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This paper is concerned with the existence, nonexistence and minimal wave speed of the
travelling wavefronts of Belousov–Zhabotinskii system with diffusion and delay.
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1. Introduction

In 1959, Belousov [2] proposed the so-called Belousov–Zhabotinskii system to model the chemical reaction, and one of
its simplified models takes the form as follows

∂U(x, t)
∂t

= ∆U(x, t)+ U(x, t) [1− U(x, t)− rV (x, t)] ,

∂V (x, t)
∂t

= ∆V (x, t)− bU(x, t)V (x, t),
(1.1)

where x ∈ R, t > 0, r ∈ (0, 1), b is a positive constant, and U, V ∈ R correspond to the concentration of bromic acid
and bromide ion, respectively, ∆ is the Laplacian operator on R. Model (1.1), in fact, was also derived in biochemical and
biological fields, see [10,11,21,22]. Recalling the chemical and biological backgrounds of (1.1), the following asymptotical
boundary conditions were proposed [5,6,17,20]{

lim
x→−∞

U(x, t) = 0, lim
x→−∞

V (x, t) = 1,

lim
x→∞

U(x, t) = 1, lim
x→∞

V (x, t) = 0. (1.2)

On the dynamics of (1.1) and (1.2), travelling wavefront,which takes the form of (U(x, t), V (x, t)) = (ρ(x+ct), %(x+ct))
for some wave speed c > 0 and monotone wave profile function (ρ, %), attracted much attention, see Murray [12],
Troy [17], Ye and Wang [20] and the references cited therein. Moreover, from the viewpoint of the chemical reaction, the
travelling wavefronts of (1.1) and (1.2) have significant sense, namely, the waves move from a region of higher bromic
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acid concentration to one of lower bromic acid concentration as it reduces the level of bromic ion (we can refer to Wu and
Zou [19]).
It is well known that time delay seems to be inevitable in many evolutionary processes, e.g., biological science [4],

therefore the time delay was incorporated into (1.1) by Wu and Zou [19], which takes the form as follows
∂U(x, t)
∂t

= ∆U(x, t)+ U(x, t) [1− U(x, t)− rV (x, t − τ)] ,

∂V (x, t)
∂t

= ∆V (x, t)− bU(x, t)V (x, t),
(1.3)

where τ ≥ 0 denotes a time delay. For model (1.3), some results have been established for the existence of travelling
wavefronts, see, for example,Ma [8], andWu and Zou [19]. In particular,Ma [8] proved the existence of travellingwavefronts
of (1.3) with (1.2) by the upper and lower solution and Schauder’s fixed point theorem if the wave speed c > 2

√
1− r . But

for the case of c ≤ 2
√
1− r, the existence of travelling wavefronts of (1.3) remains open. This constitutes the purpose of

this paper.
We first change the variables such that u = U and v = 1− V , then (1.3) reduces to

∂u(x, t)
∂t

= ∆u(x, t)+ u(x, t) [1− r − u(x, t)+ rv(x, t − τ)] ,

∂v(x, t)
∂t

= ∆v(x, t)+ bu(x, t) [1− v(x, t)] ,
(1.4)

and we are interested in the following asymptotic boundary conditions (see (1.2))

lim
x→−∞

u(x, t) = lim
x→−∞

v(x, t) = 0, lim
x→∞

u(x, t) = lim
x→∞

v(x, t) = 1. (1.5)

Let (u(x, t), v(x, t)) = (φ(x + ct), ψ(x + ct)) be the travelling wavefront of (1.4) and denote x + ct by ξ , then
(φ(ξ), ψ(ξ)), ξ ∈ Rmust satisfy{

cφ′(ξ) = φ′′(ξ)+ φ(ξ) [1− r − φ(ξ)+ rψ(ξ − cτ)] ,
cψ ′(ξ) = ψ ′′(ξ)+ bφ(ξ) [1− ψ(ξ)] , (1.6)

and the corresponding asymptotic boundary conditions as follows (see (1.5))

lim
ξ→−∞

φ(ξ) = lim
ξ→−∞

ψ(ξ) = 0, lim
ξ→∞

φ(ξ) = lim
ξ→∞

ψ(ξ) = 1. (1.7)

By the above notations, our main concern in this paper is to investigate the monotone nondecreasing solutions of (1.6)
and (1.7). In Section 2, we prove the existence of travelling wavefronts if c ≥ 2

√
1− r by the method of Ma [8] and

an approximation argument used in [3,16]. In Section 3, the nonexistence and minimal wave speed of (1.6) and (1.7)
will be proved by the theory of asymptotic spreading [7,16] and comparison principle for partial functional differential
equations [9]. This is probably the first time that the nonexistence of travelling wavefronts of (1.3) has been reported, even
for the case of τ = 0.

