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Abstract 

Let Y = (Y,), t 0 be an unobserved random process which influences the distribution of 
a random variable T which can be interpreted as the time to failure. When a conditional hazard 
rate corresponding to T is a quadratic function of covariates, Y, the marginal survival function 
may be represented by the first two moments of the conditional distribution of Y among 
survivors. Such a representation may not have an explicit parametric form. This makes it 
difficult to use standard maximum likelihood procedures to estimate parameters -especially for 
censored survival data. In this paper a generalization of the EM algorithm for survival 
problems with unobserved, stochastically changing covariates is suggested. It is shown that, for 
a general model of the stochastic failure model, the smoothing estimates of the first two 
moments of Y are of a specific form which facilitates the EM type calculations. Properties of the 
algorithm are discussed. 

Keyword.s: Randomly changing covariates; Missing information principle; Survival analysis; 
Unobserved stochastic frailty; Random hazard; EM algorithm; Incomplete information; 
Smoothing estimates 

1. Introduction 

The EM algorithm (Dempster et al., 1977) is based on the “missing data principle” 

(Orchard and Woodbury, 1971). It is useful when the marginal distribution is not 

easily written. In that case it may be possible to maximize a likelihood by sequentially 

calculating first, the conditional expectation of the log likelihood for complete data 

(E-step) and then improving the model parameters (M-step). 

Kiefer and Wolfowitz (1956) discussed consistency properties necessary for models 

with nuisance parameters. Laird (1978) showed, for applications without covariates, 

how the EM algorithm might be used to generate nonparametric maximum likeli- 

hood estimators (NPMLE) for discrete mixtures. Lindsay (1983) further generalized 
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the NPMLE. Wu (1983) showed a modified EM algorithm is guaranteed to converge 

to a stationary point. Heckman and Singer (1984a, b) showed that the NPMLE could 

be used to analyze failure times with fixed c’ocariates if the hazard factored into 

independent, covariate and time dependent, functions. 

Below, we extend the EM algorithm to model failure time distributions where 

unobserved influences are not due to a random variable, but a specific type of 

stochastic process. This uses results (Yashin, 1985) on moment estimation for Gaus- 

sian processes where diffusion is generated by a Wiener process. By using ordinary 

differential equations to describe the change of the first two moments (mean and 

variance) of the Gaussian process as ancillary information in the likelihood, EM can 

be used to estimate parameters for survival models influenced by unobserved stochas- 

tic processes. Using these ancillary relations in a generalized EM is computationally 

easier than estimating the marginal likelihood using partial differential equations for 

the conditional distribution function when no “closed form” expression exists for that 

distribution requiring numerical integration on each iteration. 

Below, we present notation for a stochastic process influencing survival. Then we 

present the EM algorithm for random variables subject to unobserved “fixed” hetero- 

geneity. For certain distributions, the EM algorithm also maximizes the marginal 

likelihood. Then we generalize the EM algorithm to estimate parameters for survival 

functions influenced by unobserved stochastic processes. For this purpose we present 

a generalization of the EM algorithm for stochastic processes and a proof of its 

convergence. The proof makes use of the properties of the Radon-Nikodym derivative 

of probability measures in functional space. The application of the generalized 

algorithm to survival models with unobserved randomly changing covariates shows 

that, to estimate parameters, smoothing estimates of unobserved covariates need to be 

calculated. The equations to calculate smoothing estimates for a general class of 

multivariate diffusion processes are provided. The properties of the smoothing esti- 

mates were examined in Yashin (1991). We discuss types of analyses for which the 

generalized EM may be useful. 

2. Specification of a stochastic survival processes statement of the problem 

Let A E 0 c IWk be an unknown parameter and, for each A E 0, let (52, F,PA) be 

a complete probability space on which the nonnegative random variable T and 

random process Y = (Y,), 2 o are defined. T is time to failure (or death) and Y is an 

unobserved, random time-varying covariate. T and Y are statistically dependent. The 

hazard function relating survival, from 0 to t, to the process Y, is assumed quadratic, 

i.e., 

P,(T > tI PO) = exp 
i s 

- ‘C&(u) + Y,*Q@, u) u,dul , 
0 

where * represents transposition; Yk = ( Y,, 0 I s I t}. For each u 2 0, A E 0; Q(J., u) 

is a nonnegative definite matrix of bounded time dependent coefficients and lo(t) 
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a hazard rate with i,, an unknown parameter. The quadratic preserves the Gaussian 

nature of the unobserved process as individuals die. The quadratic has useful math- 

ematical properties both as a hazard function (e.g., quadratic functions for multiple 

independent failure processes can be summed to yield a quadratic for the total hazard) 

and for computing parameters in the generalized EM algorithm. 

