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a b s t r a c t

In this paper, we give a complete algebraic description of groups elementarily equivalent
to the P. Hall completion of a given free nilpotent group of finite rank over an arbitrary
binomial domain. In particular, we characterize all groups elementarily equivalent to a free
nilpotent group of finite rank.
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1. Introduction

1.1. Elementary classification problem in groups

Elementary (first-order) classification of algebraic structures goes back to the works of Tarski andMalcev. In general, the
task is to characterize, in somewhat algebraic terms, all algebraic structures elementarily equivalent to a given one. Recall,
that two algebraic structuresA andB in a language L are elementarily equivalent (A ≡ B) if they satisfy precisely the same
first-order sentences in L.

The first remarkable result on elementary classification of groups is due to W. Szmielew - she classified elementary
theories of abelian groups in terms of ‘‘Szmielew’’ invariants [29] (see also [16,1,7]). For non-abelian groups, the main
inspiration, perhaps, was the long-standing Tarski problemwhether free non-abelian groups of finite rank are elementarily
equivalent or not. It was recently solved in the affirmative in [11,28]. In contrast, free solvable (or nilpotent) groups of finite
rank are elementarily equivalent if and only if they are isomorphic ([13]). Indeed, in these cases the abelianization G/[G,G]

of the group G (hence the rank of G) is definable (interpretable) in G by first-order formulas, hence the result.
In [15], Malcev described elementary equivalent classical linear groups. He showed that if G ∈ {GL, PGL, SL, PSL},

n,m ≥ 3, K and F are fields of characteristic zero, then G(F)m ≡ G(K)n if and only if m = n and F ≡ K . It turned out later
that this type of results can be obtained via ultrapowers by means of the theory of abstract isomorphisms of such groups.
In this approach, one argues that if the groups G(F)m and G(K)n are elementarily equivalent then their ultrapowers over a
non-principal ultrafilter ω are isomorphic. Since these ultrapowers are again groups of the type G(F∗)m and G(K ∗)n (where
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F∗ and K ∗ are the corresponding ultrapowers of the fields) the result follows from the description of abstract isomorphisms
of such groups (which are semi-algebraic, so they preserve the algebraic scheme and the field). Similar results hold for
many algebraic and linear groups (we refer here to a series of papers by Bunina and Mikhalev [5,6]). On the other hand,
many ‘‘geometric’’ properties of algebraic groups are just first-order definable invariants of these groups, viewed as abstract
groups (no geometry, only multiplication). For example, the geometry of a simple algebraic group is entirely determined by
its groupmultiplication (see [31,25,26]), which readily implies the celebrated Borel–Tits theorem on abstract isomorphisms
of simple algebraic groups.

1.2. On elementary classification of nilpotent groups

In his pioneering paper [14] Malcev showed that a ring R with unit can be defined by first-order formulas in the group
UT3(R) of unitriangular matrices over R (viewed as an abstract group). In particular, the ring of integers Z is definable in the
group UT3(Z), which is a free 2-nilpotent group of rank 2. In [8] Ershov proved that the group UT3(Z) (hence the ring Z)
is definable in any finitely generated infinite nilpotent group G, which is not virtually abelian. It follows immediately that
the elementary theory of G is undecidable. On the elementary classification side the main research was on M. Kargapolov’s
conjecture: two finitely generated nilpotent groups are elementarily equivalent if and only if they are isomorphic. In [30]
Zilber gave a counterexample to the Kargapolov’s conjecture. In the break-through papers [17–19] A. Myasnikov and V.
Remeslennikov proved that the Kargapolov’s conjecture holds ‘‘essentially’’ true in the class of nilpotent Q-groups (i.e.,
divisible torsion-free nilpotent groups) finitely generated as Q-groups. Indeed, it turned out that two such groups G and
H are elementarily equivalent if their cores Ḡ and H̄ are isomorphic and G and H either simultaneously coincide with
their cores or they do not. Here the core of G is uniquely defined as a subgroup Ḡ ≤ G such that Z(Ḡ) ≤ [Ḡ, Ḡ] and
G = Ḡ × G0, for some abelian Q-group G0. Developing this approach further A. Myasnikov described in [20,21] all groups
elementarily equivalent to a given finitely generated nilpotent K -group G over an arbitrary field of characteristic zero. Here
by a K -group we understand P. Hall nilpotent K -powered groups, which are the same as K -points of nilpotent algebraic
groups, or unipotent K -groups. Again, the crucial point is that the geometric structure of the group G (including the fields of
definitions of the components ofG and their related structural constants) are first-order definable inG, viewed as an abstract
group. Furthermore, these ideas shed some light on the Kargapolov’s conjecture—it followed that two finitely generated
elementarily equivalent nilpotent groups G and H are isomorphic, provided one of them is a core group. In this case G is a
core group if Z(G) ≤ I([G,G]), where I([G,G]) is the isolator of the commutant [G,G]. Finally, F. Oger showed in [24] that
two finitely generated nilpotent groups G and H are elementarily equivalent if and only if they are essentially isomorphic,
i.e., G×Z ≃ H×Z. However, the full classification problem for finitely generated nilpotent groups is currently wide open. In
a series of papers [2–4] Belegradek completely characterized groups which are elementarily equivalent to a nilpotent group
UTn(Z) for n ≥ 3. It is easy to see that (via ultrapowers) that if Z ≡ R for some ring R then UTn(Z) ≡ UTn(R). However, it
has been shown in [3,4] that there are groups elementarily equivalent to UT3(Z) which are not isomorphic to any group of
the type UT3(R) (quasi-unitriangular groups).