2. Existence of travelling wavefronts

In this section, we shall investigate the existence of monotone solution of (1.6) and (1.7). Throughout this paper, X will
be defined by

X = C(R,R2) =
{
u(x)|u(x) : R→ R2 is uniformly continuous and bounded

}
,

which is a Banach space with the super norm. For (φ, ψ) ∈ X , denote (H1,H2) as follows{
H1 (φ, ψ) (ξ) = 2φ(ξ)+ φ(ξ) [1− r − φ(ξ)+ rψ(ξ − cτ)] ,
H2 (φ, ψ) (ξ) = bψ(ξ)+ bφ(ξ) [1− ψ(ξ)] .

Then (1.6) can be rewritten as{
cφ′(ξ) = φ′′(ξ)− 2φ(ξ)+ H1 (φ, ψ) (ξ),
cψ ′(ξ) = ψ ′′(ξ)− bψ(ξ)+ H2 (φ, ψ) (ξ).

For c > 0, define constants as follows

γ1(c) =
c −
√
c2 + 8
2

, γ2(c) =
c +
√
c2 + 8
2

,

γ3(c) =
c −
√
c2 + 4b
2

, γ4(c) =
c +
√
c2 + 4b
2

.
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Moreover, for (φ, ψ) ∈ X , we denote F = (F1, F2) by

F1 (φ, ψ) (ξ) =
1

γ2(c)− γ1(c)

[∫ ξ

−∞

eγ1(c)(ξ−s) +
∫
∞

ξ

eγ2(c)(ξ−s)
]
H1 (φ, ψ) (s)ds,

F2 (φ, ψ) (ξ) =
1

γ4(c)− γ3(c)

[∫ ξ

−∞

eγ3(c)(ξ−s) +
∫
∞

ξ

eγ4(c)(ξ−s)
]
H2 (φ, ψ) (s)ds,

which is similar to that in [8,19]. Then, it is sufficient to consider the fixed point of the operator F in the space X .
Furthermore, define constants as follows

c∗ = 2
√
1− r, λ∗(c) =

c −
√
c2 − 4(1− r)
2

.

The following existence result is established in Ma [8].

Theorem 2.1. Let c > c∗ be true such that be−λ∗(c)cτ ≤ 1 − r. Then (1.6) and (1.7) have a monotone solution (φ(ξ), ψ(ξ)),
which is a travelling wavefront of (1.4) and (1.5).

In addition, from the definition of F , the following result is clear.

Lemma 2.2. For any c ∈ (c∗, c∗ + 1), (φ, ψ) formulated by Theorem 2.1 are equicontinuous.

Theorem 2.3. Assume that c = c∗ and be−λ∗(c)cτ < 1− r. Then (1.6) has a monotone solution (φ(ξ), ψ(ξ)) such that

lim
ξ→∞

(φ(ξ), ψ(ξ)) = (1, 1) , lim
ξ→−∞

(φ(ξ), ψ(ξ)) = (0, α) (2.1)

for some constant α ∈ [0, 1] .

Proof. We prove this by an approximation method used in [3,16]. Since be−λ∗(c∗)c∗τ < 1 − r , there exists a δ1 > 0 such
that be−λ

∗(c)cτ
≤ 1 − r for c ∈ (c∗, c∗ + δ1). Let δ = min{δ1, 1}. Choose a sequence {cn}∞n=1 with cn ∈ (c

∗, c∗ + δ) and
cn → c∗ as n→∞. Then Theorem 2.1 implies that (1.6) and (1.7) have a monotone solution (φn(ξ), ψn(ξ))with c = cn, so
(φn(ξ), ψn(ξ)) is a fixed point of the operator F with γi(c) = γi(cn). Since such a travelling wavefront is invariant under the
sense of phase shift, then we can assume that φn(0) = 1

2 for all n. Furthermore, Lemma 2.2 indicates that (φn(ξ), ψn(ξ)) is
equicontinuous.
By Ascoli–Arzela lemma and a nested subsequence argument, there exists a subsequence of (φn(ξ), ψn(ξ)) which

converges uniformly on every compact subset of R, and hence pointwise on R to a vector function (φ(ξ), ψ(ξ)) ∈ X .
According to the Lebesgue’s dominant convergence theorem, (φ(ξ), ψ(ξ)) is a fixed point of the operator F with γi(c) =
γi(c∗). Hence, (φ(ξ), ψ(ξ)) satisfies (1.6) with c = c∗. Moreover, themonotonicity of (φn(ξ), ψn(ξ)) and φn(0) = 1

2 implies
that (φ(ξ), ψ(ξ)) is nondecreasing and φ(0) = 1

2 .
We now consider the asymptotic behavior of (φ(ξ), ψ(ξ)). In fact, since (φ(ξ), ψ(ξ)) is nondecreasing and bounded,

then

lim
ξ→±∞

(φ′′(ξ), ψ ′′(ξ)) = lim
ξ→±∞

(φ′(ξ), ψ ′(ξ)) = (0, 0).