Changes in Y are assumed to satisfy the stochastic differential equation (Yashin, 

1985) 

d r, = [a&?, t) + a()., t) r,] dt + h(t)dW,, Y,, (2) 

where Y,, the initial condition, is a normally distributed random variable; a0 and a are 

coefficients (possibly time varying; and dependent on i) describing deterministic 

elements of the process; and IV,, t 2 0, is a Wiener process with time dependent scale 

parameter h(t), e.g., if diffusion increases with age, h(t) increases the size of the average 

random deviation. Thus, (1) and (2) describe the time dependence of the forces of 

control and diffusion in the process generating Y. 

For estimation, we need to define an observation plan. Let 

(r, A) = (fi, 61, t2,62, ... , t,, 6,) be data where ti, i = 1,2, . . . , n, are observed indepen- 

dent failure times and di, i = 1,2, . . . , n, are cases censored before failure, i.e., hi = 0 

and di = 1 refer to censored and uncensored observations, respectively. The problem 

is to estimate A from censored data (5, d). Marginal likelihood procedures, using 

differential equations to describe the evolution of the process in (2), are discussed in 

Marchuk et al. (1989) and used in Asachenkov et al. (1988). 

2.1. EM algorithm for unobserved random variables 

Let F,(t, y), gl(y 1 T = t) and cpl(t) be the joint, conditional and marginal density 

functions for T and Y - in this section a time invariant random variable. The 

maximum likelihood procedure for estimating A, given one observation T = t, uses the 

marginal density to define the likelihood, i.e., i* = argmax qn(t). The likelihood for 

J,(t, y) may be easier to maximize than (pi(t). In the EM algorithm (Dempster et al., 

1977) the conditional expectation of the log likelihood offA(t, y) must be maximized in 

each iteration. In nonrestricted cases this also maximizes the marginal likelihood. 

To show parameter estimates improve at each iteration, one can, from the definition 

of the density function, and Bayes’ rule, write 

log VA(~) = log.h(b Y) - log gn(y I T = t). (3) 

Eq. (3), after averaging, conditional on T = t, with respect to measure PA,, is 

log cp~(t) = E,s [lo&@, Y) ( T = t] - E,, [logg,( Y 1 T = t) 1 T = t]. (4) 

In the M-step of the EM algorithm, A* = argmax EAP [log_&(t, Y) ) T = t] is cal- 

culated. To guarantee convergence it is often sufficient to find a A* which satisfies the 

weaker condition, EA. [logfl*(t, Y) 1 T = t] 2 En8 [logfA,(t, Y) I T = t]). An algorithm 

with this condition implemented in the M-step can be called a generalized EM 
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algorithm (GEM). For both EM and GEM, the condition 

log q).*(t) - log qX(t) r - E log ;*& ,‘I ;; ( T = t) 2 0 
A’ 

(5) 

holds from Jensen’s inequality. Thus, in EM and generalized EM (GEM), 

q;.*(t) 2 ~j,‘(t) so parameter estimates are guaranteed to improve at each iteration 

(with 1,’ = 1, and A* = &+ i, for the pth iteration). This is illustrated for distributions 

of Y often used in survival analysis. 

2.1.1. Gamma distribution 

If Y is a gamma distributed random variable, 

.4(Y) = yI 

k k-le-rjy 

y 
W) ’ 

thenf,(t 1 y) depends on i as 

h(t 1 Y = y) = y&(t)e-‘AH(f), 

where the integrated hazard is H(t) = fip(u)du 

qA@) = 
rlk44t) 

(y + iH@))k’ 1. 

