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INTRODUCTION

Throughout the paper K denotes a fixed algebraically closed field. By an
Žalgebra we mean a finite dimensional K-algebra associative, with an

.identity and by a module a finite dimensional right module.
w xTilting theory, initiated by Brenner and Butler 6 and Happel and

w xRingel 11 , as a generalization of the Coxeter functors of Bernstein,
w x w xGelfand, and Ponomarev 3 and Auslander, Platzeck, and Reiten 1 , has

left traces everywhere in recent representation theory of algebras. A
wprominent role in this theory is played by the tilted algebras. Following 4,

x Ž .11 an algebra A is called a tilted algebra if A s End T , where H is aH
Ž 1 Ž .hereditary algebra and T is a tilting H-module Ext T , T s 0 and T is aH

Ž .direct sum of n s rank of K H pairwise non-isomorphic indecompos-0
.able modules . Presently, an extensive representation theory of tilted

algebras is developed. In particular, the structure of all connected compo-
Ž wnents of the Auslander]Reiten quivers of tilted algebras is known see 13,

x.14, 18, 23]25, 33 . In the tame case, a detailed structure of the category of
w xmodules over tilted algebras is also known 13, 23 . An important theoreti-

cal development of tilting theory was the connection with the derived
w xcategories established by Happel 9 . Motivated by this connection, Hap-

w xpel, Reiten, and Smalø introduced in 10 a generalization of tilted alge-
bras, called quasi-tilted algebras. It is the class of algebras of the form
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Ž .A s End T , where T is a tilting object in a hereditary abelian K-cate-HH

w xgory HH. It was shown in 10 that an algebra A is quasi-tilted if and only if
A is of global dimension at most two and each indecomposable A-module
has projective dimension at most one or injective dimension at most one.
Besides the tilted algebras, important classes of quasi-tilted algebras are

w xprovided by all tubular algebras and canonical algebras introduced in 23 ,
and their relatives concealed-canonical algebras and almost concealed-

w xcanonical algebras investigated in 16, 19 . Recently, Lenzing and the
w xauthor investigated in 17 a more general class of algebras, called quasi-

w xtilted algebras of canonical type. Following 17 an algebra A is called
Ž .quasi-tilted of canonical type provided A s End T for a tilting object THH

bŽ . Žin a hereditary abelian K-category HH whose derived category D HH of
.bounded complexes over HH is equivalent, as a triangulated category, to the

b Ž .derived category D mod L of modules over a canonical algebra L. It is
w xshown in 17 that an algebra A is quasi-tilted of canonical type if and only

if A is a semiregular branch enlargement of a concealed canonical
algebra. This determines the ring structure of such algebras. Moreover, in
w x Ž w x.17 see also 19 a rather complete account on the structure of the
module category of quasi-tilted algebras of canonical type is given.

One of the interesting open problems in the representation theory of
algebras is to decide whether every quasi-tilted algebra is tilted or of
canonical type. We note that all representation-finite quasi-tilted algebras

w xare tilted 10 . In general, the main known features concern the existence
Ž . w xof a preprojective respectively, preinjective component 7 and the

semiregularity of Auslander]Reiten components if the algebra is quasi-
w xtilted but not tilted 8 .

The main aim of this paper is to prove several characterizations of
quasi-tilted algebras which are of tame representation-type, that is, for
which the indecomposable modules occur, in each dimension d, in a finite
number of discrete and a finite number of one-parameter families. We
characterize this class of algebras by the ring structure, weak non-negativ-
ity of the Euler quadratic form, the shape of the connected components of
the Auslander]Reiten quiver, and their behaviour in the module category.
In particular, we prove that every tame quasi-tilted algebra is either tilted
or of canonical type.

The paper is organized as follows. In Section 1 we present our main
results and recall the related background. Section 2 contains some known
results on quasi-tilted algebras. In Section 3 we prove some new technical
facts applied in the proof of our main result. The final Section 4 contains
the proof of the main result of the paper.

The results of this paper were presented during the Conferences in
Ž . Ž . Ž .Oberwolfach 1995 , Marseille-Luminy 1996 , and Geiranger 1996 .
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1. THE MAIN RESULTS AND THE RELATED
BACKGROUND

Throughout this paper K will denote a fixed algebraically closed field.
By an algebra is meant an associative finite dimensional K-algebra with an

Ž .identity, which we shall assume without loss of generality to be basic. For
such an algebra A, there exists an isomorphism A , KQrI, where KQ is
the path algebra of the Gabriel quiver Q s Q of A and I is anA
admissible ideal in KQ. Equivalently, A s KQrI may be considered as a
K-category whose object class is the set Q of vertices of Q, and the set of0

Ž . Ž .morphisms A x, y from x to y is the quotient of the K-space KQ x, y ,
formed by the linear combinations of paths in Q from x to y, by the

Ž . Ž .subspace I x, y s KQ x, y l I. An algebra A with Q having no ori-A
ented cycle is said to be triangular. A full subcategory C of A is said to be
convex if any path in Q with source and target in Q lies entirely in Q .A C C

For an algebra A, we denote by mod A the category of finitely gener-
ated right A-modules and by ind A its full subcategory consisting of
indecomposable modules. By an A-module is meant an object of mod A.
For an A-module X, we denote by dim X the dimension-vector of X,

Ž . n < <being the image of X in the Grothendieck group K A s Z , n s Q , of0 0
Ž . opA. We denote by D the standard duality Hom y, K : mod A ª mod A ,K

where Aop denotes the opposite algebra of A. Moreover, we denote by GA
the Auslander]Reiten quiver of A, and by t and ty the Auslander]Re-A A
iten translations D Tr and Tr D, respectively. We shall not distinguish
between an object of ind A and the vertex of G corresponding to it. AA
component CC of G is said to be standard if the full subcategory of ind AA

Ž .formed by the modules from CC is equivalent to the mesh-category K CC of
w xCC 23 . Examples of standard components are provided by preprojective

components, preinjective components, connecting components of tilted
w xalgebras, and tubular families of canonical algebras 23 . Further, we

