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When A and B are n X n positive semi-definite matrices, and Cis ann X n
Hermitian matrix, the validity of a quadratic inequality
(x*Ax)/*(x*Bx)t/? > | x*Cx |
is shown to be equivalent to the existence of an # X » unitary matrix W such that
AV2WBYE 4 BYRW*A412 = 2C.

Some related inequalities are also discussed.

1. INTRODUCTION

We consider complex 7n x n matrices. The transpose and the complex
conjugate of a matrix C are denoted by C7 and C, respectively while C* is the
conjugate transpose, i.e. C* = C7. I is the identity matrix. For Hermitian 4 and
B the relation A > B means that 4 — B is positive semi-definite. For a positive
semi-definite 4 its (positive semi-definite) square root is denoted by A/2. The
space of # X 1 matrices is denoted by C” and its elements, i.e. (z-column)
vectors, by x, y, and z.

Horn [6] and FitzGerald and Horn [4] studied the structure of a Hermitian
inequality:

x*Ax > | x*Bx | forall x e C»,
and of a Hermitian-symmetric inequality:

x*Ax = | xTCx | for all x e Cn»,

where A is positive semi-definite, B is Hermitian, and C is symmetric.
Our first concern is an inequality of domination:

x*Ax = | x*Cx | forallx e Cn,
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where A is positive semi-definite, but C is arbitrary. We characterize the validity
of this inequality by the existence of a matrix W such that

W*W <I and 24V — WXWH2 WA = C.
Our next aim is to analyse structure of an inequality of Schwartz type:
(x*Ax)1/2 (x*Bx)t/? = | x*Cx | forall x e C»,

where A4 and B are positive semi-definite and C is Hermitian. We characterize
the validity of this inequality by the existence of a unitary matrix W such that

APWBLE 4 BIAW*A12 = 2C.

In the final section we analyze difficulty in treating an inequality of Schwartz
type without Hermitian condition on C.

2. INEQUALITIES OF DOMINATION

If n X n matrices 4 and C are positive semi-definite and Hermitian, respect-
ively, the inequality of domination

x*Ax = | x*Cx | forallx e C»

can be written in the form

A=C=—-4.

Therefore the inequality of domination is equivalent to the existence of an
n X n Hermitian matrix W such that

W*W <1 and AVPWAY? = C.

If Hermitian condition on C in the above inequality is removed, the situation
is much complicated. Indeed, it means

24 = e®C + e %C* = —24 forall8eR.

We shall eliminate the parameter 6 from this inequality by introducing a matrix.

LemMma 1. Let C be a complex n X n matrix. The following four statements
are mutually equivalent :
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(a) x*x=|x*¥Cx| for all xeCn,
(b) I+ 369C + 3e®C* =0 for all HeR,
(c) there is an n X n matrix W such that
WAWw <1 and 20 — W*WyRrRr W =C
(d) there are n X n matrices U and W such that

{U + W (U + e®W} = I + 3i°C + }e~®C*  forall0R.

Proof. Equivalence of (a) and (b) are obvious. Equivalence of (a) and (c) was
proved in [1] while equivalence of (b) and (d) is just a special case of [7, Theo-
rem 3.2].

We apply this lemma to our inequality of domination.

TueoReM 2. Let A and C be n X n matrices, and assume that A is positive
semi-definite. Then the following statements are mutually equivalent :
(i) x*Ax = |x*Cx| forallxcCr,
(i) thereis ann X n matrix W such that

W*W <I and 24V — W*W)P2 WA =C,

(iii) there are vectors x; € C* 1 = 1,..., 2n such that

2n n
Y xxl =4 and 2y %y %3 = C.
i=1 i=1

Proof. (i) = (ii). Assume first that 4 is positive definite, and consider
S := A-12CA-1/2 Then (i) implies that S satisfies (a) of Lemma 1 in place of C.
Therefore there is W satisfying (c), which meets the requirement of (ii). When
A is merely positive semi-definite, apply the above arguments to positive
definite A, := A -+ el for € > 0. Let W, be a matrix which satisfies

WrW.<I and  24YI — WrW2W.AM2 = C.

Since the set of matrices U for which U*U < I is compact with respect to the
usual topology, W, can be assumed to converge to some W as ¢ — 0. Finally
since 4% and {I — W*W _}1/2 converge to A'/2 and {I — W*W}'/2, respectively,
as ¢ — 0, the above relations imply that W meets the requirement of (ii).