If T = t is observed, the log likelihood is 

log qA^(t) - log i - (k + l)log(v] + AH(t)) + 

where C does not depend on i. Maximizing (9) 

A* =yI 
kH(t)’ 

(6) 

(7) 

The marginal distribution, qA(t), is 

(8) 

C, 

produces 

(9) 

(10) 

To apply the EM algorithm to the joint distribution,f,(t, y), write 

loghk Y) = logdy) + logCW)yl - JbyH@). (11) 

In the E-step, the expectation of both parts of (11) conditional on T = t are taken 

with respect to PA,: 

E,,(logf;l(t, Y) I T = t) 

= El. (log g( Y) ( T = t) + log /1 + El, [lo& Yp(t)) 1 T = t] 

- ;IH(t)EA,(Yj T= t). 

Observe that En,( Y 1 T = t) is equal to 

k+l 

r~ + %‘H(t)‘ 

(12) 

(13) 
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The M-step requires maximizing (12) with respect to A, setting 1,’ = 1, and using 

(13), to produce 

1 H(r)& + 1) 

^ = ‘I + &H(L)’ 1 P+l 

and, by inversion, 

x YI + ~,W) 
p+1 = (k + l)H(t)’ 

When p r co, 1, + I*, where 

A* =-.!L 
kH(t)’ 

(14) 

(15) 

(16) 

Thus, for gamma distributed Y’s, (16) is the same as (10) for the marginal likelihood. 

With r censored observations, ti, i = 1,2, . . . , r, and n - r uncensored observations tj, 

j= 1,2,..., n - r, the estimate of I,+ 1 in (15) is 

I 
n-r 

‘+ ’ = xi= 1 H(ti)Ei,( Y 1 T > t:) + C’Jl*, H(tj)El,(Yl T = tj) 

n-r 

= Cl= 1 CkHWh + @W)] + CJr; [(k + l)H(tj)/(r + Xfi(tj))]’ 
(17) 

This is an alternative way to calculate maximum likelihood estimators. 

2.1.2. Normal distribution 

If Y is a Gaussian random variable with mean m and variance y, then 

cl(Y) = &exp( - v). (18) 

with the density for failure time t conditional on y, 

f(t 1 y) = Lp(t)y2e-“H(t)y2, (19) 

where H(t) is the integrated hazard with dependence on y being quadratic to preserve 

the normal distribution as individuals systematically die off. 

If A is the only unknown parameter, then the log likelihood with k (instead of r) 

censored and n - k uncensored observations of t is 

L(t, y) = (n - k)logA - Ay2 i H(t;) - Ayz”ik H(tj) + c, (20) 
i=l j=l 

where c does not depend on A. Implementation of the E- and M-steps yields 

x 
n-k 

IJ+’ = CT=, H(ti)Elp(Y2 1 T > t:) + C;Z:H(tj)EX,(Y2 I T= tj)’ (21) 
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Note that E,( Y2 1 T > t;) is the sum of the mean, m(t), and variance, y(t), of Y at t, 

EA( Yz ) T > t;) = m2(t;) + y(t;), (22) 

where the mean at tj is (Yashin, 1985) 

m 
m(ti) = 

1 + anH(t:)y 

and the variance is 

y(ti) = y 
1 + 2nH(tf)y’ 

To estimate E,( Y2 1 T = tj ) write the density for Y at tj, using Bayes’ rule, 

(23) 

(24) 

(25) 

which is equivalent to 

g(y 1 T = t,) = g(Y)f(tjI y = Y) , f tt.i) 
= C,(tj)y’exp( -(’ iyJ2)eXP( - yH(tj)y2), 

where C,(tj) does not depend on y. After simple transformations g(y ( T = tj) is 

g(Y I T = tj) = C(rj)J&Y2exP - 
with mean 

and 

The 

(27) 

M(tj) = m 
1 + 2EbH(tj)y’ 

variance 

G(tj) = ’ 
1 + 2AH(tj)y’ 

density normalization constant is 

I 
C(tj) = 

M2(tj) + G(tj)’ 

(28) 

(29) 

(30) 

