substitution of
context expressions into context expressions. Given two expressions P and Q we will say that Q is a subexpression
of P just when there exists a context expression C[ · ] such that P ≡ C[Q]. Similarly, we can define context sub-
expressions.

Given an expression Q, when we find a C[ · ] for some P such that C[P] ≡ Q, we note that, in addition to wit-
nessing that P is a subexpression of Q, C[ · ] also locates P in Q. That is to say, a context can be used to uniquely
identify the location of a subexpression in another expression. In practice, it will be useful to simultaneously iden-
tify the location of several subexpressions. For example, if we wish that a particular input receive a message from
a particular output, it will be useful to write a context with two holes that pick out the designated input and output.
By allowing derivations of the form (C[ · ] | C[ · ]), we can construct such multi-holed context expressions. We assume
that the holes in a multi-holed context expression are uniquely numbered so as to render substitution unambiguous.
Given a k-holed context expression C[ · 1, . . . , · k] we denote the expression obtained by plugging in the expressions
P1, . . . ,Pk into the holes [ · ]1, . . . , [ · ]k , respectively, by C[P1, . . . ,Pk]. Naturally, substituting j < k expressions
into a k-holed context expression yields a (k − j)-holed context expressions. Given C[ · 1, . . . , · k] and P1, . . . ,Pk

and Q such that C[P1, . . . ,Pk] ≡ Q, we will say that C[ · 1, . . . , · k] locates P1, . . . ,Pk in Q. In a similar manner
(and for a similar reason) we also define multi-holed contexts. We denote the set of all multi-holed context expres-
sions (resp. multi-holed contexts) by MultiCExpr (resp. MultiCon). Clearly, CExpr ⊂ MultiCExpr and Con ⊂
MultiCon. We will drop the numbering of holes in multi-holed context expressions and contexts whenever we can
safely do so.
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We define the free variables of an expression P , denoted by FreeVar(P), inductively:

FreeVar(�)
def= ∅,

FreeVar(�(c).(P))
def= FreeVar(P),

FreeVar(in(c, x).(P))
def= FreeVar(P) − {x},

FreeVar(out(c, T).(P))
def= FreeVar(T) ∪ FreeVar(P),

FreeVar([T].(P))
def= FreeVar(T) ∪ FreeVar(P),

FreeVar((P1 | P2))
def= FreeVar(P1) ∪ FreeVar(P2),

FreeVar(!q(�).(P))
def= FreeVar(P).

An expression is variable-closed when it has no free variables, and variable-open otherwise. We let Channel(P)

be the set of channels names appearing in P . The set of public channels of P , denoted by PubChan(P), is {c ∈
Channel(P) | c ∈ Unbindable}. The set of private channels of P , denoted by PrivChan(P), is {c ∈ Channel(P) | c ∈
Bindable}. The set of bound channels of P , denoted by BoundChan(P), is the largest subset of the channels of
P whose members are all bound by a � in P . The free channels of P , denoted by FreeChan(P), is the given by
Channel(P)\BoundChan(P). Clearly, PubChan(P) ⊂ FreeChan(P) and BoundChan(P) ⊂ PrivChan(P). Similarly,
we can define the sets of channels, free channels, bound channels, public channels and private channels of a context
expression.

The reader will recall that each channel name has a polynomial in one variable associated with it by the map width.
The argument to this bandwidth polynomial is given by the choice of value for � (which, we remind the reader, is equal
to the size of � since it is written in unary). Intuitively, the bandwidth of a channel controls how much data can be sent
along a channel in one message. Limiting the bandwidth of a channel to a polynomial in � will be crucial in proving
that variable-closed expressions can be evaluated in time polynomial in the size of � (see Theorem 28). If channels
could transmit messages of unbounded size, then we could construct exponentially long messages using a technique
like repeated squaring. If these messages were then used as inputs to polynomial-time functions, the result would be
an expression that takes exponential time to evaluate.

Our goal will be to develop an equational reasoning system for processes. In order to obtain an easy mechanism
of generic compositionality, we will require that process equivalence be a congruence. The intuition here is that we
can represent a security protocol as an expression, and an adversarial environment in which that protocol executes as
a context. If we can show that an expression representing a protocol is congruent to some expression representing an
ideal specification, we will have shown that no adversary can distinguish (i.e., attack) the protocol with non-negligible
advantage. As a result, process equivalence will give us both generic compositionality (from its congruence properties)
and correctness of security protocols (by generating equivalences with ideal specifications).

Henceforth, when writing (context) expressions we will drop any parentheses that are not required for giving an
unambiguous parse to the (context) expression. We will also drop the � expression affixed as suffixes to input and
output expressions.

Processes and contexts. We now discuss the distinguished variable � that appears in the definitions of expressions,
terms, and in the bandwidths associated with channel names. This variable is supposed to represent the security
parameter of a cryptographic scheme or security protocol. Given an expression P we can substitute a number i for the
security parameter to obtain the process [i/�]P . Thus every expression P can be viewed as defining the uniform family
of processes {[i/�]P | i ∈ N}. We can similarly define context processes or contexts from context expressions. All the
definitions given in the previous section for expressions and context expressions can be easily extended to processes
and contexts. We will write width([i/�]P, c) to denote the value 2width(c)(i). This is one more than maximum value that
can be transmitted on the channel c in the process [i/�]P—any message transmitted on the channel c in the process
[i/�]P is reduced modulo width([i/�]P, c).

Wherever we can safely do so, we will drop the explicit indication of the value chosen for the security parameter
and simply write P for a process or C[ · ] for a context. We note that processes do not contain replications since, by
fixing a value for the security parameter, we can replace replications by parallel compositions. We define Proc and
Con to be the set of processes and contexts, respectively. Since Proc (resp. Con) consists of expressions (resp. context
expressions) in which the security parameter does not appear, it follows that Proc ⊂ Expr and Con ⊂ CExpr.
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1.3. An abstract operational semantics for PPC

We start by giving the operational semantics for variable-closed processes; we will later outline an extension to
variable-open processes and expressions. Intuitively, we envision the evaluation of variable-closed processes as a
series of alternating reduction and communication steps. During a reduction step we evaluate as many terms and
match expressions as we can. This step is supposed to embody all the (internal) computation a process can perform
without requiring a communication step. Hence, we stipulate that reduction steps occur with higher priority than
communication steps. A communication step consists of an input receiving a message from an output on the same
channel. The communication step is chosen according to some probabilistic schedule from the set of all possible
communications available to the process. This procedure of alternating reduction and communication steps continues
until no further communication steps are possible.

There are several subtleties in this intuitive notion of process evaluation. The most important is the decision to make
use of probabilistic scheduling. Our goal in this project is to develop a framework for reasoning about the computational
model of security. Hence, we do not make Dolev–Yao-style simplifying assumptions. On the other hand, if we retain
the traditional nondeterministic scheduling seen in [1–3,13,61–63], the adversary has exponential computing power.
Consider the process

in(d, y).in(c1, x1). · · · .in(ck, xk).out(c, Decryptx1‖···‖xk
(y)) |

| out(c1, 0) | · · · | out(ck, 0) | out(c1, 1) | · · · | out(ck, 1)

With nondeterministic scheduling, the adversary can guess a k-length key by concatenating k bits. Since we do not
make Dolev–Yao assumptions, the adversary is fully justified in manipulating bit-level representations of keys. In
practice though, the adversary can only successfully reconstruct the key with probability at most 2−k which, for
sufficiently large k, is considered negligible. Hence, abandoning the Dolev–Yao model drives us to probabilistic
scheduling.

However, we cannot a priori fix a probabilistic schedule when we give the operational semantics for PPC. Since we
will wish to define process equivalence with respect to all adversaries, and adversaries are modelled as having control
over the network, we will need to quantify over all probabilistic schedules. Consequently, we will define for each process
a labelled transition system where the probabilities annotating edges do not take into account a particular schedule: we
will have a reactive labelled transition system (see [40,65]) in that the transition system for a process represents the
behaviour of the process in the presence of an external entity that selects the communication step to perform at every
step of evaluation. In particular, our transition rules will associate with each process a set of distributions indexed by
actions. Thus, while the labelled transition system will yield probabilistic behaviour given an particular action label, we
can only guarantee that the process displays probabilistic behaviour over all choices of actions once we fix a schedule.
This will be done by applying a scheduler to the labelled transition system (Section 3.1). Strictly speaking the values
that will be associated with transitions are not probabilities in the sense that the overall behaviour of a process is not
guaranteed to be probabilistic. However, for convenience, we will refer to these numbers as probabilities because, given
a scheduler, they yield probabilistic behaviour.

Another issue stems from what counts as a communication step. Intuitively, a communication step is just an input–
output pair on the same channel: the output transmits the value used by the input. However, we would like to develop
a syntactic treatment of compositionality. Consequently, we need some way of modelling the evaluation of a process
in any context. In order to do this, we will make use of partial steps that are single inputs and outputs representing
a communication with an arbitrary context in which the process is being evaluated. The result is that we develop an
abstract operational semantics that gives the behaviour of a process in an arbitrary context.

Finally, there is the question of what to do with communications on bindable channels versus unbindable channels.
As already mentioned, bindable channels will be used to build primitives like authenticated secure channels. Their
primary goal is to model channels which cannot be seen by the adversary. In order to do this, it is necessary to
make communications on bindable channels occur with higher priority than communications on unbindable channels.
Additionally, an important element in constructing these secure primitives is that the adversary cannot interact with the
channel. For this reason, we require the notion of syntactic scope provided by the � operator. Any actual communication
consisting of an input and output on a bound channel should produce no observable. However, a message on an free
bindable channel is observable since the adversary can interact with it. Hence, all communications steps on bindable
channels (including partial ones) generate observable behaviour in exactly the same way as communication steps on
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� 1−→redxn � (RZ)

in(c, x).P
1−→redxn in(c, x).P (RI)

p = ∑
{b∈N | a=b mod width(P,c)} Prob

[
T −→term b

]
, P

q−→redxn P ′

out(c, T).P
pq−→redxn out(c, a).P ′

(RO)

P
p−→redxn P ′, T

q−→term 1

[T].P pq−→redxn P ′
(RMP)

T
q−→term 1

[T].P 1−q−−→redxn �
(RMF)

P
p−→redxn P ′, Q q−→redxn Q′

P | Q pq−→redxn P ′ | Q′
(RPC)

P
p−→redxn P ′

�(c).P
p−→redxn �(c).P ′

(RCB)

Fig. 1. The reduction rules for variable-closed PPC processes.

unbindable channels. Once a bindable channel is bound, within its scope no partial steps can occur (since the arbitrary
context in which we evaluate the process cannot communicate with the bound channel) and all normal communi-
cation steps produce no observable behaviour. We remind the reader that we have three different levels of priorities
for actions:

(1) reduction actions which occur with the highest priority,
(2) actions on bindable channels which occur with medium priority, and,
(3) actions on unbindable channels which occur with low priority.

The operational semantics for PPC in Fig. 2 require definitions of the notions of process reduction (Section 1.3.1),
an action (Section 1.3.2), and the normalisation function, Norm (Section 1.3.3), used in computing the probabil-
ities of transitions under parallel composition. We proceed by defining these notions in turn before we discuss
the operational semantics (Section 1.3.4). A treatment of probabilistic scheduling can be deferred until later (Sec-
tion 3.1) since, as mentioned, we do not require a particular probabilistic schedule in providing the operational
semantics.

1.3.1. Process reduction
We define process reduction via the inference rules of Fig. 1. Intuitively, reduction is meant to capture the computation

a process does between communication steps. Since a free variable in a process can be viewed as a resource that needs
to be delivered to the process via a communication step, it stands to reason that a variable-open process cannot do any
computation (since it is waiting on a communication to deliver the missing resource). So reduction is defined only over
variable-closed processes.

Given a variable-closed process, we evaluate all terms that have no free variables (in keeping with the just-given
intuition). Since the only binding operator on free variables are inputs, we reduce all terms that do not appear in the
scope of an input operator. We say that an output operator or a match operator is exposed if it does not appear in the
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scope of an input operator. Similarly, we say that a non-atomic term appearing in an exposed output 3 or any term
appearing in an exposed match is exposed as well. We note that since we are considering only variable-closed processes,
all exposed terms have no free variables. To reduce a process, we need to evaluate all the exposed terms. We will say
that a variable-closed process is blocked just when it has no exposed terms, and unblocked otherwise. 4 We will say
that Q is a reduct of P just when Prob

[
P −→redxn Q

]
> 0. Finally, for a set of processes R:

Prob
[
P −→redxn R

] def= ∑
R∈R

Prob
[
P −→redxn R

]
.

Lemma 5. Prob
[
P −→redxn Proc

]
�1.

Proof. A trivial induction on the structure of processes. �

As an immediate corollary we see that for any set of processes R, we have Prob [P ] −→redxn R�1. We conclude
this section with some remarks on some features of the reduction rules. Intuitively, an output out(c, T).P represents
the sending of the message a computed by the term T. However, the bandwidth on channels means that the value
transmitted by the output might be truncated if T evaluates to a large value. We handle this truncation mechanism by
ensuring that our reduction rules reduce an output term to a suitably truncated value. Hence, the probability of the
output reduction must be taken over all elements in the codomain of the term that, when truncated, result in the same

value. We remark that our reduction rules imply that if P
1−→redxn � then [T].P 1−→redxn �. We remind the reader that

the reduction rules of Fig. 1 make no mention of replications since processes do not contain any replications.

Lemma 6. P
1−→redxn P iff P has no exposed terms i.e., P is blocked.

Proof. (
⇒)An examination of the inference rules of Fig. 1 shows that the only rules that can directly cause a syntactic
change to a process are (RO), (RMP), and (RMF). Assuming P

1−→redxn P implies that the match cases do not occur
and the term in the output case reduce to an atom with probability 1 (i.e., the term is an atom). Hence, P must contain
no exposed terms.

(⇐
) This case is obvious since (1) a lack of exposed terms implies that the match rules are never invoked, and (2)
the terms in exposed outputs are atomic. �

1.3.2. Actions
An action is an abstraction of a communication step. There will be four kinds of actions in our calculus: (1) actual

actions, which are actions consisting of an input and an output and are supposed to represent the intuitive notion of a
communication step; (2) input actions, each of which is just an input and represents communications where a message
is received from an arbitrary evaluation context; (3) output actions, each of which is just an output and represents
messages sent to an arbitrary evaluation context; and, (4) silent actions which are actions that the adversary cannot see
or schedule. We define three sets:

�in
def= {〈c, a〉 | c ∈ Channel, a ∈ N},

�out
def= {〈c̄, a〉 | c ∈ Channel, a ∈ N},

�silent
def= {〈�c, a〉 | c ∈ Bindable} ∪ {�}.

We define a partial function · : �in∪�out ×�in∪�out → �in×�out such that ∀c ∈ Channel.∀	 ∈ Act : 〈c, a〉·〈c̄, a〉 =
〈c̄, a〉 · 〈c, a〉 and · is injective everywhere else. We can then define a fourth set:

�actual
def= {〈c, a〉 · 〈c̄, a〉 | c ∈ Channel, a ∈ N}.

3 Since atomic terms are constant expressions, they do not represent computation that needs to be done. Hence, we will not refer to an atomic
term in an exposed output as exposed.

4 Our choice of the terms ‘blocked’ and ‘unblocked’ is guided by the intuition that a blocked process cannot perform any local computation and,
hence, must wait for a communication step to occur.
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We will call �in the set of input actions, �out the output actions, �actual the actual actions, �silent the silent actions,
and � the reduction action. The symbol � represents a reduction step i.e., the application of the rules of Fig. 1 to a
process. Since � does not occur on any channel, and so cannot produce any observable behaviour, we treat it as a kind
of silent action.

The set of actions of PPC, denoted by Act, is the set �in ∪ �out ∪ �actual ∪ �silent . For any action 	, we define
Channel(	) as either the channel on which 	 takes place in the case in the case that 	 /= �, or � in the case that 	 = �.
The channels in the set PubAct, defined as {	 | 	 ∈ Act \ �silent }, are the public actions of PPC. The set �in ∪ �out is
the set of partial actions of PPC. An actual action 	 · 
 is the simultaneous occurrence of the actions 	 and 
. Ignoring
�, a silent action is just some actual action that occurs on some bound channel.

It will be convenient to define the ‘opposite’ of an action, i.e., define an action 
 which generates the complementary
observable behaviour of an action 	. Given 	, 
 ∈ �in ∪ �out , we will say that 
 is the coaction of 	, written 
 = 	̄,
exactly when either

(1) 	 = 〈c, a〉 and 
 = 〈c̄, a〉 or
(2) 	 = 〈c̄, a〉 and 
 = 〈c, a〉.
In the rest of this paper, we use 	 to range over all actions, and 	̄ to range over all coactions. We will also use � to range
over silent actions. It is easy to see that �actual is just the set of all actions of the form 	 · 	̄.

1.3.3. The normalisation function
We inductively define a normalisation function, Norm : Proc × Act → Z, that computes the number of ways an

unblocked process can take a particular action:

(1) ∀	 ∈ Act : Norm(�, 	) = 0. The zero process cannot perform any actions.
(2) ∀a ∈ [0..width(P, c) − 1] : Norm(in(c, x).P , 〈c, a〉) = 1. Recall that messages are truncated by the channel

bandwidth.
(3) Norm(out(c, a).P , 〈c̄, a mod width(P, c)〉) = 1. Recall that messages are truncated by the channel bandwidth.
(4) ∀	 ∈ Act : (c /= Channel(	)) 
⇒ Norm(�(c).P , 	) = Norm(P, 	). The private channel operator does not affect

the number of ways in which actions that do not occur on the channel c can be taken.
(5) Norm(�(c).P , 〈�c, a〉) = Norm(P, 〈c, a〉 · 〈c̄, a〉). The expression �(c).P can take a silent action on the channel c

in the same number of ways that P can take actual actions on the channel c.
(6) ∀	 ∈ Act − �actual : Norm(P | Q, 	) = Norm(P, 	) + Norm(Q, 	). We compute the number of ways in which

partial or silent actions 	 can be taken by P | Q by adding the number of ways 	 can be taken by P and Q

individually. We note that in the case of silent actions, either Norm(P, 	) or Norm(Q, 	) will be equal to zero since
we assume that all private channels are renamed apart.

