JOURNAL OF ALGEBRA 203, 470—490 (1998)
ARTICLE NO. JA977328

Tame Quasi-tilted Algebras

Andrzej Skowronski*

Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina
12 / 18, 87-100 Torun, Poland

metadata, citation and similar papers at core.ac.uk

Received May 5, 1997

INTRODUCTION

Throughout the paper K denotes a fixed algebraically closed field. By an
algebra we mean a finite dimensional K-algebra (associative, with an
identity) and by a module a finite dimensional right module.

Tilting theory, initiated by Brenner and Butler [6] and Happel and
Ringel [11], as a generalization of the Coxeter functors of Bernstein,
Gelfand, and Ponomarev [3] and Auslander, Platzeck, and Reiten [1], has
left traces everywhere in recent representation theory of algebras. A
prominent role in this theory is played by the tilted algebras. Following [4,
11] an algebra A is called a tilted algebra if 4 = End,(T), where H is a
hereditary algebra and T is a tilting H-module (Ext},(T,T) = 0and T is a
direct sum of n = rank of K,(H) pairwise non-isomorphic indecompos-
able modules). Presently, an extensive representation theory of tilted
algebras is developed. In particular, the structure of all connected compo-
nents of the Auslander—Reiten quivers of tilted algebras is known (see [13,
14, 18, 23-25, 33]). In the tame case, a detailed structure of the category of
modules over tilted algebras is also known [13, 23]. An important theoreti-
cal development of tilting theory was the connection with the derived
categories established by Happel [9]. Motivated by this connection, Hap-
pel, Reiten, and Smalg introduced in [10] a generalization of tilted alge-
bras, called quasi-tilted algebras. It is the class of algebras of the form
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A = End(T), where T is a tilting object in a hereditary abelian K-cate-
gory #. It was shown in [10] that an algebra A is quasi-tilted if and only if
A is of global dimension at most two and each indecomposable 4-module
has projective dimension at most one or injective dimension at most one.
Besides the tilted algebras, important classes of quasi-tilted algebras are
provided by all tubular algebras and canonical algebras introduced in [23],
and their relatives concealed-canonical algebras and almost concealed-
canonical algebras investigated in [16, 19]. Recently, Lenzing and the
author investigated in [17] a more general class of algebras, called quasi-
tilted algebras of canonical type. Following [17] an algebra A is called
quasi-tilted of canonical type provided A = End,(T) for a tilting object T
in a hereditary abelian K-category /# whose derived category D°(#) (of
bounded complexes over /%) is equivalent, as a triangulated category, to the
derived category D” (mod A) of modules over a canonical algebra A. It is
shown in [17] that an algebra A is quasi-tilted of canonical type if and only
if A is a semiregular branch enlargement of a concealed canonical
algebra. This determines the ring structure of such algebras. Moreover, in
[17] (see also [19]) a rather complete account on the structure of the
module category of quasi-tilted algebras of canonical type is given.

One of the interesting open problems in the representation theory of
algebras is to decide whether every quasi-tilted algebra is tilted or of
canonical type. We note that all representation-finite quasi-tilted algebras
are tilted [10]. In general, the main known features concern the existence
of a preprojective (respectively, preinjective) component [7] and the
semiregularity of Auslander—Reiten components if the algebra is quasi-
tilted but not tilted [8].

The main aim of this paper is to prove several characterizations of
guasi-tilted algebras which are of tame representation-type, that is, for
which the indecomposable modules occur, in each dimension 4, in a finite
number of discrete and a finite number of one-parameter families. We
characterize this class of algebras by the ring structure, weak non-negativ-
ity of the Euler quadratic form, the shape of the connected components of
the Auslander—Reiten quiver, and their behaviour in the module category.
In particular, we prove that every tame quasi-tilted algebra is either tilted
or of canonical type.

The paper is organized as follows. In Section 1 we present our main
results and recall the related background. Section 2 contains some known
results on quasi-tilted algebras. In Section 3 we prove some new technical
facts applied in the proof of our main result. The final Section 4 contains
the proof of the main result of the paper.

The results of this paper were presented during the Conferences in
Oberwolfach (1995), Marseille-Luminy (1996), and Geiranger (1996).
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1. THE MAIN RESULTS AND THE RELATED
BACKGROUND

Throughout this paper K will denote a fixed algebraically closed field.
By an algebra is meant an associative finite dimensional K-algebra with an
identity, which we shall assume (without loss of generality) to be basic. For
such an algebra A, there exists an isomorphism 4 = KQ /I, where KQ is
the path algebra of the Gabriel quiver Q=Q, of 4 and I is an
admissible ideal in KQ. Equivalently, A = KQ /I may be considered as a
K-category whose object class is the set O, of vertices of Q, and the set of
morphisms A(x, y) from x to y is the quotient of the K-space KQ(x, y),
formed by the linear combinations of paths in QO from x to y, by the
subspace I(x,y) = KQ(x,y) N I. An algebra A with Q, having no ori-
ented cycle is said to be triangular. A full subcategory C of A is said to be
convex if any path in O, with source and target in Q. lies entirely in Q.

