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Controlled buckling of thin film on elastomeric substrate in large
deformation
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Abstract Electronic systems with large stretchability have many applications. A precisely controlled
buckling strategy to increase the stretchability has been demonstrated by combining lithographically
patterned surface bonding chemistry and a buckling process. The buckled geometry was assumed to
have a sinusoidal form, which may result in errors to determine the strains in the film. A theoretical
model is presented in this letter to study the mechanics of this type of thin film/substrate system
by discarding the assumption of sinusoidal buckling geometry. It is shown that the previous model
overestimates the deflection and curvature in the thin film. The results from the model agree well
with finite element simulations and therefore provide design guidelines in many applications ranging
from stretchable electronics to micro/nano scale surface patterning and precision metrology. c© 2011
The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1102101]
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Stretchable electronics enables many new applica-
tions such as flexible displays,1 electronic eye camera,1–4

conformable skin sensors,5 smart surgical gloves,6 and
structural health monitoring devices.7 Circuits that
use organic semiconductor materials can sustain large
deformations,8–10 but their electronical performance is
relatively poor comparing to conventional inorganic ma-
terials such as silicon. It is critical to use the high per-
formance conventional inorganic material (e.g., silicon)
to develop stretchable electronics. Since all known in-
organic semiconductor materials are brittle and frac-
ture at strains of the order of 1 percent, sophisticated
designs are required to make these inorganic materi-
als stretchable. One of the most intuitive approaches
is to produce stretchable components directly based on
periodic wavy shaped ribbons (or membranes) bonded
at all points on elastomeric substrates.11–13 The wave-
lengths and amplitudes, which are determined by ma-
terial properties (e.g., moduli and thickness) without
any direct control, of the waves can change to accom-
modate strains (∼ 20%) in a way that involves small
strains in the ribbons.14–16 In a related approach, the
ribbons can be designed to bond to the elastomeric sub-
strate only at certain locations,17 which has the advan-
tage that the wavelengths can be defined precisely with
a level of engineering control to have a higher stretch-
ability. Figure 1 schematically illustrates the fabri-
cation process,17 which combines lithographically pat-
terned surface bonding chemistry and a buckling pro-
cess. Figure 1(a) shows the bonding chemistry on a
pre-stretched poly(dimethylsiloxane) (PDMS) substrate
with prestrain εpre = ΔL/L along the ribbon direction.
Let L′

0 denote the width of activated regions, where
chemical bonding occurs between the ribbons (e.g., Si)
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and the PDMS substrate and L0 the width of inacti-
vated regions, where only weak van der Waals inter-
actions occur at the interface. Thin ribbons are then
attached to the prestrained and patterned PDMS sub-
strate (Fig. 1(b)) with the ribbon direction parallel to
the prestreched direction. Releasing the prestrain leads
to compression, which causes the ribbons on the inac-
tivated regions to buckle and move out of the plane of
the substrate (Fig. 1c). The wavelength of the buckled
structures is then given by L1 = L0/(1 + εpre) due to
the geometrical constrain as shown in Fig. 2.

Fig. 1. Schematically illustration of the fabrication process
for controlled buckled thin film.

Jiang et al.18 developed an analytical model without
considering the finite geometry change (i.e., the differ-
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ence between the undeformed and deformed configura-
tion) to study the buckling behavior of such systems.
The buckling profile of the ribbon is assumed to be a
sinusoidal form w = 1

2A (1− cos 2πx/L1), which satis-
fies vanishing displacement and slope at the two ends
x = 0 and x = L1. The amplitude A is determined
by the energy method. The above model is referred
as small deformation model in this paper. For small
prestrain (<10%), the buckle profile can be represented
by the above sinusoidal form and their models agree
well with experiments. As the prestrain increases, the
buckle profile will not have a sinusoidal form and there
will be a discrepancy between the existing model and
experiments.17–19 In addition, the rotation at the two
ends will also not be zero since the substrate is compli-
ant.

Fig. 2. Schematic diagram of mechanics model for the thin
film with torsional springs at the two ends.