(7) Norm(P | Q, 	 · 	̄) = Norm(P | Q, 	) · Norm(P | Q, 	̄). To compute the number of ways that P | Q can take an
actual action 	 · 	̄, we multiply the total number of ways that P and Q can take 	 and 	̄, respectively.

For all other cases, the normalisation function evaluates to zero. The normalisation factor computed by this function
will be used to normalise the probability of an action happening when combining processes via the parallel composition
operator. This ensures that the total probability of an process being able to take a particular action never exceeds 1.

1.3.4. The operational semantics for variable-closed PPC processes
In Fig. 2 we give an operational semantics for variable-closed PPC processes. These operational semantics will be

used to construct a labelled transition system for each process (Section 1.3.5). We extend this semantics to variable-open
PPC processes in the obvious way by defining a set of labelled transitions systems for each variable-open PPC process
(see Section 1.3.5).

We will write

P
	[p]−−→ P ′

iff it can be derived from the rules of Fig. 2. We refer to P
	[p]−−→ P ′ as an 	-transition or just transition and its intuitive

meaning is that if P takes the action labelled 	, then with probability p it will become P ′. We emphasise that this
probability p is over all 	-labelled transitions that P can take, not over all transitions (regardless of label) that P can
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∀ a ∈ [0..width(P, c) − 1] : in(c, x).P
〈c,a〉[1]−−−−→ [a/x]P (I)

out(c, a).P
〈c̄,a mod width(P,c)〉[1]−−−−−−−−−−−−−→ P (O)

P unblocked, P
p−→redxn P ′

P
�[p]−−→ P ′

(R)

P, Q blocked, P
	[p]−−→ P ′,

Channel(	) ∈ Bindable ∨ Q has no actions on bindable channels

P | Q
	
[
p· Norm(P,	)

Norm(P | Q,	)

]
−−−−−−−−−−→ P ′ | Q

(CL)

P, Q blocked, Q
	[q]−−→ Q′,

Channel(	) ∈ Bindable ∨ P has no actions on bindable channels

P | Q
	
[
q· Norm(Q,	)

Norm(P | Q,	)

]
−−−−−−−−−−→ P | Q′

(CR)

P, Q blocked, P
	[p]−−→ P ′, Q 	̄[q]−−→ Q′,

Channel(	) ∈ Bindable ∨ P, Q have no actions on bindable channels

P | Q
	·	̄

[(
p· Norm(P,	)

Norm(P | Q,	)

)
·
(
q· Norm(Q,	̄)

Norm(P | Q,	̄)

)]
−−−−−−−−−−−−−−−−−−−−−−→ P ′ | Q′

(C)

P blocked, P
�[p]−−→ P ′

�(c).P
�[p]−−→ �(c).P ′

(P1)

P blocked, P
〈c,a〉·〈c̄,a〉[p]−−−−−−−→ P ′

�(c).P
〈�c,a〉[p]−−−−−→ �(c).P ′

(P2)

P blocked, P
	[p]−−→ P ′, 	 /∈ �silent , Channel(	) /= c

�(c).P
	[p]−−→ �(c).P ′

(P3)

Fig. 2. The operational semantics for variable-closed PPC processes.

take. Thus, the transition rules do not define probabilistic behaviour over all transitions, but only over all transitions
of a given label. The choice of label is made by an external agent so as to capture the behaviour of the process under
any (potentially nasty) scheduling of actions. We remind the reader that applying a particular schedule to the transition
system will yield probabilistic behaviour (see Lemma 19); in light of this fact, we will continue to call these values
annotating transitions as probabilities even though, strictly speaking, they are not. We will write Prob

[
P

	−→P ′] to
denote the probability of an 	-transition taking P to P ′. We will say that P has an 	-transition if there exists P ′ such
that Prob

[
P

	−→P ′] > 0. We will say that P ′ is an 	-child of P if Prob
[
P

	−→P ′] > 0 and write Children	(P ) for the set
of 	-children of P . The children of P is the set

⋃
	∈Act Children	(P ) and is denoted by Children(P ).

Let us discuss the inference rules. The full list is given in Fig. 2. The first group consists of a pair of axioms for
inputs and outputs:

∀ a ∈ [0..width(P, c) − 1] : in(c, x).P
〈c,a〉[1]−−−−→ [a/x]P, (I)

out(c, a).P
〈c̄,a mod width(P,c)〉[1]−−−−−−−−−−−−−→ P. (O)
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The axiom (I) states that an input on the channel c binding the variable x can receive any value that can ‘fit’ on the
channel. This value is the substituted for all free occurrences of x in the scope of the input. Similarly, axiom (O) states
that an output containing an atomic term on the channel c can transmit a suitably truncated version of that atom before
proceeding with the process being guarded by the output.

The rule (R) deals with unblocked processes:

P unblocked, P
p−→redxn P ′

P
�[p]−−→ P ′

. (R)

Our operational semantics will give the highest priority to reduction transitions since these represent local computation.
Hence all other rules will require as a precondition that the processes being considered be blocked. The only way to
‘block’ an unblocked process is via this rule. We note that axioms (I) and (O) deal with blocked processes and so do
not need the precondition just described. Rule (R) simply states that if P reduces to P ′ with probability p then there is
an �-transition from P to P ′ with probability p.

We now examine the group of rules dealing with | , parallel composition:

P, Q blocked, P
	[p]−−→ P ′,

Channel(	) ∈ Bindable ∨ Q has no actions on bindable channels

P | Q
	
[
p· Norm(P,	)

Norm(P | Q,	)

]
−−−−−−−−−−→ P ′ | Q

, (CL)

P, Q blocked, Q
	[q]−−→ Q′,

Channel(	) ∈ Bindable ∨ P has no actions on bindable channels

P | Q
	
[
q· Norm(Q,	)

Norm(P | Q,	)

]
−−−−−−−−−−→ P | Q′

, (CR)

P, Q blocked, P
	[p]−−→ P ′, Q 	̄[q]−−→ Q′,

Channel(	) ∈ Bindable ∨ P, Q have no actions on bindable channels

P | Q
	·	̄

[(
p· Norm(P,	)

Norm(P | Q,	)

)
·
(
q· Norm(Q,	̄)

Norm(P | Q,	̄)

)]
−−−−−−−−−−−−−−−−−−−−−−→ P ′ | Q′

. (C)

Rules (CL) and (CR) state that if a process P can take an action 	, then so can the processes P | Q and Q | P for any
process Q. However, the probabilities change since Q might be able to take the same action. To reflect this modified
probability we simply re-normalise using the normalisation factor Norm(P | Q, 	). Additionally, we must preserve the
priorities on channels—P | Q and Q | P can take 	 only if Q has no actions of higher priority. Rule (C) allows two
processes composed by | to communicate with each other. Again, we need to re-normalise probabilities and preserve
priorities on actions.We note that in (C), the actions cannot be silent because the scope given by � cannot extend over both
processes. Furthermore, in (CL) and (CR), if 	 is silent we effectively do not re-normalise since the silent actions in P

occur on different channels from the private channels of Q whence Norm(Q | P, �) = Norm(P | Q, �) = Norm(P, �).
Finally, we consider the group of rules dealing with �, the channel-binding operator:

P blocked, P
�[p]−−→ P ′

�(c).P
�[p]−−→ �(c).P ′

, (P1)

P blocked, P
〈c,a〉·〈c̄,a〉[p]−−−−−−−→ P ′

�(c).P
〈�c,a〉[p]−−−−−→ �(c).P ′

, (P2)

P blocked, P
	[p]−−→ P ′, 	 /∈ �silent , Channel(	) /= c

�(c).P
	[p]−−→ �(c).P ′

. (P3)

Intuitively, a � just defines the scope within which the bound channel is visible. Thus, it does not affect scheduling of
channels. It simply eliminates partial actions on the bound channel (since they cannot communicate with the abstract
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context in which the process is being evaluated) and makes the actual actions on the bound channel invisible (since no
entity outside the scope of the bound channel can see the bound channel let alone messages on it). Rule P1 states that
a � does not affect already extant silent actions. Rule P2 states that if P has a p-probability transition labelled by an
actual action on the channel c to P ′, then �(c).P has, essentially, the same transition with the same probability. Rule P3
states that � does not affect public actions that do not occur on the channel c.

Lemma 7. Let P be a variable-closed process and 	 an action. Then:

(1) {Q ∈ Proc | Prob [P
	−→Q] > 0} is finite and

(2)
∑

Q∈Proc Prob [P
	−→Q] �1.

Proof. Both claims follow from entirely routine inductions on the structure of variable-closed processes. �

Lemma 8. Let P be a blocked process. Then

Prob

[
P

	·	̄−→ Q

]
= 1

Norm(P, 	 · 	̄)
.

Proof. Since P is blocked, every input and output that can possibly communicate must not be in the scope of a match,
and every output that can possibly communicate with an input must be of the form out(c, a).Q. Then, we continue by
induction on the number of exposed (i.e., not in the scope of an input) | -operators in the process. Assuming that the
lemma holds for up to k | operators, we can show that

Prob

[
P1 | P2

〈c,a〉−−→ Q1 | Q2

]
= 1

Norm(〈c, a〉, P1 | P2)
,

since the inductive hypothesis allows us to calculate that

Prob

[
Pi

〈c,a〉−−→ Qi

]
· Norm(Pi, 〈c, a〉)

Norm(P1 | P2, 〈c, a〉) = 1

Norm(P1 | P2, 〈c, a〉) .

We can perform a similar calculation for all actions of the form 〈c̄, a〉. It then is immediate that the lemma holds for
actions of the form 	 · 	̄. �

1.3.5. Labelled transition systems
Using the operational semantics given in Fig. 2 we define the labelled transition system for a variable-closed

process P .

Definition 9. A labelled transition system (LTS) is a 3-tuple 〈R, T , I 〉 where:

(1) R is a set of states each labelled by a variable-closed process,

(2) T ⊆ R × Act × [0, 1] × R is a set of arrows such that T (r, 	, p, r ′) iff r̂
	[p]−−→ r̂ ′ where r̂ denotes the process

labelling the state r; and
(3) I is the initial state and is labelled by P .

An LTS is just the graph induced by the operational semantics for PPC. It is clear from the definition of an LTS that
a process can have several different LTSs. For example, given the LTS 〈R, T , I 〉 for P we can construct another LTS
〈R′, T , I 〉 for P by adding a state u /∈ R labelled by a process Q that is not reachable from the initial state.

We will consider superfluous all parts of a transition system not reachable from the root, and we will identify states
labelled with the same process. Then we will denote the unique LTS for a variable-closed process P , obtained by
discarding unreachable states and identifying states labelled with the same process, by L(P ). For simplicity we will,
henceforth, identify states and the processes labelling them. Letting LTS be the set of labelled transitions systems and
VarClosedProcs the set of variable-closed processes, we can also define the mapping L : VarClosedProcs → LTS.
It is easy to see that L(P ) is a directed acyclic graph.
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We extend L to an interpretation L̂ : Proc → 2LTS of all processes by extending L in the following manner. Given a
process P and a valuation � of the free variables of P , we denote by �(P ) the process obtained by substituting �(x) for

all free occurrences of x in P . With this notation in place, we define L̂(P ) as the set {L(�(P )) | � is a valuation of
FreeVar(P )}. Thus L̂ is a function that maps processes to sets of LTSs (one for each valuation of the free variables of
the process).

We can further extend L to an interpretation L̃ : Expr → 22LTS
of all expressions in the following fashion. Given an

expression P , we define L̃(P) as the set {L̂([i/�]P) | i ∈ N}. Analogous to L̂, the function L̃ maps expressions to sets
of sets of LTSs (one set of LTSs for each process in the process family defined by the expression).

Action paths. Let L(P ) be the labelled transition system for a process P . An action path from P to Q is a path in
L(P ) from P to Q with each edge in the path having non-zero probability. Given 	 ∈ PubAct, an 	-path from P to
Q is a path all of whose edges except the final one leading to Q are labelled with silent actions. The final edge is
labelled with 	. A length k path has k edges; a length k 	-path has k − 1 edges labelled by silent actions followed
by a single edge labelled by 	. The probability of a path � is computed by taking the product of the probabilities
of each edge in �. Given a set of processes R, we say that � is a path from P into R if � is a path from P to
some process R ∈ R. For any public action 	, we write Paths(P, 	, R) to denote the set of all 	-paths from P

into R.

2. Probabilistic bisimulation

In this section we adapt weak bisimulation [49] to a probabilistic setting. Following the elegant and economical
development of Van Glabbeek et al. [65], we will present our probabilistic bisimulation as an equivalence relation
over Proc.

Definition 10. We define  : VarClosedProcs × PubAct × 2VarClosedProcs → [0, 1], the cumulative mass function
(cMF), by the equation

(P, 	, R) = ∑
�∈Paths(P,	,R)

Prob [�]

Lemma 11. ∀P ∈ VarClosedProcs.∀	 ∈ PubAct : (P, 	, VarClosedProcs) is finite.

Proof. By an induction on the maximum length of 	-paths.We give a short sketch of the proof.We will write k(P, 	, R)

to denote that the value (P, 	, R) is calculated over at most k-length paths. For the basis we consider paths with length
at most 1, i.e., paths with no silent actions. Then we can directly apply Lemma 7. To justify the inductive hypothesis
we note that the value (P, 	, VarClosedProcs), when restricted to at most k-length paths, can be calculated as

∑
Q∈VarClosedProcs

Prob
[
P

	−→Q
]

+ ∑
�∈�silent

∑
Q∈VarClosedProcs

Prob
[
P

�−→Q
]

· k−1(Q, 	, VarClosedProcs).

From the inductive hypothesis, we know that k−1(P, 	, VarClosedProcs) is finite. From Lemma 7, we know that

∀� ∈ �silent : ∑
Q∈VarClosedProcs Prob

[
P

�−→Q
]
�1 and

∑
Q∈VarClosedProcs Prob

[
P

	−→Q
]
�1. Lemma 7 also states

that the outdegree of any process is finite. Therefore,

∑
�∈�silent

∑
Q∈VarClosedProcs

Prob
[
P

�−→Q
]

· k−1(P, 	, VarClosedProcs)

is finite. �

As an immediate corollary we have that (P, 	, R) is finite for any public 	 and set of variable-closed processes R.
We cannot prove that the cMF for P is a collection of distributions indexed by 	 and R (i.e., that (P, 	, R)�1) since
Lemma 7 says that the transition probabilities of a variable-closed process form a well-defined probability distribution
for each type of silent action. To show that a cMF is a collection of distributions, we would need that the transition
probabilities of a variable-closed process form a well-defined distribution over all silent actions. We extend cMFs to all
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processes by defining the cMF of a variable-closed process as a set of cMFs, one per valuation of the free variables of
the process. In particular, given two variable-open processes, P and Q, we say that (P, 	, R) = (Q, 	, R) if, under
all valuations, the cMFs are pairwise identical.

Definition 12. An equivalence relation B ⊆ Proc × Proc is a weak probabilistic bisimulation or bisimulation just
when 〈P, Q〉 ∈ B implies that:

(1) ∀R ∈ Proc/B.∀	 ∈ PubAct : (P, 	, R) = (Q, 	, R),
(2) if P and Q are blocked, then ∀	 ∈ Act : Norm(P, 	) = Norm(Q, 	),
(3) if either P or Q is unblocked, then:

∀R ∈ Proc/B : Prob
[
P −→redxn R

] = Prob
[
Q −→redxn R

]
.

Two processes, P and Q, are bisimulation-equivalent (denoted by P ∼ Q) if there exists a weak probabilistic bisimu-
lation B such that 〈P, Q〉 ∈ B, i.e.,

∼ def=
⋃

{B | B is a weak probabilistic bisimulation}.
As a short-hand, we will write P ∼B Q just when the bisimulation-equivalence of P and Q is witnessed by the
bisimulation B.

We remind the reader that if P and Q are variable-open, then we say that they are bisimilar if they are pairwise
bisimilar under all valuations of their free variables.

Lemma 13. Given a collection of bisimulations Bk (k ∈ K), the following are all bisimulations:

(1) Id
def= {〈P, P 〉 | P ∈ Proc}.

(2) B1B2
def= {〈P, R〉 | ∃Q : 〈P, Q〉 ∈ B1 ∧ 〈Q, R〉 ∈ B2}.

(3) B−1
1

def= {〈Q, P 〉 | 〈P, Q〉 ∈ B1}.
(4)

⋃
k∈K Bk where K where k is a countable index set.

Proof. Claims (1)–(3) follow from the fact that every bisimulation is an equivalence relation. To show claim (4) we
proceed as follows. Let 〈P, Q〉 ∈ ⋃

k∈K Bk . Then, by the construction of
⋃

k∈K Bk , there must exist i ∈ K such that
Bi witnesses the bisimilarity of P and Q. Since Bi ⊂ ⋃

k∈K Bk , it follows that
⋃

k∈K Bk witnesses the bisimilarity of
P and Q. �

Corollary 14. If Bk (k ∈ K) is a collection of bisimulations, then their reflexive, transitive closure (
⋃

k Bk)
∗ is a

bisimulation. Furthermore, ∼ is an equivalence relation over Proc.

