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a b s t r a c t

In this paper, we shall give some results about fixed points of quasi-contraction maps on
cone metric spaces. These results generalize some recent results.
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1. Introduction

Let (E, τ ) be a topological vector space and P a subset of E. Then, P is called a cone whenever

(i) P is closed, non-empty and P 6= {0},
(ii) ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,
(iii) P ∩ (−P) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤ with respect to P by x ≤ y if and only if y − x ∈ P . x < y
will stand for x ≤ y and x 6= y, while x � y will stand for y − x ∈ int P , where int P denotes the interior of P . If E is a
normed space, then the cone P is called normal (with respect to this norm) whenever there is a numberM > 0 such that for
all x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ M‖y‖. The least positive number satisfying this norm inequality is called the normal
constant of P [1]. Of course, there are non-normal cones [2]. Some authors use the notion of normality in their works, but
most of the fundamental results in normal cone metric spaces hold in non-normal case.

Definition 1.1 ([1]). Let (X, d) be a cone metric space, x ∈ X and {xn}n≥1 a sequence in X . Then
(i) {xn}n≥1 converges to xwhenever for every c ∈ E with 0� c there is a natural number N such that d(xn, x)� c for all
n ≥ N . We denote this by limn→∞ xn = x or xn → x.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ E with 0� c there is a natural number N such that d(xn, xm)� c
for all n,m ≥ N .

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Let (X, d) be a metric space. A self-map T : X → X is called a quasi-contraction whenever there exists λ ∈ (0, 1) such
that

d(Tx, Ty) ≤ λmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
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for all x, y ∈ X [3]. Asweknow, there are someworks about fixedpoints of quasi-contractions. Recently, Ilić andRakočević [1]
generalized this notion to cone metric spaces. Suppose that (X, d) is a cone metric space. A self-map T : X → X such that
for some λ ∈ (0, 1) and for every x, y ∈ X there exists

u ∈ C(T , x, y) = {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

such that

d(Tx, Ty) ≤ λu,

is called a quasi-contraction [4]. They proved the following result [4, Theorem2.1].

Theorem 1.1. Let (X, d) be a complete cone metric space and P a normal cone. Suppose that T : X → X is a quasi-contraction.
Then, T has a unique fixed point in X and for any x ∈ X, the iterative sequence {T nx} converges to the fixed point.

Then, Kadelburg, Radenović and Rakočević generalized this result by omitting the assumption of normality and for
λ ∈ (0, 12 ) [5, Theorem 2.2]. We shall prove this recent result for any λ ∈ (0, 1).
As we know, Rhoades has defined the property (P) on metric spaces in his works [6–8]. Recently, Kadelburg, Radenović

and Rakočević [5] generalized notion of the property (P) to cone metric spaces. Denote as usual, by F(T ) the set of fixed
points of the mapping T : X → X . We say that the map T has the property (P) if F(T ) = F(T n) for all n ≥ 1, that is it has no
periodic points. They proved the following results (respectively, [5, Theorems 2.3 and 3.2]).

Theorem 1.2. Let (X, d) be a complete conemetric space and T : X → X a quasi-contraction such that there exists a point x ∈ X
having a bounded orbit with respect to T . Then, T has a unique fixed point.

We shall show that by using the assumptions, usually there exists x ∈ X having a bounded orbit.

Theorem 1.3. Let (X, d) be a conemetric space and T : X → X a quasi-contractionwithλ ∈ (0, 12 ). Then, T has the property (P).

We shall prove this result for all λ ∈ (0, 1).
Let (X, d) be a cone metric space (with values of the metric in a Banach space E), T : X → X a mapping, x ∈ X and

O(x;∞) = {x, Tx, T 2x, . . . , T nx, . . .}.

In fact, O(x;∞) is called the orbit of xwith respect to T . A vector u is a bound for a set A ⊆ X if d(x, y) ≤ u for all x, y ∈ A.
A space (X, d) is called T -orbitally complete whenever every sequence {T nix}i≥1, x ∈ X , which is a Cauchy sequence, has a
limit point in X [9]. Also, a map f : X → R is called lower semicontinuous at x ∈ X if for any sequence {xn} in X such that
xn → x, we have f (x) ≤ lim infn→∞ f (xn) [9]. It is obvious that each complete cone metric space is a T -orbitally complete
space, but Pathak and Shahzad showed that the converse does not hold [9, Example 3.1]. Also, they proved the following
result [9, Theorem 3.5].

Theorem 1.4. Let (X, d) be a cone metric space, P a regular cone with normal constant K and T : X → X a self-map. Suppose
that (X, d) is T -orbitally complete and there exists x ∈ X and λ ∈ [0, 1) such that

d(Ty, T 2y) ≤ ϕ(y)d(y, Ty)

for all y ∈ O(x;∞), where ϕ : O(x;∞)→ [0, 1) is a function such that

sup
y∈O(x;∞)

ϕ(y) ≤ λ < 1.