1.3. Results and the structure of the paper

Wewould like now to state the main theorems proved in the paper. In the following Nr,c(R) is a group isomorphic to the
P. Hall completion of the free nilpotent group of rank r ≥ 2 and class c ≥ 2 over some binomial domain R.

Theorem 1.1 (Characterization Theorem). Assume G = Nr,c(R) and H is a group. If G ≡ H then H is an abelian deformation of
Nr,c(S) for some ring S where R ≡ S as rings.

Theorem 1.2. If S is a ring so that S ≡ R then any abelian deformation of Nr,c(S) is elementarily equivalent to Nr,c(R).

Theorem 1.3. There exists a binomial domain R ≡ Z and an abelian deformation H of Nr,c(R), for each r ≥ 2 and c ≥ 2, such
that H is not isomorphic to any Hall completion of Nr,c(Z).

In the following subsectionswe briefly reviewmost of the necessary background aswell as our notation and terminology.
We give a brief review of model theoretic concepts needed in Section 1.3.1. Sections 1.3.2 and 1.3.3 will review the theory of
nilpotent groups and P. Hall completions of torsion-free finitely generated nilpotent groups, respectively. The reader familiar
with these notionsmay skipmost these sections and just take note of the notations introduced. In Section 1.3.4we introduce
abelian deformations, which as the statements of our main results suggest, characterize groups elementarily equivalent to
a P. Hall completion of a free nilpotent group. We also give a brief review of extension theory and the relevant cohomology
theory in this section. In Section 2 we prove the characterization theorem. Proofs of Theorems 1.2 and 1.3 are shorter and
will be included in Sections 3 and 4 respectively.

We would like to point out that when r = 2 and c = 2 an abelian deformation of Nr,c(R), here denoted by Nr,c(R, f̄ )
for some symmetric 2-cocycles f̄ , happen to be a quasi-unitriangular group in the sense of O. Belegradek (see [2]). In this
case all the corresponding results belong to him as mentioned earlier. When c = 2 and r > 2 the result is known by [23],
though in that paper N2,r(R) refers to a P. Hall R-completion of a free 2-nilpotent group of rank r . In the present paper the
same object is referred to as Nr,2(R). When c > 2 our main results are new to the best of our knowledge.
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1.3.1. Structures, signatures and interpretations
A group G is considered to be the structure ⟨|G|, .,−1 , 1⟩ where ., −1 and 1, name multiplication, inverse operation and

the trivial element of the group respectively.
Let U be a structure and φ(x1, . . . , xn) be a first-order formula of the signature of U with x1, . . . , xn free variables. Let

(a1, . . . , an) ∈ |U|
n. We denote such a tuple by ā. The notation U |= φ(ā) is intended to mean that the tuple ā satisfies φ(x̄)

when x̄ is an abbreviation for the tuple (x1, . . . , xn) of variables. For definitions of a formula of a signature, free variables
and satisfaction the reader may refer to any standard model theory text.

Given a structure U and a first-order formula φ(x1, . . . , xn) of the signature of U, φ(Un) refers to {ā ∈ |U|
n

: U |= φ(ā)}.
Such a relation or set is called first-order definable without parameters. Ifψ(x1, . . . , xn, y1, . . . , ym) is a first-order formula of
the signature of U and b̄ an m-tuple of elements of U then ψ(Un, b̄) means {ā ∈ |U|

n
: U |= ψ(ā, b̄)}. A set or relation like

this is said to be first-order definable with parameters.
Let U be a structure of signatureΣ . The elementary theory Th(U) of the structure U is the set:

{φ : U |= φ, φ a first-order sentence of signatureΣ}.

