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Abstract

Bifurcation method of dynamical systems is employed to investigate bifurcation of
solitary waves in the higher-order KdV equation

ut + aunux + uxxx = 0,

wheren � 1 anda ∈ R. Numbers of solitary waves are given for each parameter condition.
Under some parameter conditions, explicit solitary wave solutions are obtained. Specially,
some new solitary wave solutions are found for KdV or MKdV equation.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In [1,2] higher-order KdV equation

ut + aunux + uxxx = 0 (1.1)

is introduced. It is well known that (1.1) incorporates the KdV (n = 1) and MKdV
(n = 2) equation and the two equations are studied by a lot of mathematicians and
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physicists. In [3] a class of fully discrete schemes for numerical simulation of
solution of the periodic initial-value problem for (1.1) is analysed, implemented
and tested by Bona et al. Whena = n+1 and integral constant is zero, the solitary
wave solution is given by Fornberg and Whitham [4].

In this paper, we employ bifurcation method of dynamical systems to
investigate bifurcation of solitary waves of Eq. (1.1). Numbers of solitary waves
are given for each parameter condition. Under some parameter conditions, explicit
solitary wave solutions are obtained. Specially, some new solitary wave solutions
are found for KdV or MKdV equation (see (3.12), (3.20), (3.21) and (3.29)).

To find solitary wave of Eq. (1.1), substituting the traveling wave solution
u(x, t) = φ(x − ct) = φ(ξ) into (1.1) for constant wave speedc, we have the
following ordinary differential equation:

−cφ′(ξ) + aφn(ξ)φ′(ξ) + φ′′′(ξ) = 0. (1.2)

Integrating (1.2) once, it leads to

−cφ(ξ) + a

n + 1
φn+1(ξ) + φ′′(ξ) = g, (1.3)

whereg ∈ R is integral constant. Letφ′(ξ) = y; then we have the planar auton-
omous system

φ′(ξ) = y, y ′(ξ) = g + cφ − a

n + 1
φn+1. (1.4)

Obviously, (1.4) is Hamiltonian system of Hamiltonian

H(φ,y) = 1

2
y2 − φ

(
g + c

2
φ − a

(n + 1)(n + 2)
φn+1

)
= h. (1.5)

All level setsH(φ,y) = h, h ∈ R, give the invariant curves of system (1.4). In
other words, the phase orbits of the vector fields defined by system (1.4) determine
all traveling wave solutions of Eq. (1.1). Thus, to investigate the bifurcation
of solitary waves of Eq. (1.1), we have to know the dynamical behaviour of
system (1.4). The bifurcation theory of dynamical systems [5,6] play on important
role to our study. From the bifurcation theory we know, for a singular point of
Hamiltonian system, there are three possibilities, that is, it is center point or saddle
point or degenerate saddle point.

This paper is organized as follows: In Section 2 we study the bifurcation of
solitary waves. In Section 3 we give explicit solitary wave solutions under some
parameter conditions.

2. Bifurcation of solitary waves

In this section, we study the bifurcation of solitary waves. To clear, we give a
definition and a lemma for Eq. (1.1).
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Definition 2.1. A traveling wave solutionu(x, t) = φ(x−cx) of Eq. (1.1) is called
a solitary wave solution ifφ(ξ) has a well-defined limit lim|ξ |→∞ φ(ξ), which is
the same at both±∞. In three-dimensional space(x, t, u) the graph of solitary
wave solution is called solitary wave.

According to above definition, we have the following lemma:

Lemma 2.1. (i) If Eq. (1.1)has one solitary wave, then system (1.4)has at least
one homoclinic orbit. (ii) If system (1.4)has one homoclinic orbit, then Eq. (1.1)
has one solitary wave when n is odd, two solitary waves when n is even.