Proof. For the first claim we apply the fact that bisimulations are closed under reflexivity, transitivity and union. Since
each of the relations Bk are symmetric, (

⋃
k Bk)

∗ must also be symmetric. Whence (
⋃

k Bk)
∗ must be an equivalence

relation. Furthermore, claim (4) of Lemma 13 asserts that countable unions of bisimulations are bisimulations. Since
∼ is the union of all bisimulations and since the reflexive, transitive closure of all bisimulations is a bisimulation, it
follows that ∼ is an equivalence relation. �

2.1. Probabilistic bisimulation is a congruence

In this section we prove a congruence theorem inspired by Milner [49]. In order to simplify the proof, we adapt the
approach of Van Glabbeek et al. [65]. Essentially, we reason in terms of the cMFs rather than in terms of the under-
lying transitions.

Main Theorem 15. Probabilistic bisimulation is a congruence, i.e.,

∀C[ · ] ∈ Con : P ∼ Q 
⇒ C[P ] ∼ C[Q].
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Proof. We want to show that B
def= {〈C[P ], C[Q]〉 | C[ · ] ∈ Con, P ∼ Q} is a weak probabilistic bisimulation. We

start by noting that any variable in C[P ] either occurs bound in P , free in P but bound in C[ · ], or free even in C[P ].
Since we defined bisimulation equivalence on variable-open processes C[P ] and C[Q] by considering C[P ] and C[Q]
under all possible valuations, we can eliminate from consideration variables that appear free in C[P ] and C[Q] as well
as variables that appear free in just C[ · ].

We proceed by an induction on the maximum of the number of free variables in P and Q. The basis occurs when
neither P nor Q have any free variables. The proof for this case closely follows the proof of the inductive hypothesis.
The only difference is when we consider a context whose top-level operator is an input. In that case, the action of the
input is trivial since P and Q have no free variables for the context to bind. Consequently, we leave the details of the
proof of the basis to the reader and, writing Con(P, Q) to mean the set of contexts such that C[P ] and C[Q] have no
free variables, we just assume as our first inductive hypothesis that

∀C[ · ] ∈ Con(P, Q) : C[P ] ∼B C[Q] (2.1)

for any P and Q such that P ∼B Q and the maximum on the number of free variables in P and Q is k.
We establish the first inductive hypothesis by an induction on the structure of C[ · ]. We start by defining n : Proc ×

PubAct × 2Proc → [0, 1] as

n(P, 	, R) = ∑
�∈Pathsn(P,	,R)

Prob [�] ,

where Pathsn(P, 	, R) denotes the set of all 	-paths into R from P that can be derived by a proof tree of height at most
n from the rules of Fig. 2. Intuitively, n(P, 	, R) measures the cumulative mass of reaching a process in R from P

via an 	-action preceded by at most n − 1 silent actions. We will adopt the convention that 0(P, 	, R) = 0. Let us
write P ∼n

B when, given the equivalence relation B ⊆ Proc × Proc, we have:

(1) ∀R ∈ Proc/B.∀	 ∈ PubAct : n(P, 	, R) = n(Q, 	, R),
(2) if P and Q are blocked, then ∀	 ∈ Act : Norm(P, 	) = Norm(Q, 	),
(3) if either P or Q is unblocked, then

∀R ∈ Proc/B : Prob
[
P −→redxn R

] = Prob
[
Q −→redxn R

]
.

Since (P, 	, R) = limn→∞ n(P, 	, R) we need just show, via an induction on n, that for all n�0, for all P and Q

such that P ∼ Q and the maximum on the number of free variables in P and Q is k + 1, we have

∀C[ · ] ∈ Con(P, Q) : C[P ] ∼n
B C[Q]. (2.2)

For our second inductive hypothesis, we may assume (2.2) for some n�0 since the basis (when n = 0) is trivial. In
proving (2.2) for n + 1 we undertake a case analysis depending on the topmost operator of C[ · ] and only show the �
direction of the first condition on ∼n

B (since the reverse direction is completely symmetric).

(1) C[ · ] ≡ D[ · ]. It is easy to see that n+1(C[P ], 	, R) = n(D[P ], 	, R)�(D[Q], 	, R) = (C[Q], 	, R).
Furthermore, if C[P ], C[Q] are blocked then so are D[P ], D[Q]. Therefore, we can calculate that Norm(C[P ], 	) =
Norm(D[P ], 	) = Norm(D[Q], 	) = Norm(C[Q], 	). If eitherC[P ]orC[Q] are unblocked, then

[
C[P ] −→redxn R

] =
Prob

[
D[P ] −→redxn R

] = Prob
[
D[Q] −→redxn R

] = Prob
[
C[Q] −→redxn R

]
.

(2) C[ · ] ≡ in(c, x).D[ · ]. For all 	 not of the form 〈c, a〉 we have that n+1(C[P ], 	, R) = n+1(C[P ], 	, R) = 0.
The same holds true for any 	 of the form 〈c, a〉 where a�width(C[P ], c).

Let us consider 	 of the form 〈c, a〉 where a < width(C[P ], c). The second inductive hypothesis yields that
D[P ] ∼ D[Q] and the first inductive hypothesis gives us that [a/x]D[P ] ∼ [a/x]D[Q]. Whence n+1(C[P ], 	, R) =
n+1(C[Q], 	, R)�(C[Q], 	, R) since the limit of n+1(C[Q], 	, R) as n approaches ∞ is (C[Q], 	, R).

Finally, since in(c, x).D[P ] and in(c, x).D[Q] are blocked we must check that Norm(in(c, x).D[P ], 	) =
Norm(in(c, x).D[Q], 	). For any 	 of the form 〈c, a〉, where a < width(C[P ], c), we see that Norm(C[P ], 	) =
Norm(C[Q], 	) = 1 and for all other 	, we see that Norm(C[P ], 	) = Norm(C[Q], 	) = 0.
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(3) C[ · ] ≡ out(c, T).D[ · ]. Proceeding as in (2) we can disregard all actions except those of the form 〈c̄, a〉 where
a < width(C[P ], c). For such 	, we can calculate that n+1(C[P ], 	, R) is

∑
{b∈N | b=a mod width(C[P ],c)}

Prob
[
T −→term b

]
.

We finish as in (2).
If D[P ] and D[Q] are blocked, and C[ · ] ≡ out(c, a).[ · ], then the only action available to C[P ] and C[Q]

is of the form 〈c̄, a mod width(C[P ], c)〉. But then Norm(C[P ], 	) = Norm(C[Q], 	) = 1 when 	 is of the form
〈c̄, a mod width(C[P ], c)〉 and Norm(C[P ], 	) = Norm(C[Q], 	) = 0 otherwise. If either C[P ] or C[Q] are unblocked
then we note that any reduct of C[P ] and C[Q] must be of the form out(c, a).R for some process R. Then we calculate
the reduction probabilities as follows:

Prob
[
out(c, T).D[P ] −→redxn out(c, a).R

]
= Prob

[
T −→term a

] · Prob
[
D[P ] −→redxn R

]
= Prob

[
T −→term a

] · Prob
[
D[Q] −→redxn R

]
= Prob

[
out(c, T).D[Q] −→redxn out(c, a).R

]
.

(4) C[ · ] ≡ [T].D[ · ]. Proceeding as in (2) we see that n+1(C[P ], 	, R) = Prob
[
T −→term 1

] · n(D[P ], 	, R)�
Prob

[
T −→term 1

] · n(D[Q], 	, R) = n+1(C[Q], 	, R) since the only action available to any unblocked process is
the reduction action. We finish as in case (2).

Since C[P ] and C[Q] are unblocked, we check the reduction probabilities

Prob
[[T].D[P ] −→redxn R

] = Prob
[
T −→term a

] · Prob
[
D[P ] −→redxn R

]
= Prob

[
T −→term a

] · Prob
[
D[Q] −→redxn R

] = Prob
[[T].D[Q] −→redxn R

]
.

(5) C[ · ] ≡ �(c).D[ · ]. Since no rule in the operational semantics eliminates � operator, we can restrict our attention
to equivalence classes of processes of the form �(c).R. For any 	 ∈ PubAct, the cumulative probability that an 	-path
takes C[P ] to �(c).R is the sum of the cumulative probability that an 	-path takes D[P ] to R directly plus the cumulative
probability of a 〈c, a〉 · 〈c̄, a〉-path taking D[P ] to some R′ and then from there to R via an 	-path. We compute this
probability as

n+1(C[P ], 	, �(c).R)

= n(D[P ], 	, R) + ∑
R′∈Proc/B

n(D[P ], 〈c, a〉 · 〈c̄, a〉, R′) · n(rep R′, 	, R). (†)

Applying the second inductive hypothesis yields that (†) is upper-bounded by

n(D[Q], 	, R) + ∑
R′∈Proc/B

n(D[Q], 〈c, a〉 · 〈c̄, a〉, R′) · n(rep R′, 	, R) = n+1(C[Q], 	, �(c).R).

Let us assume that at least one of C[P ] and C[Q] is unblocked. We note that any reduct of �(c).D[P ] (resp.
�(c).D[Q]) must be of the form �(c).R where R is a reduct of D[P ] (resp. D[Q]). Then,

Prob
[
�(c).D[P ] −→redxn �(c).R

] = Prob
[
D[P ] −→redxn R

]
= Prob

[
D[Q] −→redxn R

] = Prob
[
�(c).D[Q] −→redxn �(c).R

]

On the other hand, if both C[P ] and C[Q] are blocked then we have three cases to consider:

(a) 	 is a partial action or actual action on the bound channel c. Then Norm(C[P ], 	) = Norm(C[Q], 	) = 0.
(b) 	 = 〈�c, a〉. Then, Norm(C[P ], 	) = Norm(D[P ], 〈c, a〉 · 〈c̄, a〉) = Norm(D[Q], 〈c, a〉 · 〈c̄, a〉) = Norm(C[Q],	).
(c) 	 is any other action. Then. Norm(C[P ], 	) = Norm(D[P ], 	) = Norm(D[Q], 	) = Norm(C[Q], 	).
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(6) C[ · ] ≡ D[ · ] | S or C[ · ] ≡ S | D[ · ]. We only study the case where C[ · ] ≡ D[ · ] | S since the same argument
is employed in the other case. Since no transition rule in the operational semantics eliminates the | operator, we can
confine our attention to R of the form R1 | R2.

We start by showing that if D[P ], D[Q], and S are all blocked, then ∀	 ∈ Act : Norm(D[P ] | S, 	) = Norm(D[Q] |
S, 	). This is immediate since for any 	 ∈ Act−�actual we have Norm(D[P ] | S, 	) = Norm(D[P ], 	)+Norm(S, 	) =
Norm(D[Q], 	)+Norm(S, 	) = Norm(D[Q] | S, 	). In case that 	 ∈ �actual we note that the result follows by applying
the previous argument after observing that Norm(D[P ] | S, 	·	̄) = (Norm(D[P ], 	)+Norm(S, 	))·(Norm(D[P ], 	̄)+
Norm(S, 	̄)).

However, if either D[P ], D[Q], or S is unblocked, we check the reduction probabilities by applying the inductive
hypothesis after noting that Prob

[
D[P ] | S −→redxn R1 | R2

] = Prob
[
D[P ] −→redxn R1

] · Prob
[
S −→redxn R2

]
.

We finish by showing that ∀	 ∈ PubAct : n+1(D[P ] | S, 	, R1 | R2) = n+1(D[Q] | S, 	, R1 | R2) via an induction
on the maximum length of 	-paths from D[P ] | S and D[Q] | S to R1 | R2. The basis occurs when considering 	-paths
of maximum length 2 (i.e., paths which can have at most 1 silent action as a prefix). There are several cases to consider:

(a) Neither D[P ] | S nor D[Q] | S have any silent actions (including reduction actions). In the case that 	 affects
only D[P ] we see that

n+1(D[P ] | S, 	, R1 | R2) = Norm(D[P ], 	)

Norm(D[P ] | S, 	)
n(D[P ], 	, R1 | R2)

� Norm(D[Q], 	)

Norm(D[Q] | S, 	)
n(D[Q], 	, R1 | R2) = n+1(D[Q] | S, 	, R1 | R2).

If 	 affects only S then

n+1(D[P ] | S, 	, R1 | R2) = Norm(S, 	)

Norm(D[P ] | S, 	)
n(S, 	, R1 | R2)

= Norm(S, 	)

Norm(D[Q] | S, 	)
n(S, 	, R1 | R2) = n+1(D[Q] | S, 	, R1 | R2).

If 	 of the form 
 · 
̄ with 
 affecting D[P ] and 
̄ affecting S then

n+1(D[P ] | S, 	, R1 | R2)

= Norm(D[P ], 
)

Norm(D[P ] | S, 
)
n(D[P ], 
, R1 | R2) · Norm(S, 
̄)

Norm(D[P ] | S, 
̄)
n(S, 
̄, R1 | R2)

� Norm(D[Q], 
)

Norm(D[Q] | S, 
̄)
n(D[Q], 
, R1 | R2) · Norm(S, 
̄)

Norm(D[Q] | S, 
̄)
n(S, 
̄, R1 | R2)

= n+1(D[Q] | S, 	, R1 | R2).

(b) Both D[P ] | S and D[Q] | S have silent actions. Therefore, each path in either LTS is of the form D[P/Q] | S �−→
R′

1 | R′
2

	−→ R1 | R2. If the silent transition is not a reduction action, then we know that � must be a transition of either
D[P ] or S but not both and the channel on which � occurs is a channel of either D[P ] or S but not both (since the
scope of the binding � does not extend over both components). Thus

Prob
[
D[P ] | S �−→ R′

1 | R′
2

]
=

⎧⎨
⎩

Prob
[
D[P ] �−→ R′

1

]
if � affects D[P ] and

Prob
[
S

�−→ R′
2

]
if � affects S.

In the case that � is a reduction action, we have already calculated that Prob
[
D[P ] | S −→redxn R′

1 | R′
2

] =
Prob

[
D[P ] | S −→redxn R′

1 | R′
2

]
. Thus we do not have to re-normalise the probabilities of silent actions when cal-

culating the cMFs of processes combined with a | operator; we need only re-normalise the probabilities of the final
public action. To do so, we simply apply the arguments of the previous case.

(c) Either D[P ] | S or D[Q] | S have a silent action (but not both). We dispose of the case where the silent action is
not a reduction action using the observation of the previous case: the channel on which the silent action occurs is not
shared between D[P ] (resp. D[Q]) and S.
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If it is a reduction step, then we make use of the idempotence of reduction (Lemma 6) to argue as in the previous
case. In particular, one component of the parallel composition will have a probability one reduction to itself and a
probability zero reduction to any other process. Thus, as in the previous case, we need not re-normalize probabilities
of silent actions.

So much for the basis. We will assume ∀	 ∈ PubAct : n+1(D[P ] | S, 	, R1 | R2) = n+1(D[Q] | S, 	, R1 | R2) for
all paths of length at most k. To show the k + 1 case we note that an at-most-(k + 1)-length 	-path consists of at most a
single silent action followed by an at-most-k-length 	-path. We finish by applying the arguments of the basis and using
the inductive hypothesis at the appropriate points. �

3. The evaluation of expressions

The abstract operational semantics given in Section 1.3.4 is overly general in two respects: (1) it allows a process
to take actions that lack either an input or an output, and (2) it does not impose a distribution on the choice of action
to perform. This generality allows the operational semantics to capture the behaviour of the process in any arbitrary
environment and under any possible schedule. Hence, it provides a good basis for studying the security of protocols
written as processes. However, in practice, when evaluating a process, we will impose a probabilistic schedule on
actions and we will require that each evaluation step consists of an input and a matching output. In this section we
discuss how scheduling actions is handled and define the evaluation of a process using a scheduler.

3.1. Probabilistic scheduling

Our goal is to provide a language-based treatment of security protocols and security properties. To do so, we will
model attackers as contexts within which the protocol, modelled as an expression, executes. However, in the real world,
the network over which a protocol is running might be under the control of the adversary. We model this situation by
placing the network (i.e., the order in which messages are sent) under the control of a scheduler which is then made
part of the definition of an adversary. Formally, an adversary is a pair consisting of a context and a scheduler. Since
we do not want to fix a particular scheduler in our operational semantics, we defined the LTS of a process without
specifying a particular schedule. When we apply a scheduler to a LTS, we get probabilistically well-defined behaviour:
the scheduler selects a label and then a particular transition labelled with the chosen label occurs with probability given
by the LTS.

Typically, the analysis of a security protocol assumes that the adversary has total control over the scheduling of
messages. In particular, the adversary schedules particular messages. However, in our setting, the scheduler only
controls the scheduling of types of messages (i.e., action labels) rather than the messages themselves (the individual
communications or transitions labelled by those actions). If the scheduler had direct control over the scheduling of
messages, then we would be able to distinguish processes in an unreasonable way. For example, a scheduler that always
schedules the leftmost message would be able to distinguish P | Q from Q | P . That is to say, a scheduler that has total
control over the scheduling of messages themselves can make scheduling-decisions on the basis of information derived
from quirks of the syntax of PPC (such as a well-defined notion of leftmost) rather than relying just on information
having to do with the structure of the protocol’s communications. By having the scheduler make decisions solely on the
basis of the actions given (rather than the communications that are labelled by those actions), we blind the scheduler
to all information derived from the syntax of PPC (as opposed to the network behaviour of the protocol).