Ž . `denote by rad mod A the Jacobson radical of mod A and by rad
Ž . i Ž .mod A the intersection of all finite powers rad mod A , i G 1, of rad
Ž . w xmod A . The component quiver S of A 27 is a quiver whose verticesA
are the connected components of G , and two components CC and DD areA

`Ž .connected in S by an arrow CC ª DD if rad X, Y / 0 for some modulesA
X in CC and Y in DD. If S is directed then A is said to be component-di-A
rected. Recall also that a component CC of G is called standard if the fullA
subcategory of mod A formed by the modules from CC is equivalent to the

Ž . w xmesh-category K CC of CC 23 .
w xLet K x be the polynomial algebra in one variable. Then A is said to

w xbe tame if, for any dimension d, there exists a finite number of K x y A-
w xbimodules M , 1 F i F n , which are free of finite rank as left K x -mod-i d

ules and all but finitely many isomorphism classes of indecomposable
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w x Ž .A-modules of dimension d are of the form K x r x y l m M forK w x x i
Ž . w xsome l g K and some i. Let m d be the least number of K x y A-A

bimodules satisfying the above condition for d. Then A is said to be of
Ž .linear growth respectively, domestic if there exists a positive integer m
Ž . Ž Ž . .such that m d F md respectively, m d F m . Examples of domesticA A

algebras are provided by the tilted algebras of Euclidean type. The tubular
Ž w x. Ž walgebras in the sense of 23 are non-domestic of linear growth see 26,

Ž .x.3.6 .
Assume that A s KQrI is an algebra of finite global dimension. Then

Ž .the Euler characteristic x of A is the integral quadratic form on K AA 0
such that

`
i ix dim X s y1 dim Ext X , XŽ . Ž .Ž . ÝA K A

is0

Ž w Ž .x.for any A-module X see 23, 2.4 . We say that x is weakly non-nega-A
Ž . Ž .tive if x x G 0 for any vector x in K A with non-negative coordinates.A 0

If A is triangular and gl.dim A F 2, then x coincides with the Tits formA
Ž . Ž .q of A, defined in general for x s x g K A asA i ig Q 00

q x s x 2 y x x q r x x ,Ž . Ý Ý ÝA i i j i j i j
igQ Ž . i , jgQiª j gQ0 01

where Q and Q are the sets of vertices and arrows of Q, respectively,0 1
Ž .and r is the cardinality of L l I i, j , for a minimal set of generatorsi j

Ž . Ž w x.L ; D I i, j of the ideal I see 5 . It is well known that if A isi, jg Q0
Ž w x.triangular and tame then q is weakly non-negative see 20 .A

Let C be a tame concealed algebra, that is, an algebra of the form
Ž .End T , where T is a preprojective tilting module over a hereditaryH

algebra H of Euclidean type. Then G consists of a preprojective compo-C
Ž .nent PP, a preinjective component QQ, and a family TT s TT ofl lg P ŽK .1w Ž .xstable tubes separating PP from QQ 23, 4.3 . By a semiregular branch

enlargement of C we mean an algebra of the form

F M 0
0 C D NL s ,Ž .
0 0 B

where

C D NŽ .F Mq yL s respectively, L sž /0 C 0 B

Ž .is a tubular extension respectively, tubular coextension of C in the sense
w Ž .xof 23, 4.7 , and no tube in TT admits both a direct summand of M and a
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direct summand of N. It is known that such an algebra L is quasi-tilted.
q y Ž w x.Moreover, L is tame if and only if both L and L are tame see 23 , or

equivalently, are tubular algebras or tilted algebras of Euclidean type.
Further, if L is tame, then L is of linear growth and every component of
G is standard. Finally, L is domestic if and only if both Lq and Ly areA
tilted algebras of Euclidean type.

We may state now the main result of the paper.

THEOREM A. Let A be a connected quasi-tilted algebra. The following
conditions are equï alent:

Ž .i A is tame.
Ž .ii A is of linear growth.
Ž .iii A is tame tilted or a tame semiregular branch enlargement of a

tame concealed algebra.
Ž .iv x is weakly non-negatï e.A

Ž . 1 Ž . Ž .v dim Ext X, X F dim End X for any module X in ind A.K A K A

Ž .vi E¨ery component of G is standard.A

Ž .vii A is component-directed.

Ž . Ž .Observe that each of the conditions iii or iv is rather easy to check.
w Ž . Ž .As a direct consequence of the above theorem and 15, 1.5 ; 26, 3.6 ; 29,

Ž .x2.8 we get the following characterization of domestic quasi-tilted alge-
bras.

COROLLARY B. Let A be a quasi-tilted algebra. The following conditions
are equï alent:

Ž .i A is domestic.
Ž .ii A is tame and does not contain a con¨ex subcategory which is

tubular.
Ž . Ž `Ž .. iiii F rad mod A s 0.iG1

Ž . Ž `Ž ..5iv rad mod A s 0.

w Ž . Ž .xThe following fact follows from Theorem A and 23, 4.9 and 5.2 .

Ž .COROLLARY C. Let A be a tame respectï ely, domestic quasi-tilted
algebra. Then all but a finite number of connected components in G are stableA

Ž .tubes respectï ely, stable tubes of rank one .

It would be interesting to know whether, for a quasi-tilted algebra, the
converse implications are also true.

Recall that two algebras L and G are called triangle equivalent if their
bŽ . bŽ .derived categories D mod L and D mod G are equivalent as triangu-

Ž w x.lated categories see 9 . We get the following consequence of Theorem A
w Ž .xand 9; 17, 3.4 .
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COROLLARY D. Let A be a connected tame quasi-tilted algebra. Then A is
triangle-equï alent to a hereditary algebra or a canonical algebra.

For basic background on the representation theory applied here we
w xrefer to 2, 10, 23, 27 .