Then, the following statements hold.

(i) limn→∞ T nx = x̄ exists,
(ii) T (x̄) = x̄ if the mapping on X 3 z 7→ ‖d(z, Tz)‖ is lower semicontinuous at x̄,
(iii) x̄ is a unique fixed point of T if

⋂
∞

n=0 T
n(X) is a singleton set, where T n(X) = T (T n−1(X)) for all n ≥ 1 and T 0(X) := X.

We shall generalize this result.

2. Main results

Now, we are ready to state and prove our main results. First, we give the following result which improves Theorems 1.1
and 1.2.

Theorem 2.1. Let (X, d) be a complete cone metric space and T : X → X a quasi-contraction and x ∈ X. Then, the following
statements hold.

(i) The orbit O(x;∞) is bounded,
(ii) limn→∞ T nx = x̄ exists and T (x̄) = x̄,
(iii) x̄ is a unique fixed point of T .
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Proof. (i) Put δ1(x) = d(x, Tx). Since d(x, T 2x) ≤ d(x, Tx)+ d(Tx, T 2x) and T is quasi-contraction, we have two cases:

d(Tx, T 2x) ≤ λd(x, Tx) or d(Tx, T 2x) ≤ λd(x, T 2x).

If d(Tx, T 2x) ≤ λd(x, Tx), then d(x, T 2x) ≤ (1+λ)d(x, Tx). In this case, put δ2(x) = (1+λ)d(x, Tx). If d(Tx, T 2x) ≤ λd(x, T 2x),
then d(x, T 2x) ≤ 1

1−λd(x, Tx). In this case, put δ2(x) =
1
1−λd(x, Tx). Note that, in both cases we have δ1(x) ≤ δ2(x) and

d(x, T 2x) ≤ δ2(x). Suppose that δn−1(x) has been chosen. Now by induction, we show that for each n ≥ 2 there exists
1 ≤ m ≤ n such that

d(T nx, T n−1x) ≤ λn−1d(x, Tmx). (∗)

If n = 2, then d(Tx, T 2x) ≤ λu, where u ∈ {d(x, Tx), d(Tx, T 2x), d(x, T 2x)}. Thus, (∗) holds for n = 2. Suppose that (∗) holds
for each k < n. We show that (∗) holds for k = n. In this case we have d(T nx, T n−1x) ≤ λu, where

u ∈ {d(T n−1x, T n−2x), d(T nx, T n−1x), d(T nx, T n−2x)}.

It is trivial that (∗) holds if u = d(T n−1x, T n−2x) or u = d(T nx, T n−1x). Now suppose that u = d(T nx, T n−2x). In this case we
have d(T nx, T n−2x) ≤ λu1, where

u1 ∈ {d(T n−1x, T n−3x), d(T n−1x, T n−2x), d(T nx, T n−3x), d(T n−2x, T n−3x), d(T nx, T n−1x)}.

Again, it is trivial that (∗) holds if u1 = d(T nx, T n−1x) or u1 = d(T n−2x, T n−3x). If u1 = d(T n−1x, T n−2x), then d(T nx, T n−1x) ≤
λ2d(T n−1x, T n−2x). By assumption of the induction, there exists 1 ≤ m ≤ n− 1 such that d(T n−1x, T n−2x) ≤ λn−2d(x, Tmx).
Hence, d(T nx, T n−1x) ≤ λnd(x, Tmx) ≤ λn−1d(x, Tmx). If u1 = d(T n−1x, T n−3x), then d(T nx, T n−1x) ≤ λ2d(T n−3x, T n−1x). If
u1 = d(T nx, T n−3x), then d(T nx, T n−1x) ≤ λ2d(T nx, T n−3x). Therefore, by continuing this process, we see that (∗) holds for
each n ≥ 2. Now, we have

d(x, T nx) ≤ d(x, T n−1x)+ d(T n−1x, T nx) ≤ d(x, T n−1x)+ λn−1d(x, Tmx)

for some 1 ≤ m ≤ n. If n > m, then

d(x, T nx) ≤ d(x, T n−1x)+ λn−1d(x, Tmx) ≤ (1+ λn−1)δn−1(x).

In this case, put δn(x) = (1+ λn−1)δn−1(x). If n = m, then

d(x, T nx) ≤
1

1− λn−1
d(x, T n−1x) ≤

(
1

1− λn−1

)
δn−1(x).

In this case, put δn(x) = 1
1−λn−1

δn−1(x). Note that, in both cases we have

δn−1(x) ≤ δn(x) and d(x, T nx) ≤ δn(x).