While restricting scheduling to types of messages is indeed a restriction (since in principle the adversary cannot
assign an arbitrary distribution to the actions available to a process), we argue that the adversary still has significant
power. If each action available to a process labels exactly one transition, then the scheduler essentially picks individual
transitions from the set of transitions according to some arbitrary distribution (dictated by the scheduler’s behaviour).
We believe that any security protocol can be systematically rewritten so that at each step of the evaluation, each actual
action labels at most one transition. We can do so by adding time-stamps to messages, unique message identifiers
and so on to ensure that at no point can a process take two transitions labelled by the same actual action. We note
that, in general, we cannot make a guarantee of this sort for partial actions: what would it mean to disambiguate input
actions in this fashion? However, since we will reason about properties of processes solely in terms of the observable
behaviour generated by a sequence of actual actions (see Definition 31), it seems reasonable to believe that reasoning in
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such terms captures security under all possible adversaries who can schedule individual communications (as embodied
by transitions). In fact, the examples that we study in this paper all have the property that each action labels at most
one transition. In short, restricting the scheduler to operating on labels rather than specific transitions seems to be a
reasonable solution since we believe that security protocols can be cast into a form that essentially allows the scheduler
to pick individual communications.

Definition 16. A scheduler S : (2Act \ ∅) → Act is a probabilistic poly-time Turing machine that takes as input a
non-empty set A of actions and selects one of those actions such that

∑
a∈A Prob [S(A) = a] = 1. We define Sched as

the set of all schedulers.

The condition
∑

a∈A Prob [S(A) = a] = 1 forces the scheduler to always pick some action out of its input i.e., this
condition forces the scheduler to make progress each time it is invoked. We note that the time bound on the running
time of a scheduler is polynomial in the size of the set of actions given to it as input.

We remark that the scheduler need not give priority to reduction actions or actions on bindable channels since the
operational semantics is constructed to ensure that the priorities on actions are correctly observed. We define Sched to
be the set of all schedulers.

3.2. Evaluating variable-closed processes with schedulers

Here we show how to evaluate a variable-closed PPC process using a scheduler S. We extend this definition to all
PPC processes by quantifying over all valuations of the free variables. To evaluate a variable-closed process under a
scheduler, we simply compute the set of possible actions that the process can take, have the scheduler pick one of those
actions, and then take a transition labelled by that action according to the distribution given by the LTS for the process.

We formalise this idea in two stages. First, we define the set of possible actions available to a variable-closed process.
Then, we define what it means to take a transition under a particular scheduler.

We define the set {	 | ∃Q ∈ Proc | Prob [P
	−→Q] > 0} to be the action set of a variable-closed process P , denoted by

�(P ). We say that a variable-closed process P , with probability p, evaluates to Q via an 	-transition under scheduler

S, written P
	[p]−−→S Q, just when:

(1) There is a transition labelled 	 from P to Q and
(2) p = Prob [S(�(P )) = 	] · Prob [P

	−→Q].

Basically, the probability that P can evaluate to Q under scheduler S via an 	-transition is simply the product of the
probability that P can take an 	-transition to Q and the probability that the scheduler S elects to perform an 	 action.

Lemma 17.
∑

	∈Act
∑

Q∈Proc Prob
[
P

	−→S Q
]
�1.

Proof. Reordering the sums and expanding
	−→S, we get

∑
	∈Act

Prob [S(�(P )) = 	] · ∑
Q∈Proc

Prob [P
	−→Q] .

By Lemma 7 we know that ∀	 ∈ Act we have Prob [P
	−→Proc] �1 and, from the definition of a scheduler, we know

that
∑

	∈Act Prob [S(�(P )) = 	] = 1. �

Let us write e · � to mean the path obtained by prefixing a path � with the edge e. Writing source e, label e, and
Prob [e], respectively, for the source process, action-label, and probability of an edge, we can then define the probability
of the path � under the scheduler S, written Prob [S(�)], inductively:

(1) Prob [S(e)] = Prob [S(�(source e)) = label e] · Prob [e] and
(2) Prob [S(e · �)] = Prob [S(e)] · Prob [S(�)].

We can then extend the definition of cMFs to account for the behaviour of a scheduler.
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Definition 18. We define � : Proc×PubAct×2Proc ×Sched, the cumulative probability distribution function (cPDF),
by the equation

�(P, 	, R, S) = ∑
�∈Paths(P,	,R)

Prob [S(�)]

We prove that the cPDF for a process P , unlike the cMF of that process, is a probability distribution on transitions.

Lemma 19. ∀P ∈ Proc.∀S ∈ Sched : ∑
	∈PubAct �(P, 	, Proc, S)�1.

Proof. The proof is very similar to the proof of Lemma 11 except we make use of Lemma 17. Let us write �k(P, 	, R, S)

to denote that the value �(P, 	, R, S) is computed over at most k-length paths. To justify the inductive hypothesis we
note that the value

∑
	∈PubAct �(P, 	, , S), when restricted to at most k-length paths, can be calculated as

∑
	∈PubAct

∑
Q∈Proc

Prob
[
P

	−→Q

]
+ ∑

�∈�silent

∑
Q∈Proc

Prob
[
P

�−→ Q
]

· ∑
	∈PubAct

�k−1(Q, 	, Proc, S)).

The inductive hypothesis gives us that �k−1(Q, 	, Proc, S)�1. From Lemma 17 we know that

∑
	∈PubAct

∑
Q∈Proc

Prob
[
P

	−→Q

]
+ ∑

�∈�silent

∑
Q∈Proc

Prob
[
P

�−→ Q
]
�1. �

The following corollary is immediate.

Corollary 20. ∀P ∈ Proc.∀R ⊆ Proc.∀S ∈ Sched : ∑
	∈PubAct �(P, 	, R, S)�1.

Unlike the proof that cMF is well-defined, we can prove that the cPDF is a distribution on transitions because the
scheduler assigns a distribution to actions while the LTS assigns a distributions to transitions labelled with the same
action.

4. PPC evaluates in polynomial-time

In this section we construct a Turing machine MP that evaluates the variable-closed expression P . This machine
takes as input a value for the security parameter and the program for the scheduler and then evaluates the expression
by selecting the indicated process and performing alternating reduction and communication steps. The communication
steps are chosen by the scheduler given as input. We will also prove that this mechanical evaluator runs in time
polynomial in the length of the security parameter. Our proof of the polynomial time-bound will proceed in three
stages. First we will show that the length of any perceptible path (i.e., a path whose edges are labelled only by actual
or silent actions) is a polynomial in the length of the security parameter. Then, we will show that each action along that
path takes time polynomial in the length of the security parameter to evaluate. Finally, we will show that the scheduling
decision also takes time polynomial in the length of the security parameter.

Before we continue, it will be useful to define a pair of metrics—number of inputs and number of outputs—on
expressions. Let P be a variable-closed expression. We inductively define Inputs(P), the number of inputs in P , as

Inputs(�) = 0,

Inputs(�(c).Q) = Inputs(Q),

Inputs(in(c, x).Q) = 1 + Inputs(Q),

Inputs(out(c, T).Q) = Inputs(Q),

Inputs([T].Q) = Inputs(Q),

Inputs(Q1 | Q2) = Inputs(Q1) + Inputs(Q2),

Inputs(!q(�).Q) = q(�) · Inputs(Q),
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and Outputs(P), the number of outputs in P , as

Outputs(�) = 0,

Outputs(�(c).Q) = Outputs(Q),

Outputs(in(c, x).Q) = Outputs(Q),

Outputs(out(c, T).Q) = 1 + Outputs(Q),

Outputs([T].Q) = Outputs(Q),

Outputs(Q1 | Q2) = Outputs(Q1) + Outputs(Q2),

Outputs(!q(�).Q) = q(�) · Outputs(Q).

By definition, it is clear that Inputs(P) and Outputs(P) are polynomials in � that are positive for all input values.

4.1. A Turing machine for process evaluation

In this section we will define an evaluator for the variable-closed expression P as a probabilistic Turing machine
MP that takes as input a value i for the security parameter and a perceptible scheduler S. The machine then evaluates
the variable-closed process [i/�]P as follows:

(1) It first performs a reduction step. If the process expression is blocked, performing a reduction step will not skew
any evaluation probabilities since reductions are idempotent (Lemma 6).

(2) It then computes the action set of [i/�]P and invokes the scheduler upon it. The scheduler will select the next
action to perform.

(3) Next, it picks a transition of the process labelled by the chosen action and performs the appropriate communication
step. It does this by making a list of all the inputs and outputs in the process that can generate the appropriate action
(recall that since the scheduler is perceptible the action must consist of an input and an output) and computes all the
combinations of inputs and outputs. It then picks one of those input–output pairs uniformly at random. Lemma 8
assures us that picking an input–output pair uniformly at random conforms to the distribution on transitions given
by the LTS for the process.

(4) The machine repeats steps 1–3 until the action set contains no silent actions or actual actions, at which point it
halts.

We will refer to steps 1–3 as a single evaluation step in the evaluation of a variable-closed expression. The evaluation
of variable-open expressions is defined as evaluation under a valuation of the free variables of the expression.

The formal construction of the evaluator is given in Section 4.2. The construction, not surprisingly, closely follows
the sketch just given. However, in order to simplify the proof that any variable-closed expression can be evaluated in
time polynomial in the security parameter, we make a few simplifying assumptions.

�-substitutions. Since P is a variable-closed expression, every term with variables must appear in the scope of
sufficiently many inputs to bind those variables. For example, the term T(x1, . . . , xi) must appear in the scope of at
least i inputs, each of those inputs binding exactly one of those variables. Furthermore, a term is only reduced when
it becomes exposed, i.e., is no longer in the scope of any input. At this point, the term has no variables since values
must have been substituted for all variables in the term. Thus, there is no harm in delaying the substitution of values
into variables of terms until the terms need to be evaluated. In particular, our Turing machine, instead of performing
the substitution indicated by a communication step, will create a �-substitution instance of that term. For example,
given a term T(x1, . . . , xi) and a communication step that substitutes a for xk , our Turing machine will create the
term �xk.T(x1, . . . , xi) a rather than T(x1, . . . , xk−1, a, xk+1, . . . , xi) (assuming, of course, that 1�k� i). The actual
substitution of the value into the variable and subsequent term-reduction to an atom is delayed until a reduction step is
performed. This confers two advantages: (1) we can quantify the time required to evaluate some substitution instance
of a term in terms on the original term with free variables and (2) we can quantify the change in the length of a term
due to the substitution of a value for a variable (without knowing the number of occurrences of a free variable in a
term, it would be impossible to quantify the change in a term’s length, otherwise).

Padding. Our second assumption has to do with ‘padding’ the process being evaluated with blank space so that
no evaluation step causes the length of the process to increase. There are two places where padding is required: (1)
variables (since values will be substituted into them) and (2) terms (since they will be reduced to atoms, and have �s
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added around them). Let us start with the space required for variables. Each variable needs enough space to write down
any possible value that can be substituted into that variable. Now, the values that get substituted come via communication
steps i.e., they come over channels. Since each channel has a bandwidth, we can use the bandwidth to determine the
size of the variable. In particular, the size of the largest value that can be substituted for that variable is bounded by
the bandwidth polynomial associated with the channel on which the value arrives. Let us write W(P) for the set of
bandwidth polynomials associated with channel names appearing in P . Clearly, W(P) consists of a finite number (say
M) of univariate polynomials. We can assume that the maximum number of terms in any of the polynomials in W(P) is
N, and we will index these terms from 0 to N −1. We define ai (0� i < N ) as maxM

j=1

∣∣aj,i

∣∣ where aj,i is the coefficient
of the ith term of the jth polynomial in W(P). We then define the coefficient of the ith term of the polynomial �′(x) as

ai i.e., �′(x) = ∑N−1
i=0 ai · xi . It is immediate from the construction of �′(x) that, ∀p(x) ∈ W(P).∀i ∈ N : p(i)��′(i)

i.e., �′(x) is an upper-bound on any polynomial in W(P). Thus, 2�′(�) is an upper-bound on the largest value that can
be substituted for any variable in P . However, �′(�) might be smaller than the number of characters required to write
down each variable name. The number of distinct variable names, which we shall denote by �(P), is, clearly, linear in
the length of P . Furthermore, �(P) must be a polynomial in the security parameter since every syntactic element of an
expression takes constant space except for replications which require space polynomial in the security parameter. To
ensure that we have enough space to write down any value that can be substituted into a variable and write down the
name of the variable itself, we define �(x) = �′(x) + �(P ) which is, clearly, a univariate polynomial in the security
parameter. We then assume that each variable in P is of size �(�).

Now for the �-substitutions that we create during a communication step. Each single �-substitution instance of a term
requires a constant c� amount of space for the � and enough space for the variable name and the value to substitute for
the variable name. The amount of space required to write down the variable name is �(�). It is also the amount of space
required to write down the value to be substituted for that variable. Thus each �-substitution takes 2 · �(�) + c� space.
To determine the total amount of space required for creating �-substitutions around a term over the entire course of
evaluation, we need to determine the maximum number of inputs that can be binding free variables in the term. Since
there are Inputs(P) inputs in P , we need Inputs(P) · (2 · �(�) + c�) space for each term. However, it may be that the
length of the term cT is greater than this value. To make sure that we leave enough space to write down the term (without

any �-substitutions), we stipulate that the space required for a term T be pT(x)
def= cT + Inputs(P) · (2 · �(x) + c�).

Then, as we perform communication steps, we will not have to push symbols aside in order to make space for the
�-substitution instance we want to create.

Finally, we need to check that if we define the space that a term T takes to be pT(�), then when we reduce the term
to an atom during a reduction step, we do not run out of space to write the value of the atom down. If the term appears
in an output then, since outputs truncate the message sent according to the bandwidth of the channel on which the
output occurs, we need only write down the �(�) least significant bits of the value obtained. But �(�)�pT(�) just when
both Inputs(P) and Outputs(P) are greater than zero. If either Inputs(P) or Outputs(P) is zero then, technically, the
inequality �(�)�pT(�) is false. However, this is not a significant issue since evaluation cannot proceed if there are
either no inputs or no outputs (recall that an evaluation step requires an input and an output). For a term appearing
in a match, we note that we never really require the value to which the term evaluates. All we need know is whether
the match holds or fails. Thus the space allocated to a term is sufficient since all we do is to either erase the match
(assuming the match was passed) or erase the entire expression (assuming the match was failed).

As a consequence of these assumptions on the length of terms and variables, each reduction step does not increase
the length the process. Furthermore, neither do communication steps, since we make sure to leave enough space for
the �s that substitutions create. To summarise our assumptions, we delay the substitution of values into variables until
a reduction step touches the relevant term, and we assume that every term and variable has enough space around it to
ensure that reduction and communication steps never increases the length of a process.

4.2. The evaluator for variable-closed expressions

We will now construct the machine MP . The machine has three input tapes, two working tapes, and two output tapes.
It starts with a value i for the security parameter written out in unary one input tape and a description of the Turing
machine implementing a perceptible scheduler S on the other tape—we know such a Turing machine exists because a
perceptible scheduler is a poly-time probabilistic function. Writing the security parameter in unary allows us to equate
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the length of the security parameter with its value, which is convenient in stating the theorems. Additionally, this is
standard practice in the cryptographic community (see [31,44]). The third input tape starts with the variable-closed
expression P that MP is supposed to evaluate. The first step that MP undertakes is to substitute i for � in P . It then
copies [i/�]P onto one of the working tapes making sure to leave enough space around the terms as specified by
the assumption on the size of terms (we will use the symbol �, as a blank symbol that we use to delete symbols by
overwriting them as well as add padding to terms and variables so that we leave sufficient space as indicated by the
discussion in Section 4.1). As we reduce [i/�]P and perform communication steps, we will rewrite [i/�]P on this
working tape. At this point MP is ready to begin evaluation of the process.

An evaluation step consists of a reduction step followed by a communication step.We note that, due to the idempotence
of reduction (see Lemma 6), performing a reduction step on a blocked process does not alter the probability distribution
on observables induced by P . To perform a reduction step, MP must evaluate each exposed term and each exposed match
in [i/�]P (it is easy to determine if a term or match is exposed—every time an input operator, say in(c, x).[i/�]Q,
is encountered, we consider every subexpression of [i/�]Q as not being exposed). In order to evaluate the term T
we will make use of the Turing machine MT associated with T by the fact that terms are exactly the probabilistic
polynomial-time functions (see Section 1.1). We note that no evaluation sequence (i.e., an alternating sequence of
reductions and communication steps) can create terms. Thus, the set of terms that could possibly be reduced during
evaluation of [i/�]exprP can be determined by inspecting P . Let � : VarClosedExpr → 2Term be a function from
variable-closed expressions to sets of terms such that �(P) is the set of terms that appear as syntactic elements of P .
Since every exposed term must be a substitution instance of terms in �(P) (recall that P is assumed to be variable-
closed, and communication steps create �-substitution instances of terms), we can evaluate each substitution instance
�x1, . . . , �xk.T a1, . . . , ak by simply running the Turing machine MT at inputs a1, . . . , ak . In the case that the term
evaluated appears in an output on the channel c, we write down the width([i/�]P, c) least significant bits. If the term
is part of a match, we use a working tape to record the entire value of the term. In this manner, we can compute a
reduction step by simply invoking the appropriate Turing machines at the appropriate values and overwriting matches
with blank symbols and/or the � process. It is easy to check that the distribution on process induced by performing a
reduction step on [i/�]P is exactly the same as that specified by the definition of the reduction function −→redxn (see
Section 1.3.1), i.e., MP really does compute a reduction step at this stage of evaluation.

We then need to perform a communication step. We start by computing the set of input/output pairs that [i/�]P
can take. This can be done by simply collecting all the input and outputs that are not in the scope of other inputs
and outputs, and then building the set E of all pairs of equivalent to 〈in(c, a), out(c, a)〉 for some c and a (whether
c is private or not). This is essentially the action set of the process restricted to actual actions (we get the action set
by rewriting 〈in(c, a), out(c, a)〉 as 〈c, a〉 · 〈c̄, a〉). We augment this set of pseudo-actions with locating contexts (see
Section 1.2) that we will use to identify the locations of the particular input and output making up a particular possible
communication step. We convert E into a set of actions A in the obvious way and use the given perceptible scheduler S to
select one of the actions. Having selected an action out of A, we then eliminate all input–output pairs from E that do not
produce the same observable as the chosen action. Finally, we pick one of the remaining input–output pairs uniformly
at random and perform the indicated substitution. If the action is a public one, we record the appropriate observable
on the output tape—this tape will then have all the observables generated during the evaluation of the process. It is
easy to decide if an action is public (this takes time linear in the length of the process being evaluated). Clearly, at the
termination of this step MP has correctly performed the substitution indicated by an action available to P . That it has
done so with the right probability follows from Lemma 21. Thus the communication step performed by MP respects
the operational semantics of PPC.