We end this section with an example of a tame quasi-tilted algebra
which is neither tilted nor tubular. Let L be the algebra KQrI where Q is
the quiver

j

61 6 116 a
g 6s d6 63 4 5

6

6 r

6

h
b 6n2 7 12

v68 9

6w
10

and I is the ideal in KQ generated by the paths sn , vw, jdsgb , and
hrsga . Observe that the convex subcategory C of L given by the vertices

˜1, 2, 3, 4, 5, 6, 7 is a tame hereditary algebra of type D , and hence of6
Ž . ytubular type 2, 2, 4 . Denote by L the convex subcategory of L given by

the vertices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and by Lq the convex subcategory L
given by the vertices 1, 2, 3, 4, 5, 6, 7, 11, 12. Then Ly is a tubular coexten-

Ž .sion of C of tubular type 2, 2, 7 , and hence a representation-infinite tilted
˜algebra of type D having a complete slice in its preprojective component.9

q Ž .On the other hand, L is a tubular extension of C of tubular type 2, 4, 4 ,
and hence a tubular algebra. Moreover, the tubular coextension Ly is
obtained from C by using one simple regular module in the unique tube of

Ž .G of rank 4 and rooting a branch of length 3 given by the vertices 8, 9, 10C
in the coextension vertex 8, whereas the tubular extension Lq of C is
obtained from C by two one-point extensions, with the extension vertices
11 and 12, using two simple regular modules lying in one of tubes of rank 2

Ž .in G . Therefore, L is a tame semiregular branch enlargement of wildC
Ž . Ž wcanonical type 2, 4, 7 , and in particular neither tilted nor tubular see 17,

x.Sect. 4 . The Auslander]Reiten quiver G of L is of the formL

PP k TT k TT k TT k QQ ,E0 0 q ` `ž /
qqgQ

where Qq is the set of all positive rational numbers and

˜v PP is a preprojective component of Euclidean type D containing0 9
the projective modules corresponding to the vertices 1, 2, . . . , 9, 10;
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v Ž .TT is a P K -family of semiregular tubes formed by one coray tube0 1
Žwith 7 corays and 3 injective modules corresponding to the vertices

. Ž8, 9, 10 , one ray tube with 4 rays and two projective modules correspond-
.ing to the vertices 11, 12 , one stable tube of rank 2, and the remaining

tubes being stable tubes of rank 1;
v

q Ž .For each q g Q , TT is a P K -family of stable tubes of tubularq 1
Ž .type 2, 4, 4 ;

v Ž .TT is a P K -family of coray tubes formed by a coray tube with 4` 1
corays and containing the injective module given by the vertex 1, a coray
tube with 4 corays and containing the injective module given by the vertex
2, one stable tube of rank 2, and the remaining tubes being stable tubes of
rank 1;

˜v QQ is the preinjective component of type E containing the injective` 6
Žmodules given by the vertices 3, 4, 5, 6, 7, 11, and 12 forming a tame

˜ .hereditary algebra of type E .6

2. KNOWN FACTS ON QUASI-TILTED ALGEBRAS

In this section we shall collect some known facts on quasi-tilted alge-
bras, applied in our proofs.

Let L be an algebra. A path in mod A is a sequence of non-zero
non-isomorphisms

f f1 t
X s X ª X ª ??? ª X s Y ,0 1 t

where t G 1 and all X belong to ind A. In this case we write X U Y andi
say that X is a predecessor of Y and that Y is a successor of X in mod A.

w xA module M in mod L is said to be directing 12 provided there do not
exist indecomposable direct summands M , M of M and an indecompos-1 2
able non-projective L-module W such that M U t W and W U M . For a1 L 2

Ž .L-module M, we denote by pd M respectively, id M the projectiveL L

Ž . w xdimension respectively, the injective dimension of M. Following 10 we
denote by LL the full subcategory of ind L consisting of all modules suchL

that pd Y F 1 for any predecessor Y of X. Dually, we denote by RR theL L

full subcategory of ind L consisting of all modules X such that id Y F 1L

w xfor any successor Y of X. The one-point extension algebra L M of L by
a L-module M is by definition the algebra

K Mw xL M s .
0 L
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w xIf G s L M then the category mod G is equivalent to the category of
Ž .triples V, X, w where V is a finite dimensional K-vector space, X is a

Ž . Ž w Ž .xL-module, and w : V ª Hom M, X is a K-linear map see 23, 2.5 .L

Assume now that L is a quasi-tilted algebra and LL s LL , RR s RR . ThenL L

the following facts hold:

Ž .2.1 There is a trisection

ind L s LL _ RR k LL l RR k RR _ LLŽ . Ž . Ž .
such that

Hom LL l RR, LL _ RR s 0, Hom RR _ LL , LL l RR s 0, andŽ . Ž .A A

Hom RR _ LL , LL _ RR s 0.Ž .A

Ž .Moreover, LL respectively, RR contains all indecomposable projective
Ž . w Ž . Ž .xrespectively, injective L-modules 10, II, 1.13 and 1.14 .

Ž . Ž .2.2 G admits a preprojective respectively, preinjective compo-L

w xnent 7 .
Ž .2.3 If L is not tilted then every component of G is semiregular,

that is, does not contain simultaneously a projective module and an
w xinjective module 8, Corollary E .

Ž .2.4 If a component CC of G contains an oriented cycle then CC isL

w xa ray or coray tube 8, Theorem A .
Ž .2.5 Assume that L is not tilted and CC a component of G . If CCL

wcontains a projective module, then CC is contained in LL _ RR 8, Theorem
xC .

Ž . w Ž .x2.6 L is triangular 10, III, 1.1 .
Ž .2.7 If L is representation-finite, then L is tilted, and hence G isL

w Ž .xdirected 10, II, 3.6 .
Ž . w2.8 If RR contains a projective module then L is tilted 10, II,

Ž .x3.4 .
Ž . w Ž .x2.9 Every full subcategory of L is quasi-tilted 10, II, 1.15 .
Ž . Ž . Ž .2.10 If T is a tilting L-module in add LL then End T is quasi-L

w Ž .xtilted 10, II, 2.4 .
Ž . w x2.11 If L M is quasi-tilted then each indecomposable direct sum-

w Ž .xmand of M is contained in LL 10, III, 2.4 .
Ž . w2.12 Let M and M be non-zero L-modules such that L M [1 2 1

xM is quasi-tilted. Then each indecomposable direct summand of M is2 1
w Ž .xcontained in RR or M is projective 7, 2.1 .2

Ž .2.13 Assume L is tame concealed and M is an indecomposable
w xregular L-module. Then L M is quasi-tilted if and only if M is simple

w Ž .xregular 10, III, 3.9 .
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3. NEW FACTS ON QUASI-TILTED ALGEBRAS

We shall prove here several new facts on quasi-tilted algebras playing an
important role in our investigations.