This paper aims to establish a mechanics model to
describe the deformation of the buckled thin film by dis-
carding the assumption of the sinusoidal form for buck-
led profile. The non-vanishing rotation at the ends due
to the substrate is accounted by a rotational spring with
a constant spring constant.

The thin film is modeled as an elastic beam be-
cause its thickness (∼0.1 μm) is much smaller than any
characteristic length such as the wavelength (∼100 μm)
and film width and length. Consider the initial, strain-
free configuration of the beam (Fig. 2a) with bend-
ing rigidity EI and length L0, the ends are attached
to elastic rotational springs with the spring constant
k. For a beam with the Young’s modulus E and uni-
form thickness h, the bending rigidity EI = Ēh3

/
12,

where Ē = E
/(

1− ν2
)
is the plane-strain modulus,

and ν is the Poisson’s ratio. Figure 2(b) shows the de-
formed configuration and forces acting on the beam.

The bending moment M0 and the rotation θ0 through
the torsional spring constant at the ends are related by
M0 = kθ0. The limit k → ∞ corresponds to a doubly-
clamped beam and the other limit k → 0 corresponds
to a simply-supported beam. The left end is fixed and
right end has a displacement u = L0 − L1 to the left,
where L1 is the deformed span length. Instead of us-
ing the coordinate (x, y), it is more convenient to work
with the intrinsic coordinate (s,θ), where s is the arc
length from the left end to a point on the deformed
shape and θ is the slope angle at that point. The co-
ordinate (x, y) is related to (s,θ) by dx/ds = cos θ and
dy/ds = sin θ. The equilibrium equation of the beam
as shown in Fig. 2(c) is then given by

EI
dθ

ds
= kθ0 − Py, (1)

where P is the compressive load at the ends. The
boundary conditions are

x (0) = 0, x (L0) = L0 − u,

y (0) = 0, y (L0) = 0,

θ (0) = θ0, θ (L0) = π − θ0. (2)

By introducing the following non-dimensional terms
x̄ = x/L0, ȳ = y/L0, s̄ = s/L0, k̄ = kL0/EI,
P̄ = PL2

0

/
EI and ū = u/L0, Equations (1) and (2)

can be written in non-dimensional form as

dθ

ds̄
+ P̄ y = k̄θ0, (3)

and

x̄ (0) = 0, x̄ (1) = 1− ū,

ȳ (0) = 0, ȳ (1) = 0,

θ (0) = θ0, θ (1) = π − θ0. (4)

Equations (3) and (4) give

dθ

ds̄
= ±

√
4P̄C2 − 4P̄ sin2

θ

2
, (5)

where C satisfies

4P̄C2 =
(
k̄θ0

)2
+ 4P̄ sin2

θ0
2
. (6)

The plus and minus sign distinguish between buckling
to the top and to the bottom. In the following, only the
minus sign is considered. Equation (5) then becomes

dϕ√
1− C2 sin2 ϕ

= −
√
P̄ds̄, (7)

where sin (θ/2) = C sinϕ. Integrating Eq. (7) from
the end (s̄ = 0, ϕ = ϕ1) of the beam to the mid-length(
s̄ = 1

2 , ϕ = 0
)
gives

ϕ1∫
0

dϕ√
1− C2 sin2 ϕ

=
1

2

√
P̄ , (8)
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where ϕ1 satisfies

sin (θ0/2) = C sinϕ1. (9)

For any given θ0, C, P̄ , and ϕ1 can be solved by
Eqs. (6), (8) and (9). The shortening ū (i.e., com-
pressive strain ε = (L0 − L1)/L0 = εpre/(1 + εpre))
and maximum deflection ȳmax of the beam are then ob-

tained as ε = ū = 2−4
∫ ϕ1

0

√
1− C2 sin2 ϕdϕ

/√
P̄ , and

ȳmax = 2C (1− cosϕ1) /
√
P̄ .