Substituting these expressions in (22) we have 

EA( Y2 1 T = tj) = 
3G2(tj) + 6M’(tj)G(tj) + M4(tj) 

G(tj) + M2(tj) ’ 
(31) 

with M(tj) and G(tj) defined in (28) and (29). 
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3. Generalizing the EM algorithm for stochastic processes: theory 

When the probability measure (PA}, ;1 E 0, corresponds to a random process one 

must use likelihood ratios instead of likelihood functions. This requires making 

assumptions about the absolute continuity of the family of probability measures for 

the parameter set. Assume that for any &I’ E 0, measures PA and PAS are equivalent on 

the probability space (Q, F). Let R = Q, x Q, and F = F” 0 P, where (Q,, F”) is the 

probability space where observations (r, d) are defined, and (Q,, P) is the probability 

space where an unobserved process, Y, is defined. Denote by pA the restriction of PA to 

F”. Measures pi and PA., are equivalent for all A, 2’ E 0, since PA and PAS are 

equivalent. For CI E 0, define the maximum likelihood estimate, 1, as 

- 

;Z = argmaxg, 
01 

where 

Let us define 

- 

I&l, cc) = log% 
OL 

and 

then 

L@, n,) = L(1, c() - L(i’, a) = log El, . 

From Jensen’s inequality, 

L(I,l’) 2 E(log$IF') = E&f(I,i'), F”), (37) 

(32) 

(33) 

(34) 

(35) 

(36) 

for which we will use the notation A(& 1’) for the expectation of the likelihood. 

Assume that for I # A’, n(I, 2’) > 0. Hence, L(& A’) # 0 and _&I, 2’) = 0 if and only if 

,I = A’. Let P^ be an arbitrary probability measure on (Q,, FX) which is equivalent to p2 

for any ,I E 0. Define a new measure e2 on (Q, F) by 

&(dw,, do,) = P,(do, 1 F”) &da,). 

The measures p, have the following property. 

(38) 
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Theorem 1. For each &A’ E 0, measures @A and pAC are equivalent. Their likelihood ratio 

satisjes 

The proof is in the appendix. 

The restriction pi on (Q,, F”) is P^ and does not depend on ;i; hence, 

for any I,, 1’ E 0. A corollary of Theorem 1 is 

- 

log2 = 1ogg - log$, 
A’ A’ I’ 

so that, after conditional averaging, 

Since LI(II’, i’) = 0, rnfx A(& A’) 2 0. From Jensen’s inequality for each 1* # ,I’, 

(39) 

(40) 

(41) 

(42) 

(43) 

Hence, if ,I* = argmax /i(I_, A’) then from (42) L(i*, i’) 2 0 or L(A*, c() 2 L(i’, a), 

i.e., A* improves the value of the likelihood ratio. The EM algorithm modified to 

estimate the parameters of stochastic processes can now be described. 

E-step: Calculate /1(1,&) on the pth iteration (when 1, is known). 

M-step: Calculate I,,, from the equality 

X,+ 1 = argmax LI(II, AL), (44) 

or the inequality 

According to (37) L(l,+,, a) 2 L(x,,, CC), i.e., the likelihood never decreases. To 

show the algorithm converges (see Dembo and Zeitouni, 1986) let us note the 

following result. 

Theorem 2. Assume: 

(a) Ox, - {i. E 8: L(/1, (x) 2 L(&, a)} is compact for any 1, E 0; 

(b) for any c( $0, L(2, CC) is continuous in 0 with respect to /I and differentiable in the 

interior of 0; 

(c) A(2,1’) is continuous with respect to I? and 1’; 

(d) all (2,) are in the interior qf 0. 
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Then all limit points of any {a,> are stationary points of L( . , a), having the same value 

L*. Furthermore { L(&, a)} converges monotonically to L*. 

4. EM algorithm for survival with stochastic covariates 

In this section we consider applying the results of Section 3 to survival models with 

unobserved stochastically changing covariates. We show, for the model represented 

by Eqs. (1) and (2) (i.e., a diffusion type process with quadratic mortality), that the 

implementation of the EM algorithm requires calculating “smoothing” estimates of 

the first two moments of the process - relations for which we can specify an explicit 

form greatly simplifying computations. The use of smoothing estimates to evaluate the 

first two moments of the conditional density of Y is a less complex computation than 

evaluating a conditional distribution of Y of unspecified form. The calculations differ 

for censored, and uncensored, data. 