3.1. LEMMA. Let C be a tame concealed algebra, E a simple regular
C-module, and L the triangular matrix algebra

K 0 E
w x w xC E E s .0 K E

0 0 C

Then L is not quasi-tilted.

Proof. Since E is simple regular, it is a source of a unique sectional
path

E s E ª E ª E ª ???0 1 2

w xof a standard stable tube in G . Then, applying 23, p. 88 , we infer that GC L

contains a mesh-complete full translation subquiver of the form

6 6 6

Ž .P x L L ???L 1 2

6

Ž .P y

6 6 6
L6

6 6 6

E E E ???0 1 2

Ž . Ž .with t E ` E for all i G 0, where P x and P y are the indecompos-L iq2 i L L

able projective L-modules given by the extension vertices x and y of
w xw xC E E , respectively. From the shape of the Auslander]Reiten compo-

Ž w x.nents of tilted algebras see 13, 14, 18, 23 we conclude that L is not
tilted. Consider now the almost split sequence

g
0 ª E ª Y ª X ª 0

in G , and take a unique indecomposable L-module Z whose restriction toC
C is Y, and Z has one dimensional vector spaces at the vertices x and y.

pŽ . Ž .Let P Z ª Z be the projective cover of Z in mod L and V Z s Ker p .
Ž . Ž .Then V Z , E [ V X . Since E is not projective, we get pd Z s 2.L

Ž .But then Hom I, t Z / 0 for an indecomposable injective L-module IL L

Ž w x. wsee 23, p. 74 . Further, g induces a non-zero map Z ª X, again by 23,
x yrp. 88 , and E s t X for some r G 0. Therefore, we conclude that I is aC

Ž .predecessor of P x in mod L, and so RR contains a projective module.A L

Ž .Hence, by 2.8 , L is not quasi-tilted.
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3.2. LEMMA. Let C be a tame concealed algebra, E a simple regular
w xC-module, v the extension ¨ertex of C E , and L the algebra obtained from

w xC E by rooting a hereditary quï er D

v
a

v v v v xv ???

v
b

6

6v v v v v vat v, where means or , and possibly v s x. Then L is
not quasi-tilted.

Proof. We first claim that L is not tilted. Observe that one of the
w xvertices of the above quiver D is a source. Then, applying 23, p. 88 , we

infer that G has a full subquiver of the formL

U V6 6

6 6 6 6

P x s W W W W ???Ž .L 0 1 2 3

with t W ` W for all i G 0. This implies that G is not theL iq2 i A
w xAuslander]Reiten quiver of a tilted algebra, again by 13, 14, 18, 23 .

Ž .Suppose now that for an orientation of D L is quasi-tilted. Since L is not
Ž .tilted, we conclude by 2.5 that every component of G containing aL

projective module consists entirely of modules from LL . In particular, theL

w xAPR-tilting modules 1 induced by the simple projective L-modules are in
Ž .the additive category add LL of LL . Applying now an appropriate se-L L

Ž . Xquence of APR-tilts and 2.10 we get a quasi-tilted algebra L obtained
w xfrom C E by rooting at v the quiver

v a

66 6 6v v v v xv ??? 6
v b

Then the full subcategory L
Y of L

X given by the objects of C, a, and b is
w xw x Ž . Xthe double one-point extension C E E of C by E. Hence, by 3.1 , L is
Ž .not quasi-tilted. This contradicts 2.9 .

3.3. PROPOSITION. Let B be a tubular extension of a tame concealed
Ž .algebra C, PP the preprojectï e component of G and hence of G , TT sC B

Ž . Ž .TT the P K -family of ray tubes in G obtained from the uniquel lg P ŽK . 1 B1 X Ž X.family TT s TT of stable tubes of G by ray insertions, and QQ thel lg P ŽK . C1
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family of the remaining components of G . Assume that M is a B-moduleB
satisfying the following conditions:

Ž .i M has no indecomposable direct summand from PP.
Ž .ii M has at least one indecomposable direct summand from TT.
Ž . w xiii The one-point extension B M is quasi-tilted.
Ž .iv x is weakly non-negatï e.Bw M x

ŽThen M is indecomposable and has exactly one direct successor in G hence isB
w x.a ray module in the sense of 23 .

Proof. We have two cases to consider. Assume first that M is indecom-
Žposable. Then, by our assumption, M lies in a ray tube TT . We know seel

w Ž .x.23, 4.7 that the restriction F of M to C is indecomposable or zero. If
w x w xF is indecomposable then C F is a full subcategory of B M , and hence

Ž . Ž .F is simple regular, by 2.9 and 2.13 . Therefore, we may assume that
F / M. Suppose now that M has two direct successors in G . Since TT is aB l

w xray tube we then conclude that B M contains a full subcategory D
w xobtained from a one-point extension L s C N of C by a simple regular

C-module N, say with the extension vertex v, by rooting a hereditary
quiver of the form

v

6
v v v v vv ???

v

6

6v v v v v v Ž .at v, where means or . It follows from 3.2 that D is
Ž . w xnot quasi-tilted. Therefore, applying 2.9 we conclude that B M is not

Ž .quasi-tilted which contradicts our assumption iii .
Ž .Assume now that M is decomposable. Then, by our assumption ii , we

have M s X [ Y where Y / 0 and X is an indecomposable direct sum-
mand of M lying in a tube TT of TT. If TT contains a projective module,m m

then there exist indecomposable modules Z and P in TT such that P ism

Ž y .projective, Hom t Z, P / 0, and X is predecessor of Z in TT . Hence,B B m

Ž .id Z s 2, and so X f RR . Then, by 2.12 , Y is projective. If TT is a stableB B m

w Ž .Ž .xtube, then it is a stable tube of G , and Y is projective by 10, III, 2.9 a .C
Since all indecomposable projective B-modules lie in PP k TT, it follows

