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Choice probabilities in the behavioral sciences are often analyzed from the
standpoint of a difference representation such as P(x, x,y) = Flu(x, x) — g(y)]. Here,
x and y are real, positive vector variables, x is a positive real variable, P(x, x,y) is
the probability of choosing alternative (x, x) over alternative y, and u, g and F are
real valued, continuous functions, strictly increasing in all arguments. In some
situations (e.g. in psychophysics), the researchers are more interested in the
functions u and g than in the function F. In such cases, they investigate the choice
phenomenon by estimating empirically the value x such that P(x, x,y) = p, for
some values of p, and for many values of the variables involved in x and y. In other
words, they study the function ¢ satisfying €(x,y; p) =x < P(x, x,y) = p. A rea-
sonable model to consider for the function ¢ is offered by the monomial representa-
tion

E(x,y; p) = Hﬁ:ll xl_—m(p)n;”:l y]_éj(p)c( ),
in which the #;’s, the /s and C are functions of p. In this paper we investigate the
consistency of these difference and monomial representations. The main result is
that, under some background conditions, if both the difference and the monomial
representations are assumed, then: (i) all functions n; (1 <i <n — 1) must be
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constant; (ii) if one of the functions & is nonconstant, then all of them must be of
the form §j( p) = Hjexp[«SF"l(p)], for some constants 6; > 0 (1 <j<m) and
8 # 0, where F~! is the inverse of the function F of the difference representation.
Surprisingly, F can be chosen rather arbitrarily.  © 1999 Academic Press

1. INTRODUCTION

Choice or detection probabilities are often represented by a difference,
as in the equation

P(X,Y) = Flu(X) —g(Y)], (1)

where P(X,Y) denotes either the probability of choosing alternative X
over alternative Y or the probability of detecting a stimulus X over a
background Y, and u, g, and F are real valued functions, with F strictly
increasing and continuous.

Such a representation may arise, for instance, as a special case of a
‘random utility model’ [3, 15] in which random variables Uy and G, are
attached to X and Y, respectively, and P(X,Y) measures the probability
that U, exceeds Gy. If Uy and G, are independent Gaussian random
variables with expectations u(X) and g(Y) and with the same variance
equal to 1, then a special case of (1) is obtained through

1 fu(x)—g(y)e
V2’7T — o0

where P denotes the probability measure. (Thus, the function F in (1) is
the distribution function of a Gaussian random variable with an expecta-
tion equal to zero and a variance equal to one.) When u = g in (2), we get
the celebrated ‘Law-of-Comparative-Judgements (Case V) [4, 18, 19].
Sometimes, X and Y are vectors, as in [5, 8, 9]. With u =g and X,Y
positive real numbers, this equation offers the theoretical support for
Fechner’s method for constructing a psychophysical scale [6, 10, 14].
Assuming that u and g are different functions is justified when the choice
situation is asymmetrical (for instance, the two alternatives are presented
successively, X appearing before Y), or when X is a stimulus to be
detected over some background denoted by Y. In general, Eq. (1) plays a
fundamental role as a model for choice or detection behavior, either
explicitly or implicitly. General references can be found in [6 or 17].

Here, X and Y denote real positive vectors. To stress this fact and for
another reason that will soon be apparent, we switch notation from now on
and write

P(X,Y) =P(Uy>G,) = —2* /2, (2)

X=(x,x,), withx=(x,...,x,_,)

Y=y=Vm)
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thus singling out the last component of X. The quantities represented by
the positive real numbers x,,...,x, and y,,...,y, may be evaluated on
ratio scales measuring aspects of the stimuli, for instance. To avoid
multiplying the parentheses, we write P(x, x,,y) to denote the probability
of choosing stimulus (x, x,) over stimulus y.

In principle, the difference representation of Eq. (1) can be tested
experimentally without making specific assumptions regarding the form of
the function F (see [6, 11]). Such a test is difficult in practice, however.
Moreover, at least in some scientific fields, researchers are reluctant to
make assumptions about the function F because they are typically much
more interested in the forms of u and g than in that of F (and making an
erroneous assumption on F might lead to mistaken conclusions about u
and g). For that reason, they routinely study the phenomenon represented
by (1) by estimating empirically x such that P(x, x,y) = p, for some values
of p, and for many values of the variables involved in x and y. In other
words, they study the function (x,y, p) — &(x,y; p) satisfying

£(x,y; p) =x = P(x,x,y) = p.

Special experimental methods have been designed to construct—or at
least approximate—the function ¢ empirically, and are used routinely in
sensory psychology [13]. A simple model for the function ¢ is offered by
the product

n—1

£(x,y; p) = Hlx,-””“’), 1yf’“’)C( p). (3)
i= j=

Such a model, which is linking a collection of ratio scales through a
monomial representation, has the form of the laws of classical physics and
is a natural one to consider. For examples of applications in psychophysics,
see among many: (Case m = n = 1) [7, 12, 16]; (Case m = n = 2) [8, 9].
Studying the compatibility of the representations (1) and (3) is the
subject of this paper. We shall see that, under some reasonable back-
ground assumptions concerning the domains of variation of the variables
x; and y;, the representations (1) and (3) forces all the functions 7 in (3)
to be constant. Moreover, either all the functions {; must also be constant
and C = expo F~!, where F~! is the inverse of the function F in (1), or if
at least one of the {;’s is nonconstant, then all of them must have the form
{j( p) = 0; expl 6F‘11( p)], for some constants 6, >0 (1 <j<m)and § # 0.
None of these results hinges on the assumption that the function P is
measuring a probability, i.e. is bounded above by 1 and below by 0. This
can be achieved just by choosing the otherwise arbitrary continuous and
strictly increasing function F so that its value lies between 0 and 1.



MONOMIAL AND DIFFERENCE REPRESENTATIONS 635

Section 2 is devoted to definitions and preparatory material. The case
n =m = 1 of Eq. (3) is treated in Section 3, paving the way for our main
results in Section 4. A couple of examples are given in Section 5.

2. BASIC CONCEPT AND PRELIMINARY RESULTS

We first consider the function P in (1) and examine critical properties
of its domain and its range. (We call range of a function the set of its
values. This set is frequently called the “co-domain” of the function.)

