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Abstract—We present a comprehensive design methodology for constructing low-cost multipro-
cessors that use local spares to tolerate the failure of either processor clusters or individual processors.
We first formalize the concepts of global- and local-sparing in terms of graph automorphisms. We
then present a method for partitioning a multiprocessor graph by its automorphisms and for in-
corporating local-sparing to tolerate faults. We emphasize local-sparing designs, since they offer
higher reliability-to-cost ratios and can reconfigure faster and in a localized manner. When the spare
clusters in each local subsystem are certain sizes, our designs are optimal in the number of spare
intersubsystem links. They are all efficient (optimal in some cases) in terms of the number of spare
intrasubsystem links. We present switch-based implementations that significantly reduces the spare
link complexities of the designs. These implementations are equally efficient for any spare cluster
size, so they yield efficient local-sparing designs that can tolerate individual processor faults (cluster
size of one). Algorithms for fast, localized, and incremental reconfiguration of our FT designs are
also developed. Finally, we demonstrate that our local-sparing designs have higher reliability-to-cost
ratios than previous designs.

Keywords—Automorphisms, Fault-tolerant multiprocessors, Global-sparing, Local-sparing, Re-
configuration, Structural fault tolerance.

1. INTRODUCTION

Fault-tolerant (FT) multiprocessors are widely used in on-line transaction processing; they are
essential in critical computations like aircraft control. Fault tolerance is also desirable in mas-
sively parallel systems that have a relatively high failure probability. Examples of such multi-
processors are the nCUBE2 hypercube computer, Thinking Machine’s CM-5 (a fat-tree struc-
tured computer), and Intel’s Paragon (a mesh-connected computer). Many parallel algorithms
designed for such multiprocessors are tailored to exploit their interconnection structures [1-4].
Such structure-sensitive algorithms are thus vulnerable to faults that damage a multiprocessor’s
structure. Hence, it is important to design multiprocessor systems with structural fault tolerance
(SFT), which is defined as the ability to reconfigure around faults to preserve interconnection
structure. SFT (or FT for short) in general raises the availability and performability of medium-
to large-scale multiprocessors.
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A number of FT designs for specific multiprocessor architectures have been proposed based
on graph theoretic models in which the processor-to-processor interconnection structure is rep-
resented by a graph [5-14]. Most previous work does not satisfactorily meet important design
objectives like low hardware overhead, efficient reconfigurability, and applicability to a wide range
of multiprocessor structures and faults. Among the few previous design methods that are appli-
cable to any multiprocessor structure are the Diogenes method [9], the “decoupling networks”
technique [8], and the “edge-skipping” technique for the class of diagonal graphs (which include
meshes and hypercubes) [7]. Furthermore, most prior FT systems are designed to tolerate inde-
pendent faults only. Recent work [15,16] suggests that in highly-integrated systems, processors
often fail in clusters due to correlated factors like shared defective wafers and power supply fluc-
tuations. Hence, when the probability of clustered processor failures is significant, it is more
cost-effective to design multiprocessors that can tolerate a cluster of m physically adjacent pro-
cessor failures rather than one that can tolerate m independent faults. As we will demonstrate
later, our design method incorporates much lower complexity for the former type of FT design.
In situations where clustered failures are less likely, it is, however, more cost-effective in terms of
the number of spare processors to tolerate independent individual faults, for example, to tolerate
any two faults in a subsystem rather than any two m-cluster faults, where m > 1. We thus also
provide hardware-efficient designs to tolerate individual processor faults.

The goal of this work is to develop a methodology of FT design for clustered as well as individual
processor faults, that is, both general and hardware-efficient, that can exploit local-sparing, and
that allows reconfiguration to take place in an incremental, distributed, and localized manner.
Incremental reconfiguration is defined as the ability to reconfigure around any new set of faults
without undoing any earlier reconfiguration around previous faults—this reduces the down-time
of a system when faults occur. Distributed reconfiguration allows different parts of the system
to reconfigure concurrently—this not only makes reconfiguration faster, but also avoids reliance
on a central controller. In designs with localized reconfiguration capability, each subsystem with
its own local spares can reconfigure around its faults independent of the other subsystems—this
makes reconfiguration simpler and faster.

The focus of this work is a graph automorphism-based method for designing FT multiproces-
sors with local-sparing; we refer to this as the ALS (for Automorphic Local-Sparing) method.
Both cluster- and individual-fault-tolerant designs are presented, as well as switch-based imple-
mentations of these designs that significantly reduce the spare link overhead.

2. PRELIMINARIES

A graph G(V, E) is used here to represent the structure of a distributed-memory multiprocessor
system with a static interconnection network, where each node in the node set V(G) of G repre-
sents a processor-router pair in the system, and the edge set E(G) of G represents the dedicated
interprocessor communication links. For a subset S of V(G), G(S) will denote the subgraph
induced in G by the nodes in S. Unless otherwise specified, N and e will denote the number of
nodes and edges, respectively, of G, while d will denote its maximum node degree.

Two types of failures in a multiprocessor system are of interest, processor failures and link
failures. In our model, a link failure corresponds to the deletion of an edge from G, while a
processor failure corresponds to the removal of a node and all edges incident on it from G. If F'is
the set of faults (faulty nodes or edges) in G, then G — F denotes the graph obtained by deleting
the faults from G as explained above. We consider only processor failures, since processors are
much more complex than links and are thus are more likely to fail. Moreover, since a faulty
processor effectively causes all incident links to be removed from the system, a link failure can
be modeled as the failure of an incident processor.

G’ is a supergraph of G if E(G') D E(G) and V(G') 2 V(G). G* is an edge-supergraph of G
if E(G¢) D E(G) and V(G®) = V(G). A supergraph G'[k,G] of G is a k-fault-tolerant (k-FT)
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realization of G, if for any set F of k nodes of G’, G' — F contains a subgraph isomorphic to G.
We use G’ to denote either a generic FT supergraph of G, or a specific type of FT supergraph
that is clear from the context. G is called the basic graph, and its nodes and edges are primary
nodes and edges. The nodes and edges of the fault-free subgraph of G’ serving as the currently
active graph isomorphic to G are active nodes and edges, respectively, while the remaining nodes
and edges of G’ are spare. The following convention will be used in the figures. Spare nodes are
shown as white circles with a light or dashed outline, spare edges as light or dashed lines, active
nodes as white circles with solid outlines, active edges as solid lines, and faulty nodes as black
circles.
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(a) A 4 X 4 mesh My 4. (b) Its local-sparing FT supergraph
that can tolerate one fault in each of
the four disjoint 2 x 2 submeshes.

Figure 1.

Instead of a global-sparing design of the foregoing kind, we can associate spares locally with
each subset V; of a partition {V3,...,V;}, of V(G). Spare edges are then added in G so that,
for every set of faults F' in the resulting supergraph G’ that contains at most k; faulty nodes
from each V;, G’ — F contains a subgraph isomorphic to G. Such a supergraph G’ is denoted
by G'[{k1,..-,k:}, G]. Figure 1b shows the supergraph G'[{1,1,1,1}, My, 4] of the 4 x4 mesh My 4
(Figure 1a) that can tolerate one fault in each of the four corner 2 x 2 submeshes. It is also useful
to design local-sparing systems that can tolerate fault clusters as opposed to independent faults
in each subset V;. A “cluster” fault pattern is one in which certain groups or clusters of processors
fail due to correlated fault-causing events like radiation or voltage surges. Cluster fault patterns
are more formally defined later.

Next, we review some basic terminology pertaining to graph automorphisms [17,18]. Two
graphs G and H are said to be isomorphic if there is a bijection ¢ : V(G) — V(H) such
that {x,y} € E(G) if and only if {¢(z),$(y)} € E(H); ¢ is an isomorphism from G to H. An
isomorphism from G to itself is called an automorphism of G. Basically, an automorphism of G
is a permutation of V(G) that preserves adjacency. The set of all automorphisms of G forms a
group under composition, and is denoted by aut(G). Two nodes z and y of G are said to be
similar if there is an automorphism mapping z to y.

Any automorphism o can be expressed uniquely (up to ordering) as the product of disjoint
cycles (21,0, 1,15 - - » T1,1, -1 (2,0, T2,1, - - - yZalp—1) - (4,0, 4,1, - - -, Tty —1). This cyclic represen-
tation means that a(rip) = 1,1, a(r1,1) = T1.2,--- yoT1y-1) = Z1,00--., (Te0) = Tt
a(zs,1) = Te2,- .., (&e1,-1) = Tr,0. If & is an automorphism of G, then so is each element of the
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set subgrp(a) = {e,,0?,...,a%®~1}, where o(a) is the least integer i such that of = e, the
identity permutation, and is called the order of . Here, of is recursively defined as a? = aoa?™1,
where o denotes function composition. subgrp(a) is a subgroup of aut(G), and is said to be gen-
erated by a. A circulant graph is one that has at least one automorphism consisting of a single
cycle that contains all N nodes.

