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Estimating intrinsic structural preferences of de novo emerging
random-sequence proteins: Is aggregation the main bottleneck?
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Present-day proteins are believed to have evolved features to reduce the risk of aggregation. How-
ever, proteins can emerge de novo by translation of non-coding DNA segments. In this study we
assess the aggregation, disorder and transmembrane propensity of protein sequences generated
by translating random nucleotide sequences of varying GC-content. Potential de novo random-
sequence proteins translated from regions with GC content between 40% and 60% do not show
stronger aggregation propensity than existing ones and exhibit similar tendency to be disordered.
We suggest that de novo emerging proteins do not mean an unavoidable aggregation threat to
evolving organisms.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The emerging consensus on protein aggregation is that it is an
inherent property of any polypeptide chain and, regardless of their
amino acid sequences, the amyloid fibril might be the most favored
thermodynamic state of all proteins [1–3]. Even so, proteins display
sequence-specific aggregation propensities that can be estimated
by in silico methods [4,5]. Thus, proteins can evolve to reduce the
risk of aggregation and detailed studies of selected proteins
revealed a number of such mechanisms [6]. However, proteins
continuously emerge de novo by transcription and translation of
previously non-coding DNA segments [7–9]. This poses the
question whether novel proteins that did not yet have the chance
to reduce their aggregation load by selection can seriously hinder
molecular evolution: if the aggregation propensity of de novo
proteins is generally high, leading to the aggregation of practically
all de novo polypeptides, that might render the chances of the
emergence of such proteins negligible.

De novo origin of coding sequences from non-coding ones is a
rare but not improbable event, there are e.g. human- and
primate-specific proteins thought to have arisen by this mecha-
nism [9–11]. The overall low-level transcriptional activity of the
human genome provides a plausible basis for such events [12].
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pári).
Thus, the aggregation propensity of such proteins is worth to be
explored. As the number of known genuine de novo proteins is
fairly low, in this study we chose to use an in silico study on
random, translated DNA sequences to (i) have a dataset of suffi-
cient size to observe trends, (ii) assess the aggregation propensity
before any – however short-time – selection could take place at the
protein level and (iii) have a standardized way to assess and
compare trends for sequences with different GC-content that can
be used as a benchmark for real de novo proteins.

2. Materials and methods

Detailed description of all the methods used and datasets can be
found in the online Supplementary data. Random DNA sequences
of varying GC-content were generated with the restriction that
in-frame STOP codons were avoided. Translated protein sequences
were subjected to different algorithms (Table S1) to assess their
tendency for aggregation (TANGO [13], WALTZ [14] and FoldAmy-
loid [15,16]), forming disordered (IUPred [17,18], RONN [19] and
VSL2B [20,21]) or transmembrane structures (HMMTOP [22],
DASTMfilter [23] and TMHMM [24]). The number of residues pre-
dicted to be in the given structural classes by the algorithms were
averaged and used as a consensus prediction. The same algorithms
were applied to a number of databases representing folded (AS-
TRAL40, version 1.75), unfolded (DISPROT, version 5.7), aggrega-
tion-prone (AmyPDB, last update on 7th April, 2008) and
lsevier B.V. All rights reserved.
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transmembrane proteins (PDBTM, version 2.3) as well as the com-
plete human and mouse proteomes (from Uniprot release
2011_05). The obtained one- and two-dimensional distributions
at the three properties (disorder, aggregation and transmembrane
tendency defined as the percentage of residues falling to these cat-
egories in the consensus prediction) were compared by the appro-
priate variants of the Kolmogorov–Smirnov test. In addition, the
area spanned by the sequences in the two- and three-dimensional
plots and the overlap between the distributions obtained for differ-
ent databases were estimated using a grid-based approach. The
coding sequences of human de novo proteins were obtained by
comparing the translated mRNA sequences to the available protein
sequences and extracting the nucleotide sequences in the match-
ing region.
3. Results