Proof. Firstly, we prove (i). Letu(x, t) = φ(x − ct) be a solitary wave solution
of Eq. (1.1). It leads toφ(ξ), y = φ′(ξ) satisfy system (1.4). Because all singular
points of system (1.4) are inφ-axis andφ(ξ) has a well-defined limit as|ξ |
approaches to infinity and the limit is the same at both±∞, the orbit of
(φ(ξ), y(ξ)) is a homoclinic orbit of system (1.4). The (i) is proved. Secondly, we
prove (ii). Supposeφ = φ(ξ), y = y(ξ) is the parameter expression of homoclinic
orbit of system (1.4). Thenφ(ξ) has a well-defined limit as|ξ | tend infinity and
the limit is the same at both±∞. On the other hand,φ(ξ) and y(ξ) satisfy
system (1.4), that is,φ(ξ) satisfies (1.3). Furtherφ(ξ) is solution of (1.2). Thus
u(x, t) = φ(x − ct) is solitary wave solution of Eq. (1.1). Whenn is even, if
u(x, t) is solution of Eq. (1.1), so dose−u(x, t). This completes the proof.✷

From the above definition and lemma we can prove the following bifurcation
theorem about solitary wave of Eq. (1.1).

Theorem 2.1. In (c, a)-parameter plane, let the coordinate axes c−, a−, c+ and
a+ divide the plane into four regions (I), (II), (III) and (IV) , that is, four quadrants
(see Fig. 1). Let g0 be as follows:

g0 = n|c|
n + 1

∣∣∣∣ ca
∣∣∣∣
1/n

, (2.1)

and let g be the integral constant in system (1.4). For given g, from (1.4)we have
the following results:

(1) When n is even and (c, a) ∈ (I) in Fig. 1, (i) if g equals one of −g0, 0 and
g0, then Eq. (1.1) has a valley form and a peak form solitary waves; (ii) if
|g| < g0 and g �= 0, then Eq. (1.1) has two valley form and two peak form
solitary waves.

(2) When n is even and (c, a) is in one of c+, c−, a+, a−, (II) and (IV) , Eq. (1.1)
has no solitary wave.
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Fig. 1. Parameter plane.

(3) When n is even and (c, a) ∈ (III ), (i) if |g| < g0 and g �= 0, then Eq. (1.1)has
one valley form and one peak form solitary waves; (ii) if g = 0, then Eq. (1.1)
has two kink waves [7,8].

(4) When n is odd and (c, a) ∈ (I) or (II), (i) if g > −g0, then Eq. (1.1)has one
peak form solitary wave; (ii) if g � −g0, then Eq. (1.1)has no solitary wave.

(5) When n is odd and (c, a) ∈ a+, if g > 0, then Eq. (1.1) has one peak form
solitary wave.

(6) When n is odd and (c, a) ∈ (III ) or (IV) , if g < g0, then Eq. (1.1) has one
valley form solitary wave.

(7) When n is odd and (c, a) ∈ a−, if g < 0, then Eq. (1.1) has one valley form
solitary wave.

(8) When n is odd and (c, a) ∈ c+ or c−, then Eq. (1.1)has no solitary wave.

Proof. Let functionf (φ) be as follows:

f (φ) = g + cφ − a

n + 1
φn+1. (2.2)

It follows

f ′(φ) = c − aφn. (2.3)

Let (φ0,0) be one of singular points of system (1.4). Then at the singular point
(φ0,0) the characteristic values of linearized system of system (1.4) are

λ1,2 = ±√f ′(φ0). (2.4)

From (2.4) we know that iff ′(φ0) > 0, then(φ0,0) is saddle point; iff ′(φ0) < 0,
then(φ0,0) is center point; iff ′(φ0) = 0, then(φ0,0) is degenerate saddle point.
From H(φ,y) in (1.5) and above analysis, we obtain the bifurcation of phase
portraits of system (1.4), shown in Table 1, whenn is even and(c, a) is in (I)
or (III).

Whenn is even and(c, a) ∈ (I), from Table 1 we see that if|g| = g0, then sys-
tem (1.4) has one homoclinic orbit; ifg = 0, then system (1.4) has two symmetric
homoclinic orbits; if|g| < g0 andg �= 0, then system (1.4) has two nonsymmetric
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Table 1
Bifurcation of phase portraits of system (1.4) whenn is even and(c, a) is in (I) or (III)

Fig. 2. Bifurcation of phase portraits of system (1.4) whenn is odd.