(i) = (iii). If W satisfies (ii), then the 2 X 27 matrix

( I —- W*w (I — W*w)2 W)

4:= WH(I — W*W)L2 W*W
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is positive semi-definite with 0 as its eigenvalue of multiplicity >, because

(TI7%TIINL /D n

A W) Uy
4 ((I— WxWy 2 0) =0

By the spectral theorem (cf. [5], p. 67) there are vectors z,eC¥™ { = 1,...,n
such that

Let
2T = (w7, v,T)
with u,; , v;eC* { = 1, 2,..., n. Then the above representation implies that
Y uut + Y vl =1 — WW 4 WW =1
i=1 i=1
and

Y upl =1~ WWy\W.

=1
Therefore by (ii) the vectors
Xyi_y 1= A u, and Xy; 1= Ay, i=1,.,n

meet the requirement of (iii).

(i) = (i). If (x;) satisfies (iii), for any vector x € C®, the arithmetic-
geometric mean inequality shows

n
|x*Cx| <2Z !x*xﬂ-ll : |x;x!

i=1

n n
SY 1%, P+ 3 fxgx P
e

i=1

2n
= x* (Z xzx:‘) x = x*Ax.
i-1

This completes the proof.

If x*Cx in Theorem 2 (i) is replaced by x7Cx, there appears a Hermitian-
symmetric inequality:

x*Ax = | x7(3C + $CT) x|
because

xTCx = xTC7x,
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Analysis of an inequality of this type has been done by FitzGerald and Horn [4,
Theorems 2.1 and 2.3].

3. INEQUALITIES OF SCHWARTZ TYPE

In order to analyse an inequality of Schwartz type:
(x*Ax)!/2 (x*Bx)'/? = | x*Cx | for all x e C~,

where A4 and B are positive semi-definite and C is Hermitian, we need the follow-
ing variant of Lemma 1.

Lemma 3. Let A, B, and C be n X n matrices, and assume that A and B are
positive semi-definite and C'is Hermitian. Then the following statements are mutually
equivalent :

() XA+22C+B>0 forall eR,

(c') there is an n X n unitary matrix W such that
AVRWBY?  B\RW*AM? = 2C,
(d’) there are n X n matrices F and G such that
AF+GYHF{AMF+ Gy=XPA+22C+ B  forallleR.

Proof. Equivalence of (b’) and (d’) is just a special case of [7, Theorem 3.3],
whose proof is accomplished by reduction to Lemma 1 via change of variable

A = e-in/2fei® — 1} {e - 1)1,
(¢’) implies (d’). In fact,
{)\Alf2 -+ WBL2 QA2 + WBY2) = 324 4 20C 4 B.

Finally suppose that F and G satisfy (d’). Comparision of coefficients shows
that
F*F = 4, G*G=B and F*GH G*F=2C.

Take unitary matrices U and V such that
F=UA'¥* and G = VB2,

Then the unitary matrix
W:= U*V

meets the requirement of (d'). This completes the proof.



QUADRATIC INEQUALITIES 77

TueoreM 4. Let A, B, and C be n X n matrices and assume that A and B
are positive semi-definste while C is Hermitian. Then the following statements are
mutually equivalent:

(I (x*Ax)/2(x*Bx)'/2 = | x*Cx | for all x e C™,
(I1) there is an n X n unitary matrix W such that

AVPWBL2 L BRW* AL — 2C,
(III) there are vectors x, € C* i = 1, 2,..., 2n such that
n n
z xzi—lx);i—l = A, Z xzix;kt = B
i=1 i=1
and

)y {Xoi1%5; + Hoiir; g} = 2C.

i=1

Proof. (I) = (II). By the arithmetic-geometric mean inequality (I)
implies

AMx*Ax — 20 | x*Cx | + x*Bx = 0 forallxeC* and AeR™.
Since C is Hermitian, this inequality implies
ABA4+20C+ B=0 forallAcR.

Therefore by Lemma 3 there is an n X n unitary matrix W which meets the
requirement of (II).