For an algebra A, we denote by mod A the category of finitely gener-
ated right A-modules and by ind A4 its full subcategory consisting of
indecomposable modules. By an 4-module is meant an object of mod A.
For an A-module X, we denote by dimX the dimension-vector of X,
being the image of X in the Grothendieck group K,(A4) = Z", n = |Q,l, of
A. We denote by D the standard duality Hom (—, K): mod A — mod A,
where A denotes the opposite algebra of 4. Moreover, we denote by T,
the Auslander—Reiten quiver of A, and by 7, and 7, the Auslander—Re-
iten translations D Tr and Tr D, respectively. We shall not distinguish
between an object of ind A and the vertex of I', corresponding to it. A
component # of I', is said to be standard if the full subcategory of ind A4
formed by the modules from # is equivalent to the mesh-category K(%) of
% [23]. Examples of standard components are provided by preprojective
components, preinjective components, connecting components of tilted
algebras, and tubular families of canonical algebras [23]. Further, we
denote by rad (mod A) the Jacobson radical of mod A and by rad”
(mod A) the intersection of all finite powers rad’ (mod A4), i > 1, of rad
(mod A). The component quiver 3, of A [27] is a quiver whose vertices
are the connected components of I',, and two components € and & are
connected in 3, by an arrow & —» 9 if rad*(X,Y) # 0 for some modules
XinZandY in 9. If X, is directed then A is said to be component-di-
rected. Recall also that a component & of I', is called standard if the full
subcategory of mod A formed by the modules from # is equivalent to the
mesh-category K(%) of # [23].

Let K[x] be the polynomial algebra in one variable. Then A is said to
be tame if, for any dimension d, there exists a finite number of K[x] — A4-
bimodules M,, 1 <i < n,, which are free of finite rank as left K[x]-mod-
ules and all but finitely many isomorphism classes of indecomposable
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A-modules of dimension d are of the form K[x]/(x — A) &, M; for
some A € K and some i. Let w,(d) be the least number of K[x] — A-
bimodules satisfying the above condition for d. Then A is said to be of
linear growth (respectively, domestic) if there exists a positive integer m
such that wu(d) < md (respectively, u,(d) < m). Examples of domestic
algebras are provided by the tilted algebras of Euclidean type. The tubular
algebras (in the sense of [23]) are non-domestic of linear growth (see [26,
3.6)D.

Assume that A = KQ/I is an algebra of finite global dimension. Then
the Euler characteristic x, of A is the integral quadratic form on K,(A4)
such that

xa(dimX) = i (—1)'dim, Ext,(X, X)

for any A-module X (see [23, (2.4)]). We say that y, is weakly non-nega-
tive if x,(x) = 0 for any vector x in K,(A) with non-negative coordinates.
If A is triangular and gl.dim A < 2, then x, coincides with the Tits form
q, of A, defined in general for x = (x,);c o, € Ko(A) as

gu(x) = L xt— X XX + )y TijXiXjs

i€0Qq (i-j)e0, 1, J€Q0

where Q, and Q, are the sets of vertices and arrows of Q, respectively,
and r;; is the cardinality of L N I(i, j), for a minimal set of generators
L c U, e IG, ) of the ideal I (see [5D. It is well known that if 4 is
triangular and tame then ¢, is weakly non-negative (see [20)).

Let C be a tame concealed algebra, that is, an algebra of the form
End,(T), where T is a preprojective tilting module over a hereditary
algebra H of Euclidean type. Then I'. consists of a preprojective compo-
nent &, a preinjective component &, and a family 9 = (Z)Aepl(,() of
stable tubes separating 2 from & [23, (4.3)]. By a semiregular branch
enlargement of C we mean an algebra of the form

F M 0
A=|0 ¢ D(N)|
0 0 B

where

AT= [g Aé[} (respectively, A= [g D(BN)”

is a tubular extension (respectively, tubular coextension) of C in the sense
of [23, (4.7)], and no tube in 9 admits both a direct summand of M and a
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direct summand of N. It is known that such an algebra A is quasi-tilted.
Moreover, A is tame if and only if both A* and A~ are tame (see [23]), or
equivalently, are tubular algebras or tilted algebras of Euclidean type.
Further, if A is tame, then A is of linear growth and every component of
T, is standard. Finally, A is domestic if and only if both A* and A~ are
tilted algebras of Euclidean type.

We may state now the main result of the paper.

THEOREM A. Let A be a connected quasi-tilted algebra. The following
conditions are equivalent:
() A is tame.
(i) A is of linear growth.
(iii) A is tame tilted or a tame semiregular branch enlargement of a
tame concealed algebra.
(iv) x4 is weakly non-negative.
(v) dimg ExtY(X, X) < dimy End ,(X) for any module X in ind A.
(vi)  Every component of T, is standard.
(vii) A is componeni-directed.
Observe that each of the conditions (iii) or (iv) is rather easy to check.
As a direct consequence of the above theorem and [15, (1.5); 26, (3.6); 29,

(2.8)] we get the following characterization of domestic quasi-tilted alge-
bras.

COROLLARY B. Let A be a quasi-tilted algebra. The following conditions
are equivalent:

(i) A is domestic.

(i) A is tame and does not contain a convex subcategory which is
tubular.

(i) N ;. (rad“(mod A))' = 0.
(iv) (rad”(mod A))* = 0.
The following fact follows from Theorem A and [23, (4.9) and (5.2)].

COROLLARY C. Let A be a tame (respectively, domestic) quasi-tilted
algebra. Then all but a finite number of connected components in I, are stable
tubes (respectively, stable tubes of rank one).

It would be interesting to know whether, for a quasi-tilted algebra, the
converse implications are also true.

Recall that two algebras A and T" are called triangle equivalent if their
derived categories D’(mod A) and D’(mod I') are equivalent as triangu-
lated categories (see [9]). We get the following consequence of Theorem A
and [9; 17, (3.4)].
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COROLLARY D. Let A be a connected tame quasi-tilted algebra. Then A is
triangle-equivalent to a hereditary algebra or a canonical algebra.