2.1. DErINITION. We write R for the set of real numbers. For any
positive integer k, we use the abbreviation

1, =(1,...,1),

k times

a vector in R*. We will sometimes write

(1;,x) for (1,...,1,x)
Nt AR I
k times
and use other similar improper but convenient notation. For 1 <i < n and

1<j<m, let la;,al and ]bj, b]’-[ be n + m real open intervals, with

0 <a; <1<d;and 0 <b; <1 <b. Singling out the interval la,, @[, we
define the Cartesian products

Ayy =lag, d\[ X X]a,_y,d, ] (n>1),
B, =1b,,b}[ x - x]b,,, b.[, (m=1),
with
X=(x,..0,%,) €4, 4,
y=.--sY,) €B,,

denoting variable vectors. By convention 4, = . A central concept is a
real valued function P defined for all (x,x,,y) in 4,_, X la,,d, [XB,,
and with range
J=P(A,_, X]a,,a,[ XB,).

By hypothesis, J contains the point p, = P(1,,_,,1,1,,). We suppose that P
is continuous in all n + m arguments, strictly increasing in x; for1 <i <n
and strictly decreasing in y; for 1 <j < m. For any fixed x in A4, _, and y
in B,, the function x, — P(x, x,,y) is strictly increasing and continuous
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on la,, & [. Thus, its range
Sx,y = P(X7 ]arn a/n[’y)

must be an open interval.

2.2. LemMA. (i) The collection (S, ) yye 4, x5, IS an open covering of
the range J of the function P.

(ii) The function P is continuous.
(iii) The set J is an open interval.

Property (i) of this Lemma will be used repeatedly to extend functions
and their properties from the open intervals S, | to J.

Proof. (i) For any p €J we have P(x,x,,y) = p for some x eAn,l,
X, €la,,a,[ and y € B,,, which implies p € S, . Because each S, | is an
open interval, (Sx’y)(x’y)G 4, ,xB, Isanopen covermg of J, which therefore
must be an open set.

(i) The continuity of P follows by a standard argument from the
facts that P is strictly monotonic and continuous in each of its variables.
(iii) Because P is continuous on the connected set A, ; X
la,,d [XB,, its range J = P(A,_, X la,,d,[XB,,) is also connected, that
is, J is an interval. By (i), J is an open set. Thus, J is an open interval. [
2.3. DerFINITION.  For any (x,y) in 4, ; X B, and p in S, there
exists a unique x, in Ja,, a,[ such that P(x, x,,y) = p. Denote this x, by
£(x,y; p). Accordingly, the equivalence

E(x,y;p) =x, © P(x,x,,y) = p (4)

defines a function ¢ for all (x,y) in 4, ; X B, and p in S, . This
function is continuous in all variables, strictly increasing in p and in y; for
1 <j < m, and strictly decreasing in x; for 1 <i <n — 1.

2.4. DEFINITION. We say that the function £ has a monomial represen-
tation if

n—1 m
f(x,y; p) = I_IXF""(”)I_IY,Q(’”C( P)7
[M] i=1 j=1

(X E14r1—17y EBm’ Y € Sx,y)

holds for some positive valued functions n, (1 <i <n — 1), g (1<j<m),
and C defined on the open interval J (cf. Lemma 2.2(iii)).
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2.5. Remark. In the case n =m =1, we have A, |, = A, = J and x
vanishes from [M]. We then simplify the notation, writing la, a'[=]a,, [
and b, b'[=1b,, b[, with a function ( p, y) = £(y; p) defined by

&(y;p) =x = P(x,y) =p, (5)

which specializes the equivalence (4). The function ¢ is defined for all y in
1b, b'[ and for all p in an open interval S, = P(la, a'l, y). Notice that, by
Lemma 2.2(i) (applied to the case n = m = 1), the collection (), <y y>
is an open covering of J = P(]a, d'[, 1b, b'[). Equation [M] becomes

[M1] £(yip) =y*7C(p), (yelb,b[.peS,)

with ¢, C > 0 and defined on J.

The results of this paper concern the pair of functions P and ¢ linked
by the equivalence (4) and with ¢ satisfying [M], with all the side condi-
tions holding. Another representation will also play a central role, which
constrains the function P.

2.6. DEFINITION. The function P has a difference representation if there
exist real valued functions u, g, and F, continuous and strictly increasing
in all their variables, such that

[D] P(x,x,y) = Flu(x,x) —g(y)],

for all (x,x,y) in A, , X la,,d [XB,. Thus, u and g are defined on
A,_, X la,,d[ and B, respectively.

n’ n

In the case where n = m = 1, [D] simplifies to

[D1] P(x,y) = Flu(x) —g(y)]

for all x €la, d[ and y €]b, b'[; or equivalently, cf. (5),

E(yip) =u'[g(y) + F ' (p)] =y*C(p), (6)

if [M1] holds. The following two results will be useful.

2.7. LEMMA. Let P have a difference representation. The domain D of F is
an open interval. The real valued functions u,, g,, and F, defined on
A, Xla,,dl, B,, and D, = {t € Rlt + t, € D}, respectively, where

ty=u(l,_4,1) —g(1,), (7)
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by the equations

uo(x, x) = u(x,x) —u(1, ,1), (8)
g(y) =8(y) —8(1,.), 9
Fy(t) = F(t+¢), (10)

are continuous and strictly increasing in all arguments. Moreover,

() D, contains 0 and is also an open interval,
(i)  P(x, x,y) = Foluy(x, x) — g,(y)]
forall x,x,y) € A,_, X la,,d [XB,;
Gi) u,1,_ 1) =gy1,) = 0.

When m = n = 1, we have as a consequence of (ii):

E(y;p) =ug'[go(y) + Fy'(p)]. (11)

Proof. We prove that D is an open interval by an argument similar to
that used in the proof for Lemma 2.2 for the open interval J. The function
(x, x,y) = [u(x, x) — g(y)] is strictly monotonic and continuous in all vari-
ables, and maps the connected subset 4,_; X la,, d,[XB,, of R"*™ onto
D. This function is necessarily continuous. Accordingly, D is connected,
thus an interval. This interval must be open because it is the union of all
the ranges of the functions x — u(x, x) — g(y) for all (x,y) € 4,_, X B,
all of which are open intervals.

