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Abstract

The stress field in a periodically layered composite with an embedded crack oriented in the normal direction to the lay-
ering and subjected to a tensile far-field loading is obtained based on the continuum equations of elasticity. This geometry
models the 2D problem of fiber reinforced materials with a transverse crack. The analysis is based on the combination of
the representative cell method and the higher-order theory. The representative cell method is employed for the construction
of Green’s functions for the displacements jumps along the crack line. The problem of the infinite domain is reduced, in
conjunction with the discrete Fourier transform, to a finite domain (representative cell) on which the Born–von Karman
type boundary conditions are applied. In the framework of the higher-order theory, the transformed elastic field is deter-
mined by a second-order expansion of the displacement vector in terms of local coordinates, in conjunction with the equi-
librium equations and these boundary conditions. The accuracy of the proposed approach is verified by a comparison with
the analytical solution for a crack embedded in a homogeneous plane.

Results show the effects of crack lengths, fiber volume fractions, ratios of fiber to matrix Young’s moduli and matrix
Poisson’s ratio on the resulting elastic field at various locations of interest. Comparisons with the predictions obtained
from the shear lag theory are presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of cracked fiber reinforced materials received considerable attention. The analysis of this
problem is complicated due to the existence of the crack and the surrounding fiber and matrix constituents
that give rise to sharp stress gradients. The conventional homogenization approach in which the fiber rein-
forced material is replaced by an equivalent homogeneous anisotropic medium with am embedded crack is
not applicable since it cannot provide the exact stress distribution in the individual fiber and matrix phases
close to the crack (which is the region of interest).
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A possible approach to analyze the problem of cracked composites is the direct modeling of the material
microstructure by finite element method. This requires the modeling of the region that consists of the crack
and its surrounding fiber and matrix phases by large number of degrees of freedom. Consequently, the size
of the finite element grid that models this region is limited. Such an approach was employed by Reedy
(1984) who developed a three-dimensional finite element procedure for a monolayer with several fibers one
of which is broken. Alternatively, it is possible to increase the size of the finite element model by replacing
the fiber and matrix phases located at a sufficiently remote distance from the region of interest by a finite por-
tion of an equivalent anisotropic material. This approach was followed by Nedele and Wisnom (1994) who
considered a three-dimensional problem in which the composite material region of fine modeling consists
of six fibers surrounding a broken one.

The shear lag approximation was extensively employed to analyze the problem of a transverse crack embed-
ded in a fiber reinforced martial that is subjected to a far-field tensile loading. Contrary to the direct finite
element approach, this method enables the modeling of the cracked composite that extends over an infinite
domain. The shear lag analysis provides a good approximation of the average stresses in the fiber and matrix
regions in the case of a sufficiently large contrasts between the fiber/matrix elastic moduli. This method was
employed by Hedgepeth (1961), Hedgepeth and Van Dyke (1967), Dharani et al. (1983), Hikiami and Chou
(1990), Sastry and Phoenix (1993) and Beyerlin et al. (1996) for example. One of the limitations of the classical
shear lag method is the neglect of the axial stress in the matrix. An improved shear lag analysis was presented
by Ochai et al. (1991), Beyerlein and Landis (1999) and Landis and McMeeking (1999) for example, where the
axial stiffness of the matrix was taken into account. An extensive literature review of many papers which
employ the shear lag approach for the analysis of cracked composites was presented by Beyerlein and Landis
(1999).

In the present paper, an exact micromechanical analysis which is based on the elasticity theory is offered for
the prediction of the elastic field in a cracked fiber reinforced composite that is subjected to an arbitrary
remote loading. The present approach is capable to model the composite with infinite number of distinct fibers
without the simplifying assumptions of the shear lag theory. This approach models the cracked unidirectional
fiber reinforced material in the framework of a two-dimensional layout that consists of periodically alternating
layers which represent the fiber and matrix phases with an embedded crack oriented normal to the layering.
The crack problem is represented by a superposition of unit normal displacement jump solutions everyone of
which forms a Green’s function. It should be mentioned that in the framework of the shear lag model, the
crack problem was represented in the same manner, see Landis and McMeeking (1999) for example. The prob-
lem in which a unit displacement jump is applied in the infinite layered composite domain is solved by the
combined use of the representative cell method and the higher-order theory. In the representative cell method
(Nuller and Ryvkin, 1980; Ryvkin and Nuller, 1997), the infinite periodic domain is reduced to a finite domain
(representative cell) by the application of the discrete Fourier transform. The resulting boundary value prob-
lem for this representative cell is characterized by specific boundary conditions, referred to as the Born–von
Karman type, that relate the opposite sides of the cell. This representative cell problem (in the transformed
space) is solved by the higher-order theory according to which the displacements, which are governed by
the continuum equations, are expanded into second order in terms of local coordinates (Aboudi et al.,
1999). This combined approach was successfully employed for the solution of the fiber loss problem in peri-
odically fiber reinforced composites (Ryvkin and Aboudi, 2007). In the latter paper several references to the
representative cell method and higher-order theory can be found.