4.1. General case 

Consider the Radon-Nikodym derivative of PA, corresponding to independent 

observations (Y:, ti, Si), i = 1,2, . . . , n, given parameter 1, with respect to measure PA,, 

which corresponds to the same observations given I’. Here Y$ = {x, 0 I s I ti}, Y, is 

given by (2) and ti, 6i, i = 1,2, . . . ,n, are n independent observations of failure time 

T (censored if 6i = 0 and uncensored if 6i = 1). T and Y are related by Eq. (1). It can be 

found directly (or from Kabanov et al. (1978)) that the logarithm of the Ra- 

don-Nikodym derivative for these observations is 

lOg~(Y;, 5, d) = f: Li(~, n,), 
2.’ i=l 

where YG = (Yf;, i = 1,2, . . . ,n); r = (tr, tS, . . . , t,); A = (6,, 6,, . . . ,6,), and for L,(& J.‘), 
i= 1,2 ,...,n, we have 

s 

Ii 
Li(lz, ~“‘) = Y,*[a*(i’, u) - a*@, u)] [b(u)b*(u)]-‘dY, 

0 

s fi -3 Y,* [a*(IZ’, u) - a*(& u)] [b(u)b*(u)] _ 1 [a(E,‘u) + a(& u)] Y, du 
0 

+ 6ilOg 
&(ti) + YtT Q(k ti) X, 
&(ti) + Yz Q(a', ti) x, 

- 
s 

“[Y;Q(A,u)Y”- Y,*Q(A’,u)YJdu. 
0 

For Ai(l, A’) = E(Li(A, A’) 1 F”) we have 

(46) 

(J 
tt 

Ai(ll, 2) = EL, Y$[a*(A’, U) - a*(& u)] [b(u)b*(u)]-’ dY, 1 T > ti 
0 > 
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(s 
1, 

‘E -2 1’ Y: [u*(i’, u) - u*(i, u)] [h(u)b*(u)] - ’ [a(i’, u) + u(i, u)] Y,du 1 T > t; 
0 

-1 
fc 

tr i CQ(k 4 - Q( jb’, u)] Y(U, ri)) du 
0 

- 

s 
” [~I*(u, ti)Q(i, u)~(u, ti) - WZ*(U, ri)Q(i’> U)M(U, ri)] du, (47) 

0 

with Y(U, t) = Ej,, { [ Yu - WZ(U, ti)] [ Yu - WI(U, ri)]* 1 T > ti} 

E,,( Y, 1 T > ti) if ti is censored. For the uncensored case, 

and m(u, t) = 

A,(~, n’) = E*, Y,* [~*(n’, U) - a*(>,, u)] [h(~)h*(~)]- ’ d Y, 1 T = ri 

-;E,. ’ 

(s 

Y,*[u*(i.‘, u) - u*(/l, u)] [h(u)h*(U)] ~’ [~(i’, U) + u(l, u)] Y,du ( T = ri 
0 

+ E,, log 
no(ri) + Y: Q(A ti) K, 
J-o(ri) + Yc QG', ti) q, 

-s f, 
tr { CQM 4 - QG’, 41 T(u, ti)} du 

0 

- 
s 
i’ [Kz*(u, ti)Q(n, u)fi(u, ti) - F?z*(u, ri)Q(i.‘, u)ti(u, ti)] du, (48) 

where 

Ci(n, ti) = El,( Y, 1 T = ri), ~T(u, ti) = E,, { [Y, - KZ(U, ti)] [ Yu - fi(~, ti)]* I T = til. 

(49) 

Since (47) and (48) are cumbersome, we restrict the example to one dimension. 