Finally, MP repeats reduction-and-communication-step pairs until there are no more actual actions to take. We note
that this means that there will be a final reduction step followed by no communication step, but since that reduction
step produces no observables, it can be ignored.

Our construction is specific to a particular variable-closed expression. Thus each variable-closed expression has
an evaluator associated with it. The reader will no doubt appreciate that a single Turing machine able to evaluate
any variable-closed expression is a simple extension. The input, in this case, will simply be the expression to be
evaluated, a value for the security parameter, a description of the Turing machine associated with the scheduler, and
descriptions of the Turing machines associated with each of the terms in the process to be evaluated. In fact, we can
even extend this evaluation machine to open expressions by including in the input a valuation for the free variables
of the process (in this case the run-time will, of course, be polynomial in the security parameter and the sizes of the
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values selected for the various free variables of the expression). We leave the details of these extensions to the interested
reader.

Lemma 21. Let P be a variable-closed expression and MP be the associated evaluator. Then MP (i, S) generates the
observable o with the same probability that [i/�]P generates the observable o under the perceptible scheduler S.

It is not difficult to extract the proof from the construction just given for evaluators.

4.3. A bound on the length of any evaluation sequence

Lemma 22. Let P be a variable-closed process. Then, for all values i for the security parameter and perceptible
schedulers S, during any evaluation of [i/�]P , at most min{Inputs(P)(i), Outputs(P)(i)} evaluation steps occur.

Proof. Consider any evaluation step that occurs during the evaluation of P .An evaluation step is made up of a reduction
step followed by a communication step. From the definition of reduction we know that a reduction step cannot increase
the number of inputs or outputs in a process (all it can do is to reduce the number of inputs and outputs by causing
a match to fail). Since a communication step syntactically eliminates an input/output pair from the expression being
evaluation, each evaluation step must reduce the number of inputs and outputs by at least one. Furthermore, each
evaluation step requires both an input and an output (so that the communication step can go through). Thus, during
evaluation we can only have at most min{Inputs(P)(i), Outputs(P)(i)} communication steps whence we can only
have at most that many evaluation steps. �

Corollary 23. Let P be a variable-closed expression. Then the number of evaluation steps that can possibly occur
during an evaluation of P is a polynomial in the security parameter.

Proof. Using Lemma 22, we define the number of evaluating steps h(x) that occur during the evaluation of a P as:

min{Inputs(P)(x), Outputs(P)(x)}� Inputs(P)(x) + Outputs(P)(x)

Clearly, h(�) is a polynomial in the security parameter. �

4.4. A bound on the time for an evaluation step

Definition 24. Let P be a variable-closed expression. We inductively define a polynomial Length(P), the length of P
including padding, as follows:

Length(�) = 1,

Length(�(c).Q) = 1 + Length(Q),

Length(in(c, x).Q) = 1 + Length(Q),

Length(out(c, T).Q) = 1 + pT(�) + Length(Q),

Length([T].Q) = 1 + pT(�) + Length(Q),

Length(Q1 | Q2) = 1 + Length(Q1) + Length(Q2),

Length(!q(�).Q) = q(�) · Length(Q).

It is clear from the definition that Length(P) is an always positive polynomial in �. We remind the reader that this
definition accounts for the padding that we add to the expression to ensure that we never need to push symbols aside
when we perform communication steps. It is easy to see that if we eliminate the padding, the length of an expression
is still polynomial in the security parameter.

Lemma 25. Let [i/�]P be a process and let the process [i/�]Q be the result of performing some number of evaluation
steps on [i/�]P . Then ∀i ∈ N : Length(Q)(i)�Length(P)(i).
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Proof. Each reduction step eliminates matches and rewrites output terms with values. Thus a reduction step cannot
increase the length of a process since we have padded terms to ensure that there is plenty of space to write down the
value to which the output term reduces.

Also, each communication step removes at least one input and output from [i/�]P . Since the contribution to the
length of [i/�]P by a particular term T accounts for the maximum size that T can grow to by the creation of successive
�-substitution instances of T during communication steps, Length(Q)(i) cannot exceed Length(P)(i). �

Lemma 26. Let P be a variable-closed, blocked expression and S a perceptible scheduler. Then the evaluator for P ,
MP , selects the next action to perform in time polynomial in the length of P and polynomial in the length of the security
parameter.

Proof. Since P is blocked, it has no exposed matches or outputs that need reduction. Before the scheduler is invoked,
we need to construct the action set of the process. This can be done in one pass to collect all the inputs and outputs
(this pass is poly-time in the length of P)—since we are only using perceptible schedulers, every action that can be
scheduled must be an actual action. Since an actual action consists of an input and an output, the set of actions we need
to consider is of size at most Inputs(P) · Outputs(P). Thus, the action set A of a process can be computed in time
polynomial in the length of �. Finally, the scheduler will pick an element from A in time polynomial in the size of A.
But A is clearly linear in the (padded) length of P since each action in the action set must consist of an input and an
exposed, reduced output of P . Whence the time needed for the entire procedure of running the scheduler and deciding

which action to perform is at most a polynomial sP (x)
def= ccomm · (Inputs(P) · Outputs(P) + o(Length(P))) where

ccomm is a constant and o(x) is a univariate polynomial. Clearly, sP is a univariate polynomial in the security parameter
since the length of an expression is a polynomial in the security parameter. �

Lemma 27. Let P be a variable-closed expression. Then the evaluator for P , MP , performs a communication step in
time polynomial in the length of P and �.

Proof. Whenever MP touches an exposed term (�x1, . . . , �xi.T) a1, . . . , ak , it evaluates T by evaluating the algorithm
MT at a1, . . . , ak (recall that since P is variable-closed, all exposed terms have no free variables) The runtime is
bounded by the polynomial qT(|a1|, . . . , |ak|) (since terms are probabilistic poly-time functions of their arguments).
However, each argument to a term comes via a communication step or directly from the choice of value for the security
parameter. Thus, each input has size at most �(�) whence the cost of evaluating a term is given by the polynomial
qT(�(x), . . . , �(x)) which is just a univariate polynomial tT in the security parameter. Since the number of terms in a
process is a function of its length, the reduction step needs to do at most

rP (x)
def= Length(P) ·

(
m∑

k=1
tTk

(x)

)
,

where the expression P contains just the terms T1, . . . , Tm.
Next, we need to select an action from the action set of the process using the scheduler. From Lemma 26, this can be

done in time sP (�) which is a polynomial in � and the length of P . We then select an input–output pair that produces
the same observable as the selected action:

(1) First, we make a list of all the input–output pairs eligible for the substitution step. This is done in time polynomial
in the length of P .

(2) Then, we select one of those actions uniformly at random. This procedure takes time polynomial in the number of
input–output pairs that can produce the same observable as 	. This is at most Inputs(P) · Outputs(P) which is a
polynomial in �.

Thus, selecting the particular action to evaluate can be done in time polynomial in � and the length of P . We shall call
this polynomial dP .

Next we need to perform the chosen substitution. We can do this in one pass to substitute the value transmitted by the
communication step into the free occurrences of the variable bound by the input, and a second pass to erase the selected
input and output (using blank symbols to erase the unnecessary symbols). Thus we can perform a communication step
in time cP = c · Length(P).
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Thus the time for an evaluation step is given by the univariate polynomial eP (x)
def= rP (x)+ sP (x)+dP (x)+ cP (x)

which is a polynomial in � (since the length of P is a polynomial in �). �

4.5. A bound on evaluation time

Main Theorem 28. Let P be a variable-closed expression and MP its evaluator. Then MP evaluates P in time
polynomial in the security parameter.

Proof. Before we evaluate the expression, we need to write out the padded form of the process [i/�]P . This takes time
polynomial in the security parameter since the padding is of length polynomial in the security parameter and the length
of an expression without padding is polynomial in the security parameter. We shall call this polynomial a(x).

We know that there are at most h(x) evaluation steps during the evaluation of P (Lemma 23). Furthermore, each

evaluation step takes time no more than eP (x) (Lemma 27). Thus, the overall cost of evaluating P is �P (x)
def=

a(x) + h(x) · eP (x) which is just a univariate polynomial in the security parameter. �

5. Asymptotic observational equivalence

Given a protocol and a specification, intuitively, the two are equivalent if no third party can reliably decide
whether it is interacting with the protocol or the specification. The only information available to the third party
as it attempts to determine with whom it is interacting is the observable behaviour of the entity it is studying.
This idea lies at the heart of cryptographic intuitions about how to characterise security properties of protocols and
primitives.

In this section we define an observational equivalence relation and explore the relationship between it and probabilistic
bisimulation. We start by defining an observable. Essentially, an observable is a datum that an entity can ‘see’ when
interacting with another entity.

Definition 29. An observable o is a pair (c, a) ∈ Channel × N. The set Obs is the set of all observables. A process
P generates the observable (c, a) under the scheduler S, written as P �S (c, a), just when while evaluating P , the
scheduler S selects the action 〈c, a〉 · 〈c̄, a〉. The probability that P �S (c, a) is given by

�(P, 〈c, a〉 · 〈c̄, a〉, Proc, S) + ∑
R∈Proc/∼

	∈PubAct\{〈c,a〉·〈c̄,a〉}
�(P, 	, R, S) · Prob

[
rep R�S (c, a)

]
.

An observable must be generated via a sequence of public actions and silent actions.

Lemma 30. ∀S ∈ Sched.∀P ∈ Proc.∀o ∈ Obs : Prob [P �S o] �1.

Proof. As usual we proceed by an induction on the maximum length of paths. The value Prob [P �S o] is computed
as

�(P, 〈c, a〉 · 〈c̄, a〉, Proc, S) + ∑
R∈Proc/∼

	∈�actual\{〈c,a〉·〈c̄,a〉}
�(P, 	, R, S) · Prob

[
rep R�S (c, a)

]
.

By the inductive hypothesis we know that Prob
[
rep R�S (c, a)

]
�1. Furthermore,

�(P, 〈c, a〉 · 〈c̄, a〉, Proc, S) + ∑
R∈Proc/∼

	∈�actual\{〈c,a〉·〈c̄,a〉}
�(P, 	, R, S) = ∑

	∈PubAct
�(P, 	, Proc, S).

Applying Lemma 19 yields the desired result. �
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The reader will have noticed that a scheduler can select partial actions in addition to actual and silent actions.
We define the set PSched of perceptible schedulers to be the set of all schedulers satisfying

∀	 ∈ �in ∪ �out : Prob [S(A) = 	] = 0.

A perceptible scheduler is simply a scheduler that always picks actual actions or silent actions. When considering
the equivalence of two expressions, we will restrict the choice of schedulers to just the perceptible ones since we are
interested only in communication steps that involve communication between two entities. This allows us, for example,
to talk of a process generating the observable o via a sequence of only actual and silent actions, in keeping with our
intuitive idea of evaluation as a series of communications between two entities.

We will say that P and Q, written as P � Q, are asymptotically close just when

∀ o ∈ Obs.∀S ∈ PSched.∀p(·) ∈ Poly.∃i0 ∈ N.∀i > i0 :∣∣Prob
[[i/�]P �S o

] − Prob
[[i/�]Q�S o

]∣∣� 1

p(i)
.

Definition 31 (Observational equivalence). Let P and Q be two expressions and let Val(P, Q) be the set of all
valuations of free variables of P and Q. We will say that P and Q are observationally equivalent, written as P�Q, if

∀� ∈ Val(P, Q).∀C[ · ] ∈ CExpr : �(C[P]) � �(C[Q]).

It is straightforward to check that � is a congruence. Hence, we state the following lemma without proof.

Lemma 32. � is a congruence.

The next theorem establishes probabilistic bisimulation as a proof technique for demonstrating observational equiv-
alences.

Theorem 33. ∀i ∈ N : [i/�]P ∼ [i/�]Q 
⇒ P�Q.

Proof. If two processes P and Q are bisimilar then we know that if they are blocked, the number of ways they can take
any action 	 is the same for the two processes. Whence it follows for blocked bisimilar processes that the scheduler
behaves in the same way for both processes (since the two processes must be able to take the same actions). If they are
unblocked then the scheduler is not invoked since a reduction step must be performed. However, the fact that P and Q

are bisimilar means that the reduction step will take P and Q to bisimilar processes with the same probability. Hence,
if P and Q are bisimilar, they are asymptotically close. Since ∼ is a congruence (Theorem 15), we have the desired
result. �

We note that each valuation � can be expressed as a context expression C�[ · ]. Let P have k free variables and let �
substitute the value ai for the variable xi . Then, we can capture this valuation in the context

�(c1). · · · .�(ck).(out(c1, a1) | · · · | out(ck, ak)) | in(c1, x1). · · · .in(ck, xk).[ · ].
Via a series of private communications, each of the variables xi (1� i�k) is replaced with the values ai just as �
demands. Thus, � can be defined over all variable-open expressions without explicitly dealing with valuations. The
quantification over all context expressions automatically takes care of the quantification over all valuations.

6. A proof system for PPC

The congruence and equivalence properties of � will form the basis of our reasoning system for protocols. We
present an incomplete but sound reasoning system in Fig. 3. We now proceed to sketch justifications for the proof rules.
Rules (CON), (RFLX), (TRN), and (SYM) are formalisations of �’s congruence properties.
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P�Q, C[ · ] ∈ CExpr
C[P]�C[Q] (CON)

P�P (RFLX)

P�Q, Q�R
P�R (TRN)

P�Q
Q�P (SYM)

P | Q�Q | P (P-SYM)

� | P�P (ZERO)

(P | Q) | R�P | (Q | R) (P-ASC)

P1�P2, Q1�Q2

P1 | Q1�P2 | Q2
(P-TRN)

c /∈ Channel(C[�])
�(c).C[P]�C[�(c).P] (EXT)

P has no public channels

P�� (ZER)

C[out(c, T)] and C[out(c, U)] are scheduler-insensitive,
[3pt]c /∈ Channel(C[�]), PubChan(C[out(c, T)]) = {c},

[3pt]C[out(c, T)]�C[out(c, U)]
∃TC[ · ], UC[ · ] ∈ Term : out(c, TC[ · ])�out(c, UC[ · ])

(NU)

width(c) = width(d), d /∈ Channel(P, Q)

�(c).P��(d).P [d/c] (NREN)

width(c) = width(d), d /∈ Channel(P, Q),

[3pt]c ∈ Unbindable ⇐⇒ d ∈ Unbindable, P�Q
P [d/c],�Q[d/c] (PREN)

fT and fU are computationally indistinguishable

out(c, T)�out(c, U)
(EQ1)

∀i ∈ [1..k] : out(c, Ti)�out(c, Ui)

out(d, V(T1, . . . , Tk))�out(d, V(U1, . . . , Uk))
(EQ2)

∀a1, . . . , ak : out(ci, Ui(a1, . . . , ak))�out(ci, Vi(a1, . . . , ak)), i ∈ [1..m],
FreeVar(C[out(c1, U1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]) =

FreeVar(C[out(c1, V1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]) = {xi}
in(d, xi).C[out(c1, U1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]
�in(d, xi).C[out(c1, V1(x1, . . . , xk)), . . . , out(cm, Vm(x1, . . . , xk))]

(PUL)

Fig. 3. A reasoning system for PPC.
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P�Q, C[ · ] ∈ CExpr
C[P]�C[Q] , (CON)

P�P, (RFLX)

P�Q, Q�R
P�R , (TRN)

P�Q
Q�P . (SYM)

The four rules (P-SYM), (ZERO), (P-ASC), and (P-TRN) formalise various properties of the parallel composition
operator. The three rules (P-SYM), (ZERO), and (P-ASC) are demonstrated via bisimulations. It is easy to see that the
LTSs of the left-hand side expression and the right-hand side expression in each of these rules are isomorphic. Once
we have the witnessing bisimulations, we apply Theorem 33. As a consequence of (P-ASC) we will write P | Q | R
for either (P | Q) | R or P | (Q | R). As for rule (P-TRN), we argue as follows. Using (CON) and the context P1 | [ · ],
we have Q1�Q2 implies P1 | Q1�P1 | Q2. But, P1�P2 implies P1 | Q2�P2 | Q2 (using (CON) with the context
[ · ] | Q2). We use the transitivity of � to complete the proof.