We say two structures U and B of the signatureΣ are elementarily equivalent and write U ≡ B if Th(U) = Th(B).
Let B and U be algebraic structures (all relations come from functions) of signatures ∆ and Σ respectively not having

function symbols. The structure U is said to be interpretable in B with parameters b̄ ∈ |B|
m or relatively interpretable in B if

there is a set of first-order formulas

Ψ = {A(x̄, ȳ), E(x̄, ȳ1, ȳ2), ψσ (x̄, ȳ1, . . . , ¯ytσ ) : σ a predicate of signatureΣ}

of the signature∆ such that

1. A(b̄) = {ā ∈ |B|
n

: B |= A(b̄, ā)} is not empty,
2. E(x̄, ȳ1, ȳ2) defines an equivalence relation ϵb̄ on A(b̄),
3. if the equivalence class of a tuple of elements ā from A(b̄)modulo the equivalence relation ϵb̄ is denoted by [ā], for every

n-ary predicate σ of signatureΣ , predicate Pσ is defined on A(b̄)/ϵb̄ by

Pσ ([b̄], [ā1], . . . , [ān]) ⇔df B |= ψσ (b̄, ā1, . . . , ān),

4. the structures U and Ψ (B, b̄) = ⟨A(b̄)/ϵb̄, Pσ : σ ∈ Σ⟩ are isomorphic.

Let φ(x1, . . . , xn) be a first-order formula of the signature ∆ and b̄ ∈ φ(Bn) be as above. If the tuple b̄ is empty, U is said
be absolutely interpretable in B. The number n in the definition of an interpretation above is called the dimension of the
interpretation.

1.3.2. Nilpotent groups and free nilpotent groups
We denote the lower central series of a group G by

G = Γ1(G) ≥ Γ2(G) ≥ · · · ≥ Γn(G) ≥ · · · .

If G is clear from the context we denote Γi(G) by Γi. A group G is called nilpotent if there is a positive integer N so that for all
n ≥ N , Γn(G) = 1. If c is the least number such that Γc+1(G) = 1 then G is said to be a nilpotent group of class c or simply
a c-nilpotent group. Let F(r) be the free group on r generators. A group G is called a free nilpotent group of rank r and class c
and denoted by Nr,c(Z), if

G ∼= F(r)/Γc+1(F(r)).

1.3.3. P. Hall completions Nr,c(R) of Nr,c(Z)
If x, y is a pair of elements of a group G we let [x, y] = x−1y−1xy and call it the commutator of x and y. Assume

X = {x1, . . . , xn} ⊂ G. A commutator of weight 1 in X is an element of X . A commutator of weight k in X for k > 1 is an
element of the form [y1, y2] where y1 and y2 are commutators of weight i < k and j < k respectively, such that i + j = k.
The commutator [y1, y2] is called a simple commutator if y2 ∈ X .

Every G ∼= Nr,c(Z) contains an ordered tuple of elements:

u = (u11, u12, . . . , u1n1 , u21, . . . , u2n2 , . . . , uc,nc ),

called a Hall basic sequencewhere for each 1 ≤ i ≤ c ,

{ui1Γi+1, ui2Γi+1, . . . , uiniΓi+1},

generates Γi/Γi+1 freely as a free abelian group. In fact each uij, i > 1 is a commutator of weight i in {u11, . . . , u1n1}. To avoid
writing double indices let us for a moment denote the tuple above by

u = (u1, u2, . . . , un).
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Each element g ∈ G has a unique representation:

g = ua1
1 ua2

2 · · · uan
n = ua,

where a = (a1, . . . , an) ∈ Zn. Now let h = ub be another element of G and let gh = ud. Now if we think of a and b as tuples
of n integer variables then each di = di(a, b) is a function of 2n integer variables. On the other hand if l is an integer (or on
integer variable) and g l

= um then each mi = mi(l, a) is a function of n + 1 integer variables l and a. It is a fundamental
result of Philip Hall (see [10] Section 6) that there are polynomials

pi(x1, . . . , xn, y1, . . . , yn) ∈ Q[x, y]

and

qi(x1, . . . , xn, y) ∈ Q[x, y]

called canonical polynomials associated to u such that pi(a, b) = di and qi(a, l) = mi. In fact the polynomials pi(x, y) above
are sum of integer multiples of the binomial products of the form

x1
r1


· · ·


xi
ri


y1
s1


· · ·


yi
si


and polynomials qi are integer multiples of the binomial products of the form

x1
r1


· · ·


xi
ri


y
s


where the ri, si and s are nonnegative integers.

Therefore if R is binomial domain, i.e. R is a characteristic zero integral domain such that for all elements a ∈ R and copies
of positive integers k = 1 + · · · + 1  

k−times

there exists a unique solution in R to the equation:

a(a − 1) · · · (a − k + 1) = x(k!),

one can define a group structure (unique up to isomorphism) on Rn using the polynomials pi and qi. We call such a group P.
Hall R-completion of G over R. In our case the P. Hall R-completion of Nr,c(Z) is denoted by Nr,c(R).

The above construction is not restricted to free nilpotent groups and can be applied to any torsion-free finitely generated
nilpotent group. In fact groups like Nr,c(R) are called R-groups or R-powered groups. Indeed if x1, . . . , xm are free generators
of a free group, we define words

τk(x1, . . . , xn) = τk(x̄),

inductively by:

xn1 · · · xnm = τ1(x̄)nτ2(x̄)(
n
2) · · · τn−1(x̄)(

n
n−1)τn(x̄).