The paper is organized as follows. In Section 2, we start with the solution of the crack problem in a homo-
geneous material using the representative cell method and higher-order theory. This is followed by an illustra-
tion of the accuracy of the present approach by a comparison with the exact analytical solution. The solution
of the cracked composite problem is presented in Section 3. Here, extensive parametric study (different crack
tip locations, fiber volume fractions, elastic moduli ratios and Poisson’s ratios) of the stress field caused by the
applied tensile far-field loading is presented. In particular, the stress field ahead of the crack in the fiber and
matrix regions and the normal and shear stresses in the broken and neighboring fibers are presented. Further-
more, the validity of the shear lag approximation is examined by a comparison with the average stresses com-
puted from the obtained accurate stress distribution. The paper is concluded by several possible extensions of
the proposed approach.
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2. Solution of a crack in a homogeneous plane using the representative cell method and higher-order theory

In order to illustrate our approach for the analysis of a fiber reinforced material with a transverse crack, let
us consider first the problem of a crack embedded in an infinite elastic plane that is subjected to a tensile load-
ing. This problem of a Mode I Griffith crack is solved by combining the analyses of the representative cell
method and higher-order theory. The solution is achieved by constructing a set of Green’s functions as
described in the following.

2.1. Modeling of a crack in an infinite plane using unit jump Green’s functions

Consider a homogeneous elastic isotropic plane that is subjected to a remote tensile loading normal to a
traction-free crack under plane strain conditions, see Fig. 1(a) where identical material properties should be
a

b

c

Fig. 1. (a) A periodically layered composite with am embedded crack normal to the layering subjected to a tensile stress �r22 at infinity
[referred to the global coordinates (x1,x2)]. (b) The infinite plane is divided by repeating cells, labeled by (K1,K2) the size of every one of
which is L · H. (c) A characteristic cell (K1,K2) in which local coordinates ðx01; x02Þ are introduced.
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attributed to both fiber and matrix constituents. The crack region �a 6 x1 6 a is divided into N segments
whose length is D = 2a/N, on everyone of which a unit displacement jump is applied. The location of the mid-
dle point of each segment is denoted by xi

1, i = 1, . . . ,N. As a result, N elastic field distributions are generated.
Let Gðxi

1; x
j
1Þ denote the normal stress r22 at x1 ¼ xi

1 and x2 = 0 caused by the application of the unit displace-
ment jump at segment j. In order to model a traction-free surface of a crack in the region �a 6 x1 6 a these
Green functions are superposed in the following form:
XN

i¼1

ciGðxi
1; x

j
1Þ ¼ ��r22; j ¼ 1; . . . ;N ð1Þ
This forms a linear system of N algebraic equations for the determination of the coefficients ci, i = 1, . . . ,N. It
should be noted that for the present Mode I problem, symmetry guarantees the vanishing of the shear traction
along the crack’s line. Once these coefficients have been determined, the elastic field U(x1,x2) at any point of
the cracked plane can be determined as follows:
Uðx1; x2Þ ¼
XN

i¼1

ciUiðx1; x2Þ þ U 0ðx1; x2Þ ð2Þ
where Ui(x1,x2) is the elastic field that generated at point (x1,x2) by the application of the displacement jump
at segment i and U0(x1,x2) is the corresponding elastic field at this point generated by the applied loading at
infinity. It should by mentioned that in the framework of the shear lag theory, similar approach to the crack
modeling by the construction of Green’s functions was employed, see Sastry and Phoenix (1993) for example.

2.2. The determination of Green’s functions

The determination of these Green’s functions is obtained by the combined use of the representative cell
method and higher-order theory. In accordance with the representative cell method the homogeneous plane
is viewed as an assemblage of bonded identical cells labeled by the two indices (K1,K2) where
K1,K2 = 0,±1, ±2, . . . , see Fig. 1(b) in which, as mentioned above, the existence of the fibers should be
ignored. The infinite plane is described with respect to global coordinates (x1,x2). In addition, in each cell local
coordinates ðx01; x02Þ are introduced whose origin is located in its center, see Fig. 1(c). The elastic field generated
by a unit displacement jump in cell (0,0) is sought. It is applied along the segment �D=2 6 x01 6 D=2 at
x02 ¼ 0. The formulation of this plane problem is presented as follows.

In the absence of body forces, the equilibrium equations in any cell (K1,K2) are given by
½rjk;k�ðK1;K2Þ ¼ 0; j; k ¼ 1; 2; K1;K2 ¼ 0;�1;�2; . . . ð3Þ
where rðK1;K2Þ
jk are the stress components. For an elastic material they are given by
½rjk�ðK1;K2Þ ¼ Cjklm½�lm�ðK1;K2Þ ð4Þ
where Cjklm the elements of the stiffness tensor of the material and �
ðK1;K2Þ
jk are the strain tensor components.

