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Structure of Quadratic Inequalities 
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When A and B are n X 1z positive semi-definite matrices, and C is an n X n 
Hermitian matrix, the validity of a quadratic inequality 

(,*A.+*(x*&)~@ > 1 x*Cs 1 

is shown to be equivalent to the existence of an n x n unitary matrix W such that 

AWWB1/2 + B’l~W*A’l~ = 2C. 

Some related inequalities are also discussed. 

1. INTRODUCTION 

We consider complex n x n matrices. The transpose and the complex 
conjugate of a matrix C are denoted by CT and C, respectively while C* is the 
conjugate transpose, i.e. C* = CT. I is the identity matrix. For Hermitian A and 
B the relation A > B means that A - B is positive semi-definite. For a positive 
semi-definite A its (positive semi-definite) square root is denoted by A112. The 
space of 1z x 1 matrices is denoted by CY and its elements, i.e. (n-column) 
vectors, by x, y, and x. 

Horn [6] and FitzGerald and Horn [4] studied the structure of a Hermitian 
inequality: 

x*Ax > 1 x*Bx / for ail x 6 0, 

and of a Hermitian-symmetric inequality: 

x*Ax 3 1 xTCx ) for all x E C?, 

where A is positive semi-definite, B is Hermitian, and C is symmetric. 
Our first concern is an inequality of domination: 

x*Ax > 1 x*Cx 1 for all x E 0, 
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where A is positive semi-definite, but C is arbitrary. We characterize the validity 
of this inequality by the existence of a matrix W such that 

W*w<I and 2AW(I - W*w)lP WA’/2 zzz C. 

Our next aim is to analyse structure of an inequality of Schwartz type: 

(~*Ax)l/~ (x*13x)l12 > 1 x*Cx j for all x E CY, 

where A and B are positive semi-definite and C is Hermitian. We characterize 
the validity of this inequality by the existence of a unitary matrix W such that 

A’PWBl12 + BlI”W*AlI” = 2C. 

In the final section we analyze difficulty in treating an inequality of Schwartz 
type without Hermitian condition on C. 

2. INEQUALITIES OF DOMINATION 

If n x n matrices A and C are positive semi-definite and Hermitian, respect- 
ively, the inequality of domination 

x*Ax ,, j x*Cx / for all x E C’” 

can be written in the form 

A>,C>--A. 

Therefore the inequality of domination is equivalent to the existence of an 
n x n Hermitian matrix W such that 

w*w<I and A’PW4’12 = C. 1 

If Hermitian condition on C in the above inequality is removed, the situation 
is much complicated. Indeed, it means 

2A 3 eieC + e-ieC* >, -2A for all 0 E R. 

We shall eliminate the parameter 0 from this inequality by introducing a matrix. 

LEMMA 1. Let C be a complex n x n matrix. The following four statements 
are mutually equivalent: 
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(a) x*x 3 / x*Cx 1 for all x EC”, 

(b) I + +eisC + &ee-isC* > 0 for all 8 E R, 
(c) there is an n x n matrix W such that 

w*w<I and 2(I - w*W)1i2 w = C 

(d) there are n x n matrices U and W such that 

{U + ei@w}* {U + ei@W} = I + &ei@C + $e-ieC* for all 0 E R. 

Proof. Equivalence of (a) and (b) are obvious. Equivalence of (a) and (c) was 
proved in [l] while equivalence of (b) and (d) is just a special case of [7, Theo- 
rem 3.21. 

We apply this lemma to our inequality of domination. 

THEOREM 2. Let A and C be n x n matrices, and assume that A is positive 
semi-definite. Then the following statements are mutually equivalent: 

(i) x*Ax 2 / x*Cx 1 for all x E Cn, 

(ii) there is an n x n matrix W such that 

w*w<I and ‘&41/2(] - W*W)lP WA112 = C, 

(iii) there are vectors xi E CY i = 1 ,... , 2n such that 

and 

Proof. (i) 3 (ii). Assume first that A is positive definite, and consider 
S : = A-1/2CA-1/2. Then (i) implies that S satisfies (a) of Lemma 1 in place of C. 
Therefore there is W satisfying (c), which meets the requirement of (ii). When 
A is merely positive semi-definite, apply the above arguments to positive 
definite A, := A + EI for E > 0. Let W, be a matrix which satisfies 

WTW6 ,( I and 2Ati2{I - W$Wc}“” WEA:” = C. 