P | Q�Q | P, (P-SYM)

� | P�P, (ZERO)

(P | Q) | R�P | (Q | R), (P-ASC)
P1�P2, Q1�Q2

P1 | Q1�P2 | Q2
. (P-TRN)

The rules (EXT), (ZER), and (NU) allow us to manipulate private channels in various ways. In particular, they allow us
to remove or add private channels to an expression under certain conditions. Rule (EXT) allows us to shrink or expand
the scope of a private channel so long as it does not make formerly public channels private. The proof relies on the fact
that if c is not a channel that appears in C[ · ], then the LTS of �(c).C[P] is isomorphic to the LTS of C[�(c).P], i.e.,
{〈�(c).D[Q], D[�(c).Q]〉 | �(c).D[Q] ∈ L(�(c).C[P])} is a bisimulation. In particular, �(c).C[P] takes an 	-transition
to �(c).D[Q] iff C[�(c).P] takes an 	-transition to D[�(c).Q] with the same probability. This follows since the absence
of the channel c in C[ · ] means that restricting the scope of the binding � to just P does not make formerly silent actions
on the channel c public, nor does it make formerly impossible partial actions on the channel c possible. Since � does
not affect probabilities of actions (except partial ones on the bound channel name) or priorities of actions, clearly, the
two LTSs have to be isomorphic. The rule (ZER) follows from the fact that an expression that produces no observables
is trivially observationally equivalent to the zero-expression � since the cumulative mass of any 	-path (with 	 a public
action) to any set of processes is zero.

c /∈ Channel(C[�])
�(c).C[P]�C[�(c).P] , (EXT)

P has no public channels

P�� , (ZER)

C[out(c, T)] and C[out(c, U)] are scheduler-insensitive,
c /∈ Channel(C[�]), PubChan(C[out(c, T)]) = {c},

C[out(c, T)]�C[out(c, U)]
∃TC[ · ], UC[ · ] ∈ Term : out(c, TC[ · ])�out(c, UC[ · ])

. (NU)

Rule (NU) states that if you have a scheduler-insensitive expression (i.e., an expression where only one action is
possible at any stage in the evaluation of the expression thereby rendering the choice of scheduler superfluous) with
only one output on a public channel, then the entire expression can be written as a single term placed in an output
on the same channel. That is to say, we can fold all the private behaviour of the expression into the single public
output by simulating this behaviour and generating the appropriate public message in the output term itself. That we
can do this relies on the fact that every expression can be evaluated mechanically in polynomial time (Theorem 28)
and that the choice of scheduler is irrelevant (which implies the existence of a single term that correctly simulates the
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evaluation of the expression regardless of the choice of scheduler). Essentially, this rule states the silent transitions are
completely invisible. The proof is fairly straightforward. Consider the term TC[ · ],S that simulates the evaluation of
C[out(c, T)] under the scheduler S and outputs a iff the observable (c, a) is generated. We know such a term exists since
there exists a probabilistic poly-time Turing machine that evaluates the expression C[out(c, T)] under the scheduler
S (see Theorem 28). Since C[out(c, T)] is scheduler-insensitive, the behaviour of the process does not depend on the
scheduler. Thus, each TC[ · ],S (parameterised by the choice of scheduler) is in fact the same term (since the scheduler
does not matter). So in fact we have a single term TC[ · ] that simulates the evaluation of C[out(c, T)] (under any
scheduler) and returns a iff the observable (c, a) is generated. Whence we have demonstrated the existence of the term
TC[ · ]. Similarly, we construct UC[ · ]. To finish, we can easily verify that out(c, TC[ · ])�out(c, UC[ · ]) via the obvious
bisimulation.

width(c) = width(d), d /∈ Channel(P, Q)

�(c).P��(d).P [d/c] , (NREN)

width(c) = width(d), d /∈ Channel(P, Q),

c ∈ Unbindable ⇐⇒ d ∈ Unbindable, P�Q
P [d/c]�Q[d/c] . (PREN)

The first of the two rules dealing with renaming channels, (NREN), states that one can rename a private channel to
an unused private channel (as long as bandwidths are respected). In this rule, P [d/c] denotes the expression obtained
by replacing the bindable channel name c with the unused bindable channel name d (we define a similar notation for
processes). It is easy to give a bisimulation between �(c)P and �(d)P [d/c] (whereP is a process in the expressionP) since
the two LTSs are isomorphic and produce exactly the same observables. The second rule regarding renaming, (PREN),
allows us to rename public channels to a name that is not currently in use by the expression. Naturally, we need to
respect bandwidths, but, in addition, we must ensure that we do not change the priority of actions on a channel by
replacing a low priority channel name with a high priority channel name or vice versa. Since, by assumption P and Q
are observationally equivalent, renaming the same channel in the same way in both expressions, cannot violate their
equivalence (all it does is map observables on the channel c to observables on the hitherto unused channel d). Thus,
a bisimulation can be easily given to verify this (the bisimulation between P [d/c] and Q[d/c] is just the bisimulation
between P and Q)—renaming the channels amounts to giving the isomorphism between the LTS of P (resp. Q) and
P [d/c] (resp. Q[d/c]).

The final three proof rules—(EQ1), (EQ2), and (PUL)—allow us to manipulate computationally indistinguishable
terms. The rule (EQ1) states that if the functions fT and fU are computationally indistinguishable then out(c, T) and
out(c, U) are observationally indistinguishable. This rule is just the formalisation, as a proof rule, of Theorem 40.
Since expression of the cryptographically important notion of computational indistinguishability is an important step
in our program, rather than giving a sketch of the proof here, we simply state the result here and point the reader to the
full proof given in Section 7.1. Essentially, the argument shows that if out(c, T) can be distinguished from out(C, U),
then the context expression witnessing that distinction can be converted into a probabilistic poly-time algorithm that
distinguishes between fT and fU by viewing the context as a function that takes as input the output of the term plugged
into the hole and constructing a machine that runs the context on the input.

fT and fU are computationally indistinguishable

out(c, T)�out(c, U)
, (EQ1)

∀i ∈ [1..k] : out(c, Ti)�out(c, Ui)

out(d, V(T1, . . . , Tk))�out(d, V(U1, . . . , Uk))
, (EQ2)

∀a1, . . . , ak : out(ci, Ui(a1, . . . , ak))�out(ci, Vi(a1, . . . , ak)), i ∈ [1..m],
FreeVar(C[out(c1, U1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]) =

FreeVar(C[out(c1, V1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]) = {xi}
in(d, xi).C[out(c1, U1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]
�in(d, xi).C[out(c1, V1(x1, . . . , xk)), . . . , out(cm, Vm(x1, . . . , xk))].

(PUL)

The rule (EQ2) states that if there are k pairs of terms 〈Ti, Ui〉 that are pairwise observationally equivalent, then the two
expressions out(d, V(T1, . . . , Tk)) and out(d, V(U1, . . . , Uk)) are observationally equivalent. The proof proceeds by
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contradiction. For each 1�j�k, we consider two expressions. The first, Hj is defined as out(d, V(T1, . . . , Tj−1, Uj,

. . . , Uk)) and the second, Hj+1, is defined as out(d, V(T1, . . . , Tj, Uj+1, . . . , Uk)). We note that Hj and Hj+1 differ
only in the jth argument to V. Assume that the context C[ · ] witnesses that Hj � Hj+1. Then the context defined as
in(c, x).C[out(d, V(T1, . . . , Tj−1, x, Uj+1, . . . , Uk))] distinguishes between out(c, Tj) and out(c, Uj). This contradicts
the hypothesis that each out(c, Tj) is observationally equivalent to out(c, Uj). In this manner we can build up a chain
of equivalences H1� · · · �Hk and employ the transitivity of � to obtain the desired result. Finally, the rule (PUL)
allows us to replace an argument to a term with a free variable and introduce a binding input under certain conditions.
The proof sketch is similar to that employed for (EQ2). As in that case, we proceed by contradiction. For each 1�j�m,
we consider two processes. The first, Hj , is defined as

in(d, xi).C[out(c1, V1(x1, . . . , xk)), . . . , out(cj−1, Vj−1(x1, . . . , xk)),

out(cj , Uj(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))]]
and the second, Hj+1, is defined as

in(d, xi).C[out(c1, V1(x1, . . . , xk)), . . . , out(cj , Vj(x1, . . . , xk)),

out(cj+1, Uj+1(x1, . . . , xk)), . . . , out(cm, Um(x1, . . . , xk))].
Note that Hj and Hj+1 only differ in the expression plugged into the jth hole. Let us assume that Hj � Hj+1. Then
there must be set of values a1, . . . , ak such that Uj and Vj at those values can be distinguished with non-negligible
advantage. But this means that out(c1, Uj(a1, . . . , ak)) � out(c1, Vj(a1, . . . , ak)) which is a contradiction. Therefore
Hj�Hj+1. In this manner we can build up the chain of equivalences H1�H2� · · · �Hm and employ the transitivity
of � to obtain the desired result. We could have presented an alternate version of (PUL) where the ith pair of terms
〈Ui , Vi〉 has ki arguments rather than all the terms having the same number of arguments. A similar version of the
reasoning just given would have worked since it does not depend on Ui and Uj (i /= j ) having the same number of
arguments, only on Ui and Vi having the same number of arguments. We chose the version given for its simplicity.
Furthermore, the omission does not cost anything since, by introducing unused parameters, we can make any k-ary
function an (k + k′)-ary function. Then, using (EQ1) in conjunction with (PUL), we would be able to deploy the
precisely the kind of reasoning made available by the omitted version of (PUL).

7. Cryptographic examples

In what follows we will denote an element x chosen uniformly at random from the set X by x ∈R X. In Section 7.1
we will show that our notion of asymptotic observational equivalence and the standard notion of indistinguishability
by poly-time statistical tests coincide. In Section 7.2 we apply the previous observation to define pseudorandom
number generators in PPC. In Sections 7.3 and 7.4 we, respectively, define semantic security and the Decision Diffie–
Hellman assumption (DDHA) in terms of equivalences between PPC expressions. Finally, in Section 7.5 we derive the
equivalence between the DDHA and the semantic security of El Gamal encryption by making use of the formal proof
system for PPC given in Section 6.

7.1. Computational indistinguishability

Here we show that our asymptotic observational equivalence relation coincides with the standard cryptographic notion
of indistinguishability by polynomial-time statistical tests. We start by recalling the notions of a function ensemble
used in the cryptographic literature [67,44,30,29,31,47].

Definition 34 (Function ensemble). A function ensemble f is an indexed family of functions {fi : Ai → Bi}i∈N. A
function ensemble f : Ai → Bi is uniform if there exists a single Turing machine M that computes f for all values
of i i.e., ∀i ∈ N.∀a ∈ Ai : M(i, a) = fi(a). A uniform function ensemble f : Ai → Bi is poly-time if there exists a
polynomial q and a single Turing machine M such that M(i, a) computes fi(a) in time at most q(|i|, |a|). A uniform
function ensemble f : Ai → Bi is probabilistic poly-time if fi is a probabilistic poly-time function. A poly-time
statistical test A : {0, 1}m(x) → {0, 1} is a {0, 1}-valued probabilistic poly-time function ensemble.
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The notion of computational indistinguishability is central to cryptography. Goldreich [31], in particular, has an
excellent discussion.

Definition 35 (Computational indistinguishability). Let q(x) be a positive polynomial. A uniform probabilistic poly-
time function ensemble f : ∅ → {0, 1}l(x) is computationally indistinguishable from a uniform probabilistic poly-time
function ensemble g : ∅ → {0, 1}l(x) just when for all poly-time statistical tests A we have

∀q(x).∃io.∀i > io : ∣∣Prob [Ai (fi()) = “1”] − Prob [Ai (gi()) = “1”]
∣∣� 1

q(i)
.

Definition 36. Let P be a variable-closed expression with no public inputs and with exactly one public output on the
channel c where width(c) = q(x). We will say that the probabilistic poly-time function ensemble f P : ∅ → {0, 1}q(x)

is the characteristic function for P with respect to the scheduler S when we have that ∀a ∈ N : Prob
[
f P

i () = a
] =

Prob
[[i/�]P �S (c, a)

]
. Let f : ∅ → {0, 1}q(x) be a probabilistic poly-time function ensemble. Let Tf be a term such

that MTf
computes f. Then, we say that out(c, Tf ) is the characteristic expression for f.

Let f : ∅ → {0, 1}q(x) be a probabilistic poly-time function ensemble and let Pf
def= out(c, Tf ) be its characteristic

expression. Then, it is easy to see that∀S ∈ PSched.∀a ∈ N : Prob [fi() = a] = Prob
[[i/�](Pf | in(c, x))�S (c, a)

]
.

We want to show, in this section, that the standard notion of computational indistinguishability can be captured
elegantly in our system. Roughly speaking, we want to show that f is computationally indistinguishable from g iff the
characteristic expression for f is observationally equivalent to the characteristic expression for g. To do so, we will
show two facts:

(1) If there exists a poly-time statistical test A that distinguishes between f and g, then there exists a context expression
C[ · ] that distinguishes between the characteristic expressions for f and g under any scheduler. This is shown in
Lemma 37.

(2) If there exists a context expression C[ · ] that distinguishes between the characteristic expressions for f and g
under a scheduler S, there exists a poly-time statistical test A that distinguishes between f and g. This is shown in
Lemma 39.

Lemma 37. Let A : {0, 1}m(x) → {0, 1} be a poly-time statistical test. Let P be any variable-closed expression with
no public inputs and exactly one public output such that f P : ∅ → {0, 1}m(x) is its characteristic function. Then, we
can construct a context CA[ · ] such that f P ◦ A is the characteristic function for CA[P] under any scheduler.

Proof. By construction. If A is a poly-time statistical test then we can construct the context expression CA[ · ] ≡
in(c, x).out(d, TA(x)) | [] with width(c) = m(x) and width(d) = 1.

It is easy to see that this context expression applies the test to the m(�)-bit output of some expression ‘plugged’ into
the hole. By assumption, we have that f P is the characteristic function for P . Now, TA is the term that computes the
probabilistic poly-time function A. Hence, CA[P] must produce the observables (d, 0) and (d, 1). The probability that

[i/�]CA[P] produces the observable 〈d, 0〉 must be the same as the probability that the function f P
i ◦Ai produces zeroes

under any scheduler since a scheduler must always make progress (i.e., schedule something if it can) and [i/�]CA[P]
has only one possible communication (the one between [i/�]P and [i/�]CA[ · ]).

Similarly, the probability that [i/�]CA[P] produces the observable (d, 1) must be the same as the probability that
the function f P

i ◦ Ai produces ones under any scheduler. Hence, fP ◦ A must be the characteristic function for
CA[P]. �

We will say that a context so constructed is a poly-time distinguishing context.

Definition 38. Let P be a variable-closed expression and o an observable. We will say that f : ∅ → {0, 1} is an
indicator for P with respect to o under the scheduler S when

Prob
[[i/�]P �S o

] = Prob [fi() = 1]
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and

Prob
[
[i/�]P /�S o

]
= Prob [fi() = 0] .

Lemma 39. Let C[ · ] be a context and let o be an observable. Let f : ∅ → {0, 1}m(x) be any function and Pf be its
characteristic variable-closed expression. Then, we can specify a poly-time statistical test t from the triple 〈C[ · ], o, S〉
such that f ◦ t is an indicator for C[Pf ] with respect to the observable o under the scheduler S.

Proof. Our construction of t follows. We compute f ◦ t by evaluating the expression C[out(d, Tf )] (where MTf

computes f) under the scheduler S and returning 1 if the observable o was generated and 0 otherwise. It is easy to
check that

Prob [f ◦ t = 1] = Prob
[[i/�]C[out(d, Tf )]�S o

]
and that

Prob [f ◦ t = 0] = Prob
[
[i/�]C[out(d, Tf )] /�S o

]

whence the desired result is obtained. �

Clearly, given a context and a variable-closed expression, each potential observable defines a poly-time statistical
test.

Theorem 40. Let f : ∅ → {0, 1}l(x) be a uniform probabilistic poly-time function ensemble. Let g : ∅ → {0, 1}l(x)

be another uniform probabilistic poly-time function ensemble. Let F (resp. G) be the characteristic expression for f
(resp. g). Then, f is computationally indistinguishable from g if and only if F�G.

Proof. Assume that F�G and that, by way of producing a contradiction, f is not computationally indistinguishable
from g. Then, we have that there exists a poly-time statistical test A that distinguishes between the output of f and the
output of g. Hence, by Lemma 37, we can construct a poly-time distinguishing context C[ · ] that, under any scheduler,
distinguishes between F and G with the same probability that A distinguishes between f and g. So C[ · ] will distinguish
between F and G with probability greater than 1/q(i) for some polynomial q(x) (as A distinguishes between f and g
with probability greater than 1/q(i)), thus producing a contradiction.

Now, assume that f is computationally indistinguishable from g and that, by way of producing a contradiction, F � G.
Then we have that for some polynomial p(x) and scheduler S there exists a context D[ · ] that distinguishes between
the two processes with probability greater than 1/p(i). Let the distinguishing observation be (d, a). We can then
use Lemma 39 to construct a poly-time statistical test that distinguishes between the output of f and g with pre-
cisely the same probability that D[ · ] distinguishes between F and G under the scheduler S, thereby creating a
contradiction. �

7.2. Pseudorandom number generators

We can now prove that an algorithm taking short strings to long strings is pseudorandom if and only if the characteristic
expression for the algorithm, when evaluated on a short random input, is observationally equivalent to the expression
that returns a long random string.

Definition 41. A function ensemble f : ∅ → {0, 1}l(x) is random poly-time if f is a poly-time function that returns
random elements in {0, 1}l(x).

We recall the notion of a pseudorandom number generator from cryptographic literature [67,44,30,29,31,47].

Definition 42 (Pseudorandom number generator). Let q(x) be a positive polynomial. A pseudorandom number gen-
erator (PRNG) is a uniform poly-time function ensemble f : {0, 1}k(x) → {0, 1}l(x) such that for all poly-time



J.C. Mitchell et al. / Theoretical Computer Science 353 (2006) 118 –164 153

statistical tests A

∀q(x).∃io.∀i > io : ∣∣Prob [Ai (fi(s)) = “1”]s∈R{0,1}k(i) − Prob [Ai (r) = “1”]r∈R{0,1}l(i)
∣∣� 1

q(i)
.

In general, f : {0, 1}k(·) → {0, 1}l(·) is an interesting PRNG only when ∀i ∈ N : l(i)?k(i).

Theorem 43. Let f ′ : {0, 1}k(x) → {0, 1}l(x) (∀a ∈ N : l(a) > k(a)) be a uniform probabilistic poly-time function
ensemble. Let r : ∅ → {0, 1}l(x) and s : ∅ → {0, 1}k(x) be uniform poly-time random function ensembles. Define f as
s ◦ f ′. Let F (resp. R) be the characteristic expression for f (resp. r). Then, f ′ is a PRNG if and only if F�R.