Combining this with (1.6), then there exists constants φ±, ψ± such that

lim
ξ→±∞

(φ(ξ), ψ(ξ)) = (φ±, ψ±) , (0, 0) ≤ (φ±, ψ±) ≤ (1, 1).

Then φ(0) = 1
2 implies that φ− ∈ [0,

1
2 ], φ+ ∈ [

1
2 , 1] and the following equalities

φ±(1− r − φ± + rψ±) = 0, φ±(1− ψ±) = 0. (2.2)

We now prove (2.1) in three cases.
(i) Since φ+ ∈ [ 12 , 1], then ψ+ = 1 and φ+ = 1 are obvious by (2.2).
(ii) If φ− = 0, then there exists some α ∈ [0, 1] such that ψ− = α.
(iii) If φ− ∈ (0, 12 ], then φ−(1− ψ−) = 0 indicates that ψ− = 1 while φ−(1− r − φ− + rψ−) = 0 means that φ− = 0 or

1, which is a contradiction.

It is clear that (i)–(iii) imply (2.1). The proof is complete. �

Remark 2.4. In Theorem 2.3, we can only prove aweaker asymptotic boundary condition (2.1) than that of (1.7) since (0, α)
is the equilibrium of (1.6) for any α ∈ R. We conjecture α = 0 in (2.1), and we shall further investigate the problem in our
forthcoming research.

Remark 2.5. Although we prove Theorem 2.3 by a method similar to that of [7], their results cannot be applied directly
since (1.6) has infinite constant equilibrium states.
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3. Nonexistence and minimal wave speed

In this section, we will prove that (1.6) and (1.7) have no positive solution (do not require the monotonicity) in the sense
of functional if c < c∗ holds.
We first consider the classical Fisher equation

∂w(x, t)
∂t

= ∆w(x, t)+ dw(x, t)
[
1−

w(x, t)
K

]
,

w(x, 0) = w(x),
(3.1)

where all the constants are positive andw(x) ∈ Y which is defined by

Y = C(R,R) = {u(x) : u is uniformly continuous and bounded for all x ∈ R},

then it is clear that Y is a Banach space with the super norm. By the theory of asymptotic spreading of reaction-diffusion
equation, which was earlier proposed in Aronson and Weinberger [1] and recently developed by [7,16,18], the following
result is true.

Lemma 3.1. Assume that w(x) ≥ 0 for x ∈ R, w(x) = 0 outside a bounded interval of R and 0 < w(x) < K on a nonempty
subset of R. Let w(x, t) be defined by (3.1), then

(i) limt→∞ sup|x|>ct w(x, t) = 0 holds for any given c > 2
√
d;

(ii) limt→∞ inf|x|<ct w(x, t) = K holds for any given c ∈
(
0, 2
√
d
)
.

Moreover, for t ≥ 0 andw(x) ∈ Y , define T (t) as follows

T (t)w(x) =
1
√
4π t

∫
R
e−

(x−y)2
4t w(y)dy,

then T (t) : Y → Y is an analytic semigroup for t ≥ 0 [13,15]. Thus the following result is obvious by the theory of abstract
functional differential equations [9] (we also refer to Smith and Zhao [14] for the delayed reaction-diffusion equation onR).

Lemma 3.2. Assume that w(x, t) ∈ Y for all t ∈ [0, t ′). If w(x, 0) ≥ w(x) and

w(x, t) ≥ T (t)w(x, s)+
∫ t

s
T (t − θ)

{
dw(x, θ)

[
1−

w(x, θ)
K

]}
dθ, x ∈ R,

for any 0 ≤ s < t < t ′. Thenw(x, t) ≥ w(x, t) holds for all (x, t) ∈ R× [0, t ′).

We now consider the initial value problem
∂u(x, t)
∂t

= ∆u(x, t)+ u(x, t) [1− r − u(x, t)+ rv(x, t − τ)] , x ∈ R, t > 0,
∂v(x, t)
∂t

= ∆v(x, t)+ bu(x, t) [1− v(x, t)] , x ∈ R, t > 0,
u(x, 0) = u(x), v(x, s) = z(x, s), x ∈ R, s ∈ [−τ , 0],

(3.2)

with (u(·), z(·, s)) ∈ X for all s ∈ [−τ , 0]. By the theory of the abstract functional differential equation [9], the existence of
mild solution of (3.2) in the space X is formulated as follows.