The formula above is called Hall–Petresco formula.

Definition 1.4. AgroupG admitting exponents in a binomial domain R or an R-group for short is a nilpotent groupG together
with a function:

G × R → G, (x, a) → xa,

satisfying the following axioms:

1. x1 = x, xaxb = x(a+b), (xa)b = x(ab), for all x ∈ G and a, b ∈ R.
2. (y−1xy)a = y−1xay for all x, y ∈ G and a ∈ R.
3. xa1x

a
2 · · · xan = (x1x2 · · · xn)aτ2(x̄)(

a
2) · · · τc(x̄)(

a
c), for all x1, . . . , xn in G, a ∈ R, where τi come fromHall–Petresco formula and

c is the nilpotency class of G.

For details we refer the reader to [10].
Let us fix one more piece of notation. Whenever u = (u11, u12, . . . , uc,nc ) is a Hall basic sequence by ui, 2 ≤ i ≤ c , we

denote the tuple

(ui1, ui2, . . . , uini , ui+1,1, . . . , uc,nc ).

Correspondingly by ua
i , where a = (ai1, . . . , ai,ni , ai+1,1, . . . , ac,nc ) is a tuple of elements of a binomial domain R, we denote

uai1
i1 · · · uac,nc

c,nc . We keep the same convention for exponents as well, i.e. if a = (a11, a12, . . . , ac,nc ) is a tuple of elements of R
then by ai we mean the sub-tuple of awith the first index greater than or equal to i.
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1.3.4. Abelian deformations of Nr,c(R)
Belowwe shall give the definition of an abelian deformation ofNr,c(R). In order to define these objects we need to borrow

a few concepts form group cohomology theory. So assume that A is an abelian group and B is a group. A function

f : B × B → A

satisfying

• f (xy, z)f (x, y) = f (x, yz)f (y, z), ∀x, y, z ∈ B,
• f (1, x) = f (x, 1) = 1, ∀x ∈ B

is called a 2-cocycle. If B is abelian a 2-cocycle f : B × B → A is symmetric if it also satisfies the identity:

f (x, y) = f (y, x) ∀x, y ∈ B.

Consider the R-group G = Nr,c(R). By definition there is a subset b = {g1, . . . , gr} of G with u a Hall basic sequence in b

defining it as the R-completion of H = Nr,c(Z). Let pi and qi be the canonical polynomials associated to u. For each 1 ≤ i ≤ r
let

f i :

nc
i=1

R+
×

nc
i=1

R+
→ R+

be a symmetric 2-cocycle. Each f i is an nc-tuple of symmetric 2-cocycles f ij : R+
× R+

→ R+. We introduce a new product
on the base set X of G, which happens to be the set of all formal products

ua11
11 · · · uac,nc

c,nc = ua,

aij ∈ R. Let g = ua and h = ub be any pair of elements of this set. Now we define a product and inversion on this set as
following. If gh = ud and g−1

= um then

• dij = pij(a, b), for all 1 ≤ j ≤ ni, if 1 ≤ i ≤ c − 1,
• dcj = pcj(a, b)+

∑r
k=1 f

k
j (a1k, b1k), for all 1 ≤ j ≤ nc

• mij = qij(a,−1), for all 1 ≤ j ≤ ni, if 1 ≤ i ≤ c − 1,
• mcj = qcj(a,−1)−

∑r
k=1 f

k
j (a1k,−a1k), for all 1 ≤ j ≤ nc .

To give a definition let us assume for now that X together with the operations · and −1 is a group.
Definition 1.5 (Abelian Deformations). The set X together with the operations · and −1 defined above will be denoted by

Nr,c(R, f 1, f 2, . . . , f r)

or Nr,c(R, f̄ ). We call any group isomorphic to such a group an abelian deformation of Nr,c(R) or a QNr,c-group over R.
In order to prove that abelian deformations are actually groups we start with giving a brief review of the correspondence

between equivalence classes (under equivalence of extensions) of central extensions of an abelian group A by a group B and
the so-called second cohomology group, H2(B, A). This is included only for the convenience of the reader.

By an extension of A by B we mean a short exact sequence of groups

1 → A
µ
−→ E

ν
−→ B → 1,

whereµ is the inclusionmap. The extension is called abelian if E is abelian and it is called central if A ≤ Z(E). A 2-coboundary
g : B × B → A is a function defined by:

ψ(xy) = g(x, y)ψ(x)ψ(y), ∀x, y ∈ B,

whereψ : B → A is a function. Any 2-coboundary is a 2-cocycle. One can make the set Z2(B, A) of all 2-cocycles and the set
B2(B, A) of all 2-coboundaries into abelian groups in an obvious way. Clearly B2(B, A) is a subgroup of Z2(B, A). Let us set

H2(B, A) = Z2(B, A)/B2(B, A).