Clearly, (i) and (ii) in the Lemma are satisfied by definition, and (iii) by
substitution. |

2.8. PROPOSITION.  The general solution for the functional equation

f(s+1) =r(s)w(r) +£(1), (12)

defined for all (s,t) in an open connected subset R of R? containing (0,0),
and where the three functions f, w, and r are real valued, f is continuous and
strictly increasing, while w is nonconstant, is given by

) f()=KA—-eY+M
() r(s) = $(1 — %)
Gii) w() = Le¥,
where L # 0, 6K < 0, but otherwise 8, K, L, and M are arbitrary constants.

2.9. Remark. Note that if r is strictly increasing then 6K/L < 0, and
thus L > O. Also, if f(0) = 0 is assumed, then M = 0.
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Proof of Proposition 2.8. We first note that if (12) is defined on R, then
r is defined on the open interval R, = {s|3¢, such that (s,7) € R}, w is
defined on the open interval R, = {¢t|3s, such that (s,z) € R}, and f is
defined on the union of R, and the open interval {s + tI(s, ) € R}.

Since 0 € R, we can set ¢ = 0 in (12), yielding

f(s) =r(s)w(0) +f(0). (13)

We cannot have w(0) = 0 because that would imply the constancy of f,
contrary to our hypothesis. We define L = w(0) # 0, and from (13) derive

1
r(s) = 7 [£(s) = FO)]. (14)
We also define
fo(r) =f(1) = £(0), (15)
wo(1) = %t) (16)

and get, from substituting (14), (15), and (16) into (12),

fos + 1) =Fo(s)we(1) + fo(1). (17)

Because R is open and contains (0, 0), there is a nonempty subset R’ of R
which is symmetric, that is, (s,¢) € R' implies (¢,s) € R'. Thus, for any
(s,t)in R

fo($)wo (1) + fo(2) = fo(t)wo(s) + fo(s)- (18)

Since w is nonconstant, so is w, and there exists some s, such that
wo(sy) # 1. Choosing s = s, in (18), we get

fo(1) = K[1 = wy(1)], (19)

where K = f,(s,)/(1 — wy(s,)) # 0 because f, and thus f,, are noncon-
stant. Note that, as f, is continuous, so is w,. Substituting (19) into (17),
we obtain after simplification

wo(s + 1) = wo(5)we(0). (20)

One can extend (20) from R’ to R? (see [2, pp. 74-82]) and get as
continuous nonconstant general solution

wo(t) =e®  (8+0,1). (21)
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From (16), we get (iii) in the conclusion of Proposition 2.8. Next, using
successively (19), (15) with M = f(0), and then (14), we obtain (i) and (ii)
(cf. also [1]). Finally, notice that L # 0 because w is nonconstant and
8K < 0 because f is strictly increasing. |

3. THE CASE n =m =1

The two representations [D1] and [M1] form a consistent system of
functional equations. In other words, there exist functions u, g, F, ¢, and
C which jointly satisfy [D1] and [M1]. While the forms of u, g, ¢, and C
are quite limited, the form of F turns out to be pretty much arbitrary. We
suppose here that the function ¢ of [M1] is nonconstant. The situation
where ¢ is constant is a special case of both Theorem 4.3 and Corollary
4.4.

3.1. THEOREM. Suppose that the functions P and ¢ are linked by the
equivalence (5), and that representations [D1] and [M1] jointly hold for P and
&, respectively, with a nonconstant function {. Then the general solution for
continuous strictly increasing functions u, g, and F, and positive functions {
and C with { nonconstant is given by

u(x) = llnln(i)y g(y) = llnln é !
8 x)’ 8 y] (22)

L(p) = geBF'l(p)’ C(p) = p-t EXp[ﬁF'l(p)][l"

where 60 > 0, a, Z;, 8, and vy are constants satisfying either a > a', b>b and
0<0<vy,or0<da=<a,0<b<bandé> 0 > vy, but otherwise arbitrary.
There are no additional constraints on the function F.

Actually, we shall prove the following result:

3.2. THEOREM. Suppose that the functions P and & are linked by the
equivalence (5). The three statements below are then equivalent.

(1) The function P satisfies [D1] for some continuous and strictly
increasing functions u, g, and F. Moreover, the function & satisfies [M1] for
some positive functions { and C defined on J, with { nonconstant.
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(i) The functions P satisfies [D1] for some functions u, g, and F, with
u and g specified as follows. There exist five constants 6 > 0, a, b, 8, and vy
satisfying either @ > a', b > b', and y > 0> 8 (Case [al]), or 0 <d < aq,
0<b<band v < 0 < & (Case [b1]), such that

= —11 1 —d ' 23
u(x) 5 nln B (23)
= —11 1 —B ’ 24
g(y) 5 nin y . (24)
Consequently, we have
P =F 11 1 a y— 11 | b ! 25
(x,y) 5nn| — 5nln ; (25)

with F strictly increasing and continuous, but otherwise arbitrary.
(iii) The function ¢ satisfies [M1]. More specifically, there exists four

constants 6 > 0, a, b, and_§ satisfying either a > d, b >, and 8 < 0 (Case
[al]D, or 0 <a <a,0 < b < b, and & > 0 (Case [bl)]), such that

£(p) = 02 (26)
C(p) = b 026G, (27)

where G is a strictly increasing continuous function on J. Consequently, [M1]
takes the form

g(y’ P) =yGexP[SG(P)]E—6 exp[8G(p)l 5 (28)

For the functions F in (i) and (ii) and G in (iii), we have G = F~'.

Note in passing that Eq. (28) can be written under the simpler form

b

g(y; P) (y )Bexp[SG(p)]
a = .

In the proof below, we follow the scheme: (i) = (i) = (i) = ().