For basic background on the representation theory applied here we
refer to [2, 10, 23, 271].

We end this section with an example of a tame quasi-tilted algebra
which is neither tilted nor tubular. Let A be the algebra KQ /I where Q is
the quiver

1, 611
\344&5/2
2/B l \7<—12
8<% 9
l“’
10

and [ is the ideal in KQ generated by the paths ov, we, £60yB, and
npoya. Observe that the convex subcategory C of A given by the vertices
1,2,3,4,5,6,7 is a tame hereditary algebra of type Dg, and hence of
tubular type (2,2,4). Denote by A~ the convex subcategory of A given by
the vertices 1,2,3,4,5,6,7,8,9,10, and by A" the convex subcategory A
given by the vertices 1,2,3,4,5,6,7,11,12. Then A~ is a tubular coexten-
sion of C of tubular type (2, 2,7), and hence a representation-infinite tilted
algebra of type Dy having a complete slice in its preprojective component.
On the other hand, A™ is a tubular extension of C of tubular type (2,4, 4),
and hence a tubular algebra. Moreover, the tubular coextension A~ is
obtained from C by using one simple regular module in the unique tube of
I of rank 4 and rooting a branch of length 3 (given by the vertices 8,9, 10)
in the coextension vertex 8, whereas the tubular extension A™ of C is
obtained from C by two one-point extensions, with the extension vertices
11 and 12, using two simple regular modules lying in one of tubes of rank 2
in T.. Therefore, A is a tame semiregular branch enlargement of (wild)
canonical type (2,4, 7), and in particular neither tilted nor tubular (see [17,
Sect. 4]). The Auslander—Reiten quiver T, of A is of the form

ﬂovy‘ov( V z)vzvg;,
qeQ*

where Q¥ is the set of all positive rational numbers and

e P, is a preprojective component of Euclidean type ﬁg containing
the projective modules corresponding to the vertices 1,2,...,9, 10;
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e 7, is a P,(K)-family of semiregular tubes formed by one coray tube
with 7 corays and 3 injective modules (corresponding to the vertices
8,9, 10), one ray tube with 4 rays and two projective modules (correspond-
ing to the vertices 11,12), one stable tube of rank 2, and the remaining
tubes being stable tubes of rank 1;

* For each g € @, 7, is a P,(K)-family of stable tubes of tubular
type (2,4,4);

e 7, is a P,(K)-family of coray tubes formed by a coray tube with 4
corays and containing the injective module given by the vertex 1, a coray
tube with 4 corays and containing the injective module given by the vertex
2, one stable tube of rank 2, and the remaining tubes being stable tubes of
rank 1;

e &, is the preinjective component of type EG containing the injective
modules given by the vertices 3, 4, 5, 6, 7, 11, and 12 (forming a tame
hereditary algebra of type [Eg).

2. KNOWN FACTS ON QUASI-TILTED ALGEBRAS

In this section we shall collect some known facts on quasi-tilted alge-
bras, applied in our proofs.

Let A be an algebra. A path in mod A is a sequence of non-zero
non-isomorphisms

f1

[
X=X,»X,—»> - 2X =Y,

where ¢ > 1 and all X; belong to ind A. In this case we write X < Y and
say that X is a predecessor of Y and that Y is a successor of X in mod A.
A module M in mod A is said to be directing [12] provided there do not
exist indecomposable direct summands M,, M, of M and an indecompos-
able non-projective A-module W such that M, < 7,W and W < M,. For a
A-module M, we denote by pd, M (respectively, id, M) the projective
dimension (respectively, the injective dimension) of M. Following [10] we
denote by 4, the full subcategory of ind A consisting of all modules such
that pd, Y < 1 for any predecessor Y of X. Dually, we denote by %, the
full subcategory of ind A consisting of all modules X such that id, Y <1
for any successor Y of X. The one-point extension algebra A[M] of A by
a A-module M is by definition the algebra
K M
A[M] = [0 M ]
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If I' = A[M] then the category mod I' is equivalent to the category of
triples (7, X, ¢) where V' is a finite dimensional K-vector space, X is a
A-module, and ¢: V — Hom (M, X) is a K-linear map (see [23, (2.5)].

Assume now that A is a quasi-tilted algebra and ¥ =%, # =.%,. Then
the following facts hold:

(2.1) There is a trisection
iNndA = (A\Z) V(ZLNZ)V (Z\Y)
such that
Hom ,(ZNZ#Z, X\Z%) =0, Hom (Z\¥,ZNZ%) =0, and
Hom ,(#Z\%, Z\Z%) = 0.

Moreover, .# (respectively, %) contains all indecomposable projective
(respectively, injective) A-modules [10, I1, (1.13) and (1.14)].

(2.2) T, admits a preprojective (respectively, preinjective) compo-
nent [7].

(2.3) If A is not tilted then every component of T is semiregular,

that is, does not contain simultaneously a projective module and an
injective module [8, Corollary E].

(2.4) If a component ¢ of T, contains an oriented cycle then # is
a ray or coray tube [8, Theorem Al

(2.5) Assume that A is not tilted and ¥ a component of T,. If #
contains a projective module, then # is contained in Z\ <% [8, Theorem
Cl.

(2.6) A is triangular [10, 111, (1.1)].

(2.7) If A is representation-finite, then A is tilted, and hence T}, is
directed [10, 11, (3.6)].

(2.8) If # contains a projective module then A is tilted [10, II,
(3.4)].

(2.9) Every full subcategory of A is quasi-tilted [10, 1, (1.15)].

(2.10) If T is a tilting A-module in add(%) then End,(T) is quasi-
tilted [10, 11, (2.4)].

