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Choice probabilities in the behavioral sciences are often analyzed from the
Ž . w Ž . Ž .xstandpoint of a difference representation such as P x, x, y s F u x, x y g y . Here,

Ž .x and y are real, positive vector variables, x is a positive real variable, P x, x, y is
Ž .the probability of choosing alternative x, x over alternative y, and u, g and F are

real valued, continuous functions, strictly increasing in all arguments. In some
Ž .situations e.g. in psychophysics , the researchers are more interested in the

functions u and g than in the function F. In such cases, they investigate the choice
Ž .phenomenon by estimating empirically the value x such that P x, x, y s r, for

some values of r, and for many values of the variables involved in x and y. In other
Ž . Ž .words, they study the function j satisfying j x, y; r s x m P x, x, y s r. A rea-

sonable model to consider for the function j is offered by the monomial representa-
tion

j x, y; r s Ł ny 1 xyh iŽ r .Łm y z jŽ r .C r ,Ž . Ž .i jis1 js1

in which the h ’s, the z ’s and C are functions of r. In this paper we investigate thei j

consistency of these difference and monomial representations. The main result is
that, under some background conditions, if both the difference and the monomial

Ž . Ž .representations are assumed, then: i all functions h 1 F i F n y 1 must bei

* We thank Bruce Bennett, Jean-Paul Doignon, and Geoff Iverson for their reactions, and
Yung-Fong Hsu for pointing out a gap in a previous draft of our proof of Theorem 3.2. We
are also grateful to the Institute for Mathematical Behavioral Sciences for its hospitality to
the first author. This research has been supported by the Natural Sciences and Engineering
Research Council of Canada Grant No. OGP 0164211, and by NSF Grant SBR 930-7420.

632
0022-247Xr99 $30.00
Copyright Q 1999 by Academic Press
All rights of reproduction in any form reserved.



MONOMIAL AND DIFFERENCE REPRESENTATIONS 633

Ž .constant; ii if one of the functions z is nonconstant, then all of them must be ofj
Ž . w y1 Ž .x Ž .the form z r s u exp dF r , for some constants u ) 0 1 F j F m andj j j

d / 0, where Fy1 is the inverse of the function F of the difference representation.
Surprisingly, F can be chosen rather arbitrarily. Q 1999 Academic Press

1. INTRODUCTION

Choice or detection probabilities are often represented by a difference,
as in the equation

P X , Y s F u X y g Y , 1Ž . Ž . Ž . Ž .
Ž .where P X, Y denotes either the probability of choosing alternative X

over alternative Y or the probability of detecting a stimulus X over a
background Y, and u, g, and F are real valued functions, with F strictly
increasing and continuous.

Such a representation may arise, for instance, as a special case of a
w x‘random utility model’ 3, 15 in which random variables U and G areX Y

Ž .attached to X and Y, respectively, and P X, Y measures the probability
that U exceeds G . If U and G are independent Gaussian randomX Y X Y

Ž . Ž .variables with expectations u X and g Y and with the same variance
1 Ž .equal to , then a special case of 1 is obtained through2

1 Ž . Ž .u X yg Y 2yz r2P X , Y s P U ) G s e dz , 2Ž . Ž . Ž .HX Y '2p y`

Ž Ž .where P denotes the probability measure. Thus, the function F in 1 is
the distribution function of a Gaussian random variable with an expecta-

. Ž .tion equal to zero and a variance equal to one. When u s g in 2 , we get
Ž . w xthe celebrated ‘Law-of-Comparative-Judgements Case V ’ 4, 18, 19 .

w xSometimes, X and Y are vectors, as in 5, 8, 9 . With u s g and X, Y
positive real numbers, this equation offers the theoretical support for

w xFechner’s method for constructing a psychophysical scale 6, 10, 14 .
Assuming that u and g are different functions is justified when the choice

Žsituation is asymmetrical for instance, the two alternatives are presented
.successively, X appearing before Y , or when X is a stimulus to be

Ž .detected over some background denoted by Y. In general, Eq. 1 plays a
fundamental role as a model for choice or detection behavior, either

w xexplicitly or implicitly. General references can be found in 6 or 17 .
Here, X and Y denote real positive vectors. To stress this fact and for

another reason that will soon be apparent, we switch notation from now on
and write

X s x, x , with x s x , . . . , xŽ . Ž .n 1 ny1

Y s y s y , . . . , y ,Ž .1 m
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thus singling out the last component of X. The quantities represented by
the positive real numbers x , . . . , x and y , . . . , y may be evaluated on1 n 1 m
ratio scales measuring aspects of the stimuli, for instance. To avoid

Ž .multiplying the parentheses, we write P x, x , y to denote the probabilityn
Ž .of choosing stimulus x, x over stimulus y.n

Ž .In principle, the difference representation of Eq. 1 can be tested
experimentally without making specific assumptions regarding the form of

Ž w x.the function F see 6, 11 . Such a test is difficult in practice, however.
Moreover, at least in some scientific fields, researchers are reluctant to
make assumptions about the function F because they are typically much

Žmore interested in the forms of u and g than in that of F and making an
erroneous assumption on F might lead to mistaken conclusions about u

.and g . For that reason, they routinely study the phenomenon represented
Ž . Ž .by 1 by estimating empirically x such that P x, x, y s r, for some values

of r, and for many values of the variables involved in x and y. In other
Ž . Ž .words, they study the function x, y, r ¬ j x, y; r satisfying

j x, y; r s x m P x, x , y s r .Ž . Ž .

Special experimental methods have been designed to construct}or at
least approximate}the function j empirically, and are used routinely in

w xsensory psychology 13 . A simple model for the function j is offered by
the product

ny1 m
yh Ž r . z Ž r .i jj x, y; r s x y C r . 3Ž . Ž . Ž .Ł Łi j

is1 js1

Such a model, which is linking a collection of ratio scales through a
monomial representation, has the form of the laws of classical physics and
is a natural one to consider. For examples of applications in psychophysics,

Ž . w x Ž . w xsee among many: Case m s n s 1 7, 12, 16 ; Case m s n s 2 8, 9 .
Ž . Ž .Studying the compatibility of the representations 1 and 3 is the

subject of this paper. We shall see that, under some reasonable back-
ground assumptions concerning the domains of variation of the variables

Ž . Ž . Ž .x and y , the representations 1 and 3 forces all the functions h in 3i j i
to be constant. Moreover, either all the functions z must also be constantj

y1 y1 Ž .and C s exp( F , where F is the inverse of the function F in 1 , or if
at least one of the z ’s is nonconstant, then all of them must have the formj
Ž . w y1Ž .x Ž .z r s u exp dF r , for some constants u ) 0 1 F j F m and d / 0.j j j

None of these results hinges on the assumption that the function P is
measuring a probability, i.e. is bounded above by 1 and below by 0. This
can be achieved just by choosing the otherwise arbitrary continuous and
strictly increasing function F so that its value lies between 0 and 1.
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Section 2 is devoted to definitions and preparatory material. The case
Ž .n s m s 1 of Eq. 3 is treated in Section 3, paving the way for our main

results in Section 4. A couple of examples are given in Section 5.

2. BASIC CONCEPT AND PRELIMINARY RESULTS

Ž .We first consider the function P in 1 and examine critical properties
Žof its domain and its range. We call range of a function the set of its

.values. This set is frequently called the ‘‘co-domain’’ of the function.