Ž .from our assumption i that Y is a direct sum of indecomposable projec-
Ž .tive modules from TT. Replacing now X by an indecomposable projective

direct summand U of Y, we conclude as above that M s U [ V with V
projective. Therefore, M is projective. We shall show now that this leads to
a contradiction. Observe first that B, as a tubular extension of C, is

w xw x w xobtained from a multiple one-point extension C E E ??? E of C by1 2 t
pairwise non-isomorphic simple regular C-modules E , . . . , E , say with the1 t
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Ž .extension vertices v , . . . , v , by rooting extension branches K , . . . , K1 t 1 t
Ž w Ž .x.at v , . . . , v , respectively see 23, 4.7 . Moreover, M is a direct sum of1 t

indecomposable projective B-modules given by some vertices of the
branches K , . . . , K . Further, if the restriction M X of M to C is non-zero1 t

X Ž .then M is simple regular 2.13 , and hence isomorphic to one of the
modules E , . . . , E , because M is projective. From Lemma 3.2 we know1 t

w xthat B M does not contain a full subcategory which is obtained from the
w xone-point extension C E by rooting at the extension vertex v a heredi-i i

tary quiver of the form
v

6
v v v vv ???i

v

w xFurther, B M does not contain a full subcategory L given by the quiver

ba6

6

6 6

6 6

6

6 6

6

6

v v v v v v v v v vv ??? ??? vi i

bounded only by ab s 0. Indeed, L is representation-finite and G has anL
Ž . Ž .oriented cycle, and hence by 2.9 and 2.7 , L cannot be a full subcategory

w xof B M . Moreover, since M is decomposable projective, the restriction
M9 of M to C is zero or simple regular, and x is weakly non-negative,Bw M x
a simple analysis of the supports of indecomposable direct summands of M

w x w x w xshows that B M contains a full subcategory R obtained from C E . . . E1 t
by rooting a hereditary quiver

a
v

6 66

v v v vv ???i

at v or a hereditary quiveri

6

6

6

6

6
6

6

6

6

6

v v v v v v v v vv ??? ??? vi j
a

at the vertices v and v . Observe also that R is not tilted. Indeed, thei j
Ž .radical of the indecomposable projective R-module P a at a has at leastR

two indecomposable direct summands being sources of infinite sectional
paths in G , which for tilted algebras is not possible. In particular, theR

Ž .APR-tilting modules given by simple projective R-modules are in add LL ,R
Ž .by 2.3 . Applying now an appropriate sequence of APR-tilts and taking a

Ž . Ž .full subcategory we get, by 2.9 and 2.10 , a quasi-tilted algebra of the
w xform C E , where E has a direct summand E [ E or E [ E . It is ai i i j

Ž .contradiction with 2.13 . Hence, the case when M is decomposable does
not hold. This finishes the proof.
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3.4. COROLLARY. Let B be a tubular extension of a tame concealed
Ž .algebra C, TT the P K -family of ray tubes in G , obtained from the1 B

Ž .P K -family of stable tubes in G by ray insertions, and M an indecompos-1 C
able B-module in TT. Assume that L is an algebra, N is a non-zero L-module,

Ž .w xand the one-point extension B = L M [ N is quasi-tilted. Then N is
uniserial and each submodule of N is projectï e.

Ž .Proof. It follows from the above proof and 2.9 that N is an indecom-
posable projective L-module whose support is a convex subcategory of L
given by a linear hereditary quiver

a ª a ª ??? ª a1 2 r

Ž .and the support of any projective modules P a , 1 F i F r, consists of theL i
objects a , . . . , a . In particular, N is uniserial and each submodule of N isi r
uniserial and projective.

3.5. PROPOSITION. Let B be a tame semiregular branch enlargement of a
tame concealed algebra C and M be a non-zero B-module ha¨ing an indecom-

w xposable preprojectï e direct summand. Assume L s B M is quasi-tilted and
x is weakly non-negatï e. Then M is preprojectï e.L

Ž .Proof. Let TT be the P K -family of semiregular tubes in G obtained1 B
Ž .from the unique P K -family of stable tubes in G by the corresponding1 C

ray and coray insertions. It is known that the tubes in TT are standard and
y Ž q.pairwise orthogonal. Denote by B respectively, B the maximal tubular

Ž .coextension respectively, extension of C inside B. Then the preprojective
component PP of G y is the unique preprojective component of G . LetB B
M s M [ M where M is a direct sum of modules from PP and M has1 2 1 2
no direct summands from PP. It follows from our assumption that M / 0.1

w Ž . Ž . Ž .xSince x is weakly non-negative we infer, by 20, 2.5 ; 22, 3.3 ; 23, 4.9 ,L

that By is a representation-infinite tilted algebra of Euclidean type having
a complete slice in the preprojective component PP, the family TT contains
at least one injective module, and the restriction of M to C is zero. Let1
TT

X be the family of all tubes in TT containing injective modules and TT
Y the

family of all remaining tubes of TT. We know that G s PP k TT k QQ whereB
Ž q .QQ is either a preinjective component if B is tilted of Euclidean type or

Ž . Ž q . w Ž .qof the form E TT k TT k QQ if B is tubular , see 23, 4.9 andq g Q q ` `

Ž .x X5.2 . Observe that each tube in TT is a coray tube containing an injective
module, and hence a module of projective dimension 2. Therefore, TT

X is
entirely contained in RR _ LL . Further, it follows from the shape of GB B B
that any module in QQ is a successor in ind B of a module from TT

X, and so
QQ is also contained RR _ LL . Suppose now that M / 0. Then invokingB B 2
Ž . w x2.11 and our assumption that L s B M is quasi-tilted we conclude that
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Y Ž YM is a direct sum of modules from TT . We know that Hom TT , PP k2 B
X. Ž X Y .TT s 0 and Hom TT , TT s 0. Observe also that the one-point exten-B

qw x w xsion B M is a convex subcategory of L s B M , and so is quasi-tilted.2
Ž . Y YApplying 3.3 we then infer that M is a ray module of a tube TT of TT .2 l