The strains are related to the displacement gradients in the standard form
½�jk�ðK1;K2Þ ¼ 1

2

ouj

oxk
þ ouk

oxj

� �ðK1;K2Þ

ð5Þ
In addition, continuity of displacements and tractions between adjacent cells should be imposed. Thus,
uj x01 ¼
L
2
; x02

� �� �ðK1;K2Þ

� uj x01 ¼ �
L
2
; x02

� �� �ðK1þ1;K2Þ

¼ 0; �H
2
6 x02 6

H
2

ð6Þ

uj x01; x
0
2 ¼

H
2

� �� �ðK1;K2Þ

� uj x01; x
0
2 ¼ �

H
2

� �� �ðK1;K2þ1Þ

¼ 0; � L
2
6 x01 6

L
2

ð7Þ
and
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r1j x01 ¼
L
2
; x02

� �� �ðK1;K2Þ

� r1j x01 ¼ �
L
2
; x02

� �� �ðK1þ1;K2Þ

¼ 0; �H
2
6 x02 6

H
2

ð8Þ

r2j x01; x
0
2 ¼

H
2

� �� �ðK1;K2Þ

� r2j x01; x
0
2 ¼ �

H
2

� �� �ðK1;K2þ1Þ

¼ 0; � L
2
6 x01 6

L
2

ð9Þ
where j = 1,2,3. This formulation is given for a generalized plane deformation case, but for the present case of
a plane strain problem j = 1,2.

The applied unit displacement jump in the x02-direction at the segment �D=2 6 x01 6 D=2 at x02 ¼ 0 can be
represented by the relations
u1ðx01; x0þ2 Þ � u1ðx01; x0�2 Þ
� �ðK1;K2Þ ¼ 0; �D

2
6 x01 6

D
2

ð10Þ

u2ðx01; x0þ2 Þ � u2ðx01; x0�2 Þ
� �ðK1;K2Þ ¼ dK1;0dK2;0; �D

2
6 x01 6

D
2

ð11Þ
where dj,k is the Kronecker delta.
The formulated problem, Eqs. (3)–(11), for infinite plane is reduced to a single representative cell problem

by the application of the double discrete Fourier transform. This provides the transformed jth component of
the displacement, for example, in the form:
ûjðx01; x02;/1;/2Þ ¼
X1

K1¼�1

X1
K2¼�1

uðK1;K2Þ
j ðx01; x02Þ exp½iðK1/1 þ K2/2Þ� ð12Þ
As a result, we obtain a representative cell problem for the transforms of the field variables in the finite region
�L=2 6 x01 6 L=2, �H=2 6 x02 6 H=2. The governing equations in this region that correspond to Eqs. (3)–
(11) are
r̂jk;k ¼ 0; j; k ¼ 1; 2 ð13Þ
r̂jk ¼ Cjklm�̂lm ð14Þ

�̂jk ¼
1

2

oûj

oxk
þ oûk

oxj

� �
ð15Þ

ûj x01 ¼
L
2
; x02;/1;/2

� �
� expð�i/1Þûj x01 ¼ �

L
2
; x02;/1;/2

� �
¼ 0; �H

2
6 x02 6

H
2

ð16Þ

ûj x01; x
0
2 ¼

H
2
;/1;/2

� �
� expð�i/2Þûj x01; x

0
2 ¼ �

H
2
;/1;/2

� �
¼ 0; � L

2
6 x01 6

L
2

ð17Þ
and
r̂1j x01 ¼
L
2
; x02;/1;/2

� �
� expð�i/1Þr̂1j x01 ¼ �

L
2
; x02;/1;/2

� �
¼ 0; �H

2
6 x02 6

H
2

ð18Þ

r̂2j x01; x
0
2 ¼

H
2
;/1;/2

� �
� expð�i/2Þr̂2j x01; x

0
2 ¼ �

H
2
;/1;/2

� �
¼ 0; � L

2
6 x01 6

L
2

ð19Þ

û1ðx01; x0þ2 ;/1;/2Þ � û1ðx01; x0�2 ;/1;/2Þ ¼ 0; �D
2
6 x01 6

D
2

ð20Þ

û2ðx01; x0þ2 ;/1;/2Þ � û2ðx01; x0�2 ;/1;/2Þ ¼ 1; �D
2
6 x01 6

D
2

ð21Þ
where all field variables in the transform domain (hat-quantities) form complex quantities. Eqs. (16)–(19) refer
to as the Born–von Karman type boundary conditions. It is readily seen that one needs to solve Eqs. (13)–(21)
for the representative cell where the identity of the cell (K1,K2) disappeared.

The solution of this problem in the transform domain is carried by employing the higher-order theory that
was described by Aboudi et al. (1999) and was successfully employed by Ryvkin and Aboudi (2007) for the
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solution of fiber loss problem. In the framework of this theory, the representative cell domain
�L=2 6 x01 6 L=2, �H=2 6 x02 6 H=2 is divided into rectangular subcells, Fig. 1(c), in everyone of which
the transformed displacements are represented by a second-order polynomial. The transformed equilibrium
equation and displacements and tractions continuity conditions between the subcells are imposed in the aver-
age (integral) sense.

Once this solution has been achieved, the actual elastic field can be readily determined at every point of any
desired cell (K1,K2) of the infinite plane by the inverse transform formula
Fig. 2.
betwee
analyt
uðK1;K2Þ
j ðx01; x02Þ ¼

1

4p2

Z p

�p

Z p

�p
ûjðx01; x02;/1;/2Þ exp½�iðK1/1 þ K2/2Þ�d/1 d/2 ð22Þ
In practice, the solution of Eqs. (13)–(21) is determined for a spectrum of �p 6 /1 6 p, �p 6 /2 6 p and the
double integrals in (22) are approximated by the Gauss numerical integration (say), yielding
uðK1;K2Þ
j ðx01; x02Þ �

1

4p2

XM1

m1¼�M1

XM2

m2¼�M2

wm1;m2
ûjðx01; x02; ð/1Þm1

; ð/2Þm2
Þ

� exp½�iðK1ð/1Þm1
þ K2ð/2Þm2

Þ� ð23Þ
where ð/1Þm1
, ð/2Þm2

are the Gauss roots and wm1;m2
are the corresponding weighting factors.