(2.11) If A[M]is quasi-tilted then each indecomposable direct sum-
mand of M is contained in . [10, 111, (2.4)].

(2.12) Let M, and M, be non-zero A-modules such that A[M, &
M,] is quasi-tilted. Then each indecomposable direct summand of M, is
contained in &% or M, is projective [7, (2.1)].

(2.13) Assume A is tame concealed and M is an indecomposable
regular A-module. Then A[M] is quasi-tilted if and only if M is simple
regular [10, 111, (3.9)].
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3. NEW FACTS ON QUASI-TILTED ALGEBRAS
We shall prove here several new facts on quasi-tilted algebras playing an
important role in our investigations.

3.1. LEMMA. Let C be a tame concealed algebra, E a simple regular
C-module, and A the triangular matrix algebra

K 0 E
C[E][E]=|0 K E|
0 0 C

Then A is not quasi-tilted.

Proof. Since E is simple regular, it is a source of a unigue sectional
path

E=E,—>FE - FE,—> -

of a standard stable tube in I'.. Then, applying [23, p. 88], we infer that T,
contains a mesh-complete full translation subquiver of the form

P(x) —— L, — L, —/ -
e
T PA(y) T T
e
E, —_— E — E, — -

with 7, E; ., = E; for all i > 0, where P,(x) and P,(y) are the indecompos-
able projective A-modules given by the extension vertices x and y of
C[E]IE], respectively. From the shape of the Auslander—Reiten compo-
nents of tilted algebras (see [13, 14, 18, 23]) we conclude that A is not
tilted. Consider now the almost split sequence

0—>E—>YE>X—>O

in I'x, and take a unique indecomposable A-module Z whose restriction to
C is Y, and Z has one dimensional vector spaces at the vertices x and y.
Let P(Z) 5 Z be the projective cover of Z in mod A and Q(Z) = Ker .
Then Q(Z) = E & Q(X). Since E is not projective, we get pd, Z = 2.
But then Hom,(7, 7,Z) # 0 for an indecomposable injective A-module
(see [23, p. 74]. Further, g induces a non-zero map Z — X, again by [23,
p. 88], and E = 7."X for some r > 0. Therefore, we conclude that I is a
predecessor of P,(x) in mod A, and so %, contains a projective module.
Hence, by (2.8), A is not quasi-tilted.
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3.2. LEMMA. Let C be a tame concealed algebra, E a simple regular
C-module, w the extension vertex of C[E], and A the algebra obtained from
C[E] by rooting a hereditary quiver A

at w, where *—e means e — e or e <« e, and possibly v = x. Then A is
not quasi-tilted.

Proof. We first claim that A is not tilted. Observe that one of the
vertices of the above quiver A is a source. Then, applying [23, p. 88], we
infer that I', has a full subquiver of the form

u v
(A

P(x) =Wy, =W, =W, =W, — -

with 7, W, , = W, for all i > 0. This implies that I, is not the
Auslander—Reiten quiver of a tilted algebra, again by [13, 14, 18, 23].
Suppose now that (for an orientation of A) A is quasi-tilted. Since A is not
tilted, we conclude by (2.5) that every component of T, containing a
projective module consists entirely of modules from .%. In particular, the
APR-tilting modules [1] induced by the simple projective A-modules are in
the additive category add(#,) of #,. Applying now an appropriate se-
guence of APR-tilts and (2.10) we get a quasi-tilted algebra A obtained
from C[E] by rooting at » the quiver

®,

v

WeE— @ c— 06— ... — ox

N

®)

Then the full subcategory A’ of A’ given by the objects of C, a, and b is
the double one-point extension C[E] E] of C by E. Hence, by (3.1), A is
not quasi-tilted. This contradicts (2.9).

3.3. PROPOSITION. Let B be a tubular extension of a tame concealed
algebra C, & the preprojective component of T, (and hence of Tp), T =
G epy k) the P(K)-family of ray tubes in Ty obtained from the unique
family 7' = ('), cp, k) Of stable tubes of T by ray insertions, and @ the



480 ANDRZEJ SKOWRONSKI

family of the remaining components of 1'y. Assume that M is a B-module
satisfying the following conditions:

() M has no indecomposable direct summand from .

(i) M has at least one indecomposable direct summand from .
(iii)  The one-point extension B[ M ] is quasi-tilted.
(V) xpu) s weakly non-negative.

Then M is indecomposable and has exactly one direct successor in Ty (hence is
a ray module in the sense of [23)).

Proof.  We have two cases to consider. Assume first that M is indecom-
posable. Then, by our assumption, M lies in a ray tube .7,. We know (see
[23, (4.7)] that the restriction F of M to C is indecomposable or zero. If
F is indecomposable then C[F] is a full subcategory of B[M], and hence
F is simple regular, by (2.9) and (2.13). Therefore, we may assume that
F # M. Suppose now that M has two direct successors in I'y. Since 9] is a
ray tube we then conclude that B[M] contains a full subcategory D
obtained from a one-point extension A = C[N] of C by a simple regular
C-module N, say with the extension vertex , by rooting a hereditary
quiver of the form

Ve

we—e—e— ... —e—e

AN

at w, where e—e means e« — o or e « e, It follows from (3.2) that D is
not quasi-tilted. Therefore, applying (2.9) we conclude that B[M] is not
quasi-tilted which contradicts our assumption (iii).