4.2. A one-dimensional unobserved injluentiul process 

Let Y be a one-dimensional random process, as in (1) and (2), where uo(t) = 0, 

Ao(t) = 0, a(& t) = u(t) and Q(A, u) = A, where 1 is a scalar. If k failure times are 

censored, and n - k failure times are uncensored, 

A(~,i)=(n-k)lOg~-(,-).)fl~kji’E;(Y~~T=~j)du 
i=O 0 

- G - Af)if, j;‘b’(U, ff) + Y(U> 01 du, (50) 

where y(u, t) = E,,{ [ Y, - m(u, ti)12 ( T > t;) and m(u, r’) = E,,( Y,) T > ti) are the 

“smoothing” equations giving the variance and mean of the one-dimensional stochas- 

tic process. These are easier to compute than the last integral terms in (47) and (48). 
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If 1,’ = iP, maximizing A(A, 1,) with respect to 1, produces 

1 
n-k 

““=Zf=1S~[u(u,tl)+n’(u,t:)]du+Z:T:rt;E,,(Y,LIT=tj)du’ 

The smoothing equations for m(u, t:) and ~(u, ti) are (Yashin, 1991) 

s 

1: 
m(s, tf) = m(s) - 2A’ YZI(S> u)m(u)du 

s 

and 

s f; ~(s, t:) = y(S) - 2i’ yZ1(s, u)y(u)du, 
s 

where yZI(s, ti) satisfies 

1; 1: 
72 1 (s, 4 ) = v(s) + 

s 
y2,k tb(u)du - 2~’ 

s s 
yzlb, ~h+)du, 

s 

and m(s), y(s) satisfy the “filter” equations (Yashin, 1985) 

m(S) = m + 
s 

‘[a(u)m(u) - 2i’m(u)y(u)] du 
0 

and 

y(s) = y + 
s 

‘[b’(u) - 2A’y2(u)] du, 
0 

with I.’ = x,,. The estimate E,,( Yi ( T = ti), s < ti, is (see the appendix) 

E,,( Y,’ 1 T = ti) = 
B2(S, ti)[3G2(S, ti) + 6M2(s, ti)G(s, Ci) + M4(S, ti)] 

B2(S, ti)[G(Sy ti) + M’(S, ti)] + y(S, ti) 

?‘(S, ti) CM’(S, ti) + G(S, ti)l 
+ B2(S, ti)[G(s, ti) + M’(S, ti)] + y’(S, ti)’ 

where 

M(S, ti) = 
m(s) 

1 + 2D(S, ti)y(S)’ 

G(s, ti) = Y(S) 
1 + 2D(S, ti)y(S)’ 

s Ii 

D(S, ti) = ~’ P(W~(S, 4 du, 
s 

B(S, ti) = exp - 2Ay(S, u)] du 
> 

. 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 
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y(s, u) satisfies 

dY(s, u) 
___ = 2a(u)7(s, u) + h2(u) - 23.‘*72(s, u), 

du 
(62) 

with initial condition *T(s, s) = 0, and m(s) and j’(s) are (5.5) and (56). 

If a = b = 0 (i.e., Y is a random variable with no dynamics, a = 0, or 77 diffusion, 

b = O), then (57) reduces to (31). Observe that when a = h = 0, T(s, u) = 0, then 

B(s, ti) = 1, D(s, fi) = L’(H(r;) - H(s)), so 

m(s) = 
m 

1 + 23,H(s)l; 
(63) 

and 

y(s) = i 
1 + 2AN(s)y’ 

(64) 

Substituting m(s), y(s) and D(s, ti) in (58) and (59) produces 

M(S, ti) = m 
1 + 2i”‘H(ti)?, 

and 

G(S, ti) = ’ 
1 + an’H(tJy 

and (57) simplifies to (31). To estimate parameters: 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Set 3.’ = X,. 

Calculate m(s) and y(s) using (55) and (56). 

Using (52) and (53) calculate 

ii1 J~‘[Y(u~ ti) + m2(u, ti)] dn, 

(65) 

(66) 

(67) 

where tl, t,, . . . , tk are censored failure times. 

Calculate B(s, ti) and y(s, ti) from (61) and (62). 

Calculate M(s, ti) and G(s, ti) and D(s, ti) from (58)-(60). 

Calculate E,,( Y,’ 1 T = ti) from (57). 

Calculate X, (I,, 1 on the pth cycle) from (51). 