3. k-FT DESIGNS

Here, we recapitulate relevant aspects of the automorphism-based global-sparing k-FT design
method presented in [19,20]. For a circulant graph G, we choose an automorphism « that has a
single cycle containing all the N nodes. A spare node s, is arbitrarily inserted between any two
nodes in this cycle to construct a single cycle permutation a; with N + 1 nodes. For example,
suppose G is a circulant graph with five nodes and a = (1,2,3,4,5) is an automorphism of G.
We insert a spare node s; between nodes 2 and 3 to obtain the permutation oy = (1,2, 31, 3,4, 5),
and construct a supergraph G; of G with one spare node s; that has a; as an automorphism. We
can then use the automorphisms (of G1) in subgrp(a;) to reconfigure around any single faulty
node; subgrp(a;) contains the following six automorphisms of G;:

oy = (1,2,381,3,4,5),
(1)? = (1,81,4)(2,3,5),
(e1)® = (1,3)(2,4)(s1,5),
(1)* = (1,4,51)(2,5,3),
()® =(1,5,4,3,31,2),
(1)® = e = (1)(2)(1)(3)(4)(5)-

It can thus be seen that, for any faulty nodes u, there is some automorphism (a;)* in subgrp(a;)
that maps s; to u. Under this new mapping, only the nonfaulty nodes in G; are labeled as nodes
of G; the faulty node is now labeled as the spare node. Furthermore, any automorphism of Gy
maps some subgraph J to an isomorphic subgraph K. Thus, the new labeling of the nonfaulty
nodes of G; determines a nonfaulty copy of G, and G; is a 1-FT supergraph of G.

We now explain how G; can be constructed from G so that oy is an automorphism of G.
Consider an arrangement of the nodes of G on a circle C according to the circular order of
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automorphism o of G. For example, Figure 2a shows such a circular arrangement of a circulant
graph H according to the automorphism (0,1,...,19); this is called a (symmetric) embedding
of G on a circle, and is denoted by circ(G). We define the clockwise circular distance (cd*)
between two nodes u and v, denoted cd* (u,v), on C as one plus the number of nodes encountered
when going clockwise from u to v and visiting only the first [N/2] nodes inclusive of u on C.
Thus, cd*(u,v) is defined only if v lies in the first half of nodes of C when going clockwise from u.
The counterclockwise circular distance (cd™) between u and v is similarly defined. Note that
for any two nodes u and v, exactly one of cd*(u,v) and cd~(u,v) is defined, unless N is odd
and cd*(u,v) = cd~(u,v) = [N/2]. The circular distance (cd) between two nodes u and v,
denoted, cd(u,v), is defined as either ed*(u,v) or ed~(u,v), whichever is defined. The ed of
an edge (u,v) is the same as cd(u,v). The cd*s between each node u and its neighbors in the
graph H of Figure 2a are four, five, and seven. Similarly, the cd™s between each node u and its
neighbors in H are also four, five, and seven. This is a characteristic of circulant graphs, viz.,
they can be laid out on a circle such that every node has neighbors at the same set of clockwise
and counterclockwise cds from it.

The embedding circ(G), and hence G, can be characterized by its distance sequence ds(G),
which is the ordered set, increasing from left to right, of the cds between any node u in G and all
its neighbors in one of the semicircles formed in circ(G) by the diameter through u. The distance
sequence of H in Figure 2a. is (4,5,7).

Suppose that spare node s; is inserted between nodes v and v to form a; from a. To con-
struct Gy, we insert s; between the same pair of nodes on circ(G). As a result, the cd of some
edges of G increases by one. It is easy to show that for each cd d; in ds(G), there is an edge
of G with cd d; in circ(G), whose cd becomes d; + 1 on inserting s;. Similarly, it can be shown
that the cd of at least one edge of G remains d; after inserting s;. Let D be the set of all
edge cds obtained by inserting s; in circ(G). Then, D = ds(G) + 1. To construct Gy, for every
node u of G and each d; € D, we insert spare edges of cd d; incident on wu, if such edges are not
already present. G has aj as an automorphism, and its distance sequence is D. In Figure 2b,
edges have been added in this manner to construct a 1-FT supergraph H; of the graph H in
Figure 2a; for clarity, only the edges incident on nodes s; and 0 are shown. It can be seen
that ds(H,) = ds(H) + 1 = (4,5,6,7,8).

Since G, is circulant, we can again construct a 1-FT supergraph G; of G; as described above.
Note that if H is an i-FT supergraph of G, and H’ is a j-FT supergraph of H, then H’ is also
an (i + j)-FT supergraph of G; G is thus a 2-FT supergraph of G. A k-FT supergraph G of G
can be obtained by iteratively constructing 1-FT supergraphs of G,Gj,...,Gk~1 in the man-
ner described above. This iterative construction procedure is called SUPER_.CIRCULANT |[20],
and the k-FT supergraph of G it generates is denoted by G,..[k,G]. It is shown in [20] that
SUPER.CIRCULANT constructs optimal k-FT supergraphs with node degree k + d for certain
classes of circulant graphs. In the worst case, the node degree of a k-FT supergraph is (k+1)d. A
switch implementation method for the k-FT supergraphs using Nk 1-to-(k + 1) demultiplexers is
also presented in [20] in which the node degree reduced to d; the switch and wiring complexity of
this design is ©(INkd?); this compares very favorably with the hardware complexity of previous
design methods.

When G is noncirculant, a method called cycle merging is used to construct a circulant edge-
supergraph of G. SUPER_CIRCULANT is then applied to this edge-supergraph. This approach
works efficiently when G is “circulant-like”, as is the case with n-dimensional hypercubes and
2-D meshes. The efficiency of the automorphic method in constructing k-FT hypercubes is demon-
strated in [20]. For many graphs that are not circulant-like, for example, trees and pyramids,
extension to a circulant graph can be expensive. In such cases, using the methodology developed
in this paper, it is possible to design efficient local-sparing systems that associate spares with each
cycle of a (multicycle) automorphism of G. Even for circulant-like graphs for which efficient ¥-FT
designs are possible, automorphic local-sparing (ALS) designs yield lower link complexities, and
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faster and localized reconfiguration compared to k-FT (global-sparing) designs. Thus, the ALS
method should prove useful for incorporating fault tolerance in a wide range of multiprocessor
structures.

In the rest of the paper, we use graph automorphisms to develop the method for designing
FT multiprocessors with local spares. We partition the node set of G by the cycles of some
automorphism a = CyCy,...,C: of G, i.e., each subset V; of this partition of V(G) is the
cycle C; of a. Automorphism « is called the seed automorphism for the resulting FT design.
Clusters of spare nodes (of size > 1) are associated locally with each cycle C; and intracycle spare
edges added to make them fault-tolerant. Finally, spare intercycle edges are added so that the
resulting supergraph G’ can tolerate fault clusters in each cycle. Note that for a cluster size of
one, we obtain designs that tolerate independent single faults in each cycle.

In all our figures, the nodes of a cycle of an automorphism are embedded on a circle C that
is evident from the circular arrangement of nodes on it. For brevity, we will state most of the
results without formal proofs. We attempt to provide an intuitive explanation of all results in
the text.

4. FAULT TOLERANCE IN CIRCULANT SUBGRAPHS

First, we describe the cluster-FT method in terms of circulant subgraphs of G. Suppose G is
a noncirculant graph, and a = C; Cs,...,C; is an automorphism of G. Recall that cycle C; is
represented as C; = (0, Zi,1,. .-, Zil;~1), Where l; = |C;|. It follows from the definition of a
circulant graph that the subgraph G(C;) induced in G by C; is circulant, and has C; as a single-
cycle automorphism. We will omit the G in all notation containing G(C;), whenever it is clear
that we are referring to the subgraph induced by C; rather than the cycle C; itself. Let us add a
cluster {s1,1,...,81,m} of m consecutive spare nodes to circ(C;) between two nodes z;,s and Z;,s41.
Then, generalizing the argument given in Section 3, we construct the circulant supergraph of C;
containing these consecutive m spares, by inserting edges with cds d; and d; + m at every node,
for every d; in ds(C;). The resulting supergraph is denoted by G'(Ci(m)) or simply Cj(m)). Now
ds(C;(m)) = ds(C;) + m, and the permutation (Zip,...,Ti,s, S1,1,--+»81,ms Ti,st1s+ -+ s Tijly—1)s
denoted by C™, is an automorphism of C;(m). For a set of integers A and an integer r, A + r is
defined as the set AU{a;+7 : a; € A}. For example, if G(C;) is a simple cycle, then ds(C;) = (1),
and

ds(C1(5)) = ds(C1) + 5= (1) + 5= (1,6).