X X Ž X.Further, there is a tube TT in TT such that Hom M , TT / 0. Finally,m B 1 m

Ž Y .observe that Hom M , TT s 0 because the restriction of M to C isB 1 1
zero. Take now indecomposable non-directing modules X in TT

X andm
Y Ž . Ž .Y g TT with Hom M , X / 0, Hom M , Y / 0, and M ` Y. Let f :l B 1 B 2 2

M ª X and g : M ª Y be non-zero maps in mod B, and consider the1 2
Ž .L-module Z given by the triple K, X [ Y, w where the K-linear map w :

Ž . Ž . Ž .K ª Hom M, X [ Y s Hom M , X [ Hom M , Y assigns to theB B 1 B 2
Ž .identity of K the pair f , g . Since X and Y are pairwise orthogonal and

indecomposable, Z is indecomposable. Observe that pd U s pd U forB L

any B-module U. Hence, since X g RR _ LL and is a predecessor of Z inB B
mod L, we get Z f LL . We shall prove that also Z f RR . This will lead toL L

Ž Ž ..a contradiction because L is quasi-tilted see 2.1 . Let h: Y ª N be an
irreducible map in mod B where N is a module in TT

Y which does not liel

Ž .on the ray starting at M . Since Hom M, h s 0, h induces a non-zero2 B
Ž . Ž .map Z s K, X [ Y, w ª 0, N, 0 s N in ind L. Observe that N is a

non-directing module of TT
Y. We have two cases to consider. Assume firstl

Y Ž yŽ . .that TT is a stable tube. Then t M s t M , Hom t t M , L sl L 2 B 2 L L L 2
Ž .Hom M , L / 0, and so id t M s 2. Clearly, t M s t M is a suc-L 2 L L 2 L 2 B 2

cessor of N in TT
Y, and hence t M is a successor of Z in mod L. ThisL L 2

implies Z f RR . Assume now that TT
Y contains a projective module. SinceL l

TT
Y is a ray tube, there exists an indecomposable non-projective non-di-l

recting B-module V which is a direct predecessor of a projective module
Y Ž yŽ . . Ž .in TT . Then again t V s t V, Hom t t V , L s Hom V, L / 0, andl L B L L L L

so id t V s 2. On the other hand, since N and t V s t V are non-di-L L L B
recting modules in TT

Y, we conclude that t V is a successor of N in TT
Y.l B l

Then t V is a successor of Z in mod L and hence Z f RR . Therefore, weL L

proved that M s 0, and M s M is preprojective.2 1

4. PROOF OF THEOREM A

Ž .Let A be a quasi-tilted algebra. Then, by 2.6 , A is triangular. Since
Ž . Ž .gl.dim A F 2 we then get q s x . In particular i « iv . The implica-A A

Ž . Ž . Ž . Ž . w Ž . Ž .tion ii « i is obvious. Further, iii « ii follows from 23, 4.9 , 5.2 ;
Ž . Ž .x Ž . Ž . Ž . Ž .22, 2.4 ; 26, 3.6 . The implications iii « vi and iii « vii follow

w Ž . Ž . x Ž . Ž Ž ..from 23, 4.9 , 5.2 ; 13 . Moreover, if vi respectively, vii holds then
`Ž . Ž w Ž .x.rad X, X s 0 for any X g ind A, and hence A is tame see 29, 2.8 .

Ž . Ž .We shall prove now that iv is equivalent to v . Observe first that, for
Ž . 1 Ž . Ž .X g ind A, we have dim End X y dim Ext X, X s x dim X sK A K A A
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Ž . Ž . Ž .q dim X because pd X F 1 or id X F 1. Hence iv implies v . TheA A A
Ž . Ž .implication v « iv follows by reducing the general case to the indecom-

Ž .posable one via generic decomposition. Namely, if x g K A has non-0
negative coordinates, then there is a decomposition x s x q ??? qx and1 s
X , . . . , X g ind A with x s dim X , 1 F i F s, such that1 s i i

s
1q x G dim End X y dim Ext X , XŽ . Ž . Ž .Ž .ÝA K A i K A i i

is1

Ž w Ž . Ž . Ž .x Ž . Ž .see 21, 1.3 , 3.4 and 5.1 , and so v implies iv . Therefore, it remains
Ž . Ž .to show that iv implies iii . We divide the proof of this implication into

several steps.
Assume that x s q is weakly non-negative. We may assume that A isA A

Ž .not tilted. Hence, by 2.3 , every component of G is semiregular. FromA
Ž .2.2 we know also that G admits a preprojective component. Let PP be aA 0
preprojective component of G and D the support algebra of PP . SinceA 0
PP is semiregular, hence without injective modules, and consists entirely of0

Ž w Ž .x.directing modules, we infer see 31, dual of 2.6 that there exists a
hereditary algebra H of infinite type and a tilting H-module T without

Ž .preprojective direct summands such that D s End T . Moreover, D is aH
w Ž .xconvex subcategory of A, by a modified argument from 5, 3.2 . Hence,

q is weakly non-negative and D is of Euclidean type. Therefore, thereD
exists a tame concealed convex subcategory C of D such that D is a0

w xtubular coextension of C 23 . Since A is triangular, it can be obtained0
from D by a sequence of one-point extensions and coextensions. We know
that PP contains all indecomposable projective D-modules, and hence for0

Ž .each Y g ind D there exists X g PP such that Hom X, Y / 0. Invoking0 D
w xnow 23, p. 88 and the fact that PP is a complete component in G , we0 A

deduce that A does not contain a full subcategory which is a one-point
w xcoextension N D of D by a non-zero D-module N. We know also that

Ž .the G consist of PP , a P K -family G of coray tubes, obtained from theD 0 1
Ž .unique P K -family of stable tubes in G by coray insertions, and a1 C0

Ž . Xpreinjective component V consisting of C -modules . Denote by G the0
family of all tubes in G containing injective modules, and by G