Assume f is a 2-cocycle. Define a group E(f ) by E(f ) = B × A as sets with the multiplication

(b1, a1)(b2, a2) = (b1b2, a1a2f (b1, b2)) ∀a1, a2 ∈ A,∀b1, b2 ∈ B.

The above operation is a group operation and the resulting extension is central. Through out the paper we shall use the well
known fact that there is a bijection between the equivalence classes of central extensions of A by B and elements of the
group H2(B, A) given by assigning f + B2(B, A) the equivalence class of E(f ).

If B is abelian f ∈ Z2(B, A) is symmetric if and only if it arises from an abelian extension of A by B. As it can be easily
imagined there is a one to one correspondence between the equivalent classes of abelian extensions and the quotient group

Ext(B, A) = S2(B, A)/(S2(B, A) ∩ B2(B, A)),
where S2(B, A) denotes the group of symmetric 2-cocycles.
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For details regarding group cohomology we refer the reader to [27].

Proposition 1.6. For any choice of binomial domain R and tuple of symmetric 2-cocycles f̄ the abelian deformation H =

Nr,c(R, f̄ ) of G = Nr,c(R) is a group. Indeed there is a 2-cocycle

k : G/Z(G)× G/Z(G) → Z(G),

so that H is a central extension of Z(G) by G/Z(G) via k.

Proof. Let G = Nr,c(R). Set M =
∑nc−1

i=1 ni and N =
∑nc

i=1 ni. Let a, b ∈ RN . Let a′, b′
∈ RM be the tuples of the first M

elements of a and b respectively. Now for each 1 ≤ i ≤ r define a function,

g : RM
× RM

→ Rnc

by

g(a′, b′) =

r−
i=1

f i(a1i, b1i).

Define

k : G/Z(G)× G/Z(G) → Z(G),

by k(uaZ(G),ubZ(G)) = upc (a′,b′)+g(a′,b′)
c . We need to check that g defined as above is a 2-cocycle. We just remark that if

uaub
= ud then d1i = a1i + b1i, i = 1, . . . , r . From the definition of k it is obvious that k(uaZ(G), 1) = k(1,uaZ(G)) = 1 for

any a ∈ RN . Moreover

k(uaubZ(G),ucZ(G))k(uaZ(G),ubZ(G)) = u
∑r

i=1 f i(a1i+b1i,c1i)+f i(a1i,b1i)
c

= u
∑r

i=1 f i(a1i,b1i+c1i)+f i(b1i,c1i)
c

= k(uaZ(G),ubucZ(G))k(ubZ(G),ucZ(G))

for any a, b, c ∈ RN which proves that k is a 2-cocycle. Now it is clear that Nr,c(R, f̄ ) is the central extension of Z(G) by
G/Z(G) via the 2-cocycle k. �

Remark 1.7. Let us briefly discuss the main difference between Nr,c(R) and a QNr,c-group over R. Assume G = Nr,c(R),
b = {g1, . . . , gr} is free generating set for G as an R-group. It is presumably known that CG(gj) = gR

j ⊕ Z(G) for any gj ∈ b,
where gR

j = {x ∈ G : ∃a ∈ R, x = ga
j }, CG(g) = {x ∈ G : [x, g] = 1} and Z(G) = {x ∈ G : [x, y] = 1,∀y ∈ G}. Now consider

Nr,c(R, f̄ ) for some choice of f̄ . Then it is not hard to see that for gj ∈ Nr,c(R, f̄ ) = H , CH(gj) is an abelian extension (not
necessarily split) of Z(H) ∼= ⊕

nc
i=1R

+ by CH(gj)/Z(H) ∼= R+ via the symmetric 2-cocycle f j.

2. Proof of the characterization theorem

In this section we give a proof of Theorem 1.1 (the characterization theorem). Our approach in proving this theorem
resembles, in some aspects, the O.V. Belegradek’s approach (see [4]) in proving his characterization of groups elementarily
equivalent to a unitriangular group. He finds an interpretation of the ring R in the group UTn(R) in a way that any group
H ≡ UTn(R) interprets a ring S ≡ R. Indeed he generalizes the construction due to A. Mal’cev in the case of UT3(R) to
arbitrary n. Then he goes on to prove that the group H has a structure very close to a UTn(S) except that the centralizers of
standard basis elements (which happen to be abelian subgroups ofH) are not necessarily split extensions of S+ by Z(H) (see
Remark 1.7).

Here rather than trying to generalize Mal’cev’s construction from the case of UT3(R) ∼= N2,2(R) to our case we take a
different more global approach.

2.1. Interpreting R and its action on the quotients of the lower central series of Nr,c(R) in the group Nr,c(R)

Let us first state the following result.