2.1. DEFINITION. We write R for the set of real numbers. For any
positive integer k, we use the abbreviation

1 s 1, . . . , 1 ,ž /k ^ ` _
k times

a vector in R k. We will sometimes write

1 , x for 1, . . . , 1 , xŽ . ž /k ^ ` _
k times

and use other similar improper but convenient notation. For 1 F i F n and
x X w x Xw1 F j F m, let a , a and b , b be n q m real open intervals, withi i j j

X X x X w0 - a - 1 - a and 0 - b - 1 - b . Singling out the interval a , a , wei i j j n n
define the Cartesian products

x X w x X wA s a , a = ??? = a , a n ) 1 ,Ž .ny1 1 1 ny1 ny1

x X w x X wB s b , b = ??? = b , b , m G 1 ,Ž .m 1 1 m m

with

x s x , . . . , x g A ,Ž .1 ny1 ny1

y s y , . . . , y g B ,Ž .1 m m

denoting variable vectors. By convention A s B. A central concept is a0
Ž . x X wreal valued function P defined for all x, x , y in A = a , a =B ,n ny1 n n m

and with range

x X wJ s P A = a , a = B .Ž .ny1 n n m

Ž .By hypothesis, J contains the point r s P 1 , 1, 1 . We suppose that P0 ny1 m
is continuous in all n q m arguments, strictly increasing in x for 1 F i F ni
and strictly decreasing in y for 1 F j F m. For any fixed x in A and yj ny1

Ž .in B , the function x ¬ P x, x , y is strictly increasing and continuousm n n
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x X won a , a . Thus, its rangen n

x X wS s P x, a , a , yŽ .x , y n n

must be an open interval.

Ž . Ž .2.2. LEMMA. i The collection S is an open co¨ering ofx, y Žx, y.g A =Bny 1 m

the range J of the function P.

Ž .ii The function P is continuous.
Ž .iii The set J is an open inter̈ al.

Ž .Property i of this Lemma will be used repeatedly to extend functions
and their properties from the open intervals S to J.x, y

Ž . Ž .Proof. i For any r g J we have P x, x , y s r for some x g A ,n ny1
x X wx g a , a and y g B , which implies r g S . Because each S is ann n n m x, y x, y

Ž .open interval, S is an open covering of J, which thereforex, y Žx, y.g A =Bny 1 m

must be an open set.

Ž .ii The continuity of P follows by a standard argument from the
facts that P is strictly monotonic and continuous in each of its variables.

Ž .iii Because P is continuous on the connected set A =ny1
x X w Ž x X w .a , a =B , its range J s P A = a , a =B is also connected, thatn n m ny1 n n m

Ž .is, J is an interval. By i , J is an open set. Thus, J is an open interval.

Ž .2.3. DEFINITION. For any x, y in A = B and r in S , thereny1 m x, y

x X w Ž .exists a unique x in a , a such that P x, x , y s r. Denote this x byn n n n n
Ž .j x, y; r . Accordingly, the equivalence

j x, y; r s x m P x, x , y s r 4Ž . Ž . Ž .n n

Ž .defines a function j for all x, y in A = B and r in S . Thisny1 m x, y
function is continuous in all variables, strictly increasing in r and in y forj
1 F j F m, and strictly decreasing in x for 1 F i F n y 1.i

2.4. DEFINITION. We say that the function j has a monomial represen-
tation if

ny1 m
yh Ž r . z Ž r .i jj x, y; r s x y C r ,Ž . Ž .Ł Łi j

is1 js1w xM

x g A , y g B , r g SŽ .ny1 m x , y

Ž . Ž .holds for some positive valued functions h 1 F i F n y 1 , z 1 F j F m ,i j
Ž Ž ..and C defined on the open interval J cf. Lemma 2.2 iii .
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2.5. Remark. In the case n s m s 1, we have A s A s B and xny1 0
w x x Xw x X wvanishes from M . We then simplify the notation, writing a, a s a , a1 1

x Xw x X w Ž . Ž .and b, b s b , b , with a function r, y ¬ j y; r defined by1 1

j y ; r s x m P x , y s r , 5Ž . Ž . Ž .

Ž .which specializes the equivalence 4 . The function j is defined for all y in
x Xw Žx Xw .b, b and for all r in an open interval S s P a, a , y . Notice that, byy

Ž . Ž . Ž . XLemma 2.2 i applied to the case n s m s 1 , the collection S ,y y g xb, b w
Žx Xw x Xw. w xis an open covering of J s P a, a , b, b . Equation M becomes

w x z Ž r . x X wM1 j y ; r s y C r , y g b , b , r g SŽ . Ž . Ž .y

with z , C ) 0 and defined on J.
The results of this paper concern the pair of functions P and j linked

Ž . w xby the equivalence 4 and with j satisfying M , with all the side condi-
tions holding. Another representation will also play a central role, which
constrains the function P.

2.6. DEFINITION. The function P has a difference representation if there
exist real valued functions u, g, and F, continuous and strictly increasing
in all their variables, such that

w xD P x, x , y s F u x, x y g y ,Ž . Ž . Ž .

Ž . x X wfor all x, x, y in A = a , a =B . Thus, u and g are defined onny1 n n m
x X wA = a , a and B , respectively.ny1 n n m

w xIn the case where n s m s 1, D simplifies to

w xD1 P x , y s F u x y g yŽ . Ž . Ž .

x Xw x Xw Ž .for all x g a, a and y g b, b ; or equivalently, cf. 5 ,

y1 y1 z Ž y .j y ; r s u g y q F r s y C r , 6Ž . Ž . Ž . Ž . Ž .

w xif M1 holds. The following two results will be useful.

2.7. LEMMA. Let P ha¨e a difference representation. The domain D of F is
an open inter̈ al. The real ¨alued functions u , g , and F defined on0 0 0

x X w � < 4A = a , a , B , and D s t g R t q t g D , respectï ely, whereny1 n n m 0 0

t s u 1 , 1 y g 1 , 7Ž . Ž . Ž .0 ny1 m
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by the equations

u x, x s u x, x y u 1 , 1 , 8Ž . Ž . Ž . Ž .0 ny1

g y s g y y g 1 , 9Ž . Ž . Ž . Ž .0 m

F t s F t q t , 10Ž . Ž . Ž .0 0

are continuous and strictly increasing in all arguments. Moreo¨er,

Ž .i D contains 0 and is also an open inter̈ al;0

Ž . Ž . w Ž . Ž .xii P x, x, y s F u x, x y g y0 0 0
Ž . x X wfor all x, x, y g A = a , a =B ;ny1 n n m

Ž . Ž . Ž .iii u 1 , 1 s g 1 s 0.0 ny1 0 m

Ž .When m s n s 1, we have as a consequence of ii :

y1 y1j y ; r s u g y q F r . 11Ž . Ž . Ž . Ž .0 0 0

Proof. We prove that D is an open interval by an argument similar to
that used in the proof for Lemma 2.2 for the open interval J. The function
Ž . w Ž . Ž .xx, x, y ¬ u x, x y g y is strictly monotonic and continuous in all vari-

x X w nqmables, and maps the connected subset A = a , a =B of R ontony1 n n m
D. This function is necessarily continuous. Accordingly, D is connected,
thus an interval. This interval must be open because it is the union of all

Ž . Ž . Ž .the ranges of the functions x ¬ u x, x y g y for all x, y g A = B ,ny1 m
all of which are open intervals.

Ž . Ž . Ž .Clearly, i and ii in the Lemma are satisfied by definition, and iii by
substitution.

2.8. PROPOSITION. The general solution for the functional equation

f s q t s r s w t q f t , 12Ž . Ž . Ž . Ž . Ž .

Ž . 2 Ž .defined for all s, t in an open connected subset R of R containing 0, 0 ,
and where the three functions f , w, and r are real ¨alued, f is continuous and
strictly increasing, while w is nonconstant, is gï en by

Ž . Ž . Ž d t.i f t s K 1 y e q M
K d sŽ . Ž . Ž .ii r s s 1 y eL

Ž . Ž . d tiii w t s Le ,

where L / 0, dK - 0, but otherwise d , K, L, and M are arbitrary constants.