In Fig. 2, a comparison between the present approach and the exact analytical solution (see Sneddon, 1951,
for example) for a crack embedded in an infinite homogeneous elastic plane that is subjected to a remote ten-
sile loading �r22 is presented. Both the stress r22(x1,x2 = 0) and the opening displacement u2 (x1,x2 = 0) (which
has been normalized with respect to the shear modulus l of the material) at the crack plane are shown. It is
readily observed that excellent agreements between the two solutions exists. The present solution was achieved
by a discretizing the representative cell into 50 · 4 subcells and by employing 64 Gauss points of integration.
The 50 subcells divide the interval �L=2 6 x01 6 L=2 along the crack, whereas the 4 subcells divide the inter-
val �H=2 6 x02 6 H=2. It should be noted that square subcells have been employed so that H/L = 0.08. The
present approach for the solution of the problem for an infinite domain requires for each pair (/1,/2) the solu-
tion of a system of 50 · 4 · 24 linear algebraic sparse equations which is obtained from the higher-order
theory.

As was mentioned above, the crack line is divided into several short intervals which corresponds to the sides
of the subcells of the higher-order theory. The actual crack is generated by a superposition of the small cracks
defined over these intervals. Since the higher-order theory analysis is based on averaged field quantities, the
obtained excellent agreement with the analytical solution shown in Fig. 2 can be expected. This fact can be
explained by the results reported by Kachanov (1985, 1987) who considered the problem of several interacting
A crack of length 2a/L = 1 in a homogeneous plane subjected to a tensile normal stress loading �r22 at infinity. Comparisons
n the normal stress r22 and displacement u2 along the plane of the crack x2 = 0 as predicted by the present approach and the exact

ical solution.
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cracks embedded in a homogeneous plane. He found that an analysis based on averaged stresses provides
accurate results.
3. Crack in a fiber reinforced composite

The analysis of fiber reinforced composites with a transverse crack as shown in Fig. 1(a), in which the
widths of the fiber and matrix are denoted by df and dm, respectively, is carried out in the same manner as
for a crack in an infinite homogeneous plane. The fiber and matrix constituents are assumed to be isotropic
with Young’s moduli and Poisson’s ratios given by: Ef, Em, mf and mm. This problem represents a two-dimen-
sional model of a unidirectional fiber reinforced composite with broken fibers. In the case of a homogeneous
plane, both dimensions of the representative cell (L and H) defined by the translational symmetry of the plane
were arbitrary. In the present case, however, the translational symmetry in the x1-direction is determined by
the periodic fiber arrangement. It is convenient to locate the vertical boundaries of the cells (K1,K2) at the mid-
dle line between the fibers as shown in Fig. 1(b). In addition, since each cell (K1,K2) will include two types of
materials (fiber and matrix) the stiffness matrix Cjklm which is independent on (K1,K2) is not uniform within
the cells. Accordingly, the representative cell in the transform domain is divided into subcells. The fibers are
incorporated by a suitable filling of the subcells by the their material properties. It should be noted that in the
case of a crack in a homogeneous plane all Green’s functions calculated from applied displacement jumps at
different segments are identical except for a shift in the x1-direction. In the presence of the fibers this property
does not exist. Consequently, one has to calculate all these Green’s functions that correspond to displacement
jumps applied over all segments. Furthermore, in the present case of fiber reinforced composites, the average
far-field stress �r22 is redistributed in the fiber and matrix constituents. The exact expressions for the fiber and
matrix far-field stresses can be determined in terms of the material and geometrical properties of the fiber and
matrix phases. These expressions can be well approximated in conjunction with the mixture’s law by
rfð1Þ
22 ¼ Ef

E�
�r22; rmð1Þ

22 ¼ Em

E�
�r22 ð24Þ
where E�2 ¼ ðd fEf þ dmEmÞ=ðd f þ dmÞ being the effective Young’s modulus of the (uncracked) doubly periodic
layered composite in the x2-direction. Consequently, Eq. (1) takes the form
XN

i¼1

ciGðxi
1; x

j
1Þ ¼

�rfð1Þ
22 in the fiber region

�rmð1Þ
22 in the matrix region

(
ð25Þ
with j = 1, . . . ,N.
Several distinct situations must be addressed. Consider first the case in which the crack is located within the

cell (K1 = 0,K2 = 0) (i.e., 2a < L). Here the number of Green’s functions NG is equal to the number of seg-
ments, namely NG = N = 2a/D. In the extreme case of a crack extending over the entire cell (i.e., 2a = L),
NG = N = L/D. On the other hand, when the crack extends beyond this cell (i.e., 2a > L) the number of
Green’s functions is still equal to NG = L/D and N = 2a/D. This is because due to the translational symmetry
of the composite the following equality holds
Gðxi
1; x

j
1Þ ¼ Gðxi

1 þ nL; xj
1 þ nLÞ ð26Þ
where n = 0,±1,±2, . . . Thus any value of Green’s function outside the repeating unit cell can be expressed in
terms of its values within the cell (K1 = 0,K2 = 0).