(ITy = (III). Let an z X n unitary matrix W satisfies (IT). Unitarity implies
that the 27 X 27 matrix
(w+ 1)
w* I

is positive semi-definite with 0 as its eigenvalue of multiplicity >, because

(e 1)1 o=

Then by the spectral theorem (cf. [5], p. 67) there are vectors z,€C** i =
1, 2,..., n such that

(e 1)= % met
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Let
2 = (1], o)

with #;, v; € C. Then this representation shows

n n n
Z “i“;k = Z ‘U,'W:'k =] and Z u,.z);." = W.

i=1 i=1 i=1
Therefore by (II) the vectors
Xyi_y 1= Ay, and  xy:=BY%;, (i=1,.,n)

meet the requirement of (III).
(III) = (I). Suppose that vectors (x;) satisfy (III). Then for any x e C*

by the Schwartz inequality

n
|2%Cx | < § Y {000 | - | o | + | %2y | - | o [}
i=1

1/2

2 *, * = * 2 172 z * 2
=zlxxzi_1|~|x2,-x|<3z|xx2,-_l| 3}:1xxm
i=1 i=1 i=1

= (x*Ax)V/2 (x*Bx)1/2,

This completes the proof.
Of course, implication (II) = (III) is true even if the unitarity of Wis replaced

by W*W < I
Now a Hermitian-symmetric inequality of Schwartz type can be derived from
Theorem 4.

THeoreM 5. Let A, B, and C be n X n matrices, and assume that A and B
are positive semi-definite. Then the following statements are mutually equivalent :

(1) (x*Ax)12 (x*Bx)1/2 = | x7Cx |  for all x € C*,
(I1") there is an n X n matrix W such that

W*W<I and AVWB\2 4 BIRWTAR = C + (T,

(III')  there are vectors x; C" i = 1, 2,..., 4n such that

2n 2n

* *
Z Ky y%eiq = A, Z Xgi%y; = B
i=1 i=1

and
2n
Y {(Rgsa%gi + Fpixg; ) =C+ C T

i=1
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Proof. (I') = (IT'). Let
D:=}C + CT}.
Then D is symmetric and
xTCx = xTDx for all x e Cn.
Therefore (I') implies
(x* Ax) /2 (x*Bx)t/2 = | x"Dx | for all x € C,

‘Then, as in the proof of Theorem 4, this implies
x*(iA+LB)x>|xTDxl forallxeC* and AeR+
2 2 = :

These Hermitian-symmetric inequalities are shown in [4] to be equivalent to

A 1 5
—2-A+—§/\—B D
_ A 1
D —Z—A—}——z/\—B

=0 forallAe R*.

In other words,

A 1
2 — +
2:2{—}—2,\.93}? for all A € R*,
where
4 0 B 0 0 D
”'“(0 A)’ g'“(o B) and g':(ﬁ 0)
or equivalently
(x* oA XY /2 (x* B2 = | x*¥Cx | for all x e C?»,

Apply Theorem 4 to the triple {&#, &, €} of 2n X 2n matrices to see that there
is a 2» X 2n unitary matrix

— (Wu Wm)

Wy W
such that
SL2YGAIE | A2 K 12— G

409/70[1-6
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From this it follows that

A‘1/2W1281/2 + El/2W2>I;A1/2 —=2D

and
A1/2W21EI/2 + Bl/2W1>;A_1/2 — 25,
hence the n X n matrix

W= {(W;, + V—V;)
satisfies
AV2PWRL2 + BAWTA: = 2D = C 4 CT,

Finally since #"*# = I implies

WiW, <I and WhWs <1,

the matrix W also satisfies
' W*W < I

This concludes that W meets the requirement of (II').

Implications (II') = (III') and (III') = (I’) can be proved in quite a similar
way to the proof of (II) = (III) and (III) = (I) in Theorem 4. But since W in
(IT') is not unitary, to appeal to the spectral theorem 4n number of vectors (x;)
are necessary.

We have only a partial result concerning an inequality of Schwartz type
without Hermitian condition on C.

TueoreM 6. Let A, B, and C be n X n matrices, and assume that A and B
are positive semi-definite. If there are n X n matrices U and V such that

{e®U + Vi*{e®U 4- VI <I  forallfeR 1)

and
AIRUBL? | BIRV*A12 — C, )

then
(x*Ax2 (x*Bx)t2 2 | x*Cx |  forallx e C", 3

Conwersely if the quadratic inequality (3) is valid then there are n X n matrices U
and V which satisfy (2) and

{00 + Vi*{e®U + V} < (4n Y21,  forall@cR. “4)
Proof. Suppose that U and V satisfy (1) and (2). Let
Wy := e®U +- e~V
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Then assumption (1) implies

WeW, <1 forallfe R
while (2) shows

A1/2W931/2+ B1/2W‘;I<Al/2 — eiBC + e——iBC*. (5)

Then Theorem 4 can be applied to positive semi-definite 4, B and Hermitian
LeC 4 e~9C*} to yield

(x*Ax)1/2 (x*Bx)! /2 = | Re{e®*x*Cx}| forallfeR

which implies (3).