Theorem 2.1 ([22]). Let f : M × M → N be non-degenerate full bilinear mapping of finite type. Assume

UR(f ) = ⟨R,M,N, δ, sM , sN⟩,

where the predicate δ describes f and sM and sN describe the actions of R on the modules M and N respectively, and

U(f ) = ⟨M,N, δ⟩.

Then there is the largest ring P(f ) with respect to which f remains bilinear and the structure UP(f )(f ) is absolutely interpretable
in U(f ). Moreover the formulas involved in the interpretation depend only on the type of f .
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Recall that an R-bilinearmapping f : M×M → N is called non-degenerate in both variables if f (x,M) = 0 or f (M, x) = 0
implies x = 0. We call the bilinear map f , a full bilinear mapping if N is generated by f (x, y), x, y ∈ M . Let f : M ×M → N be
a non-degenerate full R-bilinear mapping for some commutative ring R. The mapping f is said to have finite width if there is
a natural number s such that for every u ∈ N there are xi and yi in M we have

u =

s−
i=1

f (xi, yi).

The least such number,w(f ), is the width of f .
A set E = {e1, . . . , en} is a complete system for a non-degenerate mapping f if f (x, E) = f (E, x) = 0 implies x = 0. The

cardinality of a minimal complete system for f is denoted by c(f ).
Type of a bilinear mapping f , denoted by τ(f ), is the pair (w(f ), c(f )). Themapping f is said to be of finite type if c(f ) and

w(f ) are both finite numbers. If f , g : M × M → N are bilinear maps of finite type we say that the type of g is less than the
type of f and write τ(g) ≤ τ(f ) if w(g) ≤ w(f ) and c(g) ≤ c(f ). The ring P(f ) has the following description. Let End(M)
denote the endomorphism ring of an abelian group M . We shall identify P(f )with the subring S ≤ End(M)× End(N) of all
pairs A = (φ1, φ0) such that for all x, y ∈ M ,

f (φ1(x), y) = f (x, φ1(y)) = φ0(f (x, y)). (1)

To make use of Theorem 2.1 in our context we first consider the Lazard Lie ring Lie(G) of the group G. The base abelian
group of Lie(G) is the direct sum ⊕

c
i=1Γi/Γi+1 and the Lie bracket on Lie(G) is defined using the commutator on the group G.

Let us introduce some notation from Lie algebra theory before proceeding.
Let g be any Lie algebra with respect to the bracket [ , ]. Define

g1 = g, gi+1
= [gi, g] ∀i ≥ 1,

where [gi, g] denotes the ideal generated by all the elements of the form [x, y], x ∈ gi and y ∈ g. By Z(g) we denote the
center of g. Now a free nilpotent R-Lie algebra of class c and rank r , N (R, r, c), is any R-Lie algebra satisfying

N (R, r, c) ∼= A(R, r)/(A(R, r))c+1,

where A(R, r) is the free R-Lie algebra of rank r .
If g is a Lie algebra the map

fg : g/Z(g)× g/Z(g) → g2, (x + Z(g), y + Z(g)) → [x, y],

is a full non-degenerate bilinear map. In case that g = N = N (R, r, c) one can verify that fN is of finite type. Let us point
out that N c

= Z(N ) and that Lie(G) ∼= N (R, r, c) as Lie rings when G ∼= Nr,c(R). So if we can prove that R ∼= P(fN ) and
that N ∼= Lie(G) is interpretable in G then we have proved that R is interpretable in G. In fact we shall see that we can prove
much more. The first main result in this direction is:

Theorem 2.2. Any element (φ1, φ0) ∈ P(fN ) acts by a unique element αφ of R on N /N c and N 2. Moreover this correspondence
is an isomorphism of rings.

Before starting to prove the theorem we would like to remark that all the properties of free nilpotent Lie algebras used
here are consequences of the structure theory of free Lie algebras. For the later our reference is Chapter 5 of [12]. In particular,
we shall use the following statements which are direct corollaries of Theorems 5.9 and 5.10 in the reference cited above.

Lemma 2.3. Consider N = N (R, r, c) with a free generating set

b = {ζ1, . . . , ζr}.

Then there exists a sequence

u = (u11, u12, . . . , u1,n1 , u21, . . . , u2,n2 , . . . , uc,nc )

of elements of N called the Hall basic sequence based on b generating N as a free R-module, where u1j = ζj, j = 1, . . . , r, and
each uij, 2 ≤ i ≤ c, is a certain bracket of weight i in b. This induces a grading

N ∼= N1 ⊕ N2 ⊕ · · · ⊕ Nc,

on N where each Ni, i = 1, . . . , c, is the R-submodule consisting of homogeneous elements of weight i.

Lemma 2.4. Assume z and t are homogeneous elements ofN (R, r, c) such that the sum of their weights is strictly less than c+1.
Then [z, t] = 0 if and only if z and t are linearly dependent over R.