It should be emphasized that the present investigation, based on a continuum approach, enables the deter-
mination of the elastic field anywhere in the fiber and matrix regions without the utilization of any simplifying
assumption.

Fig. 3 exhibits the normal stress r22 along the crack line x2 = 0 for three different cases in all of which the
fiber volume fraction vf = df/L = 0.48 and the ratio between the fiber and matrix Young’s moduli is Ef/
Em = 10. The stresses are induced by the application of a remote average normal stress �r22. The Poisson’s
ratios of the fiber and matrix, here and in all following cases unless otherwise mentioned, are mf = mm = 0.2.
In Fig. 3(a), the normal stress is shown for a cracked fiber (intact matrix) in cell (K1 = 0,K2 = 0) in which
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Fig. 3. The normal stress variation along the crack line x2 = 0 of the cracked fiber reinforced material subjected to a remote stress �r22 at
infinity. (a) Cracked fiber (intact matrix), (b) half matrix broken, (c) matrix broken.
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the length of the crack is 2a = df. Fig. 3(b) and (c) show the cases of half matrix broken (2a = L) and broken
matrix (2a = 2L � df), respectively. In all cases the singularity at the tip of the crack is well observed. In order
to explain the differences in the stress amplitudes near the crack tips in these three different cases, let us recall
that in the absence of a crack, the normal stress in the fiber is higher than the one induced in the matrix. In the
case Fig. 3(a), the crack is located within the fiber (strong material) and its tip is approaching the matrix (soft
material). In this case the stress singularity is known (Cook and Erdogan, 1972) to be stronger than that of a
crack terminated within a homogeneous material. This is in agreement with the results depicted in Fig. 3(a)
and (b). In Fig. 3(c) the crack is within the matrix and its tip is approaching the fiber. Here the stress singu-
larity is known to be weaker than that in the homogeneous case. However, the contribution of the high remote
stress jump in the fiber results in a relatively high stress amplitude at the vicinity of the crack’s tip. Thus, as
shown in Fig. 3(c), the stress at the crack’s tip in the fiber, is higher than that in Fig. 3(b).

An examination of Fig. 3 reveals that the stress distribution within the fiber is not uniform. This is espe-
cially so for the fibers in vicinity of the crack. The maximum stress in the fiber is obtained at the fiber–matrix
interface that is closer to the crack tip. For the case of a composite with fiber volume fraction of vf = 0.48 and
Ef/Em = 10 with a half broken matrix shown in Fig. 3(b) for example, the ratio of the maximum stress rfðmaxÞ

22

to the average stress hrf
22i is 1.18. Hence the estimation of the composite’s strength based on the average

stress in the first unbroken fiber as it is done in the shear lag theory may significantly overestimate this
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property. It should be mentioned however that for lower values of fiber volume fractions the estimation of the
composite’s strength based on the average normal stress in the fiber is more reliable. Fig. 3 also shows the
expected result that the effect of the crack rapidly diminishes with the distance away from its tip along its
plane. This observation is in agreement with the results obtained by the shear lag theory (Hikiami and Chou,
1990).

The shear lag theory can predict the average normal stress in the fiber hrf
22i only. Therefore, it should inter-

esting to compare the shear lag prediction of hrf
22i with the present continuum approach. To this end, the

dependence of the normalized average stress in the fiber (referred to as stress concentration factor) is shown
in Fig. 4(a) against the matrix and fiber elastic moduli ratio Em/Ef for a fiber volume fraction of vf = 0.48. The
solid lines correspond to the present theory prediction in the cases of intact matrix, half broken matrix and
broken matrix. In the limiting case of a homogeneous material (Em/Ef = 1) the stress concentration factor
is given by the closed-form expression
a

Fig. 4.
matrix
Beyerl
of the
case o
hrf
22i

rfð1Þ
22

¼
Z aþbþdf

aþb

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

d f

þ 1

� �2

� a
d f

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

d f

� �2

� a
d f

� �2
s

ð27Þ
where b is the distance from the crack tip to the first unbroken fiber. For intact matrix, half broken matrix and
broken matrix b is equal to dm, dm/2 and 0, respectively. These limiting cases are indicated in Fig. 4(a) by
empty circles. Excellent agreements with Eq. (27) are obtained in the case of intact and half broken matrix.
In the case of a broken matrix the present analysis yields a somewhat lower value in this limiting case. This
can be attributed to the fact that the integration region in Eq. (27) includes a singularity which cannot be cap-
tured by the discretization.

Fig. 4(a) shows also the other limiting case of Em/Ef! 0. Here the classical shear lag theory of Hedgepeth
(1961) predicts the value of 4/3 which is in good agreement with our results for broken and half broken matrix.
Beyerlein and Landis (1999), who improved the classical shear lag model by accounting for the ability of the
matrix to carry tensile stresses, characterized the elastic properties and geometry of the fiber–matrix composite
by the single parameter: q = Emdm/Efdf. In the present analysis however, the complete set of parameters: Ef,
Em, mf, mm, df, dm are independently required. In Fig. 4(a), several data points provided by Beyerlein and Landis
(1999) for the case of intact and broken matrix are included. It should be mentioned that the present results
and Beyerlein and Landis (1999) data are in close agreement for the case of intact matrix. For the broken
matrix, on the other hand, the two approaches are in good agreement only for a relatively stiff fibers.