2.9. Remark. Note that if r is strictly increasing then dKrL - 0, and
Ž .thus L ) O. Also, if f 0 s 0 is assumed, then M s 0.
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Ž .Proof of Proposition 2.8. We first note that if 12 is defined on R, then
� < Ž . 4r is defined on the open interval R s s ' t, such that s, t g R , w isr

� < Ž . 4defined on the open interval R s t 's, such that s, t g R , and f isw
� <Ž . 4defined on the union of R and the open interval s q t s, t g R .r

Ž .Since 0 g R , we can set t s 0 in 12 , yieldingw

f s s r s w 0 q f 0 . 13Ž . Ž . Ž . Ž . Ž .

Ž .We cannot have w 0 s 0 because that would imply the constancy of f ,
Ž . Ž .contrary to our hypothesis. We define L s w 0 / 0, and from 13 derive

1
r s s f s y f 0 . 14Ž . Ž . Ž . Ž .

L

We also define

f t s f t y f 0 , 15Ž . Ž . Ž . Ž .0

w tŽ .
w t s , 16Ž . Ž .0 L

Ž . Ž . Ž . Ž .and get, from substituting 14 , 15 , and 16 into 12 ,

f s q t s f s w t q f t . 17Ž . Ž . Ž . Ž . Ž .0 0 0 0

Ž . XBecause R is open and contains 0, 0 , there is a nonempty subset R of R
Ž . X Ž . Xwhich is symmetric, that is, s, t g R implies t, s g R . Thus, for any

Ž . Xs, t in R

f s w t q f t s f t w s q f s . 18Ž . Ž . Ž . Ž . Ž . Ž . Ž .0 0 0 0 0 0

Since w is nonconstant, so is w and there exists some s such that0 0
Ž . Ž .w s / 1. Choosing s s s in 18 , we get0 0 0

f t s K 1 y w t , 19Ž . Ž . Ž .0 0

Ž . Ž Ž ..where K s f s r 1 y w s / 0 because f , and thus f , are noncon-0 0 0 0 0
Ž . Ž .stant. Note that, as f is continuous, so is w . Substituting 19 into 17 ,0 0

we obtain after simplification

w s q t s w s w t . 20Ž . Ž . Ž . Ž .0 0 0

Ž . X 2 Ž w x.One can extend 20 from R to R see 2, pp. 74]82 and get as
continuous nonconstant general solution

w t s ed t d / 0, 1 . 21Ž . Ž . Ž .0
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Ž . Ž .From 16 , we get iii in the conclusion of Proposition 2.8. Next, using
Ž . Ž . Ž . Ž . Ž . Ž .successively 19 , 15 with M s f 0 , and then 14 , we obtain i and ii

Ž w x.cf. also 1 . Finally, notice that L / 0 because w is nonconstant and
dK - 0 because f is strictly increasing.

3. THE CASE n s m s 1

w x w xThe two representations D1 and M1 form a consistent system of
functional equations. In other words, there exist functions u, g, F, z , and

w x w xC which jointly satisfy D1 and M1 . While the forms of u, g, z , and C
are quite limited, the form of F turns out to be pretty much arbitrary. We

w xsuppose here that the function z of M1 is nonconstant. The situation
where z is constant is a special case of both Theorem 4.3 and Corollary
4.4.

3.1. THEOREM. Suppose that the functions P and j are linked by the
Ž . w x w xequï alence 5 , and that representations D1 and M1 jointly hold for P and

j , respectï ely, with a nonconstant function z . Then the general solution for
continuous strictly increasing functions u, g, and F, and positï e functions z
and C with z nonconstant is gï en by

ugg ˜1 a 1 b˜
u x s ln ln , g y s ln ln ,Ž . Ž .ž / ž /d x d y 22Ž .

dFy1Ž r . ˜yu expw d Fy1Ž r .xz r s u e , C r s b a,Ž . Ž . ˜

˜ X ˜ Xwhere u ) 0, a, b, d , and g are constants satisfying either a G a , b G b and˜ ˜
˜d - 0 - g , or 0 - a F a, 0 - b F b and d ) 0 ) g , but otherwise arbitrary.˜

There are no additional constraints on the function F.

Actually, we shall prove the following result:

3.2. THEOREM. Suppose that the functions P and j are linked by the
Ž .equï alence 5 . The three statements below are then equï alent.

Ž . w xi The function P satisfies D1 for some continuous and strictly
w xincreasing functions u, g, and F. Moreo¨er, the function j satisfies M1 for

some positï e functions z and C defined on J, with z nonconstant.
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Ž . w xii The functions P satisfies D1 for some functions u, g, and F, with
˜u and g specified as follows. There exist fï e constants u ) 0, a, b, d , and g˜

X ˜ X Ž w x.satisfying either a G a , b G b , and g ) 0 ) d Case a1 , or 0 - a F a,˜ ˜
˜ Ž w x.0 - b F b and g - 0 - d Case b1 , such that

g1 ã
u x s ln ln 23Ž . Ž .ž /d x

ug˜1 b
g y s ln ln . 24Ž . Ž .ž /d y

Consequently, we ha¨e

ugg ˜1 a 1 b˜
P x , y s F ln ln y ln ln 25Ž . Ž .ž / ž /d x d yž /

with F strictly increasing and continuous, but otherwise arbitrary.
Ž . w xiii The function j satisfies M1 . More specifically, there exists four

˜ X ˜ X Žconstants u ) 0, a, b, and d satisfying either a G a , b G b , and d - 0 Case˜ ˜
˜w x. Ž w x.a1 , or 0 - a F a, 0 - b F b, and d ) 0 Case b1 , such that˜

z r s u ed GŽ r . 26Ž . Ž .

˜yu expw d GŽ r .xC r s b a, 27Ž . Ž .˜

w xwhere G is a strictly increasing continuous function on J. Consequently, M1
takes the form

u expw d GŽ r .x˜yu expw d GŽ r .xj y ; r s y b a. 28Ž . Ž .˜

Ž . Ž . Ž . y1For the functions F in i and ii and G in iii , we ha¨e G s F .

Ž .Note in passing that Eq. 28 can be written under the simpler form

w Ž .xu exp d G rj y ; r yŽ .
s .ž /˜ã b

Ž . Ž . Ž . Ž .In the proof below, we follow the scheme: i « ii « iii « i .

Ž . Ž . w x Ž .Proof of Theorem 3.2. i « ii . Condition M1 implies that j y; r is
Ž . x Xwhomogeneous of degree z r in y, that is, for any y in b, b and l ) 0

x Xwsuch that l y g b, b ,

Ž .z r z Ž r .j l y ; r s l y C r s l j y ; r .Ž . Ž . Ž . Ž .
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w x Ž . Ž .Using D1 and 6 , 11 with u , g and F as in Lemma 2.7, we obtain the0 0 0
functional equation

y1 y1 z Ž r . y1 y1u g l y q F r s l u g y q F r . 29Ž . Ž . Ž . Ž . Ž .0 0 0 0 0 0

Ž .Taking logarithms on both sides and setting y s 1 yields, with g 1 s 00
Ž Ž ..cf. Lemma 2.7, Eq. 9

y1 y1 y1 y1ln u g l q F r s z r ln l q ln u F r . 30Ž . Ž . Ž . Ž . Ž .� 4� 40 0 0 0

By writing

s s g l , t s Fy1 r .Ž . Ž .0 0

and

f s ln( uy1 , w s z ( F , r s ln( gy1 , 31Ž .0 0 0 0

Ž .Eq. 30 becomes

f s q t s r s w t q f t . 32Ž . Ž . Ž . Ž . Ž .0 0

Ž .From the assumptions of the Theorem and by Lemma 2.7 and 31 , we
Ž .deduce that the three functions in 32 are continuous, and defined on an

Ž .open, connected subset of R = R containing the point 0, 0 . Notice that
Ž . w y1Ž .x Ž . w Ž .xf 0 s ln u 0 s ln 1 s 0. Moreover, the function w t s z F t takes0 0 0

Žat least two distinct values. From Proposition 2.8 and Remark 2.9 dKrL
Ž . .- 0; f 0 s 0 implies M s 0 , we conclude that the only possible form0

Ž .for the three functions in 32 are the following:

d t y1f t s K 1 y e s ln u s 33Ž . Ž . Ž . Ž .0 0

K
d s y1r s s 1 y e s ln g t 34Ž . Ž . Ž . Ž .0L

d tw t s Le s z F t , 35Ž . Ž . Ž .0

where L, K, and d are constants that satisfy L ) 0 and dK - 0, but are
otherwise arbitrary, and the last equality in each line recalls the definitions

Ž .of f , r and w in 31 . From these three equations, we can easily derive the0
forms of the functions u, g, and z , the latter in terms of the function F.