Thus, {δn(x)}n≥1 is an increasing sequence and δn(x) is a bound for the set

{x, Tx, T 2x, . . . , T nx}

for all n ≥ 1. Note that, for eachm ≥ 2 there exists a subset I of {1, 2, . . . ,m− 1} such that

δm(x) =

∏
k∈I
(1+ λk)∏

k∈{1,2,...,m−1}\I
(1− λk)

δ1(x).

Put um =
∏m
i=1(1+ λ

i) for allm ≥ 1. Since ln um =
∑m
i=1 ln(1+ λ

i) and the series
∑
∞

i=1 ln(1+ λ
i) converges, the sequence

{um}m≥1 is bounded and increasing. Thus,
∏
∞

i=1(1+ λ
i) converges. Similarly, one can prove that

∏
∞

i=1
1
1−λi

converges. Now,
note that

δm(x) ≤

∞∏
i=1
(1+ λi)

∞∏
i=1
(1− λi)

δ1(x)

for allm ≥ 1. If we put

δ(x) =

∞∏
i=1
(1+ λi)

∞∏
i=1
(1− λi)

δ1(x),

then δ(x) is a bound for the orbit O(x;∞).
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(ii) For eachm > n ≥ 1 we have

d(T nx, Tmx) ≤ d(T nx, T n+1x)+ d(T n+1x, Tmx) ≤ λnd(x, T sx)+ λn+1d(x, T px)

for some s, p ≤ m. Thus, d(T nx, Tmx) ≤ (λn + λn+1)δ(x) for all m > n ≥ 1. Hence, {T nx}n≥1 is a Cauchy sequence. Since
(X, d) is a complete cone metric space, there exists x̄ ∈ X such that limn→∞ T nx = x̄. For each n ≥ 1 there exists

un ∈ {d(x̄, T nx), d(x̄, T x̄), d(T nx, T n+1x), d(x̄, T n+1x), d(T nx, T x̄)}

such that

d(T x̄, T n+1x) ≤ λun.

Let 0� c be given. Choose a natural number N such that d(T nx, x̄)� c for all n ≥ N . Then, we have d(x̄, T x̄)� 2λ+1
(1−λ) c for

all n ≥ N . Since c was arbitrary, we obtain T x̄ = x̄.
(iii) It is obvious. �

Now, we give the next result which improves Theorem 1.3.

Theorem 2.2. Let (X, d) be a cone metric space and T : X → X a quasi-contraction. Then, T has the property (P).

Proof. It is clear that F(T ) ⊆ F(T n) for all n ≥ 1. Now, let n ≥ 1 be given and u ∈ F(T n). Then, T nu = u and so T knu = u for
all k ≥ 1. Hence, for every k ≥ 1 we have

d(u, Tu) = d(T knu, T kn+1u) ≤ λknd(u, T su) ≤ λknδ(u),

where s ≤ kn+ 1 and δ(u) is defined as in Theorem 2.1. If k→∞, then we obtain d(u, Tu) = 0. Therefore, Tu = u and so
T has the property (P). �

Finally, we give the following result which generalizes Theorem 1.4.

Theorem 2.3. Let (X, d) be a cone metric space and T : X → X a self-map. Suppose that (X, d) is T -orbitally complete and there
exists x ∈ X and λ1, λ2 ∈ [0, 1) such that λ1 + 2λ2 < 1 and

d(Ty, T 2y) ≤ λ1d(y, Ty)+ λ2d(y, T 2y)

for all y ∈ O(x;∞). Then, the following statements hold.
(i) limn→∞ T nx = x̄ exists,
(ii) T (x̄) = x̄ if the mapping on X 3 z 7→ ‖d(z, Tz)‖ is lower semicontinuous at x̄ and P is a normal cone,
(iii) x̄ is a unique fixed point of T if

⋂
∞

n=0 T
n(X) is a singleton set.

Proof. (i) First, note that

d(Ty, T 2y) ≤ λ1d(y, Ty)+ λ2(d(y, Ty)+ d(Ty, T 2y)).

Hence, d(Ty, T 2y) ≤ λ1+λ2
1−λ2

d(y, Ty). Since λ1 + 2λ2 < 1, µ =
λ1+λ2
1−λ2

< 1. Thus,

d(T nx, T n+1x) ≤ µnd(x, Tx)

for all n ≥ 1. Hence, for eachm > n ≥ 1 we have

d(T nx, Tmx) ≤ (µn + µn+1 + · · · + µm)d(x, Tx).

Therefore, {T nx}n≥1 is a Cauchy sequence. Since (X, d) is T -orbitally complete, there exists x̄ ∈ X such that limn→∞ T nx = x̄.
(ii) Since the mapping z 7→ ‖d(z, Tz)‖ is lower semicontinuous at x̄, we have

‖d(x̄, T x̄)‖ ≤ lim inf
n→∞

‖d(T nx, T n+1x)‖ = 0.

Thus, T (x̄) = x̄.
(iii) It is obvious. �
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