Assume now that M is decomposable. Then, by our assumption (ii), we
have M =X @ Y where Y # 0 and X is an indecomposable direct sum-
mand of M lying in a tube 7, of 7. If 7 contains a projective module,
then there exist indecomposable modules Z and P in .7, such that P is
projective, Hom(7;Z, P) # 0, and X is predecessor of Z in 7,. Hence,
idp Z =2,and so X & %,. Then, by (2.12), Y is projective. If .7, Is a stable
tube, then it is a stable tube of T, and Y is projective by [10, 111, (2.9)(a)].
Since all indecomposable projective B-modules lie in % v .7, it follows
from our assumption (i) that Y is a direct sum of indecomposable projec-
tive modules from 7. Replacing now X by an indecomposable (projective)
direct summand U of Y, we conclude as above that M = U @ V' with V
projective. Therefore, M is projective. We shall show now that this leads to
a contradiction. Observe first that B, as a tubular extension of C, is
obtained from a multiple one-point extension C[E,E,]--[E,] of C by
pairwise non-isomorphic simple regular C-modules E, ..., E,, say with the
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extension vertices w, ..., w,, by rooting (extension) branches K, ..., K,
at wy, ..., o, respectively (see [23, (4.7)]). Moreover, M is a direct sum of
indecomposable projective B-modules given by some vertices of the
branches K, ..., K,. Further, if the restriction M’ of M to C is non-zero
then M’ is simple regular (2.13), and hence isomorphic to one of the
modules E,, ..., E,, because M is projective. From Lemma 3.2 we know
that B[ M] does not contain a full subcategory which is obtained from the
one-point extension C[E,] by rooting at the extension vertex o; a heredi-
tary quiver of the form

Further, B[M] does not contain a full subcategory L given by the quiver

(43
W@ @ —> 06— it ¢— 0 —>0—>0E— 08— v —>O0E— 0 —> 0 (.
1 1

bounded only by a8 = 0. Indeed, L is representation-finite and I', has an
oriented cycle, and hence by (2.9) and (2.7), L cannot be a full subcategory
of B[M]. Moreover, since M is decomposable projective, the restriction
M’ of M to C is zero or simple regular, and xg,,; is weakly non-negative,
a simple analysis of the supports of indecomposable direct summands of M
shows that B[ M ] contains a full subcategory R obtained from C[E,]...[E,]
by rooting a hereditary quiver

a
[ ]

oS

wio—o— cee —@ D @
at w; or a hereditary quiver

W@ @ —> 06— «iv — > 00 —>O— v —> O 0 —> 0.
4 J
a

at the vertices ; and ;. Observe also that R is not tilted. Indeed, the
radical of the indecomposable projective R-module Pi(a) at a has at least
two indecomposable direct summands being sources of infinite sectional
paths in I'y, which for tilted algebras is not possible. In particular, the
APR-tilting modules given by simple projective R-modules are in add(.%),
by (2.3). Applying now an appropriate sequence of APR-tilts and taking a
full subcategory we get, by (2.9) and (2.10), a quasi-tilted algebra of the
form C[E], where E has a direct summand E; ® E; or E; ® E,. It is a
contradiction with (2.13). Hence, the case when M is decomposable does
not hold. This finishes the proof.



482 ANDRZEJ SKOWRONSKI

3.4. COROLLARY. Let B be a tubular extension of a tame concealed
algebra C, T the P(K)-family of ray tubes in Ty, obtained from the
P,(K)-family of stable tubes in T by ray insertions, and M an indecompos-
able B-module in 7. Assume that A is an algebra, N is a non-zero A-module,
and the one-point extension (B X A)M & N1 is quasi-tilted. Then N is
uniserial and each submodule of N is projective.

Proof. It follows from the above proof and (2.9) that N is an indecom-
posable projective A-module whose support is a convex subcategory of A
given by a linear hereditary quiver

a; > a, > - —>a

and the support of any projective modules P,(a;), 1 < i < r, consists of the
objects a;, ..., a,. In particular, N is uniserial and each submodule of N is
uniserial and projective.

3.5. PROPOSITION. Let B be a tame semiregular branch enlargement of a
tame concealed algebra C and M be a non-zero B-module having an indecom-
posable preprojective direct summand. Assume A = B[ M is quasi-tilted and
X, IS weakly non-negative. Then M is preprojective.