Lemma 3.3. Assume that 0 ≤ u(x), z(x, s) ≤ 1 for any x ∈ R, s ∈ [−τ , 0]. Then (3.2) has a unique mild solution
(u(x, t), v(x, t)) defined for all (x, t) ∈ R × (0,∞). Moreover, 0 ≤ u(x, t), v(x, t) ≤ 1 for all (x, t) ∈ R × (0,∞) and
takes the form as follows

u(x, t) = T (t)u(x)+
∫ t

0
T (t − s) {u(x, s) [1− r − u(x, s)+ rv(x, s− τ)]} ds,

v(x, t) = T (t)z(x, 0)+
∫ t

0
T (t − s) {bu(x, s) [1− v(x, s)]} ds.

(3.3)

Lemma 3.4. Assume that the initial value of (3.2) satisfies

(I) 0 < u(x), z(x, s) < 1 if x ∈ (−1, 1), s ∈ [−τ , 0],
(II) u(x) = z(x, s) = 0 if |x| ≥ 1, s ∈ [−τ , 0].

Then limt→∞ inf|x|<ct u(x, t) ≥ 1− r holds for any given c ∈ (0, c∗) .
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Note that T (t)u(x) ≥ 0 if u(x) ≥ 0, then (3.3) and Lemma 3.3 imply that

u(x, t) ≥ T (t)u(x)+
∫ t

0
T (t − s) {u(x, s) [1− r − u(x, s)]} ds

for all (x, t) ∈ R× (0,∞). Therefore, Lemma 3.4 is a direct consequence of Lemmas 3.1–3.3, so we omit its proof here (we
can also refer to Smith and Zhao [14]).

Lemma 3.5. Assume that (u1(·), z1(·, s)) ∈ X for s ∈ [−τ , 0] and

0 ≤ u1(x) ≤ u(x) ≤ 1, 0 ≤ z1(x, s) ≤ z(x, s) ≤ 1

for all x ∈ R, s ∈ [−τ , 0]. Let (u1(x, t), v1(x, t)) and (u(x, t), v(x, t)) be the mild solutions of (3.2) with initial values (u1, z1)
and (u, z), respectively. Then

0 ≤ u1(x, t) ≤ u(x, t) ≤ 1, 0 ≤ v1(x, t) ≤ v(x, t) ≤ 1, (x, t) ∈ R× (0,∞).

Lemma 3.5 is clear by Martin and Smith [9], and the proof is omitted here.

Theorem 3.6. Assume that c < c∗ holds. Then (1.6) and (1.7) have no monotone solution.

Proof. We argue it by contradiction, were the stated conclusion false, then there exists a constant c1 ∈ (0, c∗) such that
there exists (φ(ξ), ψ(ξ)) satisfying (1.6) and (1.7)with c = c1 and ξ = x+c1t . Note that the travellingwavefront is invariant
in the sense of phase shift, so (φ(ξ + h), ψ(ξ + h)) also satisfies (1.6) and (1.7) with c = c1 and ξ = x+ c1t . Assume that
the initial value of (3.2) satisfies the conditions (I)–(II) in Lemma 3.4, then we can always choose h > 0 sufficiently large
such that

0 ≤ u(x) ≤ φ(x+ h) ≤ 1, 0 ≤ z(x, s) ≤ ψ(x+ c1s+ h) ≤ 1

hold for all x ∈ R, s ∈ [−τ , 0]. Let c = c1+c∗

2 in Lemma 3.4. Then the comparison principle (Lemma 3.5) indicates that

0 ≤ u(x, t) ≤ φ(x+ c1t + h) ≤ 1, 0 ≤ v(x, t) ≤ ψ(x+ c1t + h) ≤ 1

for all (x, t) ∈ R× [0,∞), which further implies a contradiction between Lemma 3.4 and (1.7) as x+ ct →−∞. The proof
is complete. �

Theorem 3.7. Assume that c < c∗ holds. Then (1.6) and (1.7) have no positive solution.

The proof of Theorem 3.7 is similar to that of Theorem 3.6, so we omit it here.

Remark 3.8. The results in Liang and Zhao [7] cannot be applied to consider the nonexistence of travelling wavefront
directly, the reason is similar to that of Remark 2.5. However, the proof in this paper is motivated by Liang and Zhao [7]
and Thieme and Zhao [16].

Remark 3.9. What we have done implies that c∗ is the minimal wave speed of system (1.4), which is under the sense that
(1.6) and (1.7) have no nontrivial positive solution if c < c∗ while they have a nontrivial monotone solution if c ≥ c∗.
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