3.1. Random sequences and predictions of structural features

We generated 10000 random DNA sequences of 480 nucleo-
tides without in-frame STOP codons for each of GC-content regime
from 10% to 90% using steps of 10%. The 160-residue length of the
translated polypeptides can be regarded as a reasonable estimate
of average domain size in proteins [25,26]. Although not the full
GC-range explored is biological relevance, as for example the hu-
man genome has an average GC-content of 41% and ranges approx-
imately from 20% to 60% [27], we chose our systematic scan to
identify general trends. After translating all of the 9 � 10000
nucleotide sequences, we have used BLAST [28] search to assess
the similarity of the resulting random de novo proteins to known
sequences. No hits were found below an E-value of 1 ⁄ 10�10, and
only 30 hits were found below an E-value of 0.001 (Table S2). Thus,
our random sequence set is sufficiently distinct from extant pro-
teins. Next, we used a set of prediction algorithms to assess their
aggregation loads (TANGO [13], WALTZ [14] and FoldAmyloid
[15,16]), their disorder (IUPred [17,18], RONN [19] and VSL2B
[20,21]) and transmembrane propensities (HMMTOP [22], DASTM-
filter [23] and TMHMM [24]). None of the applied methods uses
evolutionary information during data processing like today’s
best-performing secondary structure prediction tools [29]), thus,
we expect that they can be used for de novo sequences in an unbi-
ased way. We have performed the same predictions on several dat-
abases representing folded, disordered, transmembrane and
aggregation-prone proteins as well as the complete human and
mouse proteomes. It is important to stress that we do not wish
to assess the absolute aggregation propensity of any of the se-
quence sets, rather, in all evaluations below, we analyze trends
and draw conclusions from comparisons of predictions made with
the same toolkit.

3.2. General trends

Naturally, the amino-acid composition of our random datasets
reflects the standard genetic code organization. At low GC-content,
hydrophobic amino acids appear with higher frequency, typically
representing 50–70% of all residues. At 90% GC-content, only 10%
of all residues are hydrophobic and 20% is arginine (Table S3). In
present-day proteomes, acidic amino acids (Glu, Asp) are remark-
ably more frequent than expected from the codon distribution in
the standard genetic code [30,31] (Table S4). At high GC-content,
basic amino acids are overrepresented in the standard code-trans-
lated dataset relative to present-day natural proteins. The mean
net charge of random de novo sequences exhibits a minimum at
40% GC-content and it is still higher than the highest value ob-
tained for present-day proteins, corresponding to IDPs. The mean
hydrophobicity shows a decreasing trend with increasing GC-con-
tent and covers a wider range than that of present-day proteins
(Figs. S1 and S2). According to the averaged structural predictions,
the GC-content of the underlying DNA sequences governs the
structural preferences of the random proteins with clearly identifi-
able trends that are much more pronounced than the variations in
the simple physico-chemical parameters. Intrinsic disorder is a
dominant feature of sequences with coding regions of high GC-
content (Table 1). Around 50% GC-content, 25% of all amino acid
residues is predicted to be disordered. In this respect, only aggrega-
tion-prone and transmembrane present-day proteins have a lower
average value. At 60% GC-content and above, random sequences
are practically fully disordered containing on average one or two
long disordered regions (Fig. 1a).

The propensity to form transmembrane helices is relatively
high at low GC-content and decreases rapidly to practically vanish
over 60% GC-content. At 40% GC-content, the average ratio of res-
idues in transmembrane segments is comparable to those in the
complete human and mouse proteomes (Fig. 1b).

The aggregation load in random sequences is highest at low GC-
content and drops quickly to an average 22% of all residues at 50%
GC-content. At and above 60% GC, practically all parameters inves-
tigated are on average below those of present-day proteins (Fig. 1c).

3.3. Interplay between structural properties

We have investigated whether the predicted structural prefer-
ences are independent of each other or there are some associations.
We have investigated this aspect at the sequence level, calculating
correlations between the percentage of residues predicted to be
disordered, transmembrane and aggregation-prone (Tables 2 and
S5). Both these values and two-dimensional plots of these features
indicate that these features are loosely interdependent and not all
regions of the disorder-transmembrane-aggregation space are
accessible either for random or for existing protein sequences
(Fig. 1d–f).

Sequences with higher percentage of disordered residues tend
to have less transmembrane helices and lower aggregation propen-
sity. However, the nature of the interdependence is different, with
a large range of variation in transmembrane propensity at low dis-
order tendency, whereas aggregation load seems to be more
strictly negatively associated with disorder. On the other hand,
the tendency to form transmembrane helices shows a positive
association with aggregation propensity. These trends suggest that
amino acid composition plays a decisive role in defining these
structural features.

3.4. Comparison to databases

We stress that we do wish to assess the absolute propensity of
any sequence set to be disordered, form transmembrane helices
and being prone to aggregation, rather use consensus predictions
for comparative purposes. Our results allow to compare the trends
observed for random-sequence proteins to those observed in natu-
ral ones. Below, unless noted otherwise, we will focus on random
proteins translated from the physiologically most relevant range
of GC-content, between 40% and 60%.

Intrinsic disorder depends heavily on the underlying GC-con-
tent of the random sequences, at 60% the random sequences show
clearly higher disorder propensity than even DISPROT, whereas at
40 and 50% of the translated proteins are predicted to contain less
disordered residues than those in extant proteomes (Table 1).

The tendency to form transmembrane helices is much lower for
random sequences translated from DNA of 50% or higher GC con-
tent than for extant proteins except globular and disordered ones
(Table 1).



Table 1
Summary of averaged prediction results on random sequences and selected databases. Values refer to the percentage of residues predicted to be in the structural state
investigated.