Proof of Theorem 2.2. Notice that in this case the bilinear map fN has the form:

fN : N /Nc × N /Nc → N 2

(x + Nc, y + Nc) → [x, y] ,
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as Nc = Z(N ). For simplicity we drop the subscript N from fN and refer to it as f . Let us denote the coset x + Nc by [x]
for any x ∈ N . We start by analyzing the action of P(f ) on N /Nc in terms of elements of R. To do this we pick a free set of
generators for N and fix a basic sequence u in this set. Firstly we analyze the action of P(f ) on [u1s]. Let us recall that P(f )
is the subring of End(N /Z(N ))× End(N 2) consisting of all pairs (φ1, φ0) such that

f (φ1(x), y) = f (x, φ1(y)) = φ0(f (x, y)), ∀x, y ∈ N /Z(N ). (2)

We show that there exists α ∈ R such that φ1([x]) = α[x] for every x ∈ N . Set φ1([u1s]) =
∑c−1

i=1
∑ni

j=1 αij[uij], where each
αij belongs to R. From (2) we have

f (φ1([u1s]), [y]) = f ([u1s], φ1([y])) = φ0([u1s, y]),

for all y ∈ N . Letting y = u1s we get
c−1−
i=1

ni−
j=1

αij[uij, u1s] = f (φ1([u1s]), [u1s])

= φ0([u1s, u1s])

= φ0(0) = 0.

Now by Lemma 2.3 every homogeneous component of the sum on the left hand side of the identity above has to be zero,
i.e.,

ni−
j=1

αij[uij, u1s] = 0, ∀i = 1, . . . , c − 1. (3)

For i = 1 all summands in
∑n1

j=1 α1j[u1j, u1s], are R multiples of basic elements of weight 2 except when j = s. This implies
that α1j = 0, 1 ≤ j ≤ r , except possibly when j = s. If i ≥ 2 then (3) implies that [

∑ni
j=1 αijuij, u1s] = 0. But since both of the

elements inside the bracket are homogeneous by Lemma 2.4we have to have that u1s and
∑ni

j=1 αijuij are linearly dependent.
This is impossible unless

∑ni
j=1 αijuij = 0 since they are homogeneous elements of different weights. This just implies that

αij = 0 for all j = 1, . . . , ni. Let us fix α = α1s. We shall prove that α obtained above is the αφ in the statement of the
theorem. To do this let us first show that φ1([u1t ]) = α[u1t ] for any 1 ≤ t ≤ n1. So assume that t ≠ s. By the argument
above there exists an element β of R such that φ1([u1t ]) = β[u1t ]. So we just need to prove that α = β . Now by (2) applied
to x = [u1s] and y = [u1t ] we have α[u1s, u1t ] = β[u1s, u1t ] implying the desired identity α = β since N is a free R-module.
Next we prove that φ1 acts by the element α ∈ R obtained above on any element [ust ], 1 ≤ s ≤ c − 1 and 1 ≤ t ≤ ns. So
assume 1 < s ≤ c − 1 and let φ1([ust ]) =

∑
i,j αij[uij]. Consider [u1k] and [ust ] for s and t chosen above and any 1 ≤ k ≤ n1.

On the one hand

f (φ1([u1k]), [ust ]) = [αu1k, ust ] = [u1k, αust ].

On the other hand

f ([u1k], φ1([ust ])) = f


[u1k],
−
i,j

αij[uij]


=

[
u1k,

−
i,j

αijuij

]
.

So by (2) and the two identities above we have
c−1−
i=1
i≠s


ni−
j=1

αij[u1k, uij]


+

ns−
j=1
j≠t

[u1k, αsjusj] + (αst − α)[u1k, ust ] = 0.

Now since N is a free nilpotent Lie algebra each homogeneous element in the sum above is zero. In particular,u1k,

ns−
j=1
j≠t

αsjusj + (αst − α)ust

 =

u1k,

ns−
j=1
j≠t

αsjusj

+ [u1k, (αst − α)ust ]

= 0.

Again since the elements inside the bracket on the left hand side are homogeneous one can conclude that αsj = 0 if j ≠ t
and α = αst . We also get αij = 0, if i ≠ s. Hence αij = 0 if (i, j) ≠ (s, t). This proves that

φ1([x]) = α[x], ∀x ∈ N .
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Now for uck a basic element of weight c in Nc we know that uck = [uis, ujt ] for some pair (i, j) such that i+ j = c , 1 ≤ s ≤ ni
and 1 ≤ t ≤ nj. So by an obvious use of (2) we can conclude that φ0(uck) = αuck. It is also easy to see that for 1 < i < c and
1 ≤ j ≤ ni we have φ0(uij) = αuij, i.e. (φ1, φ0) acts on Ni by α.

Thus we have a correspondence

P(f ) → R, (φ1, φ0) → αφ .

All the properties making the correspondence an isomorphism of unital rings are easily checked by the construction of the
map. �

In order to take advantage of the above theorem we have to prove that the ring P(f ) in its statement is interpretable in
Nr,c(R). To this end we state and prove a sequence of lemmas.