The construction procedure CLUSTER_CIRCULANT (C;, m) for C;(m;) is formally described
in Figure 3.

The supergraph C;(m) can tolerate any fault pattern that occurs among m consecutive nodes
on C*, since some automorphism in subgrp(C{") can map the m consecutive spare nodes to

Procedure CLUSTER_CIRCULANT(m, C;);
begin
Insert m consecutive spare nodes between any two nodes of Cj;
ds(Ci(m)) := ds(C;) + m;
for each node z; , of C; do
Insert all edges e incident on z; s such that cd*(e) € ds(Ci(m)) — ds(C;);
for each spare node s; ; inserted do
Insert all edges e incident on s; ; such that cd*(e) € ds(Ci(m);
G'(C;i(m)) := the resulting supergraph;
end. /* CLUSTER.CIRCULANT */

Figure 3. Algorithm for constructing the supergraph C;(m) of C;.
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any cluster of m consecutive nodes within which the faults occur. We call any fault pattern
affecting f consecutive nodes (only the first and last nodes must be faulty) of a circulant graph
an f-fault cluster. Similarly, a group of s consecutive spare nodes inserted between any two
primary nodes of C; is called an s-spare cluster. We denote by G'(Ci(my,my,...,my)), or
simply Ci(mi,my,...,my), the circulant supergraph of G(C;) constructed by p applications of
procedure CLUSTER.CIRCULANT, where we insert m;-spare cluster in the j*! iteration, 1 <
J < p. We also denote its resulting single-cycle automorphism by C;"*""™*. Cy(my,ms,, ..., mp)
can tolerate p clusters of faults, where the j*® cluster contains at most m; faults, i.e., it is an
mj-fault cluster. When m; = my = .- = mp = m, we will denote Ci(m1,mg,...,mp) by
Ci([m]P) and its automorphism C;*"*™ by /™",

THEOREM 1. The supergraph C;(my,...,my) of C; constructed by p calls to procedure CLUS-
TER_CIRCULANT can tolerate all m;-fault clusters, 1 < i < p. 1

The supergraph C;(5, 7) is constructed by inserting five spare nodes in C;, adding the required
spare edges to obtain C;(5), and then inserting seven spare nodes and additional spare edges. We
can reverse this insertion process to reconfigure around a 7-fault cluster and obtain a fault-free
copy of C;(5). This supergraph can be further reconfigured around any 5-fault cluster to obtain
a fault-free copy of C;. The question, however, remains: can C;(5,7) be reconfigured around
a 5-fault cluster that might occur before a 7-fault cluster to obtain a fault-free copy of C;(7)?
If this is indeed possible, then we can incrementally reconfigure C;(5,7) around 5- and 7-fault
clusters irrespective of their order of occurrence.

The question of the incremental reconfigurability of C;(5,7) is equivalent to asking whether
Ci(5,7) is isomorphic to Ci(7,5). The answer to this question is yes, since

ds(Ci(5,7)) = (1) +5) + 7=(1,6) + 7=(1,6,8,13) = (1,6,8,9)
(see footnote!), while
ds(C{(7,5)) = (1) + 7) +5=(1,8) +5=(1,6,8,13) = (1,6,8,9).

Hence, their distance sequences are the same, and two circulant graphs with the same distance
sequences and number of nodes are isomorphic. Theorem 2 establishes that incremental recon-

figuration is also possible in the general case of C;(my,...,m;).
THEOREM 2. It is possible to incrementally reconfigure C;(my,...,m,) around any order of
occurrence of f-fault clusters, where f € {m1,...,mp}. |

It can be shown that procedure CLUSTER_-CIRCULANT introduces mk spare nodes and
between k to kd spare links per node (i.e., a node degree of d + k and d + kd, respectively) to
construct C;([m]*). The former case is optimal in the number of spare links. We will later present
a switch implementation of the supergraphs constructed by procedure CLUSTER.CIRCULANT
that reduces their node degrees to that of the basic graph, and also reduces their spare link
complexity.

5. LOCAL-SPARING DESIGNS

Two cycles C; and C; in automorphism o of G are said to be adjacent if there is at least one
edge between them. If no two cycles of a are adjacent, then we can make each cycle C; tolerant
of any desired fault pattern F; using CLUSTER.CIRCULANT. The resulting supergraph G’
automatically becomes tolerant of fault pattern F; in each cycle C;. However, if there exist

1Any cd d; measured in the clockwise direction from node u that is greater than |I/2}, where  is the number of
nodes (including spares) of a cycle, has to be converted to a cd™ of [ — d;. In the above case, | = 22, and thus,
a cd of 13 is converted to 22 — 13 = 9.
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adjacent cycles in a, then we have to introduce redundancy into the intercycle edges, so that G/
can tolerate such fault patterns in each cycle. Here we discuss how spare intercycle edges are
inserted, and how their number can be minimized by using spare clusters of specific sizes.

To simplify the discussion, suppose that we want to make each of the cycles C; tolerant of
any m;-fault cluster. We can apply CLUSTER_.CIRCULANT once for each cycle C; to construct
supergraphs C;(m;) with automorphism C;™. Without loss of generality, we assume that the spare
clusters are inserted in the cycles of « in the order of cycle numbers. As we will see later, the
final supergraph constructed will be the same irrespective of the insertion order. Now, whenever
we apply this construction process for any C;, we should also add spare edges corresponding to
the intercycle edges incident on Cj, if any, so that of = C7™,...,C;"Cit1,...,C: becomes an
automorphism of the partial supergraph G, of G constructed so far. In this way, we obtain a
~ sequence of supergraphs G, of G with automorphisms o}, for 1 < ¢ < ¢. The automorphisms
in subgrp(c}) can be used to reconfigure around any m;-fault cluster in C; to obtain a fault-free
copy of Gj_;.

5.1. Sample Construction

Consider the graph H in Figure 4a arranged according to the automorphism a = C; Cy,
where C; = (71,0,...,21,8) and C2 = (220,...,235). The same graph is shown in Figure 4b,
where, for clarity, only nodes x5 ¢ and 3 4 are shown with all their incident edges. Our aim is to
insert a spare cluster of size m; = 3 in €} and some spare edges so that we obtain a supergraph
with automorphism o} = C§ C,. Subsequently, we want to insert a spare cluster of size mg = 3
in C, and more spare edges so that a} = C$ 3 is an automorphism of the new supergraph, and
is a super-automorphism of of.

Let g(C;,C;) = gi,; be the greatest common divisor (ged) of |Ci| and |Cjl; thus, g(C1,C2) =
ged(6,9) = 3 in H. A partition P;(C;) of a cycle C; into subsets of consecutive ¢ nodes, where ¢
divides |C;|, is called a t-partition of C;. A 3-partition of both cycles of H is marked by braces
around the subsets of nodes forming the partition in Figure 4b. It turns out that for any node
in Cy, its neighbors in C; are in the same relative positions in each subset of a g; o-partition
of C;. For example, going clockwise around Ci, it can be seen that corresponding to the
3-partition {z1,0,%1,1,%1,2}, {%1,3,%1,4,%1,5}, {*1,6,%1,7,T1,8} of C1 (shown by braces in Fig-
ure 4b), z2¢ has the first nodes x; 0, 1,3, and z,,6 in each subset as its neighbors, while z3 4 has
the second nodes z1,1, 1,4, and Z1,7 in each subset as its neighbors. Similarly, corresponding
to the 3-partition of Cy shown in Figure 4c (where edges incident on only nodes z, 0, 1,4, and
81,1), Z1,0 has the third nodes in each subset as its neighbors, while z; 4 has the first nodes in
each subset as its neighbors. In the general case also, for any automorphism « of a graph G
and any node z; 5 in cycle C;, there is a regular pattern of z;,,’s neighbors in P, where P is any
g(C:, C;)-partition of an adjacent cycle Cj.