As was previously mentioned, the use of the average normal stress in the fiber may overestimate the com-
posite’s predicted strength. Therefore, results shown in the following present the maximum normal stress in
the fiber. Fig. 4(b) presents the maximum normal stress in the unbroken fiber of a half broken matrix at
b

(a) The variation of the normalized average normal stress in the unbroken fiber against the ratio Em/Ef for the cases of intact
, half matrix broken and broken matrix. The symbols d, h, · and s show the classical shear lag theory prediction, the prediction of
ein and Landis (1999) for broken and intact matrix, and the limiting analytical prediction of Eq. (27), respectively. (b) The variation
normalized maximum normal stress in the first unbroken fiber against the ratio Em/Ef for three values of fiber volume ratios in the
f a half broken matrix. The symbols s denote the limiting cases given by Eq. (28).
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the crack plane against the ratio Em/Ef, for fiber volume fraction vf = 0.04,0.48 and 0.88. Also shown in this
figure are the limiting homogeneous case, Ef = Em, for which
rfðmaxÞ

rfð1Þ
22

¼ 2aþ dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4adm þ d2

m

q ð28Þ
The figure shows that good agreement with the values obtained by this equation exists. As the fiber volume
fraction increases, the distance between the crack tip and points at which the stress is evaluated decreases.
As a result, and as it is seen in the figure, the small deviation from the analytical results increases as the volume
fraction increases. This also implies that for a given ratio Em/Ef, the maximum stress increases as the volume
fraction increases. As it can be observed from the figure, for small and moderate values of vf, the influence of
the moduli ratio is weak. For the higher value of vf a different behavior can be observed. The maximum stress
decrease with the fiber stiffness increase for small ratios Em/Ef can be attributed to the fact that under such
circumstances the deformation becomes less localized. Thus, large amount of matrix material involves in
the deformation and prevents the broken fiber displacement and crack opening.

The propagation of a transverse crack in a fiber reinforced material can be viewed as discrete process where
at each stage the crack advances through the fiber and certain part of the surrounding matrix. The amount of
the matrix which fails at each fracture event is unknown. This amount determines the correct location of the
crack tip in the static analysis of the crack in fiber reinforced composite. In the framework of the classical
shear lag theory, there are two possibilities for the assignment of the crack tip which are either at the end
of the fiber region (i.e., an intact matrix case) or at the end of matrix region (i.e., broken matrix case). It should
be noted that the difference between these two cases decreases with the increasing of the fiber–matrix elastic
moduli ratio. To this end, it is worthwhile to note (Cook and Erdogan, 1972), that the power of the stress
singularity in front of a crack embedded into a stiff material and terminating at the interface with a weak
one is stronger than �1/2 and weaker than this quantity when the order of the materials is reversed. As a
result, the stress intensity factor in the first case of a crack approaching the interface will tend to infinity,
and to zero in the second case. Consequently, a crack approaching the interface with a weak/stiff material will
be unstable/stable. The exact condition for the crack stability/instability was established by Nuller et al.
(2006). Based on this discussion, the actual crack tip has to be located somewhere within the matrix region.
In the improved shear lag analysis, Beyerlin et al. (1996) chose the location of the crack tip within the matrix
domain to be at distance L/3 from the center line of the first unbroken fiber. In the following results the value
of L/2 was adopted, thus forming a fiber reinforced composite with a half matrix broken.

It is well known that for a sufficiently long crack embedded in a homogeneous material the stress state in
the vicinity of the crack tip becomes self similar and proportional to the square root of the crack length.
Indeed, the normal stress r22 at distance b from the crack tip is given by
r22

rð1Þ22

¼ aþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2abþ b2

p �
ffiffiffiffiffi
a

2b

r
ð29Þ
It is important to establish such a property in the present case of a cracked fiber reinforced composite. To this
end, let us consider cracks of different lengths in which their tips are located in the middle distance between
two adjacent fibers thus forming the half matrix broken case. In Fig. 5, the normalized maximum stress in the
first intact fiber divided by the square root of the crack length are shown against the number of broken fibers
(which is equal to the normalized crack length: 2a/L) for Ef/Em = 20 and 100 and vf = 0.04. It is readily ob-
served that asymptotic values are rapidly achieved at about 10 broken fibers. For a reference, the homoge-
neous case, which is given by the exact expression in Eq. (29) with b = dm/2, is also shown by a solid line
exhibiting a similar behavior. The behavior shown in this figure for cracked fiber composites is in complete
agreement with the analytical results obtained from the shear lag theory (Dharani et al., 1983; Beyerlin
et al., 1996). It is also in agreement with the data obtained by the improved shear lag model of Beyerlein
and Landis (1999). It is worth mentioning that a similar saturation behavior was observed in a square hon-
eycomb cellar material (Huang and Gibson, 1991) which also forms a type of periodic composites.

Let us investigate next the behavior of the axial stress rf
22 in the fibers induced by the crack. Fig. 6(a) shows

the normalized axial stress due to a single broken fiber with a crack length 2a = L (i.e., a half matrix broken).