Proof of Theorem 3.2. (i) = (ii). Condition [M1] implies that £(y; p) is
homogeneous of degree {( p) in y, that is, for any y in ]b, 5[ and A > 0
such that Ay €]b, b'[,

£(Ay; p) = (A)*PC(p) = A PE(y; p).
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Using [D1] and (6), (11) with u,, g, and F, as in Lemma 2.7, we obtain the
functional equation

uy'[8o(Ay) + Fy '(p)] = MPug [go(y) + Fy '(p)]. (29)

Taking logarithms on both sides and setting y = 1 yields, with g,(1) = 0
(cf. Lemma 2.7, Eq. (9))

In{ug ' [go(AN) + F5 '(p)]} = ¢(p)In A + Infug '[F'(p)]}. (30)
By writing
s=g(A), t=F'(p).
and
fo=Inou;', w=(¢°F,, r=Inog!, (31)
Eq. (30) becomes
fo(s + 1) =r(s)w(r) + £ (). (32)

From the assumptions of the Theorem and by Lemma 2.7 and (31), we
deduce that the three functions in (32) are continuous, and defined on an
open, connected subset of R X R containing the point (0, 0). Notice that
£4(0) = In[u; '(0)] = In1 = 0. Moreover, the function w(z) = {[F(¢)] takes
at least two distinct values. From Proposition 2.8 and Remark 2.9 (§K/L
< 0; f,(0) = 0 implies M = 0), we conclude that the only possible form
for the three functions in (32) are the following:

fo(t) = K(1 —€®) = In[ug '(s)] (33)
K

r(s) = z(1 —e®) =In[g;'(1)] (34)

w(t) = Le® = {[Fy(1)], (35)

where L, K, and & are constants that satisfy L > 0 and 6K < 0, but are
otherwise arbitrary, and the last equality in each line recalls the definitions
of f,, r and w in (31). From these three equations, we can easily derive the
forms of the functions u, g, and ¢, the latter in terms of the function F.
With Fy(t) = p we get from (35), using (10),

L
£(p) = Le0'(0) = [edF ' (m=t0) — _&Uear‘(m = gedF '),
e
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where (cf. (7))
0=L/e% =L /e8> (), (36)
Thus, for all p € J,
[(p) = 07, (37)

We now define the two constants

a=eX (38)
b =eX/t, (39)

Note that we must have
a¢la,d[and b &]b,b[. (40)

Indeed, with x = u; '(s) €la, @[, Eq. (33) yields In x = K[1 — ¢°“0™)], that
is

1
1— —Inx=e™ >0, (41)
K

yielding 1 > (1/K)In x. Thus, either @ = e® >x for all x €la,d[ (if
K> 0),s0 d >d, or by a similar argument @ < a (if K < 0). The argu-
ment is similar for g, and b, with L /K and (34) replacing 1/K and (33),
i.e. b €1b, b'[ must hold. In view of K < 0, two cases arise:

Case [al]: either d >da > 1and b > b > 1, thus K > 0 > §;
Case [bl]: or0<d<a<land0<b<b<1,thus K<0<S8.

From (41), we obtain by the definition of u, (see Eq. (8) in Lemma 2.7)
and by (38),

1/K

q 1/K ek 1 e du()
Inl — = In| — =1— —Inx = %™ = —T
x X K e

or equivalently, with

y=eV/K, (42)

we get

u(x) = élnln(g)y, (43)
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which proves (23). Notice that In(a/x)? is positive for all x €la, '[: either
Case [al] holds with @ > & >x and K,y > 0; or Case [bl] holds with
d <a <x and K,y < 0. Comparing Egs. (33) and (34), we see that g(x)
differs from u(x) only in that we replace 1/K and u(1) by L /K and g(1),
respectively. Noticing (cf. (36) and (42)) that

Led8M L o du)
K g g Y
we obtain
1l 1 b ! 44
= —=Inln|—| ,
8(y) = ginin| (44)

which is (24), with In(b /y)? always positive whether Case [al] holds with
b>b>yand K,y > 0, or Case [bl] holds with b < b <y and K,y < 0.
From [D1], (43) and (44), we get

1 (ay 1 (B

—Inln[{—| — =Inln|— (45)
0 b o y

which is (25), establishing the implication “(i) = (ii)”” of the theorem.

(i) = (iii). Solving (25) for x = &(y; p) with p = P(x,y) and G = F!
yields (after some manipulation in which the y’s cancel out):

P(x,y) =F

y )9 expldG(p)] B

x=§&(y;p) = (z
.
_ yeexp[SG(p)] B—HGXP[SG(”)]&', (46)

that is, (28) holds with ¢ and C specified by (26) and (27).

(iii) = (i). By hypothesis, the function ¢ satisfies [M1], where ¢ and C
are defined on J by (26) and (27), respectively, G is some real valued,
strictly increasing, continuous function, and with constants 6 > 0, a, b, and
8 satisfying either @ > a', b > b’, and 6 <0 (in Case [al]), or @ <a,
b < b, and & > 0 (in Case [b1]). The function ¢ satisfies thus (46). Solving
(46) for p = P(x,y) with F = G~! yields (45) for any constant y positive
in Case [al] and negative in Case [b1]. Equation (45) has the form [D1]
with continuous strictly increasing u and g defined on Jla, [ and ]b, b'],
and F strictly increasing and continuous. Thus, both [D1] and [M1] are
verified, the latter with positive ¢ and C, and ¢ nonconstant; that is,
statement (i) holds. This completes the proof of Theorem 3.2. |
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4. THE GENERAL CASE

4.1 THEOREM. Suppose that (P, £) is a pair of functions linked by the
equivalence (4). The following three conditions are then equivalent.

(1) The function P satisfies [D] for some functions u, g, and F strictly
increasing and continuous in all arguments. Moreover, & satisfies [M] for
some positive functions C, n; 1 <i<n-—1), and § (1 <j<m), all
defined on J, with at least one of the {; nonconstant.

(ii) The function P satisfies [D] with F strictly increasing and continu-
ous and with u, g specified by

1 A Y
u(x,x) = Elnln W (47)

llx

® = m| 2| (49)
g(y) = zInln| — .

) F[ L y]
for some constants «; >0 (1 <i<n—-1, 6,>0 (1 <j<m), v, 8, A,
and B, the latter four satisfying either Case [a] or Case [b] below:

n—1

m
(Case[a]) 6<0<vy, Ax=d,[la>1, B=>]][b",
i=1 j=1

n—1

(Case[b]) 6>0>7vy, 0<Ad<a,[]ax,
i=1

I/\

Accordingly, the function P takes the form

P F 11 1 A y 11 1 B 7 49
S e F s B e B B e
F-ll 1 A 11 1 B
—mmn| —m5™ — —Inin

xIT7) 8 Ty
_ ify>0, (49a)
1 9 e 1 |
F|l—=Inln —f) — —lnln(]—}yj)l
8 A 8 B
ify<0. (49b)
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(iii) The function & satisfies [M] for some positive functions C, m;, and
g;, all defined on J, with constant m; = «; (1 <i <n — 1), and nonconstant
{ (1 <j < m). Moreover, there exist constants ;> 0 (1 <j <m), 8 # 0,

A, B satisfying either Case [a] or Case [b] above, such that for all p € J
L(p) =0,exp[8G(p)], (1=<j=<m), (50)
C( p) = eXP[SG(p)]A (51)

where G is a strictly increasing and continuous (but otherwise arbitrary)
function on J. Consequently, [M] takes the form

exp[8G(p)]
| -

~n—l 1 m
E(x,yip) =4 l_[xi“'(—~ [y
i=1 B j-1

Notice that Theorem 3.2 is the particular case of Theorem 4.1 where
n=m=1, a=A and b = B"’ Because our proof is long, we first
summarize it.