The variable-closed expression F , essentially, transmits a random seed generated by s to f ′ (a candidate PRNG) via
function composition, and then transmits the value computed by f ′ on a public channel. In contrast, R is a variable-
closed expression that simply transmits the value computed by r (a function that returns truly random values of the
same length as those generated by f ) on a public channel.

Proof. This theorem is a special case of Theorem 40. We note that s◦f ′ : ∅ → {0, 1}l(x) is a uniform probabilistic poly-
time function ensemble. and that the definition of PRNG simply states that s ◦ f ′ is computationally indistinguishable
from r. �

7.3. Semantic security

Semantic security is an important cryptographic property due to Goldwasser and Micali [34]. Our definition of
semantic security, though, is adapted from presentations by Goldreich [32] and by Goldwasser and Bellare [33,10].
The definition of semantic security we work with assumes uniform-complexity.

Before we provide a definition of semantic security, we need to define an encryption scheme. The ideas behind public-
key cryptosystems were first proposed by Diffie and Hellman [24]. Our presentation of public-key cryptosystems is
drawn from Goldreich [32] as well as Goldwasser and Bellare [33].

Definition 44 (Diffie and Hellman [24], Goldreich [32], Goldwasser and Bellare [33]). A public-key encryption
scheme or, more simply, an encryption scheme is a triple 〈G, E, D〉 with the following properties:

(1) The key-generator is a probabilistic poly-time algorithm G that on input 1k (the security parameter) produces a
pair 〈e, d〉 where e is the public or encryption key and d is the corresponding private or decryption key.

(2) The encryption algorithm is a probabilistic poly-time algorithm E which takes as input the security parameter 1k ,
an encryption key e, and a string m called the message or plaintext and produces an output string c called the
ciphertext.

(3) The decryption algorithm is a probabilistic poly-time algorithm D which takes as input the security parameter 1k ,
a decryption key d and a ciphertext c and produces a message m′ such that for every m, for every c ∈ E(1k, e, m),
the probability that D(1k, d, c) /= m is negligible.

Now onto semantic security. Intuitively, an encryption scheme is semantically secure if, given a ciphertext, no
polynomially bounded adversary can reliably compute something about the associated plaintext, i.e., the encryption
scheme does not reveal anything about the plaintext. We note that this version of semantic security is in a chosen-
plaintext model of security since the adversary, being in possession of the public key, can encrypt a polynomial number
of plaintexts that are chosen by the adversary, before it attempts to compute something about the plaintext associated
with the given ciphertext.

A useful formulation of semantic security is in terms of indistinguishability. Intuitively, if it is infeasible for any
adversary to distinguish between the encryptions of any two messages (even when it chooses the messages) then the
encryption scheme cannot be revealing anything about the plaintext. Goldwasser and Micali [34] showed that if an
encryption scheme is secure in the indistinguishable sense, then it is semantically secure. The reverse direction, that
semantic security implies security in the indistinguishable sense, was shown by Micali et al. [48]. Goldreich [32]
has a fairly detailed proof in both directions. We will work with security in the indistinguishable sense since it is
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more convenient for our purposes. Our presentation is drawn from Tsiounis and Yung [64] as well as Goldwasser and
Bellare [33].

Definition 45. An encryption scheme 〈G, E, D〉 is indistinguishably secure if for every probabilistic poly-time Turing
machine F, A, for every polynomial q, and for sufficiently large k,

∣∣Prob
[
A(1k, e, F (1k, e), c) = m|c ∈ E(e, m0)

]
− Prob

[
A(1k, e, F (1k, e), c) = m|c ∈ E(e, m1)

]∣∣� 1

q(k)
,

where 〈m0, m1〉 ∈ F(1k, e).

In other words, it is impossible to efficiently generate two messages (using F) such that an attack A can reliably
distinguish between their encryptions. It is clear that we are considering adaptive chosen plaintext semantic security
since the adversary, being in possession of the encryption key, can generate a polynomial number of messages to encrypt
before it responds to the challenge.

Encoding the statement of indistinguishable encryptions as an observational equivalence in PPC is straightforward. In
order to so, we will assume an efficient tupling function i.e., a function 〈x1, . . . , xk〉 that is polynomial in the lengths of
x1, . . . , xk . Since we truncate messages that are too long, a tupling function that generates outputs of super-exponential
length will not work correctly. Normal ‘diagonal’ pairing or a scheme based on bit-interleaving will do nicely. In what
follows, we will use the notation in(c, 〈x1, . . . , xk〉) to mean that the input obtained on channel c should be treated as a
k-tuple whose ith element is named xi . We start by defining the notion of observationally indistinguishable encryptions.

Definition 46. Let 〈G, E, D〉 be an encryption scheme. Then 〈G, E, D〉 is an observationally indistinguishable en-
cryption scheme iff

�(internal).out(internal, pkey(G(1�))) | in(internal, key).out(pub, 〈key, 1�〉).
in(msg, 〈m0, m1〉).out(challenge, 〈key, 〈m0, m1〉, E(key, m0)〉) (LSS)

is observationally indistinguishable from

�(internal).out(internal, pkey(G(1�))) | in(internal, key).out(pub, 〈key, 1�〉).
in(msg, 〈m0, m1〉).out(challenge, 〈key, 〈m0, m1〉, E(key, m1)〉), (RSS)

where pkey is a function that, given a private-public key-pair, returns only the public key.

We note that all channel names are bindable (and, consequently high priority), while only internal has been made
private. Making the channel names bindable allows us to make certain channels private, an ability that will be useful in
proving the equivalence of the semantic security of El Gamal encryption and the Decision-Diffie–Hellman assumption.
We remark that making all the channels high-priority does not affect the order in which communication steps of
either LSS or RSS occur since at each stage there is only one possible communicationstep that can happen. An
examination of the expression LSS shows that it:

(1) Generates a encryption–decryption key-pair.
(2) Publishes the security parameter and the public key.
(3) Obtains a message pair that could be a function of the security parameter 5 and the public key. The message-

generation algorithm F can adaptively choose the message-pair based on the public key and security parameter.
(4) Publishes the encryption of the first message, along with the message pair and the encryption key. After this point

the adversary knows the public (encryption) key as well as the message-pair. So the adversary could mount an
adaptive chosen plaintext attack by selecting several plaintexts and computing their encryptions.

5 There is no real need to publish the security parameter, as we have done in the previous step. Since the adversary (context) and the protocol
(expression) are run with the same value for the security parameter, the message-generation function F ‘knows’ the security parameter without the
need for an explicit publish.
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An examination of the expression RSS shows that it is identical to expression LSS except that RSS chooses to encrypt
the second message. It should be apparent that the statement that the two processes are observationally equivalent is a
reformulation in PPC of the statement that 〈G, E, D〉 is indistinguishably secure (and hence semantically secure). We
now proceed to formalise this intuition.

Theorem 47. Let 〈G, E, D〉 be an encryption scheme. Then, 〈G, E, D〉 is semantically secure iff (LSS)�(RSS).

Proof. Let us assume that 〈G, E, D〉 is not indistinguishably secure and then show that LSS�RSS does not hold.
Since 〈G, E, D〉 is not semantically secure, there must exist a pair of probabilistic poly-time algorithms A, F such
that, with non-negligible probability, A can distinguish between encryptions of messages chosen by F, i.e., for some
positive polynomial q we have

∣∣Prob
[
A(1k, e, F (1k, e), c) = m | c ∈ E(e, m0)

]
− Prob

[
A(1k, e, F (1k, e), c′) = m | c′ ∈ E(e, m1)

]∣∣ >
1

q(k)

Let us now construct a context A[ · ] out of A and F.

[ · ] | in(pub, 〈key, sec〉).
out(msg, F(sec, key)).in(challenge, 〈pubkey, msgpair, cipher〉).

out(response, A(sec, pubkey, msgpair, cipher))

| in(response, x).�
Let us consider A[LSS] (resp. A[RSS]). The first thing to note is that in any evaluation path of A[LSS] (resp.
A[RSS]), at each evaluation step there is only one communication step that can happen. Hence, the choice of scheduler
is irrelevant since schedulers are stochastic.

The attacking context A[ · ] supplies a pair of messages chosen by F (based on the security parameter and public key)
to LSS (resp. RSS) which then returns the encryption of the first (resp. second) message along with the encryption key
and the pair of messages. Then, the attacking context A[ · ] applies A to the tuple consisting of the security parameter,
message-pair, encryption key, and ciphertext. This yields a guess as to the message that was encrypted. Since A[ · ]
simply applies A to the encryption of a message chosen from the pair given by F, it must distinguish between encryptions
of messages chosen by F with the same probability that A distinguishes between encryptions of messages chosen by F.
Whence if A can reliably distinguish between encryptions of messages (i.e., A can distinguish with probability better
than half), it follows that A[ · ] can distinguish between LSS and RSS with non-negligible probability (i.e., with
probability greater than 1/q(�) which is the probability with which A distinguishes between encryptions of messages
given by F). Thus, LSS � RSS since we have constructed a distinguishing context A[ · ] out of A and F.

Let us now tackle the reverse direction. We assume that LSS � RSS and show that 〈G, E, D〉 is not indistin-
guishably secure. Since LSS � RSS, we have a context expression A[ · ] that, under some perceptible scheduler S,
distinguishes between LSS and RSS on the basis of some observable o. Furthermore, we assume A[ · ] must provide
messages to LSS (resp. RSS) in order for the protocol to run (since LSS and RSS differ only in the challenge step,
any distinguishing observable can only be generated after the challenge step has occurred). In particular, no context
expression can distinguish between two expressions if the context expression does not interact with the two expressions.
Thus there must exist a probabilistic poly-time algorithm F such that the probability that A[ · ], using security parameter
k and public key e, provides the message pair � to LSS (resp. RSS) is precisely the probability that F(1k, e) generates
the message pair �. We can then create an attack A that distinguishes between encryptions of messages picked by F as
follows. We compute A(1k, e, � = F(1k, e), c = E(e, mb)) where mb ∈ � by constructing the expression P〈e, �, c〉
and then evaluating A[P〈e, �, c〉] under the scheduler S and with security parameter � set to k. If the observable o is
generated we return a ‘1’ and if the observable o is not generated we return a ‘0’. Let us denote the encryption of the
ith message in the message-pair (i ∈ {0, 1}) by enci . The expression P〈e, �, enci〉 is defined as

�(internal).out(internal, pkey(G(1�))) | in(internal, key).out(pub, 〈key, 1�〉).
in(msg, 〈m0, m1〉).out(challenge, 〈e, �, enci〉)

Clearly, the function A will successfully distinguish between encryptions of messages in � with the same probability
that, using the scheduler S, A[ · ], distinguishes between P〈e, �, enc0〉 and P〈e, �, enc1〉. Hence 〈G, E, D〉 is not



156 J.C. Mitchell et al. / Theoretical Computer Science 353 (2006) 118 –164

indistinguishably secure. Since 〈G, E, D〉 is indistinguishably secure iff LSS�RSS, we conclude that 〈G, E, D〉 is
semantically secure iff LSS�RSS. �

7.4. The decision Diffie–Hellman assumption

We start by defining the Decision Diffie–Hellman assumption [24]. Our presentation is drawn from Boneh [12] and
Tsiounis and Yung [64]. Goldreich [32] offers helpful discussions, as does Cramer and Shoup [20].

A group family G is a set of finite cyclic groups {Gp} where the index p ranges over an infinite set. An instance
generator IG(n) takes security parameter n, runs in time polynomial in n and returns a random index p as well as a
generator g of the group Gp.

Definition 48. Decision Diffie–Hellman algorithm A for G is a probabilistic polynomial time algorithm such that:

(1) given 〈p, g, ga, gb, gc〉 the algorithm A reliably decides if c = ab and
(2) there exists a non-constant positive polynomial q(x) such that IG(�) = 〈p, g〉 implies that |〈p, g〉| = �(q(�)).

The probability is taken over the probability that the instance generator IG(1�) returns 〈p, g〉 given �, over the random
choice of a, b, c in [1..ord Gp], and over the random bits used by A. The Decision Diffie–Hellman assumption for G

is that no Decision Diffie–Hellman algorithm exists.

The condition on the instance generator that the size of the outputs of the instance generator grow faster than some
non-constant positive polynomial ensures that the groups returned by the instance generator become larger as the
security parameter increases. Since the instance generator runs in polynomial time, the outputs of the generator cannot
become too large, i.e., there exists another non-constant positive polynomial r(x) such that |〈p, g〉| = O(r(�)).

Example 49. We give some examples of groups in which the DDHA is believed to be intractable. These examples are
drawn from Boneh [12].

(1) Let p = 2q + 1 where both p and q are prime. Let Qp be the subgroup of quadratic residues in Z∗
p. It is a cyclic

group of prime order. This group is parameterised by the choice of prime p.
(2) Let N = pq where p, q, (p − 1)/2, (q − 1)/2 are prime. Let T be the cyclic subgroup of order (p − 1)(q − 1).

The DDHA is believed to be intractable for T. The group T is parameterised by choice of N.
(3) Let p be a prime and Ea,b/Fp be an elliptic curve where |Ea,b| is prime. This group is parameterised by choice of

p, a, b.
(4) Let p be a prime and J be a Jacobian of a hyper elliptic curve over Fp with a prime number of reduced divisors.

The group is parameterised by p and the coefficients of the defining equation.

The index p encodes the group parameters. The instance generator selects a random member of the group family G by
picking the group parameters according to some suitable distribution. In general, we might not wish to use a uniform
distribution; for instance, one might wish to avoid primes of the form 2k + 1 in the case that we are working with a
subgroup of quadratic residues in Z∗

p. Thus, the DDHA challenge 〈p, g, ga, gb, gc〉 is completely general over the type
of group we are working in: p selects a member of the group family, g is a generator of that group, a, b, c are integers
chosen from [1..ord Gp], ga is the a-fold application of the group operation, and = is group identity.

We can express the DDHA as an observational equivalence in PPC. Let us define two expressions using the convention
that 〈p, g, ga, gb, gc〉 is shorthand for the term T(a, b, c) defined by the program:

1. 〈p, g〉 = IG(1�),
2. return 〈p, g, ga, gb, gc〉,
where � is the security parameter. With this notation in place, we define what it means for the group family G to be
observationally DDHA-secure.

Definition 50. The group family G is observationally DDHA-secure if

out(challenge, 〈p, g, ga, gb, gab〉|a, b ∈R [1..ord Gp])� out(challenge, 〈p, g, ga, gb, gc〉|a, b, c ∈R [1..ord Gp]),
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where the term 〈p, g, ga, gb, gab〉|a, b ∈R [1..ord Gp] denotes the term T(a, b, ab) with a, b chosen uniformly at
random from [1..ord Gp].

We note the DDHA is known to be easy for certain groups (such as G2). Thus, in order for the above equivalence to
hold, it is necessary that the instance generator does not select groups for which the DDHA is easy. However, as we have
previously noted, the instance generator can select groups within the group family according to arbitrary distributions
and, thereby, avoid easy cases.

The following theorem validates our attempt to express the DDHA in PPC by asserting that the assumption of being
observationally DDHA-secure is precisely the DDHA.

Theorem 51. The DDHA holds for the group family G iff G is observationally DDHA-secure.

Proof. A special case of Theorem 40. �

7.5. The semantic security of El Gamal encryption

We now proceed to give an example of the use of PPC to establish properties of protocols. In particular, we will
show that the semantic security of El Gamal encryption is equivalent to the Decision Diffie–Hellman assumption. We
start by describing the El Gamal encryption scheme [28].

Definition 52. Let · denote the group operation and = denote group equality. An El Gamal encryption scheme is a
triple 〈G, E, D〉 of probabilistic poly-time algorithms such that:

(1) The key generating algorithm G on input 1k , outputs a public key e = 〈p, g, ga〉 and a private key d = a where
〈g, p〉 ∈ IG(1k), a ∈R [1..ord Gp].

(2) An encryption algorithm E that, on input, e = 〈p, g, ga〉 and m, outputs 〈gb, m · gab mod p〉 as the ciphertext
(where b ∈R [1..ord Gp]).

(3) A decryption algorithm D that, given ciphertext c = 〈k, c′〉 and decryption key d, computes c′/kd . To see why this
works, we note that k = gb, c′ = m · gab mod p, and d = a for some a, b, m. Then

c′

kd
= m · gab

gba = m · gab

gab
= m.

In order to show that El Gamal is semantically secure given the Decision Diffie–Hellman assumption, we will derive
the assertion that El Gamal is an observationally indistinguishable encryption scheme from an assertion expressing the
DDHA. In particular, we will derive the observational equivalence of

�(internal).out(internal, pkey(G(1�))) | in(internal, 〈p, g, ga〉).
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).
out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉 | b ∈R [1..ord Gp]) (LEG)

and

�(internal).out(internal, pkey(G(1�))) | in(internal, 〈p, g, ga〉).
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).
out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m1 · gab〉〉 | b ∈R [1..ord Gp]) (REG)

from the assertion that

out(challenge, 〈p, g, ga, gb, gab〉 | a, b ∈R [1..ord Gp])
� out(challenge, 〈p, g, ga, gb, gc〉 | a, b, c ∈R [1..ord Gp]). (DDHA)

(From Section 7.4 we know that this second assertion is an expression of the DDHA.)

Main Theorem 53. If the Decision Diffie–Hellman assumption holds for a group family G, then El Gamal encryption
using G is semantically secure against adaptive chosen plaintext attacks. Furthermore, we can derive, using just the



158 J.C. Mitchell et al. / Theoretical Computer Science 353 (2006) 118 –164

proof rules for PPC given in Fig. 3, the assertion in PPC that El Gamal encryption using G is semantically secure (i.e.,
the equivalence LEG�REG) from the assertion in PPC that the DDHA holds for G (i.e., the equivalence DDHA).