Ž . Ž . Ž .With F t s r we get from 35 , using 10 ,0

Ly1 y1 y1 y1dF Ž r . d w F Ž r .y t x d F Ž r . d F Ž r .0 0z r s Le s Le s e s u e ,Ž . d t0e
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Ž Ž ..where cf. 7

u s Lred t0 s Lred wuŽ1.yg Ž1.x ) 0. 36Ž .

Thus, for all r g J,

z r s u edFy1Ž r . . 37Ž . Ž .

We now define the two constants

a s e K 38Ž .˜
˜ K r Lb s e . 39Ž .

Note that we must have

X ˜ Xx w x wa f a, a and b f b , b . 40Ž .˜
y1Ž . x Xw Ž . w d u0Ž x .xIndeed, with x s u s g a, a , Eq. 33 yields ln x s K 1 y e , that0

is

1
d u Ž x .01 y ln x s e ) 0, 41Ž .

K

Ž . K x Xw Žyielding 1 ) 1rK ln x. Thus, either a s e ) x for all x g a, a if˜
. X Ž .K ) 0 , so a G a , or by a similar argument a F a if K - 0 . The argu-˜ ˜

˜ Ž . Ž .ment is similar for g and b, with LrK and 34 replacing 1rK and 33 ,0
˜ Xx wi.e. b f b, b must hold. In view of dK - 0, two cases arise:

X ˜ Xw xCase a1 : either a G a ) 1 and b G b ) 1, thus K ) 0 ) d ;˜
˜w xCase b1 : or 0 - a F a - 1 and 0 - b F b - 1, thus K - 0 - d .˜

Ž . Ž Ž . .From 41 , we obtain by the definition of u see Eq. 8 in Lemma 2.70
Ž .and by 38 ,

1rK1rK K d uŽ x .a e 1 e˜
d u Ž x .0ln s ln s 1 y ln x s e s

d uŽ1.ž / ž /x x K e

or equivalently, with

g s ed uŽ1.rK , 42Ž .
we get

g1 ã
u x s ln ln , 43Ž . Ž .ž /d x



ACZEL AND FALMAGNE´644

Ž . Ž .g x Xwwhich proves 23 . Notice that ln arx is positive for all x g a, a : either˜
w x X w xCase a1 holds with a G a ) x and K, g ) 0; or Case b1 holds with˜

Ž . Ž . Ž .a F a - x and K, g - 0. Comparing Eqs. 33 and 34 , we see that g x˜
Ž . Ž . Ž .differs from u x only in that we replace 1rK and u 1 by LrK and g 1 ,

Ž Ž . Ž ..respectively. Noticing cf. 36 and 42 that

Led g Ž1. L ed uŽ1.

s ? s ug
d wuŽ1.yg Ž1.xK Ke

we obtain
ug˜1 b

g y s ln ln , 44Ž . Ž .ž /d y

˜ ugŽ . Ž . w xwhich is 24 , with ln bry always positive whether Case a1 holds with
˜ ˜w xb G b ) y and K, g ) 0, or Case b1 holds with b F b - y and K, g - 0.

w x Ž . Ž .From D1 , 43 and 44 , we get

gug ˜1 a 1 b˜
P x , y s F ln ln y ln ln 45Ž . Ž .ž / ž /d x d yž /

Ž . Ž . Ž .which is 25 , establishing the implication ‘‘ i « ii ’’ of the theorem.
Ž . Ž . Ž . Ž . Ž . y1ii « iii . Solving 25 for x s j y; r with r s P x, y and G s F

Ž .yields after some manipulation in which the g ’s cancel out :

w Ž .xu exp d G ry
x s j y ; r s aŽ . ˜ž /b̃

Ž .C rŽ .z r ! # "! # "
u expw d GŽ r .x yu expwd GŽ r .x˜s y b a , 46Ž .˜

Ž . Ž . Ž .that is, 28 holds with z and C specified by 26 and 27 .
Ž . Ž . w xiii « i . By hypothesis, the function j satisfies M1 , where z and C

Ž . Ž .are defined on J by 26 and 27 , respectively, G is some real valued,
˜strictly increasing, continuous function, and with constants u ) 0, a, b, and˜

X ˜ X Ž w x.d satisfying either a G a , b G b , and d - 0 in Case a1 , or a F a,˜ ˜
˜ Ž w x. Ž .b F b, and d ) 0 in Case b1 . The function j satisfies thus 46 . Solving
Ž . Ž . y1 Ž .46 for r s P x, y with F s G yields 45 for any constant g positive

w x w x Ž . w xin Case a1 and negative in Case b1 . Equation 45 has the form D1
x Xw x Xwwith continuous strictly increasing u and g defined on a, a and b, b ,

w x w xand F strictly increasing and continuous. Thus, both D1 and M1 are
verified, the latter with positive z and C, and z nonconstant; that is,

Ž .statement i holds. This completes the proof of Theorem 3.2.
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4. THE GENERAL CASE

Ž .4.1 THEOREM. Suppose that P, j is a pair of functions linked by the
Ž .equï alence 4 . The following three conditions are then equï alent.

Ž . w xi The function P satisfies D for some functions u, g, and F strictly
w xincreasing and continuous in all arguments. Moreo¨er, j satisfies M for

Ž . Ž .some positï e functions C, h 1 F i F n y 1 , and z 1 F j F m , alli j
defined on J, with at least one of the z nonconstant.j

Ž . w xii The function P satisfies D with F strictly increasing and continu-
ous and with u, g specified by

g˜1 A
u x, x s ln ln 47Ž . Ž .ny1 a iž /d xŁ xis1 i

g˜1 B
g y s ln ln . 48Ž . Ž .m u jž /d Ł yjs1 j

˜Ž . Ž .for some constants a ) 0 1 F i F n y 1 , u ) 0 1 F j F m , g , d , A,i j
˜ w x w xand B, the latter four satisfying either Case a or Case b below:

ny1 m
X X a Xui j˜ ˜w xCase a d - 0 - g , A G a a ) 1, B G b ,Ž . Ł Łn i j

is1 js1

ny1 m
a ui j˜ ˜w xCase b d ) 0 ) g , 0 - A F a a , 0 - B F b .Ž . Ł Łn i j

is1 js1

Accordingly, the function P takes the form

gg˜ ˜1 A 1 B
P x, x , y s F ln ln y ln ln 49Ž . Ž .ny1 a m ui jž / ž /d dxŁ x Ł yis1 i js1 j

¡ ˜ ˜1 A 1 B
F ln ln y ln lnny1 a m ui jž / ž /d dxŁ x Ł yis1 i js1 j

if g ) 0, Ž .49a~s
ny1 a m ui j1 xŁ x 1 Ł yis1 i js1 j

F ln ln y ln lnž / ž /˜ ˜d dA B¢ if g - 0. Ž .49b
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Ž . w xiii The function j satisfies M for some positï e functions C, h , andi
Ž .z , all defined on J, with constant h s a 1 F i F n y 1 , and nonconstantj i i

Ž . Ž .z 1 F j F m . Moreo¨er, there exist constants u ) 0 1 F j F m , d / 0,j j

˜ ˜ w x w xA, B satisfying either Case a or Case b abo¨e, such that for all r g J

z r s u exp d G r , 1 F j F m , 50Ž . Ž . Ž . Ž .j j

ỹexpwd GŽ r .x ˜C r s B A , 51Ž . Ž .