We begin by establishing the implication “(i) = (iii),” and prove that,
when one of the § s in [M] is nonconstant, then they all must be
nonconstant and of the form specified by (50), with 6, >0, 6+ 0, and
G = F~'. We then prove (51). Finally, we show that all m;, must be
constant 1f one of the {;’s is nonconstant. (The case where all gi’s are
constant is treated in Theorern 4.2.) Equation (52) obtains. The represen-
tations (49) and (52) follow easily from each other, with G = F~! and vy
arbitrarily positive or negative in Case [a] or [b], respectively. We have thus
“@{) = (ii) < (i1).” It remains to establish “(i) and (iii) = (i),” which is
readily obtained by observing that (49) has the form [D], with u and g
defined by (47) and (48), and that (52) has the form [M], with the
constant, and the {; and C defined by (50) and (51), respectively.

In proving “(i) = (iii)” (the main difficulty), it will be convenient to
advance according to the following plan.

Outline of (i) = (iii)
Step 1.  We suppose that one of the exponent functions ¢; in [M], say

{, is nonconstant. Keeping xy,...,x, ; and y,,...,y, constant and using
Theorem 3.2, it follows that £,( p) = 6,e>" ' (») with constants 6, > 0 and
8, # 0 (which, however, may depend upon x,,...,x,_; and y,,...,y,)

and for all p in J.

Step 2. We show that, if two exponent functions {; are nonconstant,
then the constant §; must be the same in both cases. Thus if any exponent
function ¢ is nonconstant then we must have £(p) = 6,¢°" '(») for some

constants 6; > 0 and & # 0.
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Step 3. Using Theorem 3.2 again, we prove that, if one of the
exponent functions g’j is nonconstant, then the function C of [M] must
have the form

C(p) = BexeloF (] f

for some positive constants A and 1§~ with either: A>d, B=>b"
(1 <j<m),and 6 <0 (Case [a]); or 4 <a,, B< b]."r (1 <j<m), and
8 > 0 (Case [b)).

Step 4. We then consider the case where one of the functions ¢
would be nonconstant, while some other function ¢, would be constant,
and we show that a contradiction arises.

Step 5. We then turn to the exponent functions =,. We suppose that
one of these functions is nonconstant, and that one of the functions ¢; is
also nonconstant. We prove that this hypothesis leads to a contradiction.
Thus, all exponent functions n; must be constant.

Step 6. Equation (52) follows by substituting in [M] the functions =,
¢ and C by their expressions obtained in Steps 1-5.

4.2. CONVENTION. In the proof, we shall use the functions u,, g,, and F,
introduced in Lemma 2.7 but omit the subscript 0. The original functions u, g,
and F are restored near the end of the proof of Theorem 4.1.

Proof of Theorem 4.1. (i) = (ii).

Step 1. Suppose that {,(p) is nonconstant. Fix x, = (x,...,x,_1),
and y, = (y,,...,Y,,) arbitrarily. Then [M] reduces to

w(y; p) = (X, (¥,¥0); p) = yaPC*( p), (53)

where the first equality defines the function w and with
n—1 m

C*( p) — 1_[ xlfn,-(p) nyj{,(p)c( p).
i=1 j=2

Similarly, [D] reduces to

p(x,y) = P(xp, x,(¥,Yp))
= Flu(xq, x) —g(y,%)]
= H[v(x) = h(y)],

with obvious definitions of the functions v, 4, and with H an appropriate
restriction of the function F of statement (i). Note that the range of the
function H is an open interval. This interval, as well as the functions v, #,
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and H, may depend upon the values chosen for x and y. Accordingly, we
denote the range of H by I ,. Applying Theorem 3.2 to the pair of

functions (p, w), there exist 0,(x,y) > 0 and §,(x,y) # 0 such that

gl( p) = 01(X7 y)eal(x’y)cl,x,y(P)’

for some strictly increasing, continuous function G, , , defined for all p in
I ,. Note that G , | is the restriction of F ! to I ;. So we can write

£i(p) = 0,(x,y)e?™VG) forall x,y. (54)

By Convention 4.2 and Lemma 2.7, 0 is in the domain of F. If F(0) = p,,
then G( p,) = 0. Setting p = p, in (54) yields 6,(x,y) = {,( p,), a constant.
We denote that constant by 6,. We have now {,(p) = 6,e2®VG(») The
left hand side of the last equation is independent of x and y, so also the
right side; thus 6,(x,y) is constant. Denoting this constant by &, we get
(p) = 0,29 for all p in J with constant 6,, §,, and with G = F~ .
This argument can be used to prove that every nonconstant function ¢
has the form

§]( P) = GjeﬁjG(p),

where 6, > 0 and §; # 0 are constant.
Step 2. Suppose thus that ¢, and ¢, are nonconstant. This implies

G(p) = 0,77,
4(p) = 0,200,
with G = F~! and constant 6,0, > 0 and §,, 8, # 0, cf. Step 1. Putting

these ¢, ¢, into [M] with y, =y, =y and fixing x = (x;,...,x,_,) and
y=(ys,...,y,), we get for all y in Ja,, a\[N]a,, a)[

By(y) = £(x,(y,5,¥); p) =y52"C( p) (55)
with
§1,2( p) = 61eXp[61G( P)] + OzeXP[SzG( P)] (56)

and

n—1 m
C( p) = ll:—ll xi—n;(p)jl:lzyjs’f(p)c( p).
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But a functional form for the nonconstant function ¢, , of (55)-(56) can
also be obtained directly from Theorem 3.2, applied to the function u in
(55) and to the function p defined by

p(x.y) = H[o(x) = h(y)]
=P(x,(y,y,y)) = Flu(x,x) —g(y,y,y)]-
This yields
{i.(p) = 0, exp[81’2G( P)]

for all p in some open interval J' of J, where 6, , > 0 and §, , # 0 are
constant, by a similar argument as in Step 1. This gives