Proof. Let 7 be the P,(K)-family of semiregular tubes in T, obtained
from the unique P,(K)-family of stable tubes in T, by the corresponding
ray and coray insertions. It is known that the tubes in 9 are standard and
pairwise orthogonal. Denote by B~ (respectively, B*) the maximal tubular
coextension (respectively, extension) of C inside B. Then the preprojective
component & of I'y- is the unique preprojective component of I';. Let
M =M, ® M, where M, is a direct sum of modules from % and M, has
no direct summands from 2. It follows from our assumption that M, # 0.
Since x, is weakly non-negative we infer, by [20, (2.5); 22, (3.3); 23, (4.9)],
that B~ is a representation-infinite tilted algebra of Euclidean type having
a complete slice in the preprojective component £, the family 9 contains
at least one injective module, and the restriction of M, to C is zero. Let
7" be the family of all tubes in .7 containing injective modules and . the
family of all remaining tubes of .7 We know that I'; =% V.9V & where
@ is either a preinjective component (if B™ is tilted of Euclidean type) or
of the form (V ,.4+7) vV Z. Vv @, (if B is tubular), see [23, (4.9) and
(5.2)]. Observe that each tube in .7’ is a coray tube containing an injective
module, and hence a module of projective dimension 2. Therefore, 7' is
entirely contained in %, \.%;. Further, it follows from the shape of I}
that any module in & is a successor in ind B of a module from ., and so
@ is also contained % \.%,. Suppose now that M, # 0. Then invoking
(2.11) and our assumption that A = B[ M is quasi-tilted we conclude that
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M, is a direct sum of modules from 9". We know that Homz(9", # v
') =0 and Homy(7',7") = 0. Observe also that the one-point exten-
sion B[ M,] is a convex subcategory of A = B[M], and so is quasi-tilted.
Applying (3.3) we then infer that M, is a ray module of a tube 9" of ".
Further, there is a tube " in &' such that Homz(M,,7,") # 0. Finally,
observe that Homz(M,,7") = 0 because the restriction of M, to C is
zero. Take now indecomposable non-directing modules X in 7' and
Y € 9" with Homz(M,;, X) # 0, Homyz(M,,Y) # 0, and M, = Y. Let f:
M, - X and g: M, —» Y be non-zero maps in mod B, and consider the
A-module Z given by the triple (K, X @ Y, ¢) where the K-linear map ¢:
K —» Homyz(M, X @ Y) = Homz(M,, X) @ Homz(M,,Y) assigns to the
identity of K the pair (f, g). Since X and Y are pairwise orthogonal and
indecomposable, Z is indecomposable. Observe that pd, U = pd, U for
any B-module U. Hence, since X € %, \.%; and is a predecessor of Z in
mod A, we get Z ¢ .%,. We shall prove that also Z & .%,. This will lead to
a contradiction because A is quasi-tilted (see (2.1)). Let A: Y — N be an
irreducible map in mod B where N is a module in .%;" which does not lie
on the ray starting at M,. Since Homz(M, h) = 0, & induces a non-zero
map Z=(K,Xa&Y,¢)—> (0,N,0) =N in ind A. Observe that N is a
non-directing module of .7". We have two cases to consider. Assume first
that 9" is a stable tube. Then 7, M, = 7, M,, Hom (7, (1, M,), A) =
Hom,(M,, A) # 0, and so id, 7, M, = 2. Clearly, 7, M, = 73 M, is a suc-
cessor of N in )", and hence 7, M, is a successor of Z in mod A. This
implies Z & .%,. Assume now that 7," contains a projective module. Since
" is a ray tube, there exists an indecomposable non-projective non-di-
recting B-module I which is a direct predecessor of a projective module
in 2;". Then again 7,V = 1V, Hom (7, (1,}V), A) = Hom (V, A) # 0, and
so id, 7,V = 2. On the other hand, since N and 7,V = 7z} are non-di-
recting modules in 9", we conclude that 74} is a successor of N in 9}".
Then 7,)/ is a successor of Z in mod A and hence Z & .%,. Therefore, we
proved that M, = 0, and M = M, is preprojective.

4. PROOF OF THEOREM A

Let 4 be a quasi-tilted algebra. Then, by (2.6), A4 is triangular. Since
gldim A < 2 we then get g, = x,. In particular (i) = (iv). The implica-
tion (ii) = (i) is obvious. Further, (iii) = (ii) follows from [23, (4.9), (5.2);
22, (2.4); 26, (3.6)]. The implications (iii) = (vi) and (iii) = (vii) follow
from [23, (4.9), (5.2); 13]. Moreover, if (vi) (respectively, (vii)) holds then
rad”(X, X) = 0 for any X € ind A, and hence A is tame (see [29, (2.8)]).
We shall prove now that (iv) is equivalent to (v). Observe first that, for
X €ind A, we have dimy End (X) — dim, Ext}(X, X) = y,(dimX) =



484 ANDRZEJ SKOWRONSKI

q ,(dimX) because pd, X <1 or id, X < 1. Hence (iv) implies (v). The
implication (v) = (iv) follows by reducing the general case to the indecom-
posable one via generic decomposition. Namely, if x € K,(A4) has non-
negative coordinates, then there is a decomposition x = x; + --- +x, and
Xy, Xy €ind A4 with x; = dimX;, 1 <i <, such that

q4(x) = X (dimg End,(X;) — dimg Ext}(X;, X;))
i=1

(see [21, (1.3), (3.4) and (5.1)], and so (v) implies (iv). Therefore, it remains
to show that (iv) implies (iii). We divide the proof of this implication into
several steps.

Assume that x, = g, is weakly non-negative. We may assume that A is
not tilted. Hence, by (2.3), every component of T, is semiregular. From
(2.2) we know also that T', admits a preprojective component. Let %, be a
preprojective component of I, and D the support algebra of ;. Since
P, is semiregular, hence without injective modules, and consists entirely of
directing modules, we infer (see [31, dual of (2.6)]) that there exists a
hereditary algebra H of infinite type and a tilting H-module T without
preprojective direct summands such that D = End,(T). Moreover, D is a
convex subcategory of A, by a modified argument from [5, (3.2)]. Hence,
qp is weakly non-negative and D is of Euclidean type. Therefore, there
exists a tame concealed convex subcategory C, of D such that D is a
tubular coextension of C, [23]. Since A is triangular, it can be obtained
from D by a sequence of one-point extensions and coextensions. We know
that %, contains all indecomposable projective D-modules, and hence for
each Y € ind D there exists X €2, such that Hom ,(X,Y) # 0. Invoking
now [23, p. 88] and the fact that £, is a complete component in T, we
deduce that 4 does not contain a full subcategory which is a one-point
coextension [N]D of D by a non-zero D-module N. We know also that
the T', consist of %#,, a P,(K)-family T' of coray tubes, obtained from the
unique P(K)-family of stable tubes in T; by coray insertions, and a
preinjective component Q (consisting of C,-modules). Denote by T the
family of all tubes in I" containing injective modules, and by T the family
of all remaining (stable) tubes in T'. Observe that, if T" is not empty, then
it consists of modules from %, \.%},. Assume now that there is a one-point
extension D[M] of D inside A4 by a non-zero D-module M. Since %, is a
complete component of I';, M has no indecomposable direct summand
from 2,. Then applying (2.9), (2.11), and (3.3) we infer that either M
belongs to add(Q) or M is an indecomposable simple regular module from
I'". In particular, all components from I are full components of I',. Let
B, be a maximal tubular extension of C, which is a convex subcategory of
A. By the above remarks, the indecomposable projective B,-modules given