Ž .where G is a strictly increasing and continuous but otherwise arbitrary
w xfunction on J. Consequently, M takes the form

w Ž .xexp d G rny1 m1
ya ui j˜j x, y; r s A x y . 52Ž . Ž .Ł Łi jž /B̃is1 js1

Notice that Theorem 3.2 is the particular case of Theorem 4.1 where
˜ ˜ 1̃run s m s 1, a s A and b s B . Because our proof is long, we first˜

summarize it.
Ž . Ž .We begin by establishing the implication ‘‘ i « iii ,’’ and prove that,

w xwhen one of the z ’s in M is nonconstant, then they all must bej
Ž .nonconstant and of the form specified by 50 , with u ) 0, d / 0, andj

y1 Ž .G s F . We then prove 51 . Finally, we show that all h must bei
Žconstant if one of the z ’s is nonconstant. The case where all z ’s arej j

. Ž .constant is treated in Theorem 4.2. Equation 52 obtains. The represen-
Ž . Ž . y1tations 49 and 52 follow easily from each other, with G s F and g

w x w xarbitrarily positive or negative in Case a or b , respectively. We have thus
Ž . Ž . Ž . Ž . Ž . Ž .‘‘ i « iii m ii .’’ It remains to establish ‘‘ ii and iii « i ,’’ which is

Ž . w xreadily obtained by observing that 49 has the form D , with u and g
Ž . Ž . Ž . w xdefined by 47 and 48 , and that 52 has the form M , with the hi

Ž . Ž .constant, and the z and C defined by 50 and 51 , respectively.j
Ž . Ž . Ž .In proving ‘‘ i « iii ’’ the main difficulty , it will be convenient to

advance according to the following plan.

Ž . Ž .Outline of i « iii

w xStep 1. We suppose that one of the exponent functions z in M , sayj
z , is nonconstant. Keeping x , . . . , x and y , . . . , y constant and using1 1 ny1 2 m

Ž . d1 Fy1 Ž r .Theorem 3.2, it follows that z r s u e with constants u ) 0 and1 1 1
Ž .d / 0 which, however, may depend upon x , . . . , x and y , . . . , y1 1 ny1 2 m

and for all r in J.
Step 2. We show that, if two exponent functions z are nonconstant,j

then the constant d must be the same in both cases. Thus, if any exponentj
Ž . dFy1Ž r .function z is nonconstant, then we must have z r s u e for somej j j

constants u ) 0 and d / 0.j
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Step 3. Using Theorem 3.2 again, we prove that, if one of the
w xexponent functions z is nonconstant, then the function C of M mustj

have the form

˜expw d Fy1Ž r .x ˜C r s B AŽ .

˜ ˜ ˜ X ˜ Xu jfor some positive constants A and B with either: A G a , B G bn j
˜ ˜ u jŽ . Ž w x. Ž .1 F j F m , and d - 0 Case a ; or A F a , B F b 1 F j F m , andn j

Ž w x.d ) 0 Case b .
Step 4. We then consider the case where one of the functions zj

would be nonconstant, while some other function z would be constant,k
and we show that a contradiction arises.

Step 5. We then turn to the exponent functions h . We suppose thati
one of these functions is nonconstant, and that one of the functions z isj
also nonconstant. We prove that this hypothesis leads to a contradiction.
Thus, all exponent functions h must be constant.i

Ž . w xStep 6. Equation 52 follows by substituting in M the functions h ,i
z and C by their expressions obtained in Steps 1]5.j

4.2. CONVENTION. In the proof, we shall use the functions u , g , and F0 0 0
introduced in Lemma 2.7 but omit the subscript 0. The original functions u, g,
and F are restored near the end of the proof of Theorem 4.1.

Ž . Ž .Proof of Theorem 4.1. i « iii .

Ž . Ž .Step 1. Suppose that z r is nonconstant. Fix x s x , . . . , x ,1 0 1 ny1
Ž . w xand y s y , . . . , y arbitrarily. Then M reduces to0 2 m

m y ; r s j x , y , y ; r s y z1Ž r .CU r , 53Ž . Ž . Ž . Ž .Ž .0 0

where the first equality defines the function m and with

ny1 m
U yh Ž r . z Ž r .i jC r s x y C r .Ž . Ž .Ł Łi j

is1 js2

w xSimilarly, D reduces to

p x , y s P x , x , y , yŽ . Ž .Ž .0 0

s F u x , x y g y , yŽ . Ž .0 0

s H ¨ x y h y ,Ž . Ž .

with obvious definitions of the functions ¨ , h, and with H an appropriate
Ž .restriction of the function F of statement i . Note that the range of the

function H is an open interval. This interval, as well as the functions ¨ , h,
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and H, may depend upon the values chosen for x and y. Accordingly, we
denote the range of H by I . Applying Theorem 3.2 to the pair ofx, y

Ž . Ž . Ž .functions p, m , there exist u x, y ) 0 and d x, y / 0 such that1 1

z r s u x, y ed1Žx , y.G1 , x , yŽ r . ,Ž . Ž .1 1

for some strictly increasing, continuous function G defined for all r in1, x, y
I . Note that G is the restriction of Fy1 to I . So we can writex, y 1, x, y x, y

z r s u x, y ed1Žx , y.GŽ r . for all x, y. 54Ž . Ž . Ž .1 1

Ž .By Convention 4.2 and Lemma 2.7, 0 is in the domain of F. If F 0 s r ,0
Ž . Ž . Ž . Ž .then G r s 0. Setting r s r in 54 yields u x, y s z r , a constant.0 0 1 1 0

Ž . d1Žx, y.GŽ r .We denote that constant by u . We have now z r s u e . The1 1 1
left hand side of the last equation is independent of x and y, so also the

Ž .right side; thus d x, y is constant. Denoting this constant by d , we get1 1
Ž . d1GŽ r . y1z r s u e for all r in J with constant u , d , and with G s F .1 1 1 1

This argument can be used to prove that every nonconstant function zj
has the form

z r s u ed jGŽ r . ,Ž .j j

where u ) 0 and d / 0 are constant.j j

Step 2. Suppose thus that z and z are nonconstant. This implies1 2

z r s u ed1GŽ r . ,Ž .1 1

z r s u ed2GŽ r . ,Ž .1 2

with G s Fy1 and constant u , u ) 0 and d , d / 0, cf. Step 1. Putting1 2 1 2
w x Ž .these z , z into M with y s y s y and fixing x s x , . . . , x and1 2 1 2 1 ny1

Ž . x X w x X wy s y , . . . , y , we get for all y in a , a l a , a3 m 1 1 2 2

z Ž r .1 , 2m y s j x, y , y , y ; r s y C r 55Ž . Ž . Ž . Ž .Ž .r

with

z r s u exp d G r q u exp d G r 56Ž . Ž . Ž . Ž .1, 2 1 1 2 2

and

ny1 m
yh Ž r . z Ž r .i jC r s x y C r .Ž . Ž .Ł Łi j

is1 js2
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Ž . Ž .But a functional form for the nonconstant function z of 55 ] 56 can1, 2
also be obtained directly from Theorem 3.2, applied to the function m in
Ž .55 and to the function p defined by

p x , y s H ¨ x y h yŽ . Ž . Ž .

s P x, y , y , y s F u x, x y g y , y , y .Ž . Ž . Ž .Ž .