016510(9) + 02632(7(/0) =0, 26’31,2("“’) (57)

for all p in J. Equation (57) states that the functions e, e, and e°->°
are linearly dependent, which holds only if 8, , = §, = 5, = 8, where the
last equality defines the constant &. It shows also that 6, < 0 < §, is not
possible. This applies obviously to all s = G( p) and thus to all p in J. The
above argument can be used for any pair of subscripts , j for which ¢; and
. are nonconstant. So, §j = §, that is, (50) holds for any nonconstant &
in [M]; we have thus

G(p) = 0”7, (58)

From here on, to avoid lengthy formulas in our calculations, we occasion-
ally adopt the abbreviation

A(p) = 20, (59)

Step 3. We turn to the function C of [M]. If ¢, is nonconstant, we
have by Theorem 3.2, for some constants b, and A,

C(p) = by "4,

with either b, > b}, A > a,, and & < 0 (Case [a]), or b, < b,, A < a,, and
8 > 0 (Case [b)).

Again, the same argument can be used for any subscript j for which ¢;
is nonconstant. In particular, if both ¢; and ¢, are nonconstant, we would
thus have

C(p) = l;j—B,A(p)A~ - Ek—BkA(p)/f’
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leading to b/ = b%. Thus B = 13]-"/ is independent of the subscript. Since §
does not depend upon the subscript and can be positive or negative, we
have either 8 < 0 and B > bjf(’f, B>bl or8>0and B<b’, B<bl,a
dichotomy which generalizes to all subscripts 1 < j < m (see Cases [a] and
[b] below). We obtain, using (59)

C(p) = BexloF (I, (60)

The two possibilities
(Case[a]) 6<0, A=>a,, and B>b"(1<j<m) (61)
(Case [b]) 6>0, A<d,, and B<b"(1<j<m) (62)

will be elaborated later in this proof.

Step 4. We now consider the case where one of the functions ¢; in
[M], say {,, would vary with p, while another, say ¢,, would remain
constant: ,(p) = 0, > 0 for all p. Setting x;, = =+ =x,_; =y; = =+ =
¥, = 1 in [M], we obtain by (58) and (60)

g[ln—l’(y17y2>1m—2); P] =y1§‘(”)y§2C( p)

— P3G (p)ly, 02 Fexpl3G(p f —

Solving for G(p) =F '(p) =u,_,,x) —g(y,,y,,1,,_,) (cf. [D] and
(4)) leads to

1
u(x) —k(yi,y,) = Eln (63)

Iny$>+1InA—1Inx
In B —In y¥ ’

where

u(x) =u(l,_,x), k(y1,¥2) =8y, ¥2,1,-2)-

Thus u, is strictly increasing, k is strictly increasing in both variables, and
u,(1) = 0 by Lemma 2.7(iii) and Convention 4.2. This leads to a contradic-
tion because, on the right hand side of (63), x and (y,, y,) cannot be
additively separated. To show this, we put x = 1 in (63) and get

Inyf+InA

1
—k(y,y,) = gln

In B — In y”
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Substituting this —k(y,, y,) in (63) yields

Inyf>+1nA

1
u(x) + <In

0 0

1 (lnyfzﬂ—ln/f—lnx)
= —In ,

InB —In y¥ In B — In y¥

or equivalently,

1l . In x
ul(x)—an _lny§’2+lnA~’

an equation whose right side varies with both x and y, (because 6, # 0),
while the left side varies with x, an absurdity. We conclude that if, as
hypothesized in statement (i), one of the exponent functions g; 1s noncon-
stant, then none of them is constant. Moreover, there are constants 6, >0
(1 <j<m), 8, A, and B, with the latter three satisfying either (61) (Case
[a]) or (62) (Case [b]) such that G = F~!

G(p) = 0,exp[ 5G( p)] (64)
C(p) = B expldG(n 4 (65)

We still have to show that all exponent functions n;, 1 <i <n — 1 are
constant if one of the {; is nonconstant. We proceed by contradiction and
suppose that 7, (for example) varies with p. Since, as we have just seen, all
¢;’s are nonconstant if one of them is, we may as well consider ¢,,.

Step 5. Suppose by contradiction that 7, and ¢,, are nonconstant. In
[M],set x, = ==+ =x,_; =y, = - =y, _,; = 1. By the argument in Step
4, using (64) with j = 1 and (65), we obtain

X, = f(xp 1;1727 (lmfl’ ym); P)
= x;m(p)y’f"imA(p)é*A(p)A‘ (66)

Solving this equation for x; yields

X1 = K(xn’ym; p)

p— - 1/m(p)
:yerA(p)/m(p)B A(p)/m(p)(A/xn) ! , (67)

in which the second equality defines the function «.

Case 1. Suppose first that ¢( p) = 6,,A(p)/n,( p) is nonconstant in p.
This will lead to a contradiction. Indeed, notice that, for a fixed x,, x has
the form [M1]. Fixing temporarily x,, we apply Theorem 3.2 to « and the
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appropriate special case of [D] to get, with £, @ and b as in Theorem 3.2,

6 A
’"—(p) ={(p) = 0’(xn)exp[8’(xn)G( p)] (68)
m( P)

1/771( P) _

B2/ A/x,) 0/ Cexpl8'(x,)G ()] (69)

for some “constants” 6'(x,) >0 and &'(x,) # 0, which may a priori
depend upon x,. (Thus, the left hand side of (69) plays the role of C( p) in
Theorem 3.2, cf. Eq. (27).) By Lemma 2.7(i) (cf. Convention 4.2), 0 is in the
domain of F, say F(0) = p,, that is G( p,) = 0 (cf. Step 1). Setting p = p,
in (68) yields {(p) = 6'(x,). Thus, 6’ does not depend upon the value of
x,, and because expl[8'(x,)G(p)] = {(p)/6'(x,) does not depend on x,,
neither does 8'. We obtain thus from (68) and (59)

[7)
m(p) = orexpl(8 = )G ( p)] (70)
with
5+ 6 (71)

because by hypothesis 1, is nonconstant with p. Raising both sides of (69)
to the power of 7,( p) and using (70), we can thus, after some manipula-
tion, rewrite this equation as

b PGP /) Bl 30G ()] = BewlG(I( ] /. )
n)-

Taking logarithms on both sides and rearranging yields
- - 0 , ~
e®P(in B — 6, Inb) + ?njec(”)(‘s’ﬁ)ln i=1In(A/x,).