The finite element method is also used to study the
buckling of thin film in order to validate the above an-
alytical solution. The thin film is modeled by the beam
element (B21 in the ABAQUS) and the substrate by
the 4-node plane-strain element (CPE4). The thin film
and substrate share the same nodes at the interface of
the active regions. We first determine the eigenvalues
and eigenmodes of the film/substrate system. The first
eigenmode is then used as initial small geometrical im-
perfection to trigger the buckling of the system. The
imperfections are always small enough to ensure that
the solution is correct.

Fig. 3. The normalized mid-span deflection ȳmax versus
the compressive strain ε with different normalized torsional
spring constant k̄.

Figure 3 shows normalized mid-span deflection ȳmax

versus the compressive strain ε with different normal-
ized torsional spring constant k̄. The results from the
current model are shown in solid line, which agree well
with the finite element simulations in dot. It should be
noted that ȳmax is almost the same for double-clamped
(k̄= 1000) and simple-supported ends (k̄= 0), while
ȳmax becomes slightly larger for mid-value k̄. For ex-
ample, ȳmax for k̄ = 40 is 3% larger than that for k̄= 0
at ε=50%. The previous small deformation model (dot-
ted line)14 is also shown in Fig. 3 and it clearly shows
that the small deformation model will overestimate the
deflection about 20% at ε=50%.

The strain in the buckled thin film is dominated
by the bending strain,14–16,20,21 which results from the
thin film curvature and is important to determine the

Fig. 4. The normalized maximum curvature κ̄ = L0κmax

versus the compressive strain ε with different normalized
torsional spring constant k̄.

stretchability/compressibility of the thin film. Figure 4
shows the normalized maximum curvature κ̄ = L0κmax

versus the compressive strain ε with different normal-
ized torsional spring constant k̄. This figure is very
helpful to determine the strains in the thin film. As the
compressive strain increases, the curvature increases for
both the current (solid line) and previous small defor-
mation (dotted line) models. However, the curvature
of small deformation model increases much faster than
that of current model. For example, at 50% compres-
sive strain, small deformation model curvature is 3.0
times higher than that of current model with a k̄=1000.
Figure 4 also shows that as the normalized torsional
spring constant k̄ increases, the curvature increases.
The simple-supported beam (k̄=0) has the lowest nor-
malized curvature 4.97 at 50% compressive strain while
the double-clamped beam has the largest normalized
curvature 10.0 at the same strain level. The finite el-
ement simulations have been used to validate the ana-
lytical results as shown in Figure 4.

The torsional spring constant in the current model
depends on the substrate as well as the dimensions
of the thin film (i.e., thickness and width of acti-
vated/inactivated regions). The PDMS/Si thin film
system is studied here using finite element software
ABAQUS. Figure 5 shows the film thickness effect on
the normalized torsional spring constant k̄. The widths
of activated and inactivated region are 10 μm and 200
μm, respectively. It shows that k̄ drops drastically when
the thin film thickness increases from 0 to 0.5 μm, and
then remains a constant ∼ 40 as the thickness further
increases. The effect of width of activated/inactivated
region on the normalized torsional spring constant k̄ is
shown in Fig. 6. The thin film thickness is 0.1 μm.
With increasing the width of inactive region from 100
μm, the normalized k̄ increases almost linearly from 40.
Increasing the width of activated region also increases
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Fig. 5. The thin film thickness effect on the normalized
torsional spring constant k̄.

Fig. 6. The effect of width of activated/inactivated region
on the normalized torsional spring constant k̄.

the normalized k̄ but the effect is negligible. Figures 5
and 6 give some guidelines to determine the normalized
k̄ in the current model. For example, for typical dimen-
sions (width of activated region > 5μm, width of inac-
tivated region > 100μm, and film thickness > 0.1 μm),
k̄ is larger than 40. Figures 3 and 4 show that the ends
can be assumed to be double clamped (k̄=1000) since
the difference on deflection and curvature are within 5%
comparing with k̄=40.

In conclusion, a mechanics model is developed to
study the deformation of buckled thin film by discarding
the assumption of the sinusoidal form for buckled profile
and it agrees well with finite element simulations.
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