Suppose conversely that (3) is valid. By Theorem 4, applied 4, B and Hermi-
tian 4{e®®C 4 ¢~C*} there is an # X 7 unitary matrix W, which satisfies (5).
Inspection of the proof for Lemma 1 in [1] will show that W, is a measurable
(matrix) function of §. Consider the Fourier expansion

We: 2 eikeWk

k=—ca

where each' W is an 7 X n matrix. Multiply the both sides of (5) by
7~ cos(¢ — 0) and integrate from 0 to 27 to get

AVe~ oW _; + ei¢W,} BY2 4 AV~ ioW_| - eSW,}* BY2 = ¢i¢C | e i¢(C*,
Since ¢ € R is arbitrary, comparison of coefficients will show that
AW, B'? 1 BYAW* 4V = C
which means that the matrices
U:=W, and V.=W_
satisfy (2). Since by definition

27
el + g0V = 71 f cos(¢ — ) W, d8
(1]
and

27
w1 | cos(¢p — 0)] dO0 = 4n—2 forallfeR
0
the unitarity of W, implies
{eoU + eV * {e'U + eV} < (4n1)2 ] forallpeR,

which is equivalent to (4).



82 T. ANDO

Use of a modification of Lemma 1 will make it possible to eliminate the para-
meter 8 from (1) and (4).

CoroLLaRY 7. Let A and B be n X n positive semi-definite matrices. If there
aren X nmatrices Uy, U, , V, , and V, suckh that

UUy+ VXV, <I  and  UUF + VW <1,

then the matrix
C:= AI/ZUZUIBI/2+ Blle;kV;kAllz
satisfies the inequality
(x*Ax)1/2 (x*Bx)'2 = | x*Cx|  forallxeCn.

Proof. For any x, y € C" and 6 € R the Schwartz inequality and the assump-
tion show

[ yX(e*UUy + Vo¥y) %
< (Y DU (U U} + (9* VoV 9) (6 Vi V)2
<Ay (UU; + Vo V) o3 (U0, + ViV 2
< (e s,
which implies that
{20, U, + VoV }*{e®U, U, + VoV < I

Now the assertion follows from Theorem 6.

4, PosiTive LINEAR MAPS

Let us denote by M, (resp. M,,)) the complex linear space of all 2 x 2 (resp.
n X n) matrices. Given 4, B, C, and Din M,, , let us define a linear map @ from

M, to M, by

HX) = bl + B + buC + EyD  for X = (0 g::) .

21

Then @ preserves Hermitian property, i.e.

B(X*) = P(X)* forall XeM,,
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if and only if 4 and B are Hermitian, and C* = D. Every linear map from M,
to M,, that preserves Hermitian property is obtained in this way.
Suppose now that 4 and B are Hermitian and C* = D. The map @ is said
to be positive if
H(X) >0  whenever X >=0.

Since by the spectral theorem each positive semi-definite matrix is the sum of
twa matrices of the form
(e o)
17 ?

b

e
3%

® is positive if and only if
£E(x*Ax) + nE(x*Cx) + 7EFEFCx) + 7i(x*Bx) > 0

for all ¢, 7eC and x € C", which is equivalent to that 4 and B are positive
semi-definite and

(x*Ax) /2 (x*Bx)12 2= | x*Cx|  forallxeCr.

Therefore to determine the structure of this inequality means to describe all
positive linear maps from M, to M,,; the problem in the latter form is still very
difficult (cf. [8]).

The linear map @ is said to be completely positive if there is a finite number of
2 X n matrices (V) such that

Y VIXV,=®(X) forallXeM,.

This definition is different from, but equivalent to the usual one of complete
positivity, as shown by Choi [3]. Complete positivity implies positivity, but not
conversely. Indeed, @ is completely positive if and only if the 2n X 27 matrix

(c %)
C B
is positive, or equivalently
(x*AxY /2 (v*By)'/2 2 | y*Cx | for all x, y e C"

(see [3, Theorem 2J). This last inequality is quite familiar and is studied in [6].

It should be mentioned that success in Theorem 4 with Hermitian C is a
variant of the fact that, when restricted on the subspace of 2 x 2 symmetric
matrices, each positive linear map coincides with a completely positive map
{cf. [3, Theorem 7]). Also Theorem 2 can be derived from a result of Arveson
[2, p. 302] on completely positive maps.
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