Take A’ = 1, (j,+ 1 on the pth cycle) and go to step 2 until convergence to the 

desired precision is achieved. 

Remark. In some applications it may be that the effects of unobserved processes on 

prior states of the system are important. In this case we can generate the “backward” 

(in time) smoothing equatio& (Yashin, 1991) which can be used in place of the 

“forward” smoothing equations described above. In the “backward” smoothing 
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equation, m(s, ti), y(s, ti) and yzl(s, ti) may be written as 

m(s, ti) = m(ti) - 
s 

fi{a(u)m(~, ti) + b2(u)y-‘(u)[m(u, ti) - m(u)]} du, (68) 
S 

Y(S, ti) = y(t) - 2 
s 

“[LI(u)Y(u, ti) - b’(u)] du 
S 

(69) 

and 

s fi Y2l ts, ti) = Ytti) - a(u)Y21(% ti)du 
s 

- 

s 

2, 

b2(~)y-1(~)~21(~, ti)du. (70) 
S 

Thus, the procedure can be used both to produce estimates conditional on Y and 

looking at survival in the future; or, conditional on Y, looking at how covariates 

among survivors evolved to the current time. 

5. Discussion 

In the case of censored survival data nonparametric methods may be used to 

estimate a survival function, e.g., Kaplan-Meier (1958); or cumulative hazard (Nelson, 

1972; Aalen, 1976) estimators. The hazard rate may be estimated using procedures in 

Ramlau-Hansen (1983). The asymptotic properties of these procedures make them 

applicable to a number of problems. The nonparametric approach, however, cannot 

be used when ancillary data play a significant part in specifying the hazard rate. For 

example, prior studies may provide important information on age related changes in 

some variables for individuals. Clinical trials may help identify the appropriate shape 

of the risk function. To take advantage of this knowledge one needs a different 

approach. When it is known that a covariate is randomly changing, a stochastic 

process model can be used to calculate the parameters of the marginal distribution. 

This distribution, however, may not have an explicit parametric representation. For 

example, to specify the survival function in a stochastic process model it is often 

necessary to solve a system of nonlinear differential equations. This means that 

standard maximum likelihood requires a constrained optimization procedure where 

constraints are represented by differential equations (Marchuk et al., 1989). Instead of 

directly constrained maximization, one can use an EM type algorithm. The advantage 

of EM is that the M-step can be easier to perform. In the examples given, the M-step 

for the specified process involves only analytically specifiable forms. The more difficult 

task is performing the E-step. For the process presented this requires numerical 

integration of nonlinear differential equations for both the filter and smoothing 

estimates of the first two moments of the unobserved covariates. 
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6. Conclusion 

In this paper we suggest a modification of the EM algorithm to work with 

unobserved stochastically changing covariates. The likelihood ratio (instead of likeli- 

hood function) is used for performing the E- and M-steps of this algorithm. To justify 

this procedure we prove that the likelihood ratio improves for each iteration. Per- 

forming the E-step requires calculating smoothing estimates. In the case of a quadratic 

hazard, and a Gaussian process for the unobserved covariate, the equations for these 

estimates may be written in an analytic form. Applying the EM algorithm to censored 

survival data with unobserved time dependent covariates requires calculating 

smoothing equations for EnS( Y;? ) T > tj) for k censored observations, and 

EA,( Y,” 1 T = tj) for n - k uncensored observations. Dembo and Zeitoni (1986) have 

used the EM algorithm for diffusion type stochastic equations as observed and 

unobserved processes. Campilo and Le Gland (1989) compared the properties of the 

EM algorithm with direct likelihood. Their results suggest that the EM algorithm in 

such applications is analytically simpler than the constrained optimization algorithm 

but may require more computational effort. 

Appendix 

Proof of Theorem 1. Let q and 5 be arbitrary F-measurable and F-measurable 

bounded random variables. Consider two forms of E,(v][): 

and 

- 

En(d) = En Cs CE,(I I WI = En, $%(l IF”) 
A’ 

Note that P,(dFJdF,, > 0) = 1. To prove this let A = (dp,JdpAS = 0). Then 

- 

P,(A) = s dP”dP,=O 
A dpn, 

by definition of A. Hence P,(A) = P,(dP,/dP,, > 0) = 1. 