This yields

z r s u exp d G rŽ . Ž .1, 2 1, 2 1, 2

for all r in some open interval J X of J, where u ) 0 and d / 0 are1, 2 1, 2
constant, by a similar argument as in Step 1. This gives

u ed1GŽ r . q u ed2GŽ r . s u ed1 , 2GŽ r . 57Ž .1 2 1, 2

Ž . d1 s d 2 s d1, 2 sfor all r in J. Equation 57 states that the functions e , e , and e
are linearly dependent, which holds only if d s d s d s d , where the1, 2 1 2
last equality defines the constant d . It shows also that d - 0 - d is not1 2

Ž .possible. This applies obviously to all s s G r and thus to all r in J. The
above argument can be used for any pair of subscripts i, j for which z andj

Ž .z are nonconstant. So, d j s d , that is, 50 holds for any nonconstant zi j
w xin M ; we have thus

z r s u ed GŽ r . . 58Ž . Ž .j j

From here on, to avoid lengthy formulas in our calculations, we occasion-
ally adopt the abbreviation

D r s ed GŽ r . . 59Ž . Ž .

w xStep 3. We turn to the function C of M . If z is nonconstant, we1
˜ ˜have by Theorem 3.2, for some constants b and A,1

˜yu 1DŽ r . ˜C r s b A ,Ž . 1

˜ X ˜ ˜ ˜Ž w x.with either b G b , A G a , and d - 0 Case a , or b F b , A F a , and1 1 n 1 1 n
Ž w x.d ) 0 Case b .

Again, the same argument can be used for any subscript j for which zj
is nonconstant. In particular, if both z and z are nonconstant, we wouldj k
thus have

˜yu jDŽ r . ˜ ˜yu k DŽ r . ˜C r s b A s b A ,Ž . j k
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˜u j ˜uk ˜ ˜u jleading to b s b . Thus B [ b is independent of the subscript. Since dj k j
does not depend upon the subscript and can be positive or negative, we

˜ Xu j ˜ Xu k ˜ u j ˜ ukhave either d - 0 and B G b , B G b , or d ) 0 and B F b , B F b , aj k j k
Ž w xdichotomy which generalizes to all subscripts 1 F j F m see Cases a and

w x . Ž .b below . We obtain, using 59

ỹexpw d Fy1Ž r .x ˜C r s B A. 60Ž . Ž .

The two possibilities

˜ X ˜ Xu jw xCase a d - 0, A G a , and B G b 1 F j F m 61Ž . Ž .Ž . n j

˜ X ˜ Xu jw xCase b d ) 0, A F a , and B F b 1 F j F m 62Ž . Ž .Ž . n j

will be elaborated later in this proof.
Step 4. We now consider the case where one of the functions z inj

w xM , say z , would vary with r, while another, say z , would remain1 2
Ž .constant: z r s u ) 0 for all r. Setting x s ??? s x s y s ??? s2 2 1 ny1 3

w x Ž . Ž .y s 1 in M , we obtain by 58 and 60m

z Ž r . u1 2j 1 , y , y , 1 ; r s y y C rŽ . Ž .ny1 1 2 my2 1 2

u1expw d GŽ r .x u 2 ỹexpwd GŽ r .x ˜s y y B A s x .1 2

Ž . y1Ž . Ž . Ž . Ž w xSolving for G r s F r s u 1 , x y g y , y , 1 cf. D andny1 1 2 my2
Ž ..4 leads to

u 2 ˜1 ln y q ln A y ln x2
u x y k y , y s ln , 63Ž . Ž . Ž .1 1 2 u 1˜ž /d ln B y ln y1

where

u x s u 1 , x , k y , y s g y , y , 1 .Ž . Ž . Ž . Ž .1 ny1 1 2 1 2 my2

Thus u is strictly increasing, k is strictly increasing in both variables, and1
Ž . Ž .u 1 s 0 by Lemma 2.7 iii and Convention 4.2. This leads to a contradic-1

Ž . Ž .tion because, on the right hand side of 63 , x and y , y cannot be1 2
Ž .additively separated. To show this, we put x s 1 in 63 and get

u 2 ˜1 ln y q ln A2yk y , y s ln .Ž .1 2 u 1˜ž /d ln B y ln y1
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Ž . Ž .Substituting this yk y , y in 63 yields1 2

u 2 ˜ u 2 ˜1 ln y q ln A 1 ln y q ln A y ln x2 2
u x q ln s ln ,Ž .1 u u1 1˜ ˜ž / ž /d dln B y ln y ln B y ln y1 1

or equivalently,

1 ln x
u x s ln 1 y ,Ž .1 už /2 ˜d ln y q ln A2

Ž .an equation whose right side varies with both x and y because u / 0 ,2 2
while the left side varies with x, an absurdity. We conclude that if, as

Ž .hypothesized in statement i , one of the exponent functions z is noncon-j
stant, then none of them is constant. Moreover, there are constants u ) 0j

˜ ˜Ž . Ž . Ž1 F j F m , d , A, and B, with the latter three satisfying either 61 Case
w x. Ž . Ž w x. y1a or 62 Case b , such that G s F

z r s u exp d G r 64Ž . Ž . Ž .j j

ỹexpw d GŽ r .x ˜C r s B A. 65Ž . Ž .

We still have to show that all exponent functions h , 1 F i F n y 1 arei
constant if one of the z is nonconstant. We proceed by contradiction andj

Ž .suppose that h for example varies with r. Since, as we have just seen, all1
z ’s are nonconstant if one of them is, we may as well consider z .j m

Step 5. Suppose by contradiction that h and z are nonconstant. In1 m
w xM , set x s ??? s x s y s ??? s y s 1. By the argument in Step2 ny1 1 my1

Ž . Ž .4, using 64 with j s 1 and 65 , we obtain

x s j x , 1 , 1 , y ; rŽ .Ž .n 1 ny2 my1 m

yh 1Ž r . u m DŽ r . ỹD Ž r . ˜s x y B A. 66Ž .1 m

Solving this equation for x yields1

x s k x , y ; rŽ .1 n m

Ž .1rh r1u DŽ r .rh Ž r . yDŽ r .rh Ž r .m 1 1˜ ˜s y B Arx , 67Ž .Ž .m n

in which the second equality defines the function k .

Ž . Ž . Ž .Case 1. Suppose first that f r s u D r rh r is nonconstant in r.m 1
This will lead to a contradiction. Indeed, notice that, for a fixed x , k hasn

w xthe form M1 . Fixing temporarily x , we apply Theorem 3.2 to k and then
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˜w xappropriate special case of D to get, with z , a and b as in Theorem 3.2,˜

u D rŽ .m X Xs z r s u x exp d x G r 68Ž . Ž . Ž . Ž . Ž .n nh rŽ .1

Ž . X X1rh r1yD Ž r .rh Ž r . yu Ž x .expwd Ž x .GŽ r .x1 n n˜ ˜ ˜B Arx s b a 69Ž .˜Ž .n

XŽ . XŽ .for some ‘‘constants’’ u x ) 0 and d x / 0, which may a priorin n
Ž Ž . Ž .depend upon x . Thus, the left hand side of 69 plays the role of C r inn

Ž . . Ž . Ž .Theorem 3.2, cf. Eq. 27 . By Lemma 2.7 i cf. Convention 4.2 , 0 is in the
Ž . Ž . Ž .domain of F, say F 0 s r , that is G r s 0 cf. Step 1 . Setting r s r0 0 0

Ž . Ž . XŽ . Xin 68 yields z r s u x . Thus, u does not depend upon the value ofn

w XŽ . Ž .x Ž . XŽ .x , and because exp d x G r s z r ru x does not depend on x ,n n n n
X Ž . Ž .neither does d . We obtain thus from 68 and 59

um Xh r s exp d y d G r 70Ž . Ž . Ž . Ž .X1 u

with

d / d X 71Ž .
Ž .because by hypothesis h is nonconstant with r. Raising both sides of 691

Ž . Ž .to the power of h r and using 70 , we can thus, after some manipula-1
tion, rewrite this equation as

˜yu m expw d GŽ r .x Žu m ru
X . expwŽdyd

X .GŽ r .x ỹexpwd GŽ r .x ˜b a s B Arx .˜ Ž .n

Taking logarithms on both sides and rearranging yields

u Xmd GŽ r . GŽ r . Ždyd .˜ ˜ ˜e ln B y u ln b q e ln a s ln Arx .˜ Ž .ž / Xm nu

Thus, the exponential functions ed GŽ r ., ewGŽ r .Ždyd
X .x, and e0 are linearly
Ž .dependent. By an argument already used earlier in Step 2 , this can

X Ž .happen only if d s d s 0, contradicting 71 .