The above symmetry provides us with a means of incorporating fault tolerance in G so that
relatively few spare intercycle edges are necessary. Before describing the design process fur-
ther, we need to characterize the pattern of neighbors of a node z;s of C; in any subset
T = (TjpsTjp+ls---»Tjp+t—1) Of t consecutive nodes in an adjacent cycle C;. This neighbor
pattern is characterized by the ordered set R = (bz,b1,...,bn), where 0 < b <by <--- < bp<t
are positive integers, and each b, = cw*(z;,5, Z;r), Where z; p is the first node of T, and z;,, € T
is a neighbor of z; ;. The ordered set R is denoted by np(z;,5,T), for neighbor pattern of z; ,
in T. Since the neighbor pattern of z;, is the same in each subset of a g(C;, C;)-partition
Py(c..c;)(Cj), we denote this neighbor pattern by np(zis, Py(c:,c;)(Cj)).- Thus in Figure 4b,
np(22,0, P3(C1)) = (0) and np(z2,4, P3(C1)) = (1), where P3(C1) is the 3-partition of C; shown
in Figure 4b. Theorem 3 formally establishes the above-described symmetry of intercycle neighbor
patterns. We first give a useful lemma from number theory.
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(b) Part of H showing edges incident

(a) H arranged by the cycles of its
automorphism a = C; Ca. on nodes x2,0 and z2,4.

e
1 Y
T
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e tna

g

(d) Construction of the supergraph
H'(C1(3), C2(3))—only edges incident

(c) Construction of the super-
on nodes 1,0, 1,4, and $3,1 aré

graph H'(C1(3), C2).
shown.

Figure 4.
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LEMMA 1. [21] If ged(k,m) = d, then the congruence kxz = l(mod m) is solvable if and only
ifd|!l (d divides l). The congruence has then exactly d solutions. ]

THEOREM 3. Let G be any graph, and let a = Cy Cy,...,C; be an automorphism of G. Further,
suppose that C; and C; are any two adjacent cycles of a, and that P is any g(C;, C;)-partition
of C;. Then, np(x; 5, 1) = np(z; ., T2) for any node z;,, of C; and any two subsets Ty, T; in P.

ProOOF. Let I; = |Ci| and I; = |C;|. Further, let np(z;,,T1) = (b1,b2,...,bs), and let the
first nodes of T; and T3 be z;,, and z;p,, respectively. Since P is a g(C;, C;)-partition of Cj,
ed(Ljpy s Tips) = T §(Ci, Cj), for some integer r > 1. Now, Tjp,+5 is a neighbor of z;,, for
1 €1 £ h. For any integer d, o is also an automorphism of G. In particular, a®% is an
automorphism of G that maps node z; 4 to itself ((s+x!l;) mod !; = s), while it maps node x; p, +4,
to node ;,(p, +b,+zl;)moed 1;- FoOr simplicity, assume that z;¢ is the first node of a subset in P. It
is easy to see that (p; +b;) mod l; = py +b;. Hence, (py +b;+zl;) mod I; = py + b + (zl; mod ;).
From Lemma 1, there is a solution to the congruence

lixz = rg(C;, Cj)(mod [;),

i.e., there is an integer x such that a®* maps ;p,48 t0 Tjp,tr g(Ci,C;)+b = Tjpa+ty- Hence,
Tjp,+b in Ty is also a neighbor of z;s. This implies that b € np(z;s,T1), and thus, that
np(zi s, T1) C np(xis,T2). By symmetry, np(z;s,T2) C np(z; s, T1), which proves the theo-
rem. |

We now illustrate the FT design method for constructing the supergraphs of H (Figure 4a)
with automorphisms o = C} C; and o = C$ C3. In Figure 4c, we insert the cluster S; of three
spare nodes {s1,1, 81,2, 51,3}, consecutively, on C; between the two braced subsets. The notation
used for the spare nodes is that the first subscript is the cycle number ¢ of C; in which the
spare nodes are inserted, while the second subscript ! is the spare node number among those
spare nodes that are inserted in C;. After inserting the cluster S) of spare nodes in C;, each
node in C; is then connected to the spares so that np(zz s, S1) = np(z2,s, P3(C1)). Thus, z2
is connected to the first spare node sy 1, while 224 is connected to the second spare s; 2. As
previously described, we also have to add spare edges within Cj, so that we construct a circulant
supergraph C1(3) of Cy. However, in this case, neither cycles C; and C3 have any intracycle edges,
and we thus do not need to add any intracycle spare edges. The supergraph of H in Figure 4c
has oy = C} Cy = (z2,0,---,%2,5)(T1,0,-+-»%1,5,51,1,+-,51,3, 1,6, - -+, L1,8) S an automorphism.
We denote this supergraph by H’(C;(3),C2). In general, the supergraph G’ of G obtained by
inserting an mg-spare cluster in cycle C; is denoted by G'(Ci(my),...,Ci(m;), Cit1, ..., Ct).
The automorphism o} of H'(C1(3),C2), is called the base automorphism of H'(C1(3),C2), and
is denoted by a(C;(3), C2). Note the difference between the seed and base automorphisms of a
FT supergraph. The seed automorphism is an automorphism a of G' using which we construct
a FT supergraph G’. The automorphism o of G’ that is obtained directly from a by inserting
spare nodes in its cycles is the base automorphism of G'. Reconfiguration of G’ around faults
is done by using an automorphism in subgrp(a’) of the base automorphism o’ to map the spare
node(s) of G’ to the faulty one(s).

Going back to our example, we now insert spare nodes in cycle Cz of H. At this point,
g(C1(3),C1) = ged(12,6) = 6. However, np(u,Ty) = np(u,T3) for any u € C1(3), where Ty
and T, are any two subsets of a 3-partition of C. This follows from the manner in which
we add intercycle spare edges between C;(3) and C; (for each node of Ca, we get the same
neighbor pattern in all the subsets of any 3-partition of Cy(3)), and is established for the general
case by Theorem 4. Note that np(u, R1) = np(u, Rz) is guaranteed by Theorem 3 for any two
subsets R; and R; in any 6-partition of Co. We now insert the cluster S; = {sg,1,...,92,3} of
three spare nodes between the two braced subsets of C3, and again connect each node of C1(3)
to Si so that its neighbor patterns in S; are the same as in the other two braced (primary)
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subsets of C2(3). For example, 10 and s; 1 are connected to the first spare s2;, and z1 4 is
connected to the second spare sz 2 in Figure 4d. We thus obtain the supergraph H’'(C;(3), C2(3))
with base automorphism a(C;(3),C2(3)) = C3C3 = (z1,0,..-,%1,6,51,15--+51,3, 1,65+, T1,8)
(%2,0, 82,15+ - -182,3,%2,1,- - -, T2,5); only the edges incident on nodes z2,0, Z2,4, Z1,0, and z; 4 are
shown in the figure.

The fact that np(u,T1) = np(u,T>) for any u in C1(3) and any subsets T3 and T of a
3-partition of Cy, in spite of the fact that g(C1(3),C3) = 6, is stated for the general case in
the next theorem.

THEOREM 4. Let G be any graph and let C; and C; be adjacent cycles in any automor-
phism o of G. Suppose m; = p g(Ci,C;) spare nodes are inserted in C; to obtain the su-
pergraph G'(Cj(m;), Ci) of G(C;, C;), where p > 1.

(a) For any two subsets Ty and T, of any g(C;, C;)-partition of Cj(m;) and any node z; , of
Ci, np(Ti,s, T1) = np(%ie, T2)-

(b) For any two subsets Ry and Rz of any g(C;, C;)-partition of C; and any node ;. of
Cj(mj), np(zjz, R1) = np(zjz, Ra).

The base automorphism a(C(3), C2(3)) of H'(C1(3),C2(3)) (Figure 4d), or any power of this
automorphism, can be used to map the 3-spare cluster of C2(3) to any 3-fault cluster in it, thus
producing a fault-free copy of H'(C1(3), C2). Subsequently, on the occurrence of a 3-fault cluster
in C1(3), the base automorphism a(C1(3), C2) of H'(C1(83),C2) can map the three spare nodes
of C1(3) to the fault cluster to get a nonfaulty copy of H. We are once more faced with the
question of whether such an incremental reconfiguration of H'(C1(3), C2(3)) can also be achieved
when a 3-fault cluster first occurs in C; and then in Cs, i.e., when the order of the occurrence of
the fault clusters is different from the order in which their associated spare clusters were inserted.
The answer to this is also in the affirmative, if the number of spares inserted in any iteration
in C; is a multiple of g; = lem{g(C;, C;) : C; is adjacent to C;}. This is obviously satisfied
for H'(C1(3),C2(3)), and such an incremental reconfiguration is shown in Figures 5a and 5b.
Note that in these figures, the braces are shifted so that each braced subset has the same labels
as in the fault-free case. In Figure 5b, the node newly labeled as z2 3, for example, has the same
neighbor pattern in the new partition (reflected by the shifted braces), as the node previously
labeled as z23; this preservation of neighbor patterns after relabeling is the basis for correct
reconfiguration. This is stated in Theorem 5, which establishes that as long as the reconfigured
and original graphs have the same neighbor patterns between every pair of adjacent cycles, they
are isomorphic. This is the central property that is used for designing and reconfiguring ALS-
based FT supergraphs and their switch implementations.