Fig. 5. The normalized maximum normal stress divided by the square root of the crack length against the number of broken fibers for
composites with half matrix broken and vf = 0.12. The solid shows the corresponding case of a cracked homogeneous plane Ef/Em = 1.
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The figure shows the induced stress along the broken fiber at x1 = df/2 and the maximum stresses in the next
two intact ones (i.e., at x1 = L � df/2 and x1 = 2L � df/2) in the case of vf = 0.12 and Ef/Em = 10. As was pre-
viously exhibited by Fig. 3, these maxima occur within the fiber at the fiber–matrix interfaces that are the near-
est to the crack tip. It is readily observed that the effect of the single fiber breakage is localized within a region
of about eight crack lengths. The stress in the broken fiber increases rapidly to its far-field value whereas in the
neighboring intact fibers, the stress concentration effect can be readily observed in front of the crack at x2 = 0.
A significant reduction in the stress concentration from the first to the second intact fiber takes place. Fig. 6(a)
exhibits the stress rf

22 in the first intact fiber at the fiber–matrix interface where the maximum is obtained (i.e.,
at x1 = L � df/2). It is interesting to show this stress at the second fiber–matrix interface of this intact fiber (i.e.
x1 = L + df/2). A comparison between the normal stresses at these two locations is shown in Fig. 6(b). It can
be immediately observed that the latter case there is a peculiar rise and fall in the fiber stress profile. This is in
agreement with the result of Beyerlein and Landis (1999) who obtained a similar behavior of the average axial
stress in the fiber in conjunction with their improved shear lag analysis for some parameter combination of the
composite.

The influence of Young’s moduli ratio Ef/Em on the normalized axial stress rf
22 along the fiber is examined

in Fig. 7 for vf = 0.12. Fig. 7(a) exhibits this stress along the broken fiber. As expected, the stress in the broken
fiber increases more slowly as its stiffness increases. The axial stress variation in the case of Ef/Em = 1 coincides
with the analytical solution for a crack embedded in a homogeneous plane. The axial stress variation in the
a b

Fig. 6. (a) The axial fiber stress variation along the fiber–matrix interface of the broken fiber (x1 = df/2), the first intact fiber (x1 =
df/2 + dm) and second intact fiber (x1 = 3df/2 + 2dm), see inset of Fig. 8(a). (b) A comparison between the axial fiber stress variation along
the fiber–matrix interface of the first intact fiber at x1 = L ± df/2.



a b

Fig. 7. The axial fiber stress variation along the fiber–matrix interface for several values of Ef/Em. (a) Fiber stress variation within the
broken fiber (x1 = df/2), (b) fiber stress variation within the first intact fiber (x1 = df/2 + dm), see inset of Fig. 8(a).
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first intact fiber, Fig. 7(b), is obtained at x1 = L � df/2. Here, the maximum value of stress increases as
Young’s moduli ratio Ef/Em increases and its decay becomes slower. This is due to the fact that a high mod-
ulus fiber carries a large portion of the far-field loading so that its breakage causes a more significant effect. It
is interesting that the stress variation in the homogeneous case Ef/Em = 1, which coincides with the analytical
solution, exhibits the peculiar non-monotonic behavior that was mentioned before.

It is important to study the induced shear stress r12 at the fiber–matrix interface due to the crack’s existence,
since it may provide information on the possibility of the debonding phenomenon. In Fig. 8, the normalized
shear stresses at the fiber–matrix interface along the broken fiber and along the first intact fiber are shown for
various values of Young’s moduli ratio Ef/Em and vf = 0.12. Recall that a half broken matrix case is consid-
ered in which the crack length 2a = df + dm, see Fig. 1(a). In the broken fiber case, Fig. 8(a), the shear stresses
at the interface exhibit a singular behavior caused by the contact of two different materials (Ef/Em 5 1) at the
traction-free crack face: x2 = 0. These singularities appear in very narrow regions in the form of steep varia-
tions which are not shown. In the homogeneous case (Ef/Em = 1), the singularity disappears and r12 = 0 at
x2 = 0. Here too, the resulting stresses as predicted by the present model coincide with the exact solution
for a crack in a homogeneous plane. In all cases, the shear stresses at the interface of the first intact fiber,
Fig. 8(b), start from zero at x2 = 0 due to the symmetry of the problem. It is interesting to note that the shear
a b

Fig. 8. The shear stress variation along the fiber–matrix interface for several values of Ef/Em. (a) Shear stress variation at the interface of
the broken fiber (x1 = df/2). (b) Shear stress variation at the interface of the first intact fiber (x1 = df/2 + dm).



Fig. 9. Color plot of the stress distribution in the region �2.5 6 x1/L 6 2.5, �2 6 x2/L 6 2 for a composite with a half matrix broken
characterized by Ef/Em = 10 and vf = 0.48. (a) Stress distribution of r22/r22, (b) stress distribution of jr12j/r22.
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stresses in both cases of broken and intact fibers exhibit a non monotonic behavior. As in the axial stress case,
the rate of the shear stress decay decreases as the Young’s moduli ratio Ef/Em increases. Fig. 8 shows that each
curve has its own maximum value at the vicinity of the points x2/L = 0.5 and x2/L = 1 for the broken and
intact fiber, respectively. It should be noted that the values of these maxima depend on Ef/Em ratio in a
non-monotonic manner. Consequently, an increase of Ef/Em ratio may lead to an increase or decrease of
the maximum shear stress (debonding stress) in the cracked composite.