Y the family
Ž . Xof all remaining stable tubes in G. Observe that, if G is not empty, then

it consists of modules from RR _ LL . Assume now that there is a one-pointD D
w xextension D M of D inside A by a non-zero D-module M. Since PP is a0

complete component of G , M has no indecomposable direct summandA
Ž . Ž . Ž .from PP . Then applying 2.9 , 2.11 , and 3.3 we infer that either M0

Ž .belongs to add V or M is an indecomposable simple regular module from
G

Y. In particular, all components from G
X are full components of G . LetA

B be a maximal tubular extension of C which is a convex subcategory of0 0
A. By the above remarks, the indecomposable projective B -modules given0
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by the vertices of Q _ Q lie in the ray tubes obtained from stable tubesB C0 0

of G
Y by ray insertions. Moreover, by our assumption, x is weaklyB0

non-negative, and then B is either tubular or a tilted algebra of Eu-0
w Ž .xclidean type, by 22, 3.3 . Let L be the full subcategory of A given by0

the objects of B and D. Clearly, L is a tame semiregular branch0 0
extension of C and a convex subcategory of A. Denote by TT the0 0

Ž .P K -family of semiregular tubes in G , obtained from the family of1 L

stable tubes in G by the corresponding coray and ray insertions, and byC0

QQ the family of all remaining components different from PP. From the0
Ž . Ž .maximality of B , the above remarks, 3.3 , and 3.4 , we conclude that if0

w xL R is a one-point extension of L inside A then R is a direct sum of0 0
w X xmodules from QQ . Moreover, there is no one-point coextension R L of0 0

L , inside A, by a non-zero L -module RX. In particular, all components0 0
of G from PP k TT are full components of G . Assume now that TTL 0 0 A 00

contains an injective module, that is, G
X is not empty. Since B is tubular0

or tilted of Euclidean type, we conclude that any module from QQ is a0
successor of a module from G

X, and so belongs to RR _ LL . Hence, byL L0 0
Ž .2.11 , there is no one-point extension of L inside A, and consequently0
A s L . Thus we may assume that D s C , and so L s B .0 0 0 0

w Ž .xConsider now the case when B is tubular. Then, by 23, 5.2 , G is of0 B0

the form

G s PP k TT k TT k TT k QQ ,EB 0 0 q ` `0 ž /
qqgQ

where Qq is the set of all positive rational numbers, PP is the preprojec-0
tive component of G , TT is the considered above family of ray tubes, TTC 0 `0

Ž .is a P K -family of coray tubes containing at least one injective module,1
q Ž .QQ is a preinjective component, and, for each q g Q , TT is a P K -family` q 1

of stable tubes. Let TT
X be the family of all tubes in TT containing injective` `

modules, and TT
Y the family of all remaining tubes of TT . It follows also` `

w Ž .xfrom 23, 5.2 that there is a tame concealed convex subcategory C of B` 0
such that B is a tubular coextension of C , Q is the preinjective0 ` `

Ž .component of G , and TT is obtained from the unique P K -family ofC ` 1` w Ž .xstable tubes in G by coray insertions. It is shown in 30, 2.5 that if N isC`

an indecomposable B -module and x is weakly non-negative, then N0 B w N x0

lies in TT k QQ . Furthermore, TT
X is not empty and consists of modules` ` `

w xfrom RR _ LL . Therefore, for any one-point extension B X of B insideB B
A, X is a direct sum of modules from TT

Y. Let B be a maximal tubular` `

extension of C which is a convex subcategory of A. Then the indecom-`

posable projective B -modules given by the vertices of Q _ Q lie in ray` B C` `

tubes obtained from stable tubes of TT
Y by ray insertions. Again, since B` `
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is a convex subcategory of A and x is weakly non-negative, we concludeA
that B is either tubular or a tilted algebra of Euclidean type. Denote by B`

the full subcategory of A given by the objects of B and B . Clearly, B is a0 `

tame semiregular branch enlargement of the tame concealed algebra
Ž .qC s C and G s PP k TT k QQ where PP s PP k TT k E TT , TT is a` B 0 0 q g Q q

Ž .P K -family of semiregular tubes separating PP from Q, and Q is either a1
Ž . Ž U . U

qpreinjective component if B is tilted or of the form E TT k TT` q g Q q `
U Ž . U Uk QQ if B is tubular , where Q is a preinjective component, TT is a` ` ` `

Ž . q U Ž .P K -family of coray tubes, and, for each q g Q , TT is a P K -family1 q 1
of stable tubes. In particular, the component quiver S of B is directed.B
Further, since the family TT

X of tubes in TT containing injective modules
Ž X.equal TT is not empty and any module in QQ is a successor of a module`

from TT
X, A does not contain a full subcategory which is a one-point

extension of B by a non-zero B-module. Clearly, A does not contain a full
subcategory which is a one-point coextension of B by a non-zero B-mod-
ule, because PP k TT is a full translation subquiver of G . Hence, B s A.B

Let now PP , . . . , PP be the family of all preprojective components of G .1 r A
From the above discussion, we may assume that, for each 1 F i F r, the
following hold:

Ž .1 The support algebra C of PP is a tame concealed algebra.i i

Ž .2 The maximal tubular extension B of C inside A is a tiltedi i
algebra of Euclidean type.

Ž . Ž . Ž .3 The unique P K -family TT of ray tubes in G is a P K -family1 i B 1i

of tubes in G .A

Ž .4 A does not contain a full subcategory which is a one-point
coextension of B by a non-zero B -module.i i

Ž . w x5 For any one-point extension B R of B inside A, the B -mod-i i i i
ule R is preinjective.i

Ž .6 The preinjective component QQ of G contains a full translationi Bi

subquiver EE which is a full translation subquiver of G and is closedi A
under predecessors.