Since the set of matrices U for which lJ*U < I is compact with respect to the 
usual topology, W, can be assumed to converge to some W as E -+ 0. Finally 
since Ai/” and {I - W: WJ1fz converge to A112 and {I - W* W}llz, respectively, 
as E + 0, the above relations imply that W meets the requirement of (ii). 

(ii) * (iii). If W satisfies (ii), then the 2n x 2n matrix 

( I- w*w 
* := w*p- W’*W)1/2 

(I - w*wy w 
w*w 1 
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is positive semi-definite with 0 as its eigenvalue of multiplicity >n, because 

-(w*w)l’z 

A * ((I_ ~*pfy ; ) = 0. 

By the spectral theorem (cf. [5], p. 67) there are vectors zi E Cz” i = I,..., n 
such that 

@” = A. 

Let 
z .T : = (q, q’) t 

with tli , oi EC” i = 1, 2 ,..., n. Then the above representation implies that 

and 

guiu: + f vivi* = I - w”w + w*w = I 
i=l 

gluiu; = (I - w*wy w. 

Therefore by (ii) the vectors 

x2i4 .- -- AWUi and x2i := &Pv. 1 i = I,..., n 

meet the requirement of (iii). 

(iii) 3 (i). If (xi) satisfies (iii), for any vector x E C”, the arithmetic- 
geometric mean inequality shows 

I x*cx 1 < 2 f 1 x*xzi-l 1 . / x,*ix ( 
61 

< 2 1x*x2i--1 I2 + i I &,I2 
i-1 i=l 

= x* ;y$ x = x*Ax. 
( 1 

This completes the proof. 
If x*Cx in Theorem 2 (i) is replaced by xTCx, there appears a Hermitian- 

symmetric inequality: 

because 
x*Ax 3 ( x’(&-C + ?&CT) x / 

XTCX = xTCTx. 
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Analysis of an inequality of this type has been done by FitzGerald and Horn [4, 
Theorems 2.1 and 2.31. 

3. INEQUALITIES OF SCHWARTZ TYPE 

In order to analyse an inequality of Schwartz type: 

(X*AX)lI2 (x*Bxy >, 1 x*cx 1 for all x E C”, 

where A and B are positive semi-definite and C is Hermitian, we need the follow- 
ing variant of Lemma 1. 

LEMMA 3. Let A, B, and C be n x n matrices, and assume that A and B are 
positive semi-dejkite and C is Hermitian. Then the following statements are mutually 
equivalent : 

(b’) h2A + 2hC + B > 0 for all /\ E R, 

(c’) there is an n x n unitary matrix W such that 

AlPWBlP + BlPW*AlP zzz 2C, 

(d’) there are n x n matrices F and G such that 

{hF+ G}*{@+ G}=h2A+2K’+ B forallhER. 

Proof. Equivalence of (b’) and (d’) is just a special case of [7, Theorem 3.31, 
whose proof is accomplished by reduction to Lemma 1 via change of variable 

h = @m/2{& - l} {&e + I}-‘. 

(c’) implies (d’). In fact, 

{AAlL + WB1/2}* {hAli + WB112} = h2A + 2hC + B. 

Finally suppose that F and G satisfy (d’). Comparision of coefficients shows 
that 

F*F = A, G*G=B and F*G + G*F = 2C. 

Take unitary matrices U and V such that 

F = (J&l2 and G z.z VBlP. 

Then the unitary matrix 
w := u*v 

meets the requirement of (d’). This completes the proof. 
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THEOREM 4. Let A, B, and C be n x n matrices and assume that A and B 
are positive semi-definite while C is Hermitian. Then the followiltg statements are 
mutually equivalent : 

(I) (x*Ax)liz (x*Bx)l12 > / x*Cx / for all x E C?, 

(II) there is an n x n unitary matrix W such that 

AWWBlP + Bl/2W*AW z 2C, 

(III) there are vectors xi EC” i = 1, 2,..., 2n such that 

and 

gl lx2i-lx2 + x2ix,“i-l> = X2* 

Proof. (I) 3 (II). By the arithmetic-geometric mean inequality (I) 
implies 

X2x*Ax - 2X ) x*Cx 1 + x*Bx >, 0 forallxECn and XER+. 

Since C is Hermitian, this inequality implies 

X2A + 2hC + B 3 0 for all h E R. 

Therefore by Lemma 3 there is an n x n unitary matrix W which meets the 
requirement of (II). 