Ž . Ž .Case 2. Thus, if h r is nonconstant with r, then f r s1
Ž . Ž .u D r rh r must be constant, that is, we must havem 1

h r s b D rŽ . Ž .1 1

for some positive constant b . This too will lead to a contradiction.1
Ž .Substituting into 66 yields

x s j x , 1 , 1 , y ; rŽ . Ž .Ž .n 1 ny2 my1 m

yb 1DŽ r . u m DŽ r . ỹD Ž r . ˜s x y B A. 72Ž .1 m
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Ž . Ž . Ž . Ž Ž ..Grouping factors, and solving for G r s 1rd ln D r cf. Eq. 59
w xgives, in view of D ,

˜1 ln x rAŽ .n U UG r s ln s w x , x y k y 73Ž . Ž . Ž . Ž .1 n myb u y11 m ˜d ln x y BŽ .1 m

with

wU x , x s u x , 1 , x , and kU y s g 1 , y .Ž . Ž . Ž . Ž .1 n 1 ny2 n 1 my1 m

Ž .It is easy to verify that the functional equation in the last equality of 73
cannot be solved for the functions wU and kU. The argument is similar to

Ž . U Ž . Ž Ž .that used in the case of Eq. 63 . We have k 1 s 0 by Lemma 2.7 iii
. Ž .and Convention 4.2 . With y s 1, 73 givesm

˜1 ln x rAŽ .nUw x , x s ln .Ž .1 n yb y11 ˜d ln x BŽ .1

Ž .Substituting into 73 , we get

˜ ˜1 ln x rA 1 ln x rAŽ . Ž .n n Uln s ln y k y ,Ž .1yb u y1 yb y11 1 1˜ ˜d dln x y B ln x BŽ . Ž .1 1 1

leading, after simplification, to

yb 1 ỹ11 ln x BŽ .1Uk y s ln ,Ž .1 yb u y11 1 ˜ž /d ln x y BŽ .1 1

with the left side varying only with y while the right side varies with y1 1
and x . Again, we obtain a contradiction.1

Thus, both f nonconstant and f constant lead to contradiction. So, h1
and z cannot be both nonconstant, and neither can h and z for anym i m
choice of the subscript i be simultaneously nonconstant.

Ž .Step 6. Thus, under the hypotheses of statement i , all the h ’s arei
Ž . Ž .necessarily constant, h s a , 1 F i F n y 1 , all the z 1 F j F m takei i j

Ž . Ž . w xthe form 64 , and the function C takes the form 65 . This means that M
Ž .can be specified as 52 :

w Ž .xexp d G rny1 m1
ya ui j˜j x, y; r s A x y . 74Ž . Ž .Ł Łi jž /B̃is1 js1
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Ž . Ž .Setting x s j x, y; r , we can rewrite 74 asn

˜ ny1 a iln A y ln x Ł xŽ .n is1 i s exp d G r . 75Ž . Ž .
m u j˜ln B y ln Ł yŽ .js1 j

Since the right hand side is positive, the numerator and the denominator
in the left hand side must have the same sign for all values of the variables.

Suppose that d - 0. We show that both the numerator and the denomi-
Ž .nator in 75 are then necessarily positive and we must have

ny1 m
X X a Xui j˜ ˜A G a a and B G b , 76Ž .Ł Łn i j

is1 js1

w x Ž .that is, all the conditions of Case a in statement iii of the Theorem
Ž Ž . .must hold. The constant g is irrelevant in statement iii . Indeed, if

˜ X ˜ Xu jŽ .d - 0, then by 61 A G a and B G b for 1 F j F m. Fix x s 1 forn j i

Ž .1 F i F n y 1. The numerator in 75 is then positive for all values of
x X w Ž .x g a , a . This implies that the denominator of 75 is also positive forn n n

Ž .all values of y , 1 F j F m, establishing the second inequality in 76 . Thej
Ž .first inequality in 76 follows from the fact that the numerator and the

Ž .denominator in 75 must have the same sign.
A similar argument is used to show that if d ) 0, then both the

Ž .numerator and the denominator in 75 must be negative and we must
have

ny1 m
X X a Xu1 j˜ ˜0 - A F a a and 0 - B F b , 77Ž .Ł Łn i j

is1 js1

w x Ž .that is, Case b in statement iii of the Theorem hold.
Ž . Ž .Thus, i « iii is proved.

Ž . Ž .iii m ii .
Ž . Ž . Ž .Solving 49 with respect to x s j x, y; r yields 52 , which is of the

w x Ž . Ž .form M with constant h s a ) 0 1 F i F n y 1 and C, z 1 F j F mi i j
Ž . Ž . Ž . Ž .given by 51 , 50 . This proves ii « iii .

Ž . Ž . Ž . Ž .We have seen in Step 6 of i « iii that Eq. 52 readily leads to 75 . If
w x Ž . Ž . Ž .Case a of iii is satisfied d - 0 , we take logarithms on both sides of 74

Ž .and solve for r s P x, x , y . This yieldsn

˜ ˜1 A 1 B
P x, x , y s F ln ln y ln ln , 78Ž . Ž .ny1 a m ui jž / ž /d dxŁ x Ł yis1 i js1 j

Ž . Ž . Ž .which is 49a , and we have u and g given by 47 and 48 but with g s 1.
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At this point, we recall that by Convention 4.2, the functions u, g, and F
appearing in our proof had an implicit subscript 0. Reestablishing the

Ž .subscript, we see that, instead of 78 , we actually got

˜ ˜1 A 1 B
P x, x , y s F ln ln y ln ln ,Ž . 0 ny1 a m ui jž / ž /d dxŁ x Ł yis1 i js1 j

Ž . Ž . Ž .with see Lemma 2.7 F t s F t q t . We can write0 0

1
t s y ln u 79Ž .0 d

for some positive u , and with the notation

U Ũ ˜u s uu ) 0 1 F j F m , B s u B , 80Ž . Ž .j j

we obtain

U˜ ˜1 A 1 B
P x, x , y s F ln ln y ln ln . 81UŽ . Ž .ny1 a m ui jž / ž /d dxŁ x Ł yis1 i js1 j

Ž . Ž .This gives a pair u, g as in 47 and 48 but again with g s 1. The general
w xforms of u and g in D follow by noting that, given F, the functions u and

g are clearly determined up to a common additive constant. We can write
Ž . Ž . Ž . Ž .this constant as 1rd ln g g ) 0 . So we obtain 47 and 48 as asserted.

w x Ž . w x Ž .Thus d - 0 - g and Case a of the statement ii holds. Case b of iii is
Ž .dealt with similarly, and we get statement ii with g - 0 - d . We con-

Ž . Ž .clude that iii « ii .
Ž .We have to reinstall the implicit subscript 0 also in 74 and get, in view

Ž . Ž . y1Ž . y1Ž . Ž . Ž .of 10 and 79 , F r s F r y t s G r q 1rd ln u and, using0 0
Ž .also 80 ,

w Ž . xexp d G r qln uny1 m1
ya ui j˜j x, y; r s A x yŽ . Ł Łi jž /B̃is1 js1

w Ž .xexp d G rny1 m1 Uya ui j˜s A x y ,Ł Łi jUž /B̃is1 js1

Ũ U Ž .that is, removing the stars from B and u , we obtain again 52 . It is ofj

w x Ž . Ž . Ž . Ž .the form M and determines h r s a 1 F i F n y 1 and C r , z ri i j
Ž . Ž . Ž . Ž .1 F j F m uniquely as 51 and 50 with G, not G in the exponent .0
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Ž . Ž . Ž . Ž . Ž . w x w xii and iii « i . Examining 49 and 52 , we see that D and M
Ž .jointly hold for the functions P and j , with u and g defined by 47 and

Ž .48 , respectively, F arbitrarily continuous and strictly increasing, h s ai i
Ž . Ž . Ž . Ž .constant 1 F i F n y 1 , z 1 F j F m , and C defined by 50 and 51j

Ž .respectively, establishing i . This concludes the proof of Theorem 4.1.