a b

Fig. 10. (a) Comparison between the axial fiber stress variation along the fiber–matrix interface of the first intact fiber for different values
of the Poisson’s ratio of the matrix. (b) Comparison between the interfacial shear stress along the fiber–matrix interface of the first intact
fiber for different values of the Poisson’s ratio of the matrix.
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It should be noted that the resulting stresses induced in the matrix region between the broken and intact
fiber of the composite approach the ultimate value of the matrix stress rU

m for an externally applied loading
which is much less than the failure stress of the fiber rU

f (for glass fibers and epoxy matrix, for example,
rU

f ¼ 3:4 GPa and rU
m ¼ 70 MPa). The high stresses in the matrix will be blunted by some form of local yield-

ing or debonding over several fiber diameters.
Color plots that present the normal stress r22 and the absolute value of the shear stress jr12j are shown in

Fig. 9 in the region �2.5 6 x1/L 6 2.5, �2 6 x2/L 6 2 for a composite with a half matrix broken characterized
by vf = 0.48 and Ef/Em = 10. It should emphasized that the present analysis provides the stress field in the infi-
nite plane and Fig. 9 shows the stress field distribution in a region of interest. It is readily seen from Fig. 9 that
the effect of the single fiber breakage is localized within a region extending over several values of L = df + dm.
Fig. 9(a) illustrates the non-uniform normal stress distribution across the fibers which indicates that the use of
the average stress in the intact fibers in the present case of relatively high fiber volume fraction for estimating
the strength of the composite might be questionable. Fig. 9(a) shows also the different types of behavior of
stress along opposite sides of the first unbroken fiber that has been discussed in Fig. 6(b). The shear stress dis-
tribution shown in Fig. 9(b) indicates the singular stress behavior at the crack tips. In addition, another stress
singularity can be observed at the intersection of the interface of the broken fiber and the crack’s face as was
discussed previously in connection to Fig. 8(a). Finally, a stress concentration along the boundaries of the bro-
ken matrix regions can be clearly observed. A color plot of the other normal stress r11 parallel to the crack
(not shown) reveals that the crack surfaces are subjected to a compressive stress that switches to small tensile
stress ahead of the crack. These stresses do not indicate the possibility of fiber–matrix debonding without an
interfacial shear component.

The present approach enables to examine the effect of the Poisson’s ratio changes of the materials. In
Fig. 10, the influence of the matrix Poisson’s ratio is illustrated. This figure shows the axial stress in the first
intact fiber and the interfacial shear stress at x1 = L � df/2 for two values of the matrix Poisson’s ratio:
mm = 0.2 and 0.4. It is shown that except for the values of the maxima of the stresses, no appreciable changes
take place. This figure indicates that the increase of the matrix Poisson’s ratio leads to a decrease of the max-
imum of the normal as well as the shear stress.

4. Conclusions

A continuum approach for the analysis of a periodically fiber reinforced material with a transverse crack,
subjected to a far-field tensile loading has been presented. This was performed by combining two approaches,
namely, the representative cell method and the higher-order theory. As a result, accurate elastic field can be



6840 M. Ryvkin, J. Aboudi / International Journal of Solids and Structures 44 (2007) 6826–6841
readily computed at any point in the infinite domain. This approach was found to be efficient and convenient
for the computation of the elastic field everywhere in both fiber and matrix constituents. In the special case of
a crack embedded in a homogeneous material, the elastic field provided by the present method is in excellent
agreement with the analytical solution. The effects of several parameters that characterize the geometry and
material properties of the cracked composite as well as the number of broken fibers and the locations of
the crack tip on the resulting elastic field are studied.

The elastic field for several crack tip locations within the matrix region was examined and comparisons of
the resulting average values of the axial stress with the shear lag predictions were performed. It turns out that
the shear lag theory provides a reliable prediction of the average stress in the fiber in the case of an intact
matrix. It was found however that the average of the actual stress distribution, upon which the shear lag the-
ory is based, might not be, for some composite’s parameters, a reliable indicator for the fiber failure. Indeed, it
was found in a specific case that the maximum tensile stress in the first intact fiber is about 18% higher than the
average stress.

The analysis of the cracked composite with different crack’s lengths reveals that after about ten fiber break-
ages the elastic field in the vicinity of the tip becomes self-similar. This result was found to be insensitive to the
ratio of the fiber to matrix Young’s moduli. The effect of the Poisson’s ratio of the matrix on the resulting
stress distribution was examined and found to be insignificant.

The present methodology has been employed for a composite with a single transverse crack. It is possible
however to consider a composite with several transverse cracks as well as cracks parallel to the fibers including
debonding interfacial cracks. This is performed by establishing the corresponding Green’s functions by the
application of normal and shear displacement jumps from which the induced normal and shear stresses can
be computed. Furthermore, the present analysis can be employed for the investigation of composites with
mode II and mode III longitudinal and transverse cracks.

Due to the inherent continuum approach of the method, one can easily consider cracked periodic compos-
ites with anisotropic phases (e.g., transversely isotropic carbon fibers). Another important extension of the
present approach is its application for the prediction of the behavior of composites with broken fiber in the
framework of the three-dimensional theory of elasticity in which a triple discrete Fourier transform should
be involved.
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