Theorem 5 uses the following concept of “distance-from-zero”. Given a “0th” node ;0 in each
cycle C; of a, the other nodes in C; are then labeled z;1, . .., Zi;,—1 going cw from z; 9 on C;. We
define the distance from zero of a node z; , of C; in an adjacent cycle Cj, denoted by df z(z,s, C;)
as df z(x,5, C;) = min{cd* (zj,0,%;4) | T;x i8 a neighbor of z;,}, if the cd* between z;,0 and at
least one neighbor of z; , is defined, otherwise, dfz(z;,s, C;) = min{l; — cd™ (zj,0,%jn) | Tjn is a
neighbor of z; ,}. Hence, referring to Figure 4a, df z(z2,0, C1) = 0, while df z(z2,5, C1) = 2.

THEOREM 5. Two graphs G and G are isomorphic if there exists an automorphism oy =
C,C,...C; of Gy, and an automorphism ag = B1B3 ... By of Gz, such that there is a bijection f
between the cycles of a; and a3 and a labeling of the 0 nodes of each C; and B; satisfying:
(1) ICil =1 (Ca)l,
(2) ds(C;) = ds(£(Cy)),
(3) np(Cy, Cy) = np(f(Cs), £(Cy)), and
(4) df2(C;, C;) = df z(f(Ci), F(Cy)),
foralli,j,1<14,j <t 1
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(a) Reconfiguration of H'(C1(8), C2(3)) around a 3-fault cluster in C1(3) into a fault-
free copy of H'(C1,Ca(3)).

(b) Reconfiguration of H'(C1, C2(3)) around a 3-fault cluster in C2(3) into a fault-
free copy of H.
Figure 5.
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In general, the question of incremental reconfiguration of the supergraph G'(Ci(m,),...,
Ci(my)) of G, for any order of occurrence of the fault clusters, is also equivalent to asking whether
G'(Ci(my),...,Cy(my)) is isomorphic to G'(7(Cy(my),. .., Ci(mys))), where 7 is any permutation
of the set {Ci(m,),...,C{m;)}. The latter question is answered in Theorem 7 in the next
section.

5.2. General Construction Method

The method outlined above for constructing a FT supergraph of H by inserting gy » = 3 spare
nodes in each cycle Cy and Cs, can be extended to spare clusters of size of 3r for any r > 1. This
is done by simply partitioning the 3r spares into groups of three in C; (Cz), and again connecting
each node u (v) of C;(Cy) to the spare nodes in the other cycle so as to maintain u's (v's)
neighbor pattern in that cycle. The supergraph of H constructed in this manner can tolerate a
3r-fault cluster or, equivalently, r adjacent 3-fault clusters.

One reason for inserting spare cluster sizes of g(C}, C3) = 3 in each cycle of H is to facilitate
incremental reconfiguration, which is not be possible if spare clusters of arbitrary sizes are used.
Second, three is the smallest spare cluster size needed to minimize the number of spare intercycle
edges between C; and Cs;. For example, we introduce only one spare edge per node in the
supergraph H'(C1(3), C2(3)). On the other hand, if we insert just one spare node in each cycle,
then each node in C;(1) has to have edges to all nodes of C3(2), and vice versa, so that C} C}
becomes an automorphism of H'(C;(1),C2(1)), resulting in a very expensive supergraph. This
is formalized in the next theorem.

THEOREM 6. IfC; and C; are adjacent cycles of an automorphism o of any graph G, then the to-
tal number of edges to C; required to be incident from each node of C; when a cluster of m; spares
are introduced in C; is min(X1, X2), where X1 = l;4+m; and X3 = b(l;+m;)/ ged(g9(Ci, C;), m;).
Furthermore, bl;/g(C;, C;) is the number of neighbors in C; that each node of C; has in the basic
graph G, where b > 1.

Proor OUTLINE. It follows from the proof of Theorem 3 that if x;; is a neighbor of z;,,
then ;:44(c;,c;) 18 also a neighbor of z;,. Thus, the number of neighbors in C; of a node
in C; is always a multiple of I;/g(C;,C;). If m; nodes are introduced in Cj, then in order to
have C; and C;(m;) as cycles in the super-automorphism of o in the resulting supergraph G’, it is
necessary that in G’ every node z;, be a neighbor of z; s, where cd* (z;,, z;,-) = g(Ci, Cj(m;)),
and z;; is a neighbor of z;, in G. Counting the total number of neighbors of ;, that are
introduced in this manner in C;(m;) proves the theorem. ]

Thus, it can be seen that for m; = 1, each node of C; has to have I; + 1 edges to Cj;(1),
while for m; = g(C1, C2) each node of C; needs to have bl;/g(C1,Cz) + b edges to Cj, i.e., only
b spare edges, which is the minimum possible. Hence, there is a tradeoff between the number of
spare nodes and the number of spare edges. In our construction process, we choose to have fewer
spare edges at the expense of more spare nodes. In doing so, we also obtain the advantages of
incremental reconfigurability, and higher reliability in situations where faults occur in clusters.

A cycle C; of G can have more than one adjacent cycle C;. In order to satisfy the multiple
requirement of inserting g(C;, C;) spare nodes in C;, for each adjacent cycle C;, we have to
insert g; = lem{g(C;, C;) : C; is adjacent to C;} spare nodes in C;. The best case occurs when g;
is small compared to [;, the number of nodes in Cj; it can be seen that g; is bounded above by I;.

The procedure ALS of Figure 6 when given the graph G, a seed automorphism a of G, and
the integer p = 1, inserts one cluster of g; spare nodes in each cycle C; of o and the required
spare edges to construct a supergraph that can tolerate one g;-fault cluster in each C;. When
p > 1, ALS repeats the above construction process p times to yield a supergraph that can tolerate
p gi-fault clusters in each cycle of . We denote by G, ,(p, G), the FT supergraph of G constructed
by procedure ALS(G, o, p). ALS first determines the values of g(C;, C;) and g; for the cycles of
and retains this information as the arrays g[1..t,1..t] and g[1..t], respectively, and uses them in
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Procedure ALS(G, a, p); .
/* ALS constructs a supergraph G’ of G that can tolerate p g;-fault clusters in each subset C; of the node-set
of G, where C; is a cycle of the automorphism a = C1Cz...C; of G. */
begin
for each pair of adjacent cycles (C;, C;) of a do
gli, 5] := g(Ci, Cj) = ged(IC4l, IC51);
for each cycle C; do
glé] := lem{gl[i, j] : C; is adjacent to C;};
for m:=1topdo
/* Note that by Theorem 4, the arrays g[i] and g[i, j] remain the same in each iteration */
(G',a') := CONSTRUCT_SUPERGRAPH(G, o, g[1..t, 1..1], g[1..8]);
/* Construct a supergraph of G using seed automorphism « that can tolerate a g[i]-fault cluster in
each cycle C; */
G := G'; a:=a’'; /* Rename the supergraph and its automorphism */
endfor
return(G', o)
end. /* ALS */

Procedure CONSTRUCT _SUPERGRAPH(G, o, g[1..t, 1..8], g[1..£]);
/* Construct a supergraph of G using seed automorphism a that can tolerate a g[i]-fault cluster in each cycle C; */

/* For each pair C;, C; of adjacent cycles, there is a symmetry of neighbor patterns for nodes of C; in
a gli, j]-partition of C; */
begin
Let a =C1q,...,Cy;
fori:=1totdo
/* Insert the spare clusters in the cycles in the order Cy,...,Ct */
CLUSTER.-CIRCULANT(gli], C;);
/* Construct the circulant supergraph G'(C;i(g[i])) of G(C;) with g[i] consecutive spare nodes */
Cf['] 1= (4,01 -+ 1 B4,55 84,15+ - 5 84 g[d]s Tips 415 - -, Bi,l;—1); /* New automorphism of C;(g;) assuming
that the spare nodes are inserted between primary nodes x;,, and z; 441. */
for each C; adjacent to C; do
Starting with a primary node that is adjacent in the cw direction to a spare node
on C;(gli]), determine a g[i, j]-partition P; of the nodes of Cy; /* g[i, 5] divides g[i] */
Partition the g[i] spare nodes into subsets S;,y, of consecutive gli, j] spares on C;(gli});
for each primary and spare node (if already inserted) u of C; do
Connect u to each subset S; , of spare nodes so that
np(y, Siy) = np(u, P;);
endfor;
endfor;
endfor;
Let G’ be the resulting supergraph, and o’ := C{ m .cf [ its automorphism;
return (the final supergraph G/, o :=C{ o .c? #ly,
end. /* CONSTRUCT.SUPERGRAPH */

Figure 6. Algorithm for constructing a FT supergraph that tolerates p g;-fault clus-
ters in each cycle C; of seed automorphism a.

each iteration. For each new iteration, the G and o variables are updated to the supergraph G’
and its base automorphism o’ constructed in the previous iteration. From Theorem 4, it follows
that the values of the two arrays gi, j] and g[] do not have to be changed for each new iteration
of ALS.