Database No. of sequences Disorder Transmembrane Aggregation

Percentile Percentile Percentile

Avg ± Stdev 25% 75% Avg ± Stdev 25% 75% Avg ± Stdev 25% 75%

AmyPDB 247 33.62 23.62 44.90 47.29 4.20 6.74 0.00 6.73 19.18 6.55 9.29 23.87
ASTRAL40 10175 16.26 13.45 7.10 20.77 1.15 5.45 0.00 0.00 21.26 5.49 18.09 24.33
DISPROT 529 43.89 28.22 21.11 64.48 2.61 6.03 0.00 2.08 16.51 6.80 11.72 21.07
HUMAN 20899 34.74 24.14 14.99 51.11 6.10 11.91 0.00 5.00 21.05 8.41 15.25 25.07
MOUSE 18525 33.31 23.95 13.69 49.56 7.03 13.03 0.00 6.10 21.69 8.88 15.60 25.69
PDBTM 429 12.59 9.65 5.75 16.88 31.86 20.11 12.00 48.02 34.47 10.79 25.61 41.97
GC = 10% 10000 1.10 0.95 0.42 1.46 42.47 9.53 36.04 48.96 54.75 4.48 51.88 57.81
GC = 20% 10000 2.08 1.78 1.04 2.71 29.85 10.48 22.92 37.08 47.95 5.36 44.38 51.56
GC = 30% 10000 4.51 3.69 2.08 6.04 16.83 10.91 8.75 24.58 39.26 5.64 35.31 43.12
GC = 40% 10000 10.26 7.32 4.79 13.96 6.98 8.08 0.00 12.08 30.29 5.25 26.56 33.75
GC = 50% 10000 24.01 13.71 13.75 31.67 2.65 4.68 0.00 3.96 22.31 4.58 19.06 25.31
GC = 60% 10000 50.57 19.25 36.04 64.58 1.01 2.63 0.00 0.00 15.50 3.81 12.81 17.81
GC = 70% 10000 81.48 14.45 73.07 92.92 0.24 1.06 0.00 0.00 9.72 3.05 7.50 11.60
GC = 80% 10000 96.68 4.69 95.42 100.00 0.09 0.52 0.00 0.00 5.18 2.23 3.75 6.56
GC = 90% 10000 99.77 0.79 100.00 100.00 0.22 0.77 0.00 0.00 1.84 1.31 0.94 2.50
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Interestingly, the highest aggregation potential can be attrib-
uted to transmembrane proteins in PDBTM and not aggregation-
prone proteins in AmyPDB which do not show higher aggregation
propensity than globular proteins (ASTRAL40) or those in the hu-
man and mouse proteomes.

For all three properties investigated, standard deviation for
existing proteins is higher than for random ones, corresponding
to higher variability in selected, functional proteins than in poten-
tial de novo ones. To further elaborate and compare the properties
of random de novo and extant proteins, we plotted the investigated
structural preferences in two dimensions for each sequence and
compared the resulting two-dimensional distributions and the
area covered by the sequences in the disorder-transmembrane-
aggregation space (Figs. S3, S4 and S5).

Statistical tests (one- and two-dimensional Kolmogorov–Smir-
nov tests) reveal that the distributions obtained for the disorder,
transmembrane and aggregation tendencies of the human prote-
ome and the proteins translated from random DNA segments with
40–50–60% GC-content are totally dissimilar with a P-value of 0
(Table 2).This is due to the different local densities of the data
points in the investigated data sets. However, when estimating
the (2D or 3D) space covered by the data points corresponding to
the random sequence set above, it is apparent that more than
95% of this space overlaps with that spanned by proteins in the hu-
man proteome. In contrast, the overlap is only around 35% when
calculated relative to the human proteome (Table S6).The non-
overlapping part of the space covered by the random sequences
corresponds to low aggregation propensity.

It should be noted that the most striking difference between the
random protein sets and the human proteome is in their tendency
to form transmembrane helices, as natural sequences exhibit high-
er propensity for this than those translated from random DNA
segments.

3.5. De novo proteins in the human genome

We have investigated three de novo human proteins [8,10]
using the same methodology as for random sequences. Interest-
ingly, these are in accordance with the trends observed for random
de novo proteins with respect to the dependence of structural
features on the GC-content of the underlying DNA segment. The
DNAH10OS (P0CZ25) and C22ORF45 (P86434) proteins are pre-
dicted to have disordered stretches and the GC-content of their
coding segments is around 60% for the coding segment (Table 3).
In contrast, CLLU1 (Q5K131) is predicted to have a significant
aggregation tendency, as expected for a protein translated from a
low-GC DNA segment. More detailed prediction results can be
found in the online Supplementary data.
4. Discussion