Thus, the exponential functions e®(?), el¢(PXo=31 and ¢° are linearly
dependent. By an argument already used earlier (in Step 2), this can
happen only if § = 8’ = 0, contradicting (71).

Case 2. Thus, if n(p) is nonconstant with p, then ¢(p) =
0, A(p)/7m( p) must be constant, that is, we must have

”’71( P) = BIA( P)

for some positive constant ;. This too will lead to a contradiction.
Substituting into (66) yields

xn = g((xl’ln—2)7(1m—l’ym); p)

= xl—ﬁlA(p)yrfjlmA(p)g—A(p)A_ (72)
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Grouping factors, and solving for G(p) = (1/8)In A(p) (cf. Eq. (59)
gives, in view of [D],

ln(xn//f)
ln(xfﬁly,flmé’l)

1
G(p) = 5In =W (x,%,) ~ K (3,)  (T3)

with
W*()C],)Cn) =u(x171n—2’xn)7 and k*(yl) =g(1m—1’ym)'

It is easy to verify that the functional equation in the last equality of (73)
cannot be solved for the functions w* and k*. The argument is similar to
that used in the case of Eq. (63). We have k*(1) = 0 (by Lemma 2.7(iii)
and Convention 4.2). With y, = 1, (73) gives

1 ln(xn//f)
% - —lp—"" 7
w*(xy,x,) 61n ln(xl‘ﬁlé_l) .

Substituting into (73), we get

1 ln(xn//f) 1 ln(xn/ff)

5 = = _ Lk
Slnln(xl—ﬁlylelé—l) Slnln(xl_ﬁlé_l) k (yl)’

leading, after simplification, to

ln(xl‘ﬁlé_l)
ln(xfﬁlyflé’l)

2

)

1
k*(y1) = —ln(

with the left side varying only with y, while the right side varies with y,
and x,. Again, we obtain a contradiction.

Thus, both ¢ nonconstant and ¢ constant lead to contradiction. So, 7,
and ¢, cannot be both nonconstant, and neither can 7, and ¢, for any
choice of the subscript i be simultaneously nonconstant.

Step 6. Thus, under the hypotheses of statement (i), all the n,’s are
necessarily constant, n, = o, (1 <i <n — 1), all the g (1 <j <m) take
the form (64), and the function C takes the form (65). This means that [M]
can be specified as (52):

)exp[SG( p)l

_nfl 1 m
£(x,y;p) =4 l_Ix,-“"’(—— [Ty (74)
i=1 B j-1
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Setting x, = £(x,y; p), we can rewrite (74) as

In A — In(x, T2 x )
In B — In(IT/ ,y/)

= exp[8G( p)]. (75)

Since the right hand side is positive, the numerator and the denominator
in the left hand side must have the same sign for all values of the variables.

Suppose that 6 < 0. We show that both the numerator and the denomi-
nator in (75) are then necessarily positive and we must have

n—1 m
A>d,[T1d* and B> []b", (76)

i=1 j=1

that is, all the conditions of Case [a] in statement (iii) of the Theorem
must hold. (The constant vy is irrelevant in statement (iii).) Indeed, if
8 < 0, then by (61) A > d, and B>b’97 for 1 <j <m. Fix x; =1 for
1 <i <n — 1. The numerator in (75) is then positive for all values of
x, €la,,a,[. This implies that the denominator of (75) is also positive for
all values of y;, 1 <j < m, establishing the second inequality in (76). The
first inequality in (76) follows from the fact that the numerator and the
denominator in (75) must have the same sign.

A similar argument is used to show that if &> 0, then both the
numerator and the denominator in (75) must be negative and we must
have

n—1 m
0<A<d,[Ta" and 0<B < []b", (77)
i=1 j=1
that is, Case [b] in statement (iii) of the Theorem hold.

Thus, (i) = (iii) is proved.

(iii) < ().

Solving (49) with respect to x = £(x,y; p) yields (52), which is of the
form [M] with constant n;, = a; > 0 (1 <i <n — 1) and C, §; 1<j<m)
given by (51), (50). This proves (i) = (iii).

We have seen in Step 6 of (i) = (iii) that Eq. (52) readily leads to (75). If
Case [a] of (iii) is satisfied (& < 0), we take logarithms on both sides of (74)
and solve for p = P(x, x,,y). This yields

A 11 | B (78)
| — I\ —/—— ,
l—ln 1 a; S _;n:lngj

which is (49a), and we have u and g given by (47) and (48) but with y = 1.

P(x,x,y) = F

—Inln
)
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At this point, we recall that by Convention 4.2, the functions u, g, and F
appearing in our proof had an implicit subscript 0. Reestablishing the
subscript, we see that, instead of (78), we actually got

1 B
P(x,x,y) = F)| =Inln| ————| — =Inln
(X X y) 0 P l_[? 11 la ) $ l_[m 1y]
with (see Lemma 2.7) Fy(¢) = F(t + t,). We can write
1l 0 79
th= ——
0 5 n (79)
for some positive 6, and with the notation
0 =600,>0(1<j<m), B* = 0B, (80)
we obtain
P( )=F 1l 1 A 11 | B (81)
x,x,y) =F|<-Inln| ———| — <Inln| ——= | |
o 1—1 1x ! 1) j=1yj9]

This gives a pair u, g as in (47) and (48) but again with y = 1. The general
forms of u and g in [D] follow by noting that, given F, the functions u and
g are clearly determined up to a common additive constant. We can write
this constant as (1/8)Iny (y > 0). So we obtain (47) and (48) as asserted.
Thus 8 < 0 < y and Case [a] of the statement (ii) holds. Case [b] of (iii) is
dealt with similarly, and we get statement (ii) with y < 0 < 8. We con-
clude that (iii) = (ii).