We thus conclude that procedure ALS constructs a supergraph G'(Ci(g1),...,Ci(g:)) of G
that can tolerate a g;-fault cluster in each C; of seed automorphism a. The next result addresses
the question of incremental reconfiguration.

THEOREM 7. Let G be any graph, and a = C; Cs, ..., C; be any automorphism of G. If each m;
is some multiple of g; = lem{g(C;, C;) : C; is adjacent to C;}, for i = 1,...,t, then the su-
pergraphs G'(Ci(my),...,Ci(m)) and G'(7(Ci(m1),...,Ci(ms))) are isomorphic, where T is
any permutation of the set {Ci(m1),...,Ciy(ms)}. It is thus possible to incrementally reconfig-
ure G’'(Cy(my),...,Ct(m:)) around any order of occurrence of m;-fault clusters in cycle C;. 1
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In Section 6, we will present an incremental and localized reconfiguration algorithm LO-
CAL_AUTO _RECON for ALS-designed FT multiprocessors in Section 6. In addition to being
able to reconfigure incrementally, it also localizes reconfiguration to the cycle in which the faults
have occurred.

The next theorem establishes the spare-link complexity introduced by the ALS method.

THEOREM 8. Let o = C} Cq,...,C; be the seed automorphism of G that procedure ALS uses
to construct the supergraph G'(C1(g1),...,Ct(gt)), where g; is as defined previously. Then, ALS
introduces the following spare link complexities in G' (for p =1).

(a) Each node of C;(g;) has between k to kd; intracycle spare links incident on it, where d; is
the intracycle node degree of C;.

(b) Each node of C;(g;) has d; jg;/l; spare links incident on the nodes of an adjacent cycle
Cj(g;), where d; ; is the number of links of G incident from a node in C; to nodes in C;.
This is optimal in the number of intercycle spare links. i

Hence, in the worst case that each C; has the same number N/t of nodes, g; = N/t, and the node
degree in G is double the node degree in G, and thus, the number of spare links is 3Nd/2. Thus,
we obtain 100% node redundancy, and a 300% link redundancy. This case occurs quite frequently
for most multiprocessor graphs of interest, as will be demonstrated shortly. These worst-case
redundancies for G, (1, G) are the same as the redundancies obtained by incorporating dedicated
sparing for each node (where each node has a spare exclusively for itself), and are smaller than
those of the interstitial design of [14]. Moreover, ALS designs can actually be realized with
much smaller spare link overhead than that stated above using a switch-based implementation
that is presented in Section 7. Also, this switch implementation is equally efficient and allows
incremental reconfiguration for arbitrary-size spare clusters, and thus, it is no longer necessary to
have 100% node redundancy when all cycles have the same number N/t of nodes. We will later
compare the reliabilities of ALS designs to those of dedicated-sparing and interstitial-redundancy

designs.
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Figure 7.
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5.3. An Example

Here, we apply ALS to incorporate fault tolerance in two-dimensional toruses T, ,, and
n-dimensional hypercubes @Q,,. We also illustrate reconfiguration of the resulting supergraphs
around fault clusters.

Figure 7a shows a 4 x 4 torus Ty 4. As Ty4 is isomorphic to @4, this example also serves
to illustrate the application of ALS to hypercubes. The permutation v = C; C3C3Cy, is an
automorphism of T4, where each C; is a column of the torus in top-down order.? Figure 7b
shows an arrangement of the nodes of Ty 4 according to the cycles of 4. Figure 8a shows the
supergraph G, (1, Ty,4) of Ty 4 constructed using -y as the seed automorphism. As in the previous
case of T'(3, 3), here too g; = I; = 4 for each of the four cycles C; of v, and we again require 100%
node redundancy.

Figure 8b shows a 4-fault cluster F; = (6,7, 8, 52,1) in C2(4), and reconfiguration around it using
the automorphism (74)® in subgrp(vs) to map the 4-spare cluster (sa,1,...,824) to Fy. Here, v4
is the base automorphism C1(4)C2(4)C3(4)C4(4). A fault-free copy of G'(C1(4), Cz, C3(4), C4(4))
is obtained in this manner—the copy of Ty 4 in this fault-free supergraph is shown by dark edges.
Since only one level of mapping appears in Figure 8b, the new label of each node is placed
near the node, while the old label is placed away from it and in italics. Note that by Theorem 8,
both G.,(T'(3,3)) and G| (T} 4) illustrated in this section are optimal in the number of intercycle
spare links. '

We will later present a switch implementation of G.;,(1,G) that reduces the node degree to
that of G, and also significantly reduces the number and lengths of the spare links. As mentioned
earlier, the switch implementation is also equally efficient for spare clusters of any arbitrary size.
Thus, for cluster sizes of one, we obtain designs that tolerate independent faults in each cycle.

6. RECONFIGURATION

With local-sparing, it is desirable for reconfiguration to occur only in the faulty cycle with-
out disturbing the processing in the other cycles. We next present a reconfiguration algorithm
LOCAL_AUTO_RECON with this property.

6.1. Localized Reconfiguration

At first sight, it might seem that localized reconfiguration is not possible in ALS designs,
since the automorphism (¢/)? used for reconfiguration relabels nodes in every cycle. Localized
reconfiguration is, however, possible in such designs. Consider again the reconfiguration we
described for the torus of Figure 8b with one 4-fault cluster in cycle C,. The automorphism (7y4)°
“is used to obtain a fault-free copy of G'(C;(4), Ca, C3(4), C4(4)), whose base automorphism is vz =
C1(4) C3 C3(4) C4(4). Now, without any more faults occurring, if automorphism (v3)~5 is used
to relabel the nodes in the nonfaulty graph, then the nodes of the fault-free cycles C;(4), Cs(4),
and Cy(4) are relabeled by their original labels before the 4-fault cluster occurred, while only the
nodes of the faulty cycle C; get new labels. In effect, the node labels and thus the nodes of the
nonfaulty cycles are undisturbed. This example of localized reconfiguration can be extrapolated
to the following algorithm, which is easily shown to hold for the general case. Let o’ be the base
automorphism of the entire FT system. When a fault cluster occurs in a cycle C;, determine z

2In the case of Qq4, each C; of the above automorphism 4 is a two-dimensional subcube Q2. In the general case
of Qn, the permutation whose cycles are disjoint two-dimensional subcubes is an automorphism. If larger cycles
are desired, they can be obtained by generating automorphisms of Q, by bit permutation and complementation
of the node labels as explained in [19,20]. However, the cycles obtained in this way will not necessarily have
similar structures and cardinalities, as is the case with the cycles of 4. If regularity is essential to realizing the
FT supergraph in an efficient and modular fashion, then Qn can be partitioned into smaller Qms (m < n), and
each Qm be made circulant as described in [19,20]. An automorphism of this extended Qrn can be shown to be
one in which each cycle is a disjoint circulant Qm, and can thus serve as a good seed automorphism for the final
FT design.
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so that (o/)* is the reconfiguring automorphism, and let o be the base automorphism of the

reconfigured system (z is essentially the cdt between the first node in the spare cluster and the
CAMHA 34:11-C
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first node in the fault cluster). Relabel only the nodes of the faulty cycle C; by first applying (a’)*
in C;, and then (o})~* in the reconfigured C; that does not contain the fault cluster. Since the
nodes of the nonfaulty cycles will get back their original labels by application of these two
automorphisms, it is not necessary to relabel them. This modified reconfiguration algorithm
LOCAL_AUTO_RECON is given formally in Figure 9. It is easy to determine z in a distributed
manner in the faulty cycle. In a hypercube, for example, if each C; represents an augmented
subcube (see Section 5.3), then z can be determined in log(l;+g;) = ©(log ;) time, where [; = ICil.
In the worst case, z can be determined in ©(l;) time for any architecture. It is then a simple matter
for each processor in C;(g;) to relabel itself. Finally, in the switch implementation presented next,
the switches can be reconfigured in time ©(d) in a distributed manner.