TAME QUASI-TILTED ALGEBRAS 485

by the vertices of O, \ O, lie in the ray tubes obtained from stable tubes
of I by ray insertions. Moreover, by our assumption, x; is weakly
non-negative, and then B, is either tubular or a tilted algebra of Eu-
clidean type, by [22, (3.3)]. Let A, be the full subcategory of A given by
the objects of B, and D. Clearly, A, is a tame semiregular branch
extension of C, and a convex subcategory of A. Denote by .7, the

P,(K)-family of semiregular tubes in T,, obtained from the family of
stable tubes in I'. by the corresponding coray and ray insertions, and by
@, the family of aII remaining components different from 2. From the
maximality of B,, the above remarks, (3.3), and (3.4), we conclude that if
A [R] is a one-point extension of A, inside A then R is a direct sum of
modules from &,. Moreover, there is no one-point coextension [R']A, of
Ag, inside A4, by a non-zero A,-module R'. In particular, all components
of I, from %, V.7, are full components of I';. Assume now that 7,
contains an injective module, that is, I is not empty. Since B, is tubular
or tilted of Euclidean type, we conclude that any module from &, is a
successor of a module from I”, and so belongs to %, \.%, . Hence, by
(2.11), there is no one-point extension of A, inside A, and consequently
A = A,. Thus we may assume that D = C,, and so A, = B,.

Consider now the case when B, is tubular. Then, by [23, (5.2)], I is of
the form

FBO=,9?70\/%V( V 9;) VIV @,
qe@”

where Q7 is the set of all positive rational numbers, %, is the preprojec-
tive component of 17, , 7; is the considered above family of ray tubes, 7,
is a P,(K)-family of coray tubes containing at least one injective module,
@, is a preinjective component, and, for each ¢ € Q7, I, isa P,(K)-family
of stable tubes. Let 7' be the family of all tubes in .7, containing injective
modules, and .Z.” the family of all remaining tubes of 7. It follows also
from [23, (5.2)] that there is a tame concealed convex subcategory C, of B,
such that B, is a tubular coextension of C,, Q. is the preinjective
component of I}, , and .7, is obtained from the unique P,(K)-family of
stable tubes in I\ by coray insertions. It is shown in [30, (2.5)] that if N is
an indecomposable B,-module and x; v, is weakly non-negative, then N
lies in 7, V @,. Furthermore, 7' is not empty and consists of modules
from %, \-%;. Therefore, for any one-point extension B[X] of B inside
A, X is a direct sum of modules from .Z.”. Let B, be a maximal tubular
extension of C, which is a convex subcategory of 4. Then the indecom-
posable projective B.-modules given by the vertices of O \ O lie in ray
tubes obtained from stable tubes of .Z.” by ray insertions. Again, since B,
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is a convex subcategory of 4 and y, is weakly non-negative, we conclude
that B, is either tubular or a tilted algebra of Euclidean type. Denote by B
the full subcategory of A4 given by the objects of B, and B,. Clearly, B is a
tame semiregular branch enlargement of the tame concealed algebra
C=C,and I =2 VIV @ where Z=2,VI,V(V, q) T isa
P,(K)-family of semiregular tubes separating & from Q, and Q is either a
preinjective component (if B, is tilted) or of the form (V , . o-7,*) vV I*
v @* (if B, is tubular), where Q¥ is a preinjective component, Z,* is a
P,(K)-family of coray tubes, and, for each g € Q", 7 * is a P,(K)-family
of stable tubes. In particular, the component quiver 3, of B is directed.
Further, since the family .’ of tubes in .9 containing injective modules
(equal Z") is not empty and any module in & is a successor of a module
from ', A does not contain a full subcategory which is a one-point
extension of B by a non-zero B-module. Clearly, A does not contain a full
subcategory which is a one-point coextension of B by a non-zero B-mod-
ule, because £ Vv 9 is a full translation subquiver of I';. Hence, B = A4.

Let now &, ..., 2 be the family of all preprojective components of I',.
From the above discussion, we may assume that, for each 1 <i < r, the
following hold:

(1) The support algebra C; of &, is a tame concealed algebra.

(2) The maximal tubular extension B; of C; inside A is a tilted
algebra of Euclidean type.

(3) The unique P,(K)-family 7; of ray tubes in T, is a P,(K)-family
of tubes in T',.

(4) A does not contain a full subcategory which is a one-point
coextension of B, by a non-zero B,-module.

(5) For any one-point extension B[R,] of B, inside A, the B,-mod-
ule R, is preinjective.

(6) The preinjective component @, of T, contains a full translation
subquiver &, which is a full translatlon subquwer of T, and is closed
under predecessors

(7 T, =2 v.7 V&, is closed under predecessors in ind A.