homoclinic orbits; if|g| > g0, then system (1.4) has no homoclinic orbit. When
n is even and(c, a) ∈ (III), from Table 1 we see that if|g| < g0 andg �= 0, then
system (1.4) has one homoclinic orbit; (ii) ifg = 0, then system (1.4) has two het-
eroclinic orbits; (iii) if |g| � g0, then system (1.4) has no homoclinic orbit. When
n is even and(c, a) is in one ofc+, c−, a+, a−, (II) and (IV), system (1.4) has
only a singular point and it is center point or saddle point, thus system (1.4) has
no homoclinic orbit. From Lemma 2.1 the (1), (2) and (3) are proved. Whenn is
odd, we have bifurcation of phase portraits of system (1.4) shown in Fig. 2. To
discuss Fig. 2 similarly to above, the proof of (4)–(8) can be completed.✷

3. Solitary wave solutions of Eq. (1.1) under some parameter conditions

In this section we give solitary wave solutions of Eq. (1.1) for casen = 1 or
n = 2 or generaln and g = 0. For system (1.4), let(φs,0) be a saddle point
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connected homoclinic orbitΓ (hs). Thus from (1.5) we can write the expression
of homoclinic orbitΓ (hs) in (φ, y) plane as follows:

y2 = 2

(
hs + gφ + c

2
φ2 − a

(n + 1)(n + 2)
φn+2

)
, (3.1)

where

hs = φs

(
a

(n + 1)(n + 2)
φn+1

s − c

2
φs − g

)
. (3.2)

Substituting (3.1) intodφ/dξ = y, it follows

dφ(
hs + gφ + c

2φ2 − a
(n+1)(n+2)

φn+2
)1/2 = ±√

2dξ. (3.3)

Under general conditions it is difficult to integrate the left of (3.3). But under
some conditions the integral can be finished. Thus the solitary wave solutions of
Eq. (1.1), can be obtained.

3.1. Solitary wave solutions of Eq. (1.1)when n = 1

When n = 1, suppose(φ0,0) is saddle point connected homoclinic orbit of
system (1.4). Thenφ0 is as follows:

φ0 =



c
a

− (
c2

a2 + 2g
a

)1/2
, for a > 0,

c
a

+ (
c2

a2 + 2g
a

)1/2
, for a < 0.

(3.4)

Let h0 be as follows:

h0 = φ0

(
a

6
φ2

0 − c

2
φ0 − g

)
. (3.5)

Then the expression of homoclinic orbit is

y2 = 2

(
h0 + gφ + c

2
φ2 − a

6
φ3
)

= a

3
(φ − φ0)

2
(

3c

a
− 2φ0 − φ

)
. (3.6)

Substituting (3.6) intodφ/dξ = y and integrating along homoclinic orbit, we
obtain the parameter expression of homoclinic orbit of system (1.4):


φ(ξ) = 1

a

[
c + 2(c2 + 2ag)1/2

− 3(c2 + 2ag)1/2 tanh2 (c2+2ag)1/4ξ
2

]
,

y(ξ) = φ′(ξ).

(3.7)

From (3.7) and Lemma 2.1 we know that equation

ut + auux + uxxx = 0 (3.8)
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has solitary wave solution

u(x, t) = 1

a

[
c + 2(c2 + 2ag)1/2

− 3(c2 + 2ag)1/2 tanh2
(c2 + 2ag)1/4(x − ct)

2

]
, (3.9)

wherea �= 0 andc2 + 2ag > 0.

Example 1. Let a = 6 andg = 0. (3.9) is reduced to

u(x, t) = c

2
sech2

(√
c

2
(x − ct)

)
. (3.10)

(3.10) is well known as a solitary wave solution [9] of classical KdV equation

ut + 6uux + uxxx = 0. (3.11)

Obviously, the function

u0(x, t) = 1

6

[
c + 2(c2 + 12g)1/2

− 3(c2 + 12g)1/2 tanh2
(c2 + 12g)1/4(x − ct)

2

]
(3.12)

is solitary wave solution of KdV equation (3.11) and more general than (3.10),
whereg > −c2/12.

We have not seenu0(x, t) in any others papers. So we think that it is a new
solitary wave solution of KdV equation.

3.2. The solitary wave solutions of Eq. (1.1)when n = 2

(i) Givena > 0, c > 0, |g| < g0 andg �= 0, thenf (φ) = g + cφ − (a/3)φ3 has
three real zero points, and they can be found out by the finding root formula of
cubic equation, sayφ0, φ1, φ2 andφ1 < φ0 < φ2. Becauseg �= 0, we know that
φ0 �= 0 and(φ0,0) is saddle point of system (1.4) (see Fig. 3).