The proof is fairly straightforward. We will start with the equivalence DDHA and build up the equivalence be-
tween LEG and REG by systematically transforming the term that outputs a challenge instance of the DDHA. In
particular, we note that, with the exception of the message-pair, the challenge instance 〈p, g, ga, gb, gc〉 looks almost
like a challenge instance of El Gamal’s semantic security (which is a tuple 〈〈p, g, ga〉, �, 〈gb, gc〉〉) where the message
being encrypted is gc divided by gab. Thus, it seems reasonable to assume that we can systematically transform the
DDHA challenge instance into a challenge instance for El Gamal’s semantic security (where the messages are provided
by the adversary).

Before we give the formal proof, we will give an informal mathematical proof showing that DDHA implies the
semantic security of El Gamal encryption. This mathematical argument will be formalised in PPC and constitute the
first half of the formal proof. We start by assuming that the 〈p, g, ga, gb, gc〉 is computationally indistinguishable from
the 〈p, g, ga, gb, gab〉 (where p, g are given by the instance generator and a, b, c are chosen uniformly at random
from [1..ord Gp]). We will use � to denote computational indistinguishability. We recall to the reader’s attention that
computational indistinguishability is transitive. So we have that

〈p, g, ga, gb, gab〉 � 〈p, g, ga, gb, gc〉.
Since the two tuples are computationally indistinguishable, it follows that

∀m0, m1 ∈ Gp : 〈p, g, ga, m0, m1, g
b, gab〉 � 〈p, g, ga, m0, m1, g

b, gc〉,
i.e., if no algorithm can distinguish between 〈p, g, ga, gb, gab〉 and 〈p, g, ga, gb, gc〉, then no algorithm can do so
given two arbitrary elements of the group. Furthermore, since g is a generator of the group it follows that m0 · gab =
gr+ab. Since a, b are chosen uniformly at random from [1..ord Gp], it follows that gr+ab = gc′

for randomly chosen
c′ ∈ [1..ord Gp]. Thus we get that for all m0, m1 ∈ [1..ord Gp]

〈p, g, ga, m0, m1, g
b, gab〉 � 〈p, g, ga, m0, m1, g

b, m0 · gab〉.
In other words, since g is a generator we can view gc as gab multiplied by some arbitrary message. Similarly, we can
show that for all message m0, m1

〈p, g, ga, m0, m1, g
b, gab〉 � 〈p, g, ga, m0, m1, g

b, m1 · gab〉,
whence the transitivity of � yields

〈p, g, ga, m0, m1, g
b, m0 · gab〉 � 〈p, g, ga, m0, m1, g

b, m1 · gab〉
for all message m0, m1. This claim is (almost) the assertion that El Gamal encryption is semantically secure since
the tuple contains the public key 〈p, g, ga〉, the message pair 〈m0, m1〉 and the encryption of one of the messages
〈gb, mi · gab〉. In the formal proof, we will continue from this point using various structural rules in PPC to convert
this assertion to an assertion of the right form.

Proof. We start by assuming that DDHA is true, i.e., that

out(challenge, 〈p, g, ga, gb, gab〉 | a, b ∈R [1..ord Gp])
� out(challenge, 〈p, g, ga, gb, gc〉 | a, b, c ∈R [1..ord Gp])

holds. For each m0 ∈ Gp we can use (EQ2) to obtain that

out(challenge, 〈p, g, ga, m0, gb, m0 · gab〉 | a, b ∈R [1..ord Gp])
� out(challenge, 〈p, g, ga, m0, gb, m0 · gc〉 | a, b, c ∈R [1..ord Gp]).

Furthermore, since m0 = gd for some choice of d, it follows that the term m0 · gc and the term gc (with c chosen
uniformly at random in [1..ord Gp]) both induce the same distribution on elements of the group. Thus

∀ m0 ∈ Gp : out(challenge, 〈p, g, ga, m0, gb, m0 · gc〉 | a, b, c ∈R [1..ord Gp])
� out(challenge, 〈p, g, ga, m0, gb, gc〉 | a, b, c ∈R [1..ord Gp]).
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Then, (TRN) (transitivity) gives us

∀ m0 ∈ Gp : out(challenge, 〈p, g, ga, m0, gb, m0 · gab〉 | a, b ∈R [1..ord Gp])
� out(challenge, 〈p, g, ga, m0, gb, gc〉 | a, b, c ∈R [1..ord Gp]).

Another application of (EQ2) gives us

∀m0, m1 ∈ Gp : out(challenge, 〈p, g, ga, m0, m1, gb, m0 · gab〉|a, b ∈R [1..ord Gp])
�out(challenge, 〈p, g, ga, m0, m1, gb, gc〉|a, b, c ∈R [1..ord Gp]). (†)

Using a similar argument to the one used to establish (†) we can show

∀m0, m1 ∈ Gp : out(challenge, 〈p, g, ga, m0, m1, gb, m1 · gab〉 | a, b ∈R [1..ord Gp])
�out(challenge, 〈p, g, ga, m0, m1, gb, gc〉 | a, b, c ∈R [1..ord Gp]). (‡)

Then, using (SYM) (symmetry) and (TRN), we can combine (†) and (‡) to obtain

∀m0, m1 ∈ Gp : out(challenge, 〈p, g, ga, m0, m1, gb, m0 · gab〉|a, b ∈R [1..ord Gp])
�out(challenge, 〈p, g, ga, m0, m1, gb, m1 · gab〉|a, b ∈R [1..ord Gp]). (�)

Until this point, we have taken advantage of various mathematical facts that follow from working with Gp. In particular,
being in Gp allows us to show that gc is just gab times some random string R. We can then multiply the gc and gab terms
by some message since the distribution induced by gc is the same as that induced by gab. Multiplying this message into
gc and gab is effectively the same as multiplying gab by one of two random messages. Thus far, we have formalised in
PPC the informal mathematical arguments given just prior to the formal proof.

We have obtained an observational equivalence that looks almost like the observational equivalence stating the
semantic security of El Gamal encryption. In particular, we have an observational equivalence that states the tuple
consisting of the elements of an El Gamal public key, the elements of a message-pair, and the elements of the encryption
of the first message is computationally indistinguishable from a tuple consisting of the elements of the same El Gamal
public key, the elements of the same message-pair, but the elements of an encryption of the second message. This is
almost precisely the definition of the semantic security of El Gamal (in terms of indistinguishability of encryptions)
except that the challenge needs to consist of three tuples encoding, respectively, the public key, the message-pair, and
the ciphertext. We also need those elements of the expression that allow an adversary to provide the message-pair after
seeing the public key. We can finish the proof by repeatedly using (PUL) to ‘pull out’ arguments that we want to provide
via channels. In particular, we will pull out the message pair and provide it on an input that waits for a suitable output
by an adversary. We will also make use of (PREN) to ensure that the channel-names in the derived expression match
the channel-names used in our statement of semantic security (see Theorem 47).

We now complete the derivation. First, we get the challenge into the right form using (EQ2) on (�):

∀ m0, m1 ∈ Gp :
out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉 | a, b ∈R [1..ord Gp])

�out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m1 · gab〉〉 | a, b ∈R [1..ord Gp])
Using proof rule (PUL) and (PREN) we can obtain the message-pair from a context

in(msg, 〈m0, m1〉).
out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉|a, b ∈R [1..ord Gp])

�
in(msg, 〈m0, m1〉).

out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m1 · gab〉〉|a, b ∈R [1..ord Gp]).
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The context out(pub, 〈〈p, g, ga〉, 1�〉).[] where the term 〈p, g, ga〉 is shorthand for the term U(a) defined as

1. 〈p, g〉 = IG(1�),
2. return 〈p, g, ga〉
and an application of (CON) allow us to publish the security parameter and public key:

out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).
out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉|a, b ∈R [1..ord Gp])

�
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).

out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m1 · gab〉〉|a, b ∈R [1..ord Gp]).
Finally, another application of (PUL), followed by an application of (CON), allows us to ‘pull’ out the p, g, a from the
term, and then (via (CON)) provide p, g, a by making use of the key generator—which will generate the pair consisting
of 〈p, g, ga〉 (the public key) and a (the private key). Since the challenge transmitted requires only the value ga and
does not require a, we do not have to transmit the private key. To ensure security, we also use (CON) to wrap up this
communication in a private channel.

�(internal).out(internal, pkey(G(1�))) | in(internal, 〈p, g, ga〉).
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).

out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉 | b ∈R [1..ord Gp])
�

�(internal).out(internal, pkey(G(1�))) | in(internal, 〈p, g, ga〉).
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).

out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m1 · gab〉〉 | b ∈R [1..ord Gp]).
But this equivalence is precisely the statement that El Gamal encryption is semantically secure (see Theorem 47).
Hence, given the DDHA we can show that El Gamal encryption is semantically secure. �

We draw the reader’s attention to the fact that the proof, in PPC, of the semantic security of El Gamal encryption from
the Decision Diffie–Hellman assumption can be split into two distinct parts. In the first part, we used mathematical
facts about the group operation · in the group Gp to transform the DDHA challenge 〈p, g, ga, gb, gc〉 into a tuple
〈p, g, ga, m0, m1, g

b, mi · gab〉 that almost looked like a challenge to the semantic security of El Gamal encryption.
Furthermore, the key fact about Gp used was that g was a generator of Gp whence for some c it followed that m·gab = gc.
The other facts used were trivial facts about the group product (i.e., its associativity) and pairing (i.e., �i (〈m1, m2〉 =
mi)). The remainder of the proof consisted of purely structural transformations on the expressions. We suggest that
proofs in PPC, in general, can be separated into a large sequence of structural transformations required to achieve the
right shape of the protocol, coupled with a few transformations whose soundness is grounded in mathematical facts
about the special nature of the problem. These special facts can be represented with special hypotheses (like DDHA)
and special rules (such as the equation m·gab with gc). This proof could be rendered entirely mechanical by axiomatising
in PPC important mathematical properties about groups that are relevant for this proof and using these rules directly
rather than invoking (EQ2). For example, we could formalise the mathematical fact that 〈ga〉 � 〈ga · m〉 (where g is a
group generator, a ∈R Gp, m is some constant in the group, and ga and · are group operations) as the axiom

∀m ∈ Gp : out(c, ga | a ∈R Gp)�out(c, ga · m | a ∈R Gp). (GRP)

Taken with the structural rules of Fig. 3 this would allow us to derive El Gamal’s semantic security from the DDHA in
an entirely mechanical manner. This observation also draws up the intriguing possibility that we can work ‘backward’
from a statement of a desired property to some conditions that must hold. In particular, we could have started with the
statement of El Gamal encryption’s semantic security and reversed the proof’s structural transformations to obtain the
DDHA—in fact, we will do something analogous to this in proving the next theorem. In general, we hope to be able
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to precisely state the security conditions that need to hold of the primitives for a given protocol to satisfy a desired
security property.

Main Theorem 54. If El Gamal encryption using the group family G is semantically secure against adaptive chosen
plaintext attacks, then the Decision Diffie–Hellman assumption holds for G. Furthermore, we can derive, using just the
proof rules for PPC given in Fig. 3, the assertion in PPC that the DDHA (i.e., the equivalence DDHA) holds for G from
the assertion in PPC that El Gamal encryption using G is semantically secure (i.e., the equivalence LEG � REG).

Proof. Since we assume that El Gamal encryption using the group family G is semantically secure, it follows that

�(internal).out(internal, pkey(G(1�))) | in(internal, 〈p, g, ga〉).
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).

out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m0 · gab〉〉 | b ∈R [1..ord Gp]) (LEG)

is observationally equivalent to

�(internal).out(internal, pkey(G(1�))) | in(internal, 〈p, g, ga〉).
out(pub, 〈〈p, g, ga〉, 1�〉).in(msg, 〈m0, m1〉).

out(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, m1 · gab〉〉|b ∈R [1..ord Gp]). (REG)

But then, using the rule (CON) we obtain that

�(pub).�(msg).�(challenge).LEG | in(pub, 〈p, g, ga〉).
out(msg, 〈1, gr〉|r ∈R [1..ord Gp]).in(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, gc〉〉).

out(ddh, 〈p, g, ga, gb, gc〉)
�

�(pub).�(msg).�(challenge).REG | in(pub, 〈p, g, ga〉).
out(msg, 〈1, gr〉|r ∈R [1..ord Gp]).in(challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, gc〉〉).

out(ddh, 〈p, g, ga, gb, gc〉) (†)

It is here that we make use of the fact that all the channel names of LEG and REG are bindable. By making them
private, we create expressions with only one public action. We then use the fact that the only observables the left-hand
side and right-hand side expressions in (†) can generate are on the output on the channel named ddh and look like
DDHA-challenge tuples. The final output of the left-hand side expression is the tuple 〈p, g, ga, gb, 1 · gab〉 where p, g

are chosen by the El Gamal instance generator and a, b are chosen at random from [1..ord Gp]. For the right-hand
side we get the tuple 〈p, g, ga, gb, gr+ab〉 where r is chosen at random from [1..ord Gp]. Since g is a generator of Gp,
gr+ab is a random element of Gp. Finally, both the right-hand side and the left-hand side are scheduler-insensitive
processes since, at each stage of evaluation, only one possible action can occur. As a consequence, we can use proof
rule (NU) to ‘fold-in’ the private portions into the outputs on the channel ddh and construct an expression that only
outputs a DDHA-challenge tuple. That is to say, we can obtain the equivalence:

out(d, 〈p, g, ga, gb, gab〉 | 〈p, g〉 ∈ IG(1�), a, b ∈ [1..ord Gp])
� out(d, 〈p, g, ga, gb, gc〉 | 〈p, g〉 ∈ IG(1�), a, b, c ∈ [1..ord Gp]),

which is precisely the statement of the DDHA. �

This proof is interesting in two respects. The first is that we use a context to create a semantic security challenge of
a particular form. We then use the fact that private channels are invisible to ‘collapse’ the entire process into a term. In
general, this technique will be useful in going from long expressions to shorter expressions.
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8. Conclusion and future directions

The language presented in this paper allows us to define probabilistic processes which communicate over a network
that gives an adversary access to those communications. Our process language uses a separate term language to actually
perform computations (the expression in(c, x).out(d, x + 2), roughly speaking, computes the function x +2 but all the
computation is done by the termx+2). One might argue that such a distinction is not particularly necessary since the pres-
ence of polynomially bounded iteration in our process language should make it expressive enough for probabilistic poly-
time functions even without a dedicated term language. This is certainly possible and we leave it to the interested reader
to formalise the necessary constructions and establish properties equivalent to the ones shown here. One major advantage
of our approach is that we simplify the proof of the time bound on process evaluation since we do not have to establish that
computation be bounded by poly-time; rather we can stipulate that the term language we use has the desired poly-time
property. Additionally, we more accurately model the situation from the point of view of an adversary since the sources
of computation (terms) are invisible to an adversary; only the information flows can be accessed by an attacker.

One significant result is to show that expressions written in our language are all bounded by polynomial time. We
also proposed a definition of observational equivalence for probabilistic programs that is based on the view that large
differences in probability are easier to observe than small differences. When we distinguish between “large” and “small”
using asymptotic behaviour, we arrive at a definition of observational equivalence that coincides with a standard concept
from cryptography, namely, indistinguishability by polynomial-time statistical tests. While we have not fully explored
the consequences of this definition, we believe it may shed new light on other basic concepts in cryptography, such as
the distinction between semantically secure and non-malleable cryptosystems.

The steps taken in this paper form the beginning of a larger program that we hope to carry out over the next few years.
In part following the program established in the study of spi-calculus [3], we hope to develop methods for reasoning
about observational equivalence and use these methods to establish security properties of various protocols. In this
paper we also presented a reasoning mechanism inspired by the standard notion of a bisimulation between processes
due to Milner [49]. While this mechanism has proved sufficient to establish some preliminary equivalences, much work
needs to be done in developing a range of techniques sufficiently expressive to deal with the non-trivial problems this
approach was intended to handle. In particular, our bisimilarity relation is only one of an assortment of tools that we
hope to use to demonstrate equivalences. While bisimilarity is useful for showing that the distributions induced on
observables are identical (i.e., that two expressions are information-theoretically indistinguishable), there are many
cryptographically interesting constructs that are only computationally indistinguishable. It stands to reason that we will
need a proof technique capable of showing such equivalences directly.

Finally, we applied our calculus to some simple and well-known cryptographic facts. First, we showed that a
fundamental cryptographic notion, that of a pseudorandom number generator, is expressible in our language in a fairly
natural way. In future, we hope to demonstrate that a range of other foundational cryptographic primitives, such as
pseudorandom function families, are all similarly expressible in our language. By capturing a variety of essential
cryptographic notions in our framework, we hope to lay the groundwork for a methodology by which we reason
‘backwards’ from a desired property of a particular protocol to the properties that the various primitives in the protocol
must possess in order to establish the desired protocol property. We expect some interesting foundational questions to
arise in the formulation of security properties such as authentication and secrecy.

Second, we provided a formal proof of the equivalence of the semantic security of El Gamal encryption and the
Decision Diffie–Hellman assumption. While this fact is well-known to the cryptographic community, it is tremendously
encouraging that we can offer a simple and entirely mechanical proof of a non-trivial cryptographic fact in our calculus.
In future, we hope to extend our toolkit of equivalences so that we may offer similarly mechanical formal proofs of
properties of more complex security protocols. It may also be possible to develop model-checking procedures along
the lines of these already explored for probabilistic temporal logics [21,35,36,38]. In fact, we hope to be able to develop
automated reasoning procedures for use in a network security setting using techniques developed in our study of the
properties of our process calculus.
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