(II) 3 (III). Let an n X n unitary matrix W satisfies (II). Unitarity implies 
that the 2n x 2n matrix 

is positive semi-definite with 0 as ita eigenvalue of multiplicity an, because 

Then by the spectral theorem (cf. [5], p. 67) there are vectors zi E C2” i = 
1, 2,..., n such that 
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Let 
ZiT := (Z&i*, Wi’) 

with Ui , Di E Cfi. Then this representation shows 

gl U~U: = zl ViVT = I and $ UiVr = W. 

Therefore by (II) the vectors 

X2i-1 *- -- AW,, and X26 .- *- B’k, (i = I,..., n) 

meet the requirement of (III). 

(III) * (I). Suppose that vectors (xi) satisfy (III). Then for any x EC” 
by the Schwartz inequality 

I x*cx I < ii i {I x*+-1 I * I x;x I + I x*x2r 1 * 1 g&,x I} 
i=l 

=!I 3*x2&1 I * I 4% I < f I 
I i-1 

x*x2i-l 12111p I$ I x*X$i 1211j2 

= (x*Ax)‘12 (,*Bx)~‘~. 

This completes the proof. 
Of course, implication (II) * (III) is true even if the unitarity of Wis replaced 

by W*W<I. 
Now a Hermitian-symmetric inequality of Schwartz type can be derived from 

Theorem 4. 

THEOREM 5. Let A, B, and C be n x n matrices, and assume that A and B 
are positive semi-dejnite. Then the following statements are mutually equivalent : 

(I’) (~*A+12 (x*Bx)‘12 > j XTCX I for all x E 0, 

(II’) there is an n x n matrix W such that 

W*W<I and $PWB’P f j3V?f7TAV = C f CT, 

(III’) there are vectors x, EC” i = 1,2,..., 4n such that 

and 
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Proof. (I’) => (II’). Let 

D:=gz+c’}. 

Then D is symmetric and 

xTCx = xTDx for all x E 0. 

Therefore (I’) implies 

(x*Ax)lI” (x*Bx)lI* > 1 xTDx 1 for all x rz C.“. 

Then, as in the proof of Theorem 4, this implies 

x* ( 
h 1 

zA+2XB x>IxTDx) 1 
for all x E C!” and X E R+. 

These Hermit&r-symmetric inequalities are shown in [4] to be equivalent to 

i 

+A+ D 
>O for all h E Rf. 

D ~A+$B 

In other words, 

where 

for all h E R+, 

or equivalently 

(x*&441/* (x*3Yx)l/* > 1 x*%x ( for all x 6 C2n. 

Apply Theorem 4 to the triple {s&‘, 33, W} of 2n x 2n matrices to see that there 
is a 2n X 2n unitary matrix 

such that 
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From this it follows that 

and 

A -112 W&3 112 + B -112 W2,44 * 112 = 20 

A1/2W 
21 

g1/2 + B1/2W*A-‘/2 
12 = 2D, 

hence the n x 71 matrix 

satisfies 

w : = &( w,, + W,,) 

Finally since w*%‘” = I implies 

the matrix W also satisfies 

This concludes that W meets the requirement of (II‘). 
Implications (II’) Z= (III’) and (III’) 3 (I’) can be proved in quite a similar 

way to the proof of (II) + (III) and (III) =+- (I) in Theorem4. But since W in 
(II’) is not unitary, to appeal to the spectral theorem 4n number of vectors (xi) 
are necessary. 

We have only a partial result concerning an inequality of Schwartz type 
without Hermitian condition on C. 

THEOREM 6. Let A, B, and C be n x n matrices, and assume that A and B 
are positiwe semi-definite. If there are n x n matrices U and V such that 

feieU + V>* (e@U + V} <I fog all 0 E R 0) 
and 

then 
AlPUB’ + BVV*AlP = C, (2) 

(~*Ax)l/~ (x*Bx)‘i2 > 1 x*Cx j for all x E CF. (3) 

Conwersely if the quadratic ineqmlity (3) is valid then there are n x n matrices U 
and V which satisfy (2) and 

{eieU + V}* {eieU + V} < (47r1)2 I, for all 0 E R. (4) 

Proof. Suppose that U and V satisfy (1) and (2). Let 

W, := eieU + e-ieV. 
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Then assumption (1) implies 

while (2) shows 

w,*w, <I for all 0 E R 

A”2W B1’2 
89 

+ B”2W,*A1’2 = ei@C + e-Z6C*. (5) 

Then Theorem 4 can be applied to positive semi-definite A, B and Hermitian 
+{eV + e-W*} to yield 

(x*A~)l/~ (~*Bx)~/~ > j Re{e%*Cx}l for all 0 E R 

which implies (3). 
Suppose conversely that (3) is valid. By Theorem 4, applied A, B and Hermi- 

tian i{eieC + e-%‘*} there is an 7t x n unitary matrix W, which satisfies (5). 
Inspection of the proof for Lemma 1 in [l] will show that W, is a measurable 
(matrix) function of 0. Consider the Fourier expansion 

we= i eik8Wk 
k--s. 

where each W, is an tl x it matrix. Multiply the both sides of (5) by 
p-i cos(+ - 0) and integrate from 0 to 2~ to get 

Al12{e-i~We.1 4 @Wl> j3112 + Al12{e-i+W-1 + .@W,}* @I2 = ei*C + e-ibC*. 