At saddle point(φ0,0) the invarianth1 is

h1 = a

12
φ4

0 − c

2
φ2

0 − gφ0. (3.13)

Fig. 3. Homoclinic orbits of system (1.4) whenn = 2, a > 0, c > 0, |g| < g0 andg �= 0.
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Thus we have the expression of two homoclinic orbits connected at(φ0,0):

y2 = 2h1 + 2

(
g + c

2
φ − a

12
φ4
)

= a

6
(φ − φ0)

2(α − φ)(φ − β), (3.14)

where

α =
√∣∣∣∣ 6g

aφ0

∣∣∣∣− φ0, β = −φ0 −
√∣∣∣∣ 6g

aφ0

∣∣∣∣. (3.15)

Substituting (3.14) intodφ/dξ = y, then integrating along homoclinic orbit
Γ1 and letting

a0 =
∣∣∣∣ 6g

aφ0

∣∣∣∣− 4φ2
0, α0 =

√∣∣∣∣aa0

6

∣∣∣∣, β0 = 2

√∣∣∣∣ 6g

aφ0

∣∣∣∣, (3.16)

we obtain the parameter expression ofΓ1 as follows:

Γ1: φ(ξ) = 2a0

β0 coshα0ξ + 4φ0
+ φ0, y(ξ) = φ′(ξ). (3.17)

By the same method we get the parameter expression ofΓ2:

Γ2: φ(ξ) = φ0 − 2a0

β0 coshα0ξ − 4φ0
, y(ξ) = φ′(ξ). (3.18)

From (3.17), (3.18) and Lemma 2.1 we know that whena > 0, c > 0, |g| < g0
andg �= 0, equation

ut + au2ux + uxxx = 0 (3.19)

has four solitary wave solutions:

u(x, t) = ±
(

φ0 − 2a0

β0 coshα0(x − ct) − 4φ0

)
(3.20)

and

u(x, t) = ±
(

φ0 + 2a0

β0 coshα0(x − ct) + 4φ0

)
. (3.21)

Example 2. Taking (c, a) = (7,3) and |g| = 6, it follows φ0 = −1 or φ0 = 1.

Further we havea0 = 8, α0 = 2, β0 = 4
√

3. Thus we know that equation

ut + 3u2ux + uxxx = 0 (3.22)

has four solitary wave solutions:

u(x, t) = ±
(

1− 4√
3cosh(2x − 14t) − 1

)
(3.23)

and
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(i) g = g0 (ii) g = −g0

Fig. 4. Homoclinic orbits whenn = 2, a > 0, c > 0 and|g| = g0.

u(x, t) = ±
(

1+ 4√
3cosh(2x − 14t) + 1

)
. (3.24)

(ii) Given c > 0, a > 0 and|g| = g0, then the singular point connected homo-
clinic orbit is a degenerate saddle point (see Fig. 4).

In Fig. 4 the expression of homoclinic orbits is

y2 = a

6

(
3

√
c

a
− φ

)(
φ +

√
c

a

)3

, (3.25)

or

y2 = a

6

(
φ + 3

√
c

a

)(√
c

a
− φ

)3

. (3.26)

Substitutingy into dφ/dξ = y and integrating it along homoclinic orbits, we
have the parameter expressions of homoclinic orbits as follows:

Γ3: φ(ξ) =
√

c

a

9− 2cξ2

3+ 2cξ2
, y(ξ) = φ′(ξ), (3.27)

Γ4: φ(ξ) =
√

c

a

2cξ2 − 9

2cξ2 + 3
, y(ξ) = φ′(ξ). (3.28)

From (3.27) and (3.28) we obtain others two wave solutions of Eq. (3.19):

u(x, t) = ±
√

c

a

2c(x − ct)2 − 9

2c(x − ct)2 + 3
, (3.29)

wherea > 0, c > 0.

(iii) Given c > 0, a > 0 andg = 0, then the singular point connected two
symmetric homoclinic orbits is (0, 0). The expression of two homoclinic orbits is

y2 = φ2
(

c − a

6
φ2
)

. (3.30)

From (3.30) anddφ/dξ = y we get others two solitary wave solutions of
Eq. (3.19):
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(i) 0 < g < g0 (ii) −g0 < g < 0

Fig. 5. Homoclinic orbits whenn = 2, a < 0, c < 0, |g| < g0 and|g| �= 0.

u(x, t) = ±
√

6c

a
sech

√
c(x − ct), (3.31)

wherea > 0, c > 0.