In this in silico study we generated and analyzed random-se-
quence hypothetical de novo proteins from DNA with varying GC-
content. This method differs from generally applied ones for inves-
tigating random protein sequences where amino acid frequencies
are set a priori, whereas in our approach these are dictated by the
GC-content of the underlying coding segments and the (standard)
genetic code. Although the connection between genomic GC-per-
centage and the amino acid composition of the translated proteins
is a finding neither novel nor surprising, our approach yields a solid
basis and benchmark to estimate the structural properties of newly
emerging proteins. Besides, it corresponds to a realistic scenario
shown to be operative for a few proteins even recently in the hu-
man lineage. We were able to identify trends in the structural prop-
erties of potential de novo proteins as a function of the features of
the hypothetical genomic sequences translated. We have shown
that increasing GC-content implies higher tendency to form disor-
dered segments and lower transmembrane and aggregation poten-
tial for the translated sequences.

Our main finding is that the random proteins translated from
DNA with 40–60% GC occupy a region in the space of the properties
considered that is almost entirely within the span of those of ex-
tant proteins in the human proteome. Random de novo proteins
are not expected to have a larger aggregation potential than exist-
ing ones, nor display a higher degree of disorder. However, they
clearly display a lower propensity to form transmembrane helices,
meaning that from the three properties investigated, this is the one
that most likely needs the most serious optimization during fur-
ther evolution. This finding is also in line with the notion that prob-
ably transmembrane helices represent the most regular type of
structural elements investigated here, with requirements on length
and composition etc., thus these are the least expected to arise by
chance in random sequences. The situation is similar to that ob-
served for coiled coils with underlying specific repeats and disor-
dered segments [32].

It should be stressed that our study corresponds to a first
approximation of the problem and can rather be viewed as a
benchmark study than an accurate model of real evolutionary pro-
cesses. Genomic sequences are non-random, and real proteins can



Fig. 1. Comparison of predicted properties of the human proteome with the 40, 50 and 60% GC-based random protein sets.

Table 2
Correlation between structural properties for selected data sets.

Properties correlated (number of residues predicted to be in the states below) Random-nucleotide translated Proteome data

40% GC 50% GC 60% GC 40–50–60%
GC combined

Human Mouse

Disorder-transmembrane �0.205 �0.193 �0.248 �0.375 �0.350 �0.380
Disorder-aggregation �0.572 �0.692 �0.771 �0.834 �0.780 �0.781
Transmembrane-aggregation 0.587 0.433 0.331 0.588 0.742 0.780

All correlations are significant at the 0.05 level.
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display bias relative to the expected properties based on the GC-
content of the underlying sequences. For example, the amino acid
composition of proteins in the PDBTM database shows the highest
similarity to our random proteins translated from DNA with GC-
content of 70–80% (Tables S3 and S4). However, these proteins
have higher aggregation propensity and transmembrane tendency



Table 3
Predictions of structural features and GC-content of three recently identified de novo human orphan genes [8]. The GC-content was calculated for the whole mRNA segment (%GC
mRNA) and for the protein-coding RNA segment (%GC exon).

UniProt ID Length % Disorder % Transmembrane % Aggregation %GC mRNA %GC exon

P0CZ25 163 92.95 0 9.51 54.92 63.60
P86434 159 50.31 0 15.41 58.89 59.12
Q5K131 121 7.02 10.95 41.74 37.11 31.96
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than other extant proteins, contrary to the trends observed for ran-
dom proteins.

Our finding that de novo proteins are not particularly prone to
aggregation might appear contradictory to claims that proteins
are optimized against aggregation during evolution. However,
our methods addressing three basic structural properties do not re-
veal any detailed structural, let alone functional features. On the
other hand, we feel that as the prediction programs used here con-
sider sequence only and no evolutionary relationships, their results
are suitable for comparing the features of extant and hypothetical
proteins. In particular, the fact that the presence of structured parts
can influence aggregation properties of proteins is taken onto ac-
count by disorder predictions, approximating globularity with
the inverse of disorder. It is expected that after the birth of a de
novo protein it is optimized by selection to perform its function
and to adjust its structure, stability and dynamics. During this pro-
cess the maintenance or even lowering of the aggregation potential
present in the newly born protein is one of the pressures operative
during evolution. It can even be expected that initially require-
ments for the presence of a suitable hydrophobic core or trans-
membrane helices can even render these proteins more prone to
aggregation, and the described mechanism to lessen this load can
be operative after the suitable structure and stability are reached.
So long as the benefits of the new protein outweigh its hazards
for the organism, especially if its expression level is low, such sce-
narios can be plausible. Our results do not contradict the presence
and nature of selection pressures present at any later stages of pro-
tein evolution, but they suggest that the appearance of novel cod-
ing sequences is not expected to be hampered by unusually high
aggregation propensity of the translated proteins.
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