Procedure LOCAL_AUTO.RECON(G’, &/, {Zi 5) Ti,s41+- - - » Ti,s4gi—1});
/* LOCAL_AUTO_RECON will reconfigure the supergraph G’ with base automorphism o/ for
one fault cluster {Z; s, Zis41,--. Tis4+g,—1} in cycle C} by relabeling only the nodes of C!. For
multiple fault-clusters, LOCAL_AUTO_RECON can be repeatedly called until G’ is completely
reconfigured. */
begin
Identify a cluster {s;,... Sii4+g,~1} of g; spare nodes in C..
if such a cluster of spares does not exist
then return(“error”, “no more spares in C}”)
else begin
Let cd™ (851, %s,5) = ¢;
for all nodes u in C] do Relabel u by (o/)*(u);
/* Only the nodes of C] are relabeled */
Delete the nodes now labeled as the spares {s;;, ... Si+4,—1} and all edges incident on

them from G’;
Delete the (newly labeled) spare nodes {s;, ... Si14+4,—1} from cycle C};
In of be the automorphism (of the reconfigured subgraph) obtained by replacing the
old C} in o/ by the new one obtained after the above deletions;
/* Now apply (a})~* to the nodes of the new C! */
for all nodes  in the new C{ do Relabel u by (a})~*(u);
return(“success”, G', a1 );
end; /* else */
end. /¥ LOCAL_AUTO_RECON */

Figure 9. A reconfiguration algorithm for ALS designs that relabels only the nodes
of the faulty cycle.

7. SWITCH IMPLEMENTATION

Here we present a switch implementation method ALS.SW for ALS designs that takes advan-
tage of the localized reconfiguration algorithm LOCAL_AUTO_RECON.

7.1. Switch Implementation for Intracycle Edges

We saw in Section 4 that if p spare clusters are added to a cycle C;, then its resulting supercycle
has edges with cds in the set (--- ({d;} + mi1)-- -+ m1) = dj,d; + m1,dj +2my,...,d; +pmy,
etc., for every edge of cd d; in C;. Note that only one of the above spare edges will be used after
reconfiguration around any set of the tolerated fault clusters to obtain an edge with cd d;. Thus,
a hierarchical switching structure using 1-to-2 demultiplexers (demuxes) can be designed that can
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connect any link of cd d; from a node u to a subset of other processors in order to realize a link
in C;(my,...,my) with a cd in the set {d;,d; + my,...,d; + pmy} (--- ({d;} + m1)--- + mp).
Such a switching structure is shown in Figure 10 for p = 2 in which two 1-to-2 demuxes are
used to switch a link from processor u to connect it to a processor at a distance of either cd d;,
d; +m; or dj+2m;. The general switch implementation procedure (which is a part of ALS_SW)
for intracycle links when p m-spare clusters are inserted in C; is given as follows.

1. Attach (bidirectional) links to the d; I/O ports of each primary and spare processor, and
divide these links into |d;/2] red and |d;/2] blue links (d; is the intracycle node degree
of C;). If d; is odd, then one link has been left out; include it as a red link for the first /;/2
nodes (in order) in C;, and as a blue link in the other I;/2—note that if d; is odd, then I;
has to be even, since d;l; is always even. For each node, label its red links by a unique ed
in ds(Cj), and similarly label its blue links. If d; is odd, then |ds(C;)| = [d;/2] is one
greater than either the number of blue or the number of red links. In that case, do not
label the red or blue links, whichever is fewer, by the largest cd. Also note that when d;
is odd, the largest cd in ds(C;) is always I;/2.

2. Connect each red link labeled d; from a processor u to the input of & 1-to-(p + 1) demux,
and connect the outputs of this demux to the blue links labeled d; of the p+ 1 processors
that are at cds of d;,d; + m,d; + 2m,...,d; + pm from processor u in C;([m]?).

Note that p+1 outputs from p+-1 different demuxes will connect to any blue link of a processor,
and that exactly one of these outputs will be active and the others disabled, if the processor is
nonfaulty and not a spare in the reconfigured labeling; see Figure 10. If the processor is either
faulty or a spare, then all connections to its blue links are disabled. Similarly, the demuxes
whose inputs are connected to red links from spare or faulty processors will have all their outputs
disabled. A 1-to-(p + 1) demux can be implemented by p 1-to-2 demuxes, with one output of
a demux connected to the input of the next as shown in Figure 10 for p = 2. Hence, a switch
implementation of C;([m|P) requires pe; 1-to-2 demuxes and (p—1)e; links (called switching links)
to interconnect subsets of p demuxes, where e; is the number of intracycle links in C;.

In the special case that the subgraph C; is a cycle graph, bypassing switches using mux-demux
pairs can be used to form a cyclic connection of the nonfaulty nodes by bypassing the faulty
ones; see Figure 10b. Figure 10c¢ shows the reprogramming of some mux-demux pairs to bypass a
2-fault cluster. In this case, n; 2-to-1 muxes and n; 1-to-2 demuxes are needed, where n; = l;+mp
is the number of nodes in C;([m]P).

7.2. Switch Implementation for Intercycle Links

If spare clusters of size g; are inserted in cycle Cj, then in the switching method to realize the
resulting FT supergraph, each intercycle link incident on a primary node z; , of C; is connected
to ;s via a 1-to-2 demux, with the second output of the demux going to a node at a cd™ of g;
from x;, in C;(g;). Similarly, if this link is incident at node z;; in an adjacent cycle Cj, then it is
also connected at z;:’s I/O port via a 1-to-2 demux, with the second output of the demux going
to a node at a cd™ of g; from z;; in C;(g;). When g; = g(C;, C;), then it is easy to see that this
switch implementation for intercycle links between C; and C; realizes the supergraph between
cycles C; and C; constructed by the ALS method. When a g;-fault cluster occurs in Ci(g),
define a Py, ;-partition in which the fault cluster is a subset. For reconfiguration, all intercycle
links incident on nodes that either are in the fault cluster or are between the fault cluster and
the spare cluster going in the ccw direction are switched to nodes at a cd™ of g; = g;,; away.
Thus, links from one subset of the P, ,-partition are switched to an adjacent subset until the
spare subset is switched in; the neighbor pattern for any node in C; for the above Py, ;-partition
is maintained after the switching, and thus from Theorem 5, the system is correctly reconfigured.
Note that LOCAL_AUTO_RECON only relabels the nodes of the faulty cycle Ci(g:); the labels
of all other nodes remain unchanged, and hence, switching need only take place for intercycle
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links incident on C;, and only for the demuxes at C;’s end. When a fault cluster occurs later
in Cj(g;), the intercycle links incident on this cycle are switched in a similar manner. This switch
implementation also applies when g; = mg; ; for m > 1.

Furthermore, when p > 1 clusters of g; spare nodes are inserted in each cycle Cj, the above
switch implementation given for p = 1 is easily extended to the p > 1 case by connecting each
intercycle link incident at node z; ; to nodes at cd~s of g;, 2g;, ..., pg; from x; , via a 1-to-(p+1)
demux; this is shown in Figure 1la for p = 2. Figure 12b shows the switch implementation of
the supergraph G.;,(1,T(3,3)) of the tree T'(3,3) (Figure 12a).

It can be shown using Theorem 6, that inserting spare cluster sizes of g;/r (for r > 1) in C;
increases the number of spare intercycle links. This increase is primarily because we insist that
the permutation o/ = Cf‘/ "L .Cf‘/ " be an automorphism of the corresponding supergraph G'.
However, strictly speaking, it is not necessary for o’ to be an automorphism for correct recon-
figuration, and thus, all the spare edges postulated in Theorem 6 are not needed. In fact, if
we consider o as a base permutation (instead of a base automorphism) of G’ that is used by
LOCAL_AUTO_RECON to relabel the nodes when a fault cluster occurs, then many fewer in-
tercycle spare edges are required for correct reconfiguration. Specifically, for each intercycle edge
(%1,s, zj,¢), the only spare edges needed in this case are the following.
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(1) One from z;, to the node u at a cd™ of g;/r from z;, in C;(g;/7).
(2) One spare edge from z;; to the node v at a cd™ of g;/r from z; ,.
(3) A third spare edge between u and v.