Ž .7 G s PP k TT k EE is closed under predecessors in ind A.i i i i

Denote by B the direct product of B , . . . , B . If A s B then A s B1 r 1
and there is nothing to show. By symmetry we may assume that the dual

Ž X. Ž X.statements 1 ] 7 related with the family of all preinjective components
of G also hold. Hence we may assume that A / B and is a one-pointA

w xextension A s L M where L is a convex subcategory of A containing B,
and M is a L-module. Let L s L = ??? = L with L , . . . , L connected,1 t 1 t
and M s M [ ??? [ M with M g mod L for any 1 F j F t. Since A is1 t j j
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connected, the modules M , . . . , M are non-zero. Clearly, B is a convex1 t

subcategory of L and the translation quivers G are full translationi

subquivers of G which are closed under predecessors in ind L. Each of LA j

is a proper convex connected subcategory of A, and hence L is quasi-tiltedj

with x weakly non-negative. Therefore, we may assume that each L isL jj

either tame tilted or a tame semiregular branch enlargement of a tame
concealed algebra. We shall first prove that, for each 1 F j F t, M is aj

direct sum of indecomposable modules lying in one connected component
of G consisting of directing modules. Fix 1 F j F t. Observe that if LL jj

contains an algebra B then L is tilted, because G is a full translationi j i

subquiver of G . Conversely, each algebra B is contained in some L .L i jj

Suppose now that L is not tilted. Then L is a tame semiregular branchj j

enlargement of a tame concealed algebra CX, and the unique preprojectivej

component, say PP
X, of G is different from PP , . . . , PP . Since the compo-j L 1 rj

wnents PP , . . . , PP exhaust all preprojective components of G , invoking 23,1 r A
xp. 88 , we conclude that M has at least one indecomposable directj

X Ž .summand lying in PP . Applying 3.5 we then conclude that M is a directj j
Ž . Xsum of preprojective modules from PP . Assume now that L is tilted, sayj j

Ž .of the form L s End T for a hereditary algebra H and a tiltingj H j jj

Ž Ž . Ž ..H -module T . Then T induces a torsion theory YY T , XX T on mod L ,j j j j j j
Ž . � L jŽ . 4 Ž . �where YY T s Z g mod L , Tor X, T s 0 and XX T s Z gj j 1 j j

4mod L , Z m T s 0 . Denote by CC the connecting component of Gj L j j Lj j

Ž w x.determined by T . It is well known see 13 that the support algebra ofj

any preprojective component of G different from CC is tame concealed,L jj

w x Žand so after the extension of L to A s L M it remains because q isA
.weakly non-negative a preprojective component of G . Therefore, theA

Ž .preprojective components of G different from CC if they exist are givenL jj

by the preprojective components PP of all algebras B which are containedi i

in L . Clearly, we have at least one of such components PP if CC is notj i j

preprojective. Assume CC is not preprojective. We claim that then CCj j

contains at least one injective module. Suppose it is not the case. Then CCj

is a semiregular component and hence T has no preprojective directj
Ž w x.summands see 24 . Moreover, the slice of CC contains as a convexj

subquiver the Euclidean slice of the preinjective component of one of the
algebras B . Consequently, H is wild and hence x is not weaklyi j L j

Ž w Ž .x.non-negative see 13, 6.2 , a contradiction. Assume CC contains anj

injective module. Observe that if DD is a component of G which isL j

Ž .contained entirely in XX T then any module of DD is a successor of aj
Ž Ž . .module Z in CC with Hom D L , t Z / 0, and so a successor of aj L j Lj j

module Z of projective dimension 2. Hence DD is contained in RR _ LL .L Lj j
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Ž . Ž .Applying now 2.11 and the property 7 of the algebras B , 1 F i F r, wei

conclude that M is a direct sum of modules from CC . Finally, consider thej j

case when CC is a preprojective component without injective modules.j

Then L is a tilted algebra of Euclidean type having a complete slice in CC .j j

If CC is different from any of the components PP , . . . , PP then M has atj 1 r j

least one indecomposable direct summand from CC , and invoking againj
Ž .3.5 , we conclude that M is a direct sum of modules from CC . If CC is onej j j

Ž .of the components PP , 1 F i F r, then it follows from our assumption 7i

that M is a direct sum of modules from the preinjective component of G .j Bi

Therefore, we have proved that, for each 1 F j F t, M is a direct sum ofj

indecomposable modules lying in one component of G formed by direct-L j

ing modules. Applying arguments as in the final part of the proof of
w xTheorem 2.3 in 7 we infer that in fact M is a directing L-module. Let P

be the indecomposable projective A-module whose radical is M, and CC be
w xthe connected component of G containing P. We know from 12, 32 thatA

P is an indecomposable directing A-module. Moreover, it follows from the
w xabove discussion and 23, p. 88 that the full translation subquiver of CC

formed by all proper predecessors of P in G consists of all predecessorsA

of indecomposable direct summands of M in G , and all these modules areL

directing. Since M , . . . , M are non-zero, we also deduce that EE , . . . , EE1 t 1 t

are full translation subquivers of CC which are closed under predecessors.
Ž . Ž .Invoking now 2.3 and 2.4 we infer that CC is a component without

injective modules and oriented cycles. Finally, observe that we may repeat
the above considerations for any indecomposable projective A-module PX

corresponding to a source of Q which is not in Q . Consequently, theA B

component CC contains the indecomposable projective A-modules corre-
sponding to all sources of Q which do not belong to Q , and theA B

predecessors of these modules form a translation subquiver of CC consist-
ing of directing modules. Hence we conclude that CC is directing with
finitely many t -orbits and for any left stable module U in CC there areA

1 F i F r and a positive integer m such that t mU belongs to the transla-A
Ž .tion quiver EE . Since we assumed that A is not tilted, applying 2.3 , wei

w xobtain that CC is a generalized standard 28 semiregular component
without oriented cycles and injective modules. Moreover, since EE , . . . , EE1 r

are full translation subquivers of CC which are closed under predecessors,
we deduce as above that CC is the connecting component of a tilted algebra

Ž .F s End T given by a wild hereditary algebra and a tilting H-moduleH

without preprojective direct summands. But F is a convex subcategory of
A with x not weakly non-negative, a contradiction with our assumption.F

Therefore, A is either tame tilted or a tame semiregular branch enlarge-
ment of a tame concealed algebra. This finishes the proof.
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