Since 4 E R is arbitrary, comparison of coefficients will show that 

A’/2WlB”2 + B”2W~,J1’2 = C 

which means that the matrices 

u:= w, and v:= w-, 

satisfy (2). Since by definition 

ei6u 4 e-ibV = T-1 
I 

2n cos(4 - e) w, de 
0 

and 

Tr-1 
s 
:= 1 cos(c#J - e)l de = 47-l for all 0 E R 

the unitarity of W, implies 

(ei*U + e-imv>* (eidU + ebi+V} < (~TT-‘)~ I for all #J E R, 

which is equivalent to (4). 
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Use of a modification of Lemma 1 will make it possible to eliminate the para- 
meter 0 from (1) and (4). 

COROLLARY 7. Let A apld B be n x n positiwe semi-definite matrices. If there 
are n x n matrices lJ, , Us , V, , and Vz such that 

then the matrix 

C := A1iBU,UIB1tB + B1’“V,*V;A1’a 

satis$es the inequality 

(x*Ax)112 (x*B~)l/~ > 1 x*Cx 1 fw all x E CF. 

Proof, For any x, y E Cm and 6 E R the Schwartz inequality and the assump- 
tion show 

I r*C@WJl + V2Vl) x I 

< ( y * u, qyy (x* u,* ulxy8 + ( y * v, v;yy (x” v,* v1xy* 

< (y*( u2u2* + V,V,*) y}“2 1x*( u;“ul + V;“V,) xy 

< (y *yy * (x*x)1/2, 

which implies that 

{e@U,U, + V,V,}* (eieU,Ul + V,V,} <I. 

Now the assertion follows from Theorem 6. 

4. POSITIW LINEAR MAPS 

Let us denote by M, (resp. M,,) the complex linear space of all 2 x 2 (resp. 
n x n) matrices. Given A, B, C, and D in M, , let us define a linear map @ from 
Ms to M, by 

Then @ preserves Hermitian property, i.e. 

@(X*) = Q(x)* for all X E M, , 
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if and only if A and B are Hermitian, and C* = D. Every linear map from M, 
to M, that preserves Hermitian property is obtained in this way. 

Suppose now that A and B are Hermitian and C* = D. The map 0 is said 
to be positive if 

@(X) >, 0 whenever x 20. 

Since by the spectral theorem each positive semi-definite matrix is the sum of 
two matrices of the form 

ii:, 2) 
-’ - 9 

@ is positive if and only if 

@(x*Ax) + &x*Cx) + ij&*Cx) + rFj(x*Bx) > 0 

for all ~,vEC and xeCn, which is equivalent to that A and B are positive 
semi-definite and 

(x*Ax)~/~ (~*Bx)l/~ 3 ( x*Cx \ for ail x E C”. 

Therefore to determine the structure of this inequality means to describe all 
positive linear maps from Ma to M,; the problem in the latter form is still very 
difficult (cf. [S]). 

The linear map Q, is said to be completely positiwe if there is a finite number of 
2 x n matrices (I’,) such that 

for all X E NT2 . 

This definition is different from, but equivalent to the usual one of complete 
positivity, as shown by Choi [3]. Complete positivity implies positivity, but not 
conversely. Indeed, @ is completely positive if and only if the 2n x 2n matrix 

* tA “1 C B 

is positive, or equivalently 

(x*Ax)‘12 (y*By)‘l” 2 ( y*Cx ( for all x, y E C” 

(see [3, Theorem 21). This last inequality is quite familiar and is studied in [6]. 
It should be mentioned that success in Theorem 4 with Hermitian C is a 

variant of the fact that, when restricted on the subspace of 2 x 2 symmetric 
matrices, each positive linear map coincides with a completely positive map 
(cf. [3, Theorem 71). Also Theorem 2 can be derived from a result of Arveson 
[2, p. 3021 on completely positive maps. 
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