These spare edges are shown in Figure 11b. Figure 11c depicts the switch implementation for
realizing these spare links using 1-to-2 demuxes. The above switch implementation also applies
when the spare cluster size is some arbitrary number s;. Thus for s; = 1, the design tolerates
independent processor faults.

The switch implementation part of ALS.SW for intercycle links when s;-spare clusters are
inserted in cycles C; (for arbitrary s;) is as follows.

1. For each node z;, of each cycle C;, label z; ,’s I/O ports that connect to intercycle links
by (j,y), if the port connects to a node in an adjacent cycle C;, where y ranges from 1 to
ds,j (ds; is the number of neighbors in C; for each node in C;). Connect a bidirectional
link to each intercycle port.

2. For each intercycle link (z; 4, ;,¢), connect the link at both ends to the input of a 1-to-2
demux. At z;,’s end, connect one output of the demux to the link attached to a unique
intercycle I/O port of z;, labeled by some (j,y), and the other output of the demux to
a similarly labeled I/O port link of the node at a cd™ of s; from x;, in Ci(s;). Connect
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(a) Layout of tree T'(3,3) according to the cycles of automorphism 8 = (1)(2,3,4)
(5,8,11)(6,9,12)(7,10,13).
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(b) Switch implementation of the FT tree T'(3,3) G, (1,Ts,3) constructed by pro-
cedure ALS.

Figure 12.

the outputs of the demux at z;,’s end similarly to z;;: and a node at a cd™ of s; from it
in Cj;(s;).

THEOREM 9. When one s;-spare cluster is inserted in each cycle C; (for arbitrary s;), the switch
implementation method ALS_SW for intra- and intercycle links realizes a design that can tolerate
an s;-fault cluster in each C;. Similarly, for p insertions of spare clusters in each cycle, the
ALS_SW design tolerates p s;-fault clusters in each C;. B
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ProoF. The reason that the above-mentioned set of spare links, and hence, also the switch
implementation of Figure 11c, are sufficient for correct reconfiguration is as follows. When (a’)?
is used by LOCAL_AUTO.RECON for node relabeling to reconfigure around an s;-fault cluster
in C;, followed by (a})~*, all nodes in the nonfaulty cycles retain their original labels, while nodes
of C; either retain their original label or get a label of the node at a cd of s;r from it. Hence, for
link (z;4,%;,), the label of one end node z;; remains unchanged, while either the label of z; , is
unchanged or the node v at a cd™ of 8; from z; ; is newly labeled as z;,. This requires the link
to be switched to the node newly labeled as x; ; which is accomplished by the 1-to-2 demux at
z;,6’s end. Similarly, when a s;-fault cluster occurs in Cj, the demux at z;+’s end might need to
connect the (z;,,2;,) link to either 2;, or the node u at a cd™ of s; from it; the latter is newly
labeled as z; ;. [ |

Note that when s; = g; for all cycles C;, the supergraph depicted by Figure 11b is exactly the
one constructed by procedure ALS—either the node v at a ed™ of g; from x; , is a primary node,
in which case the required link from z;+ to v is already present, or v is a spare, in which case this
link is added by ALS. Figure 13 shows the above switch implementation when 2-spare clusters
are inserted in the cycles of the automorphism of the 4 x 4 torus of Figure 7.

C4(2) Contact cq(2)
13 9
2-to-1 4 14 X, 10
mux
1-t0-2
demux 4 15 11
18 12
\
ci@ Miodt)\ | ca@
1 inks 5
Switching<
links " - \ -
1 2 2. 8
1 3 P\ 7
2 8

Figure 13. Switch implementation to tolerate a 2-fault cluster in each of the four
cycles of automorphism = (specified earlier) of a 4 x 4 torus (or a four-dimensional
hypercube).

When p > 1 s;-spare clusters are inserted in each Cj, the above switch implementation extends
to connecting each intercycle link via 1-to-(p+ 1) demuxes at both ends to its original end nodes,
and to nodes at cd™s of 8; (s;),28: (28;),...,p8; (ps;) from them at Ci’s (respectively, C;’s)
end. Thus, the redundant hardware required comprises 2pe; 1-to-2 demuxes and 2(p—1)ey short
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Figure 14. Reliability comparison of three FT 8 x 8 torus designs under c-fault and
s-fault events, satisfying p + ¢ = 0.1.

switching links that interconnect some of these demuxes, where e, is the number of intercycle
links of G.

8. RELIABILITY ESTIMATION

Figure 14 compares the reliability of three designs, dedicated sparing, interstitial redundancy
(IRA) [14], and ALS applied to an 8 x 8 torus Tz g under the dual fault model, i.e., when both
c-fault events (which cause clustered faults) and s-fault events (which cause only single processor
faults) can occur. This fault model and the derivation of the reliabilities of these designs under
this model has been extensively developed in [22]. It is assumed in Figure 14 that the sum
of the probabilities of single c-fault and s-fault events, ¢ and p, respectively, is a constant 0.1,
i.e., p+ q = 0.1. The reliabilities are plotted against g. For values of g less than 0.025, the
IRA design has the best reliability, while for higher values of ¢ the ALS design’s reliability is
better than the other two designs by factors of two to three. Thus Figure 14 demonstrates that
G.s(1,Tss) is a much more reliable design when the values of ¢ and p are comparable, and also
when ¢ is greater than p. It is worth noting that the IRA design for T3 s actually has more
than 100% node redundancy (81 spare and 64 primary nodes), and also that it has an edge
redundancy of 500%. In comparison, the other two designs have exactly 100% node and 300%
edge redundancies. Furthermore, by using the switch implementation described in Section 7 to
realize G, (1, Ts,8), its redundancy reduces even further. Finally, it is necessary in actual ALS
designs to implement the cycles and their associated spares as separate units, either on VLSI
chips, multichip modules, or printed circuit boards.

There should also be some form of electromagnetic shielding between these units so as to localize
the effect of a c-fault causing event like radiation to one or a few cycles only. For a similar reason,
it will be helpful to have separate power sources for each unit, since power fluctuations are also
c-fault causing events. Adjacent processors in a cycle should also be physically adjacent in the
the unit in which the cycle is realized. Thus, when processors fail in clusters in a unit, the fault
cluster will correspond to a cluster of adjacent processors on the cycle, around which ALS designs

can reconfigure.

9. CONCLUSIONS

We have developed an automorphism-based methodology called ALS to systematically incor-
porate redundancy in multiprocessor systems using local groups of spare processors for tolerating
either clusters of faulty processors or independent single faults. A cluster-FT design is more suit-
able in a hazardous environment in which processors can fail in clusters (due to frequent exposure



Fault-Tolerant Multiprocessors 419

to radiation, for example). This method uses a suitable seed automorphism of the graph repre-
senting the basic multiprocessor in order to partition it into smaller subsystems with which local
spares are associated. While it can be difficult to find an automorphism of an arbitrary graph (to
serve as a seed for ALS designs), it is, however, relatively easy to find automorphisms of commmon
multiprocessor interconnections like hypercubes, toruses, trees, and general k-ary d-dimensional
cubes, as demonstrated in Section 5.3.

ALS designs use an optimal number of intercycle spare links when the spare clusters in each
cycle C; are of specific sizes rg; for 7 > 1, and they are optimal or near-optimal in the number
of intracycle spare links. We also showed that these designs can be incrementally reconfigured,
and presented efficient switch implementations for them. The switch implementation is equally
efficient in terms of the number of switches and switching links for any spare cluster size, including
a cluster size of one. We also presented a fast, distributed, and localized reconfiguration algorithm
of time complexity ©(d) for our switch implementations, where d is the maximum processor degree
of the multiprocessor. Finally, we showed that in the presence of cluster-faults, ALS designs have
better reliability-to-cost ratios than previous F'T' designs that use comparable or greater amounts
of spare hardware.

The ALS method appears to be the first truly general approach to the design of FT local-
sparing systems, and places it on a a firm theoretical basis. It leads to designs that are not
only efficient, but also possess a number of attractive properties mostly neglected in prior work,
like applicability to any multiprocessor structure and any number of faults, low redundancy, and
incremental, distributed and localized reconfigurability.
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