Example 3. Taking a = 6 and n = 2, Eq. (1.1) reduces to classical MKdV
equation

ut + 6u2ux + uxxx = 0. (3.32)

It is well known that (3.32) has solitary wave solutions [9]

u = ±√
c sech

(√
cx − c

√
ct
)
, c > 0. (3.33)

On the other hand, if 0< g <
√

6c3/2/9, the MKdV equation (3.32) has four
solitary wave solutions as (3.20) and (3.21), wherea = 6 andφ0 is the biggest
between two negative roots ofg + cφ − 2φ3 = 0. Wheng = √

6c3/2/9, MKdV
equation (3.32) has two solitary wave solutions

u(x, t) = ±
√

c

6

9− 2c(x − ct)2

3+ 2c(x − ct)2 , (3.34)

wherec > 0.

Clearly, the solitary wave solutions in (3.20), (3.21) and (3.29) are different
from (3.31) and we have not found them in any other paper. So we think that they
are new solitary wave solutions of MKdV equation.

(iv) Given c < 0, a < 0, |g| < g0 and|g| �= 0, then the saddle point and homo-
clinic orbits are given in Fig. 5.

In Fig. 5 theφ0 is the biggest among three real roots ofy + cφ − (a/3)φ3 = 0
when 0< g < g0, and theφ0 is the smallest among three real roots ofy + cφ −
(a/3)φ3 = 0 when−g0 < g < 0. Thusφ0 is not zero and expression of homo-
clinic orbits is

y2 = |a|
6

(φ − φ0)
2

(
φ + φ0 −

√∣∣∣∣ 6g

aφ0

∣∣∣∣
)(

φ + φ0 +
√∣∣∣∣ 6g

aφ0

∣∣∣∣
)

. (3.35)

Substituting (3.35) intodφ/dξ = y and integrating it along homoclinic orbit,
according to Lemma 2.1, we get two solitary wave solutions of Eq. (3.19):
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u(x, t) = ±
(

|φ0| − 2a1

β1 coshα1(x − ct) + 4φ0

)
, (3.36)

where

a1 = 4φ2
0 −

∣∣∣∣ 6g

aφ0

∣∣∣∣, α1 =
√∣∣∣∣aa1

6

∣∣∣∣, β1 = 2

√∣∣∣∣ 6g

aφ0

∣∣∣∣. (3.37)

Example 4. Takinga = −3, c = −7 and|g| = 6, it follows φ0 = 2 or φ0 = −2,
a1 = 10,α1 = √

5, β1 = 2
√

6. Thus equation

ut − 3u2ux + uxxx = 0 (3.38)

has two solitary wave solutions:

u = ±
(

2− 10√
6cosh

√
5(x + 7t) + 4

)
. (3.39)

3.3. The solitary wave solutions of Eq. (1.1) for n � 1 and g = 0.

(i) Whenn is even number, givena > 0, c > 0 andg = 0, then(0,0) is saddle
point connected two symmetric homoclinic orbits of system (1.4) (see Table 1).
At (0,0) the invarianth at (0,0) is zero. Thus the two homoclinic orbits have
expression

y2 = φ2
(

c − 2a

(n + 1)(n + 2)
φn

)
. (3.40)

Substituting (3.40) intodφ/dξ = y and integrating it along the homoclinic
orbit, we obtain two solitary wave solution of Eq. (1.1):

u(x, t) = ±
(

(n + 1)(n + 2)c

2a
sech2

n
√

c(x − ct)

2

)1/n

, (3.41)

wherea > 0, c > 0.

(ii) When n is add number, giveng = 0 anda > 0, c > 0 or a < 0, c > 0, the
solitary wave solution of Eq. (1.1) is as (3.41) when taking “+.”

Example 5. Taking n = p, a = p + 1 andc = α2, (3.41) transforms into the
solitary wave solution in [4]:

up(x, t) = (p + 2)α2

2
sech2

p

2
(αx − α3t). (3.42)
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