We turn to the case of constant functions z .j
w x4.3. THEOREM. Suppose that M holds with j strictly increasing in r and

Ž . Ž .y 1 F j F m , strictly decreasing in x 1 F i F n y 1 , and continuous in allj i
¨ariables. Then the following two conditions are equï alent.

Ž .i At least one of the z is constant. Moreo¨er, the function P linkedj
Ž . w xto j by Eq. 4 satisfies representation D for some functions u, g, and F

strictly increasing and continuous in all ¨ariables.
Ž . Ž . Ž . Ž .ii All h and z are constant: h r s a 1 F i F n y 1 , z r s bi j i i j j

Ž .1 F j F m .

w xIf either of these conditions holds, the function C in M is continuous and
strictly increasing, thus has a continuous and strictly increasing in¨erse H s
Cy1, and we ha¨e

x Ł ny1 x a i
n is1 i

P x, x , y s H . 82Ž . Ž .n m b jž /Ł yjs1 j

w x Ž . Ž . Ž b .In particular, if in M1 , z r s b , a constant, then P x, y s G xry
Ž .cf. Falmagne, 1985, p. 203 .

Ž . Ž . w xProof. i « ii . Suppose, for example, that in M z s u constant.m m
Ž . ŽThus, all the other functions z 1 F j - m must also be constant Theo-j

Ž . Ž ..rem 4.1, i « iii . For contradiction, suppose also that h is nonconstant.1
w xSetting x s ??? s x s y s ??? s y s 1 simplifies M to x s2 ny1 1 my1 n

ŽŽ . Ž . . u m yh 1Ž r . Ž .j x , 1 , 1 , y ; r s y x C r . Solving for x yields1 ny2 my1 m m 1 1

Ž .1rh ry1rh Ž r . u rh Ž r . 11 m 1x s x y C rŽ .1 n m

yh
X
1Ž r . z

X
mŽ r . X ˆs x y C r s j x , y ; rŽ . Ž .n m n m

X X X ˆ w xwith obvious definitions of h , z , C , and j . Similarly, D simplifies to1 m

P̂ x , x , y s P x , 1 , x , 1 , yŽ . Ž . Ž .1 n m 1 ny2 n my1 m

s F u x , 1 , x y g 1 , yŽ . Ž .1 ny2 n my1 m

s F u x , y y g y ,Ž . Ž .ˆ ˆn m m
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ˆwith obvious definitions of u, g, and P. Note that the pair of functionsˆ ˆ
ˆ ˆ XŽ . w x w xP, j satisfies D and M , with nonconstant z . Applying the implicationm

Ž . Ž . Xi « iii of Theorem 4.1, we obtain that the exponent function h should1
Ž . Ž .be constant. From this contradiction, we conclude that i « ii .

Ž . Ž . w x Žii « i . Since the functions h and z in M are constant equal to ai j i
.and b , respectively , and j is strictly increasing and continuous in r, thej

function C must be strictly increasing and continuous. Thus, C has a
y1 w x Ž .continuous and strictly increasing inverse H s C . Solving M for C r

Ž . Ž .with j x, y; r s x and applying H to both sides yields Eq. 82 . Repre-n
w x Ž .sentation D follows by rewriting 82 in the form

ny1 m
a bi jP x, x , y s H(exp ln x x y ln y ,Ž . Ž . Ł Łn n i jž /ž /is1 js1

ny1 a m bi jŽ . Ž . Ž . Ž .with u x, x s ln x Ł x , g y s ln Ł y and F s H(exp.n n is1 i js1 j

Ž .4.4. COROLLARY. Suppose that P, j is a pair of functions linked by the
Ž . w x w xequï alence 4 with all the side conditions holding. If D and M jointly

w xhold for P and j respectï ely, then all the functions h in M are necessarilyi
constant.

This follows immediately from Theorems 4.1 and 4.3.

5. EXAMPLES

5.1. A model satisfying the conditions of Theorem 4.1

Take
Ž Ž ..drr 1yr1

ya ya u u1 2 1 2˜x s j x , x , y , y ; r s Ax x y y ,Ž . Ž .Ž .3 1 2 1 2 1 2 1 2ž /B̃
with a , a , u , u positive and d negative. Solving for r yields1 2 1 2

r s P x , x , x , y , yŽ .1 2 3 1 2

y1
a a1 2˜1 ln A y ln x x xŽ .1 2 3s 1 q exp y ln

u u1 2˜ž /d ln B y ln y yŽ .1 2

a a1 2˜1 ln A y ln x x xŽ .1 2 3s F ln
u u1 2˜d ln B y ln y yŽ .1 2

˜ ˜1 A 1 B
s F ln ln y ln ln ,

a a u u1 2 1 2ž / ž /d x x x d y y1 2 3 q 2

w x Ž . Ž ys .y1of the form D with F s s 1 q e , the logistic function.
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w x w x5.2. A model failing D but satisfying M

Take

y s m x , x , y , y ; r s xu1Ž r rŽ1yr ..d

xu 2 yya 2Ž r rŽ1yr ..d

By1AŽ r rŽ1yr ..d

.Ž . Ž .Ž .1 1 2 2 3 1 2 2

w xAs we see, m is of the form M . Solving for r yields

1 ln By xyu 2Ž .1 2
r s P s H ln ,x , x ; y , y , y ya u1 2 1 2 3 2 1ž /d ln y AxŽ .2 1

Ž . Ž ys .y1where H is the logistic function H s s 1 q e .
w xThe difference representation D cannot hold for this model; that is, we

cannot have F, ¨ , and h continuous and strictly increasing in all arguments
such that

1 ln By xyu 2Ž .1 2
H ln s F ¨ y , y y h x , x . 83Ž . Ž . Ž .1 2 1 2ya u2 1ž /d ln y AxŽ .2 2

Indeed, since F is strictly increasing, we have

X XF ¨ y , y y h x , x G F ¨ y , y y h x , xŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 2

m ¨ y , y G ¨ yX , yX .Ž . Ž .1 2 1 2

Ž .Assuming 83 would lead to

ln By xyu 2 ln ByX xyu 2 ln By xXyu 2 ln ByX xXyu 2Ž . Ž . Ž . Ž .1 2 1 2 1 1 2G m G .Xyaya u u Xu Xya Xu2 ya2 1 1 1 2 12ln y Ax ln y Ax ln y Ax ln y AxŽ . Ž . Ž . Ž .2 1 2 1 2 1 2 1

The above equivalence is of the form

s q t sX q t s q tX sX q tX

G m G ,X X X Xw q m w q m w q m w q m

Ž X Xwhich is an absurdity. Take for instance s s 1, w s 2, s s 30, w s 40,
t s m s 10, tX s mX s 1. The left side of the above ‘‘equivalence’’ gives
11 4 2 31) , and the right side - .12 5 3 41
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