Comparing (A.l) and (A.2) we get 

P,-a.s. Note further that iA may be represented as 

(A.11 

(A.3 

(A.3) 

(A.4) 
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where kn and l? denote expectation with respect to i2 and the restriction of F2 on F” 

which is 6. Substituting (A.3) in (A.4) produces 

and 

(A.5’) 

The proof of Theorem 1 follows by comparing (A.5) and (A.5’), arbitrariness of v and [, 

and the “monotone classes” theorem (Dellacherie and Meyer, 1975). 0 

Calculation of E,( Y,” 1 T = t): Since further calculations deal with 2’ we omit the 

subscript in PAZ. Starting with P( Y, I y 1 T = t), define the density functions: 

and 

cp& I y) = ;J=(T I t I Ys = y), 44) = $P(T I t). 

According to Bayes’ rule, 

f (y, T = t) = hs(Y)cp& I K = Y) 
s 

44) . 

Lemma 1. Let Y and T be as above, and t > s. Thenf,(y ) T = t), 

h(Y 1 T = t) = C(s, t) [B’(s, t)y2 + y(s, t)] 
(Y - Me, t))2 

2G(s, t) > ’ 

where 

64.6) 

C(s, t) = 
1 

P(s, t)[M2(s, t) + G(s, t) + Y(s, t)]’ 

m(s) and y(s) satisfy (55) and (56). 

Proof. Find the conditional density cp,(t 1 y), f r s. To do this, calculate the condi- 

tional survival function P( T > t 1 Y, = y). If s < t then {T > t} c {T > s} and from 

Bayes’ rule, 

P(T > t 1 YJ = P(T > s 1 Y,)P(T > t ( T > s, Y,). (A.7) 
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For the second term on the RHS of (A.7) note that survival conditional on Y is 

P(T>t(T>s, Y:)==exp( -_il:Y:du). 

From Yashin (1985), the conditional survival function is 

P(T>t(T>s, Y,=y)=exp 
( s 

- X ‘(liz’(s, u) + I@, u)] du . (‘4.8) 
s 

where rii(s, u) and y(s, u) solutions of 

drii(s, u) 
___ = a(u)m(s, u) - 2n’y (s, u)m(s, u) 

du 

and 

Ws, u) --= 
du 

2a(u)Y(s, u) + b2 (u) - 2Xf2(s, u), 

(A.9) 

(A. 10) 

G(s, r) = B(s, t)y, (A.1 1) 

with initial conditions 

rii(s, s) = y, 7;(s, s) = 0. 

Under these conditions, m(s, t) is a linear function of y. 

where 

f 
B(s, t) = exp 

(1 
[u(u) - 2i,‘*T(s, u)] du , 

.7 1 

and y(.s, t) satisfy (A.lO). 

Using (A.7), (A.8), and (A.ll), the conditional survival function is 

P(T>tll’,=y)=P(T>s~Y,=y)exp -1,’ 
( J 

‘[R’(.s, u)y2 + f(s, u)] du , 
s 

(A.12) 

where m(s, u) and l;(s, u) are given by (A.9) and (A.lO). 

Differentiating (A.12) with respect to t, 

cps(t ( y) = P(T > s ( Y, = y)i,‘[B2(s, t)y2 + *i(s, r)] 

Note that 

[B2(s, u)y2 + *;;(s, u)] du (A.13) 

(A.14) 
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where P,(y 1 T > s) = (d/dy)P( Y, I y ) T > s) and H,(y) = (a/dy)P( Y, I y). From 

Yashin (1985) the density is 

(Y - m(s)Y 
PJYI T> 4 = J&eXP - 2y(s) ( > 

, 

and from (A.6) 

L(yI T = t) = Clb, t)CB% t)y’ + 76, t)lexp 
(Y - w)2 

- 
2Y (4 

ev( - Y'W, t)), 

(A.15) 

where D(s, t) = /3’S:B2(s, u)du, and C,(s, t) does not depend on y. 

Lemma 1 follows after simple transformations of (A.15). Directly calculating 

E,)( Yj 1 T = t) gives (57). Cl 
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