We have to reinstall the implicit subscript 0 also in (74) and get, in view
of (10) and (79), F;'(p) = F'(p) —t, = G(p) + (1/8)In 6 and, using
also (80),

n—1

. 1 m
£(x,y;p) =4 l_[xi“"(—~ [Ty
i=1 B j-i

)exp[SG(p)+ln 0]

>

m ) exp[§G(p)]

that is, removing the stars from B* and (9]-*, we obtain again (52). It is of
the form [M] and determines 7,(p) = «; (1 <i <n — 1) and C(p), {(p)
(1 <j < m) uniquely as (51) and (50) (with G, not G, in the exponent).
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(ii) and (iii)) = (). Examining (49) and (52), we see that [D] and [M]
jointly hold for the functions P and &, with u and g defined by (47) and
(48), respectively, F arbitrarily continuous and strictly increasing, 1, = «;
constant (1 <i<n — 1), {; (1 <j <m), and C defined by (50) and (51)
respectively, establishing (i). This concludes the proof of Theorem 4.1. |

We turn to the case of constant functions g

4.3. THEOREM. Suppose that [M] holds with & strictly increasing in p and
y; (I <j < m), strictly decreasingin x; (1 < i <n — 1), and continuous in all
variables. Then the following two conditions are equivalent.

(i) At least one of the {; is constant. Moreover, the function P linked
to & by Eq. (4) satisfies representation [D] for some functions u, g, and F
strictly increasing and continuous in all variables.

(i) All m, and {; are constant: n(p) = o, A <i<n—1), {(p) = B;
1<j<m).

If either of these conditions holds, the function C in [M] is continuous and
strictly increasing, thus has a continuous and strictly increasing inverse H =
C™', and we have

x, T8 L ) (82)

P(X, xnay) = ( n;ﬂj]y/gj

In particular, if in [M1], £( p) = B, a constant, then P(x, y) = G(x/y?)
(cf. Falmagne, 1985, p. 203).

Proof. (i) = (ii). Suppose, for example, that in [M] ¢, = 6,, constant.
Thus, all the other functions ¢; (1 <j < m) must also be constant (Theo-
rem 4.1, (i) = (iii)). For contradiction suppose also that 7, is nonconstant.
Setting x, = -+ =x, = = =1 simplifies [M] to x,
E(xy,1,.,),,,_ 1,ym) p) Omx ] ’“(”)C( p) Solving for x, yields

X :xrjl/m(p)y’flm/m(p)c( p)l/m(p)
= x, Oy OC (p) = £(xs Vs P)

with obvious definitions of x|, £/, C', and £. Similarly, [D] simplifies to

ﬁ(x],xn,ym) :P[(xlalnfz’Xn)’(IM*l’ym)]
:F[u(xlﬂln—Z’xn) _g(lm—l’ym)]
= Fla(x,,y.) = &(y)]
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with obvious definitions of #, &, and P. Note that the pair of functions
(P, £) satisfies [D] and [M], with nonconstant £/ . Applying the 1mphcat10n
(1) = (iii) of Theorem 4.1, we obtain that the exponent function 7} should
be constant. From this contradiction, we conclude that (i) = (i).

(ii) = (). Since the functions m, and {; in [M] are constant (equal to «,
and B;, respectively), and & is strictly increasing and continuous in p, the
function C must be strictly increasing and continuous. Thus, C has a
continuous and strictly increasing inverse H = C~!. Solving [M] for C(p)
with ¢(x,y; p) = x, and applying H to both sides yields Eq. (82). Repre-
sentation [D] follows by rewriting (82) in the form

P(x,x,,y) = (Hoexp)[ln(xn’i:[ x,-”‘f) - ln( ﬁyjﬁ/”’

with u(x, x,) = In(x,IT/Z'x/), g(y) = In(TT/_,y/) and F = Hoexp. |

4.4. COROLLARY. Suppose that (P, £) is a pair of functions linked by the
equivalence (4) with all the side conditions holding. If [D] and [M] jointly
hold for P and ¢ respectively, then all the functions n; in [M] are necessarily
constant.

This follows immediately from Theorems 4.1 and 4.3.

5. EXAMPLES

5.1. A model satisfying the conditions of Theorem 4.1
Take

>

_ 1 (p/A—p)°
X3 =&((x1,%2),(¥1,¥2); p) =Ax1“1x2“2(§yf'ygz)

with «,, a,, 6,, 6, positive and & negative. Solving for p yields

p= P(xl,x2,x37y1’y2)

1 InA- ln(xllx22x3)ﬂ1

——In

1+ =
TS B - In(y{yg2)

= F|—In =

8  InB - In(y}'y$?)

1

= F|—Inln
1)

(1 Ind- In( x{1x52x5) }

B
i vy

of the form [D] with F(s) = (1 + ¢~*)~!, the logistic function.

A

@) an
X' Xp%X3

1
— —Inln
8
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5.2. A model failing [ D] but satisfying [ M ]
Take

Vi = w((x1, %2), (92, ¥3); p) = 610/ gy o/ Qo) Bl e/ 00,

As we see, u is of the form [M]. Solving for p yields

1 lﬂ(B)sz_oz)
p = le,xz;yl,)’z’h = H(EIHM ’

where H is the logistic function H(s) = (1 + e*)" 1.

The difference representation [D] cannot hold for this model; that is, we
cannot have F, v, and & continuous and strictly increasing in all arguments
such that

1 In(By,x;")
(Elnm —FloGn) —h(rex)]. (89

Indeed, since F is strictly increasing, we have
Flo(y1,y2) = h(xp, x2)] 2 Flo(y1, ¥5) = h(x1,x,)]
< 0(y1,52) = 0(¥1,¥2)-
Assuming (83) would lead to
In( By, x; 2) In( By} x; 2) ln(Bylx’_ez) ln(By’]x’Q_ 92)
—a 9 = 1~y 0 ind —a 10 = - a 104\ °
In(y; 2Axir) — In(yy “Ax{")  In(y;“2A4x") — In(yy “Ax")

The above equivalence is of the form

s+t s+t s+t s+t
> < > ,
w+m w+m w+ m w +m

which is an absurdity. (Take for instance s = 1, w = 2, s’ = 30, w' = 40,
t=m =10, ' = m' = 1. The left side of the above “equivalence” gives

11 4 : : 2 31
> %, and the right side 5 < 7.
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