Denote by B the direct product of B,,..., B,. If A =B then A =B,
and there is nothing to show. By symmetry we may assume that the dual
statements (1)—(7') related with the family of all preinjective components
of I', also hold. Hence we may assume that A # B and is a one-point
extension A = A[M]where A is a convex subcategory of 4 containing B,
and M is a A-module. Let A = A; X --- X A, with A,,..., A, connected,
and M =M, & --- & M, with M; € mod A; for any 1 <j <. Since A4 is



TAME QUASI-TILTED ALGEBRAS 487

connected, the modules M, ..., M, are non-zero. Clearly, B is a convex
subcategory of A and the translation quivers I, are full translation
subquivers of I'; which are closed under predecessors in ind A. Each of A;
is a proper convex connected subcategory of 4, and hence A; is quasi-tilted
with X, weakly non-negative. Therefore, we may assume that each A; is
either tame tilted or a tame semiregular branch enlargement of a tame
concealed algebra. We shall first prove that, for each 1 <j <¢, M; is a

direct sum of indecomposable modules lying in one connected component

of FA consisting of directing modules. Fix 1 <j <. Observe that if A;
contains an algebra B; then A; is tilted, because I is a full translatlon
subquiver of T, Conversely, each algebra B, is contained in some A,

Suppose now that A; is not tilted. Then A; is a tame semiregular branch
enlargement of a tame concealed algebra C’, and the unigue preprojective
component, say %, of I, is different from £,,..., 2. Since the compo-
nents &, ..., % exhaust aII preprojective components of T, invoking [23,
p. 88], we conclude that M; has at least one indecomposable direct
summand lying in &7. Applying (3.5) we then conclude that M; is a direct
sum of (preprojective) modules from &7. Assume now that A; is tilted, say
of the form A; = End (T) for a heredltary algebra H, and a tilting
H;-module T;. Then T, mduces a torsion theory (Z(T)), %(T)) on mod A,

where Z(T)) = {Z € mod A, Tor}(X,T)) =0} and 22”(T) ={Z E

mod A;, Z ®A 7 =0} Denote by % the connectlng component of T,

determined by T,. It is well known (see [13]) that the support algebra of
any preprOJectlve component of I, different from &, is tame concealed,
and so after the extension of A to' A = A[M] it remalns (because g, is
weakly non-negative) a preprojective component of T,. Therefore, the
preprojective components of T}, different from %; (if they exist) are given
by the preprojective components 2. of all algebras B; which are contained
in A;. Clearly, we have at least one of such components &; if &, is not
preprojective. Assume %; is not preprojective. We claim that then &
contains at least one injective module. Suppose it is not the case. Then Z;
is a semiregular component and hence 7; has no preprojective direct
summands (see [24]). Moreover, the slice of & contains as a convex
subquiver the Euclidean slice of the preinjective component of one of the
algebras B;. Consequently, H; is wild and hence X, is not weakly
non-negative (see [13, (6.2)]), a contradiction. Assume’ &, contains an
injective module. Observe that if & is a component of Iy, which is
contained entirely in %(T) then any module of & is a successor of a
module Z in & with HomAi(D(A ), TA/_Z) # 0, and so a successor of a
module Z of projective dimension 2. Hence 2 is contained in T\ N\ -
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Applying now (2.11) and the property (7) of the algebras B;, 1 <i <r, we
conclude that M; is a direct sum of modules from ;. Finally, consider the
case when @ is a preprojective component without injective modules.
Then A; is a tilted algebra of Euclidean type having a complete slice in &.
If € is different from any of the components %, ..., %, then M, has at
least one indecomposable direct summand from %, and invoking again
(3.5), we conclude that Mj is a direct sum of modules from #. If & is one
of the components &, 1 <i < r, then it follows from our assumption (7)
that M; is a direct sum of modules from the preinjective component of T, .
Therefore we have proved that, for each 1 <j <, M; is a direct sum of
indecomposable modules lying in one component of F formed by direct-
ing modules. Applying arguments as in the final part of the proof of
Theorem 2.3 in [7] we infer that in fact M is a directing A-module. Let P
be the indecomposable projective 4-module whose radical is M, and & be
the connected component of T, containing P. We know from [12, 32] that
P is an indecomposable directing 4-module. Moreover, it follows from the
above discussion and [23, p. 88] that the full translation subquiver of #
formed by all proper predecessors of P in I', consists of all predecessors
of indecomposable direct summands of M in I'y, and all these modules are
directing. Since M,,..., M, are non-zero, we also deduce that &,,...,&,
are full translation subquivers of & which are closed under predecessors.
Invoking now (2.3) and (2.4) we infer that ¥ is a component without
injective modules and oriented cycles. Finally, observe that we may repeat
the above considerations for any indecomposable projective 4-module P’
corresponding to a source of Q, which is not in Q. Consequently, the
component & contains the indecomposable projective A-modules corre-
sponding to all sources of Q, which do not belong to Qg, and the
predecessors of these modules form a translation subquiver of & consist-
ing of directing modules. Hence we conclude that # is directing with
finitely many 7,-orbits and for any left stable module U in & there are
1 <i < r and a positive integer m such that 7;"U belongs to the transla-
tion quiver &. Since we assumed that A is not tilted, applying (2.3), we
obtain that # is a generalized standard [28] semiregular component
without oriented cycles and injective modules. Moreover, since &,,..., &,
are full translation subquivers of & which are closed under predecessors,
we deduce as above that ¢ is the connecting component of a tilted algebra
F = End,(T) given by a wild hereditary algebra and a tilting H-module
without preprojective direct summands. But F is a convex subcategory of
A with y not weakly non-negative, a contradiction with our assumption.
Therefore, A is either tame tilted or a tame semiregular branch enlarge-
ment of a tame concealed algebra. This finishes the proof.
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