Lemma 2.5. Each term Γi of the lower central series of a finitely generated nilpotent R-group G is absolutely definable in G.
Moreover the same formulas define the lower central terms of any group H ≡ G.

Proof. Fix a generating set X = {g1, . . . , gm} for G as an R-group. We shall use the fact that each Γi/Γi+1 is generated as an
R-group (here as an R-module) by simple commutators of weight i in X modulo Γi+1. We proceed by a decreasing induction
on i. Let c be the nilpotency class of G. Then Γc ⊆ Z(G). Assume that gc1, gc2, . . . , gc,mc lists all the simple commutators of
weight c in X . Then any x ∈ Γc can be written as

x =

mc∏
j=1

g
aj
cj , aj ∈ R.

However each gcj = [gc−1,kj , glj ] where gc−1,kj is some simple commutator of weight c − 1. For each u ∈ Γc−1, the map
G → Γc defined by x → [u, x] is a homomorphism of R-groups. Hence one can gather the terms with the same kj in the
above product, and one can define Γc by

Φc(x) =df ∃ȳ, ∃z1, . . . , ∃zmc−1


x =

mc−1∏
j=1

[Cc−1,j(ȳ), zj]

,

where Ci,j(g1, . . . , gm) is a simple commutator of weight i in X and

{Ci,j(g1, . . . , gm) : 1 ≤ j ≤ mi}

lists all simple commutators of weight i in X . Now fix i < c and assume that for all i ≤ k ≤ c the statement is true. As
Γi/Γi+1 ≤ Z(G/Γi+1), by a similar argument one can conclude that for any x ∈ Γi there are elements z1, . . . , zmi−1 , such that

xΓi+1 =

mi−1∏
j=1

[Ci−1,j(ḡ), zj]Γi+1.

SetΦ ′

i (x) =df ∃ȳ, ∃z1, . . . , ∃zmi−1(x =
∏mi−1

j=1 [Ci−1,j(ȳ), zj]). Therefore by induction hypothesisΓi is defined by the following
formula:

Φi(x) = ∃y1, ∃y2(x = y1y2 ∧ Φ ′

i (y1) ∧ Φi+1(y2)).

Now assume that H ≡ G. Let S i(y1, . . . , yi) = [y1, . . . , yi]. We know that h ∈ Γi(H) if and only if h satisfies one of the
formulas:

Ψj(x) = ∃ȳ1, ∃ȳ2, . . . , ∃ȳj

x =

j∏
k=1

S i(ȳk)

,

for some j ∈ N. However for every j ∈ N one has

G |= ∀x(Ψj(x) → Φi(x)).

This shows that h ∈ Γi(H) if and only ifΦi(h). �

Lemma 2.6. The Lie ring Lie(G) is absolutely interpretable in G. Moreover if H ≡ G then Lie(H) is interpreted in H using the same
formulas that interpret Lie(G) in G. In particular, Lie(G) ≡ Lie(H).

Proof. LetΦi be the formula defining Γi in G obtained in the previous lemma. Set

A(x̄) =df (x1 = x1) ∧


c

i=2

Φi(xi)


.
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Now define the following equivalence relation ‘‘∼’’ on A:

x̄ ∼ ȳ ⇔

c−1
i=1

Φi+1(xiy−1
i ) ∧ xc = yc .

Let us denote the elements of A/∼ by [x̄]. Now define the binary operations + and [ , ] on A/∼ by

Ψ1(x̄, ȳ, z̄) =df [x̄] + [ȳ] = [z̄] ⇔

c−1
i=1

Φi+1(xiyiz−1
i ) ∧ xcyc = zc,

Ψ2(x̄, ȳ, z̄) =df [[x̄], [ȳ]] = [z̄] ⇔

c
k=1

Φk+1

∏
i+j=k

x−1
i y−1

j xiyj


z−1
k


.

Clearly the structure obtained above is Lie(G). The formulas A, Ψ1 and Ψ2 provide an absolute interpretation of Lie(G)
in G. �

Lemma 2.7. Let g be a Lie ring so that N (R, r, c) ≡ g. Then the following statements hold.

1. The bilinear mapping fg is absolutely interpretable in g using the same formulas that interpret fN in N . In particular, fN ≡ fg.
2. The formulas that interpret UP(fg)(fg) in U(fg) are the same as the formulas that interpret UP(fN )(fN ) in U(fN ), in particular,

P(fg) ≡ P(fN ).

Proof. For any Lie ring h the ideal Z(h) is absolutely definable in h by the formula

ΦZ (x) = (∀y, [x, y] = 0).

Thus h/Z(h) is absolutely interpretable in h. We observe that for any Lie ring h, z ∈ h2 if and only if z satisfies one the
formulas:

Ψn(x) =df ∃ȳ, ∃z̄ x =

n−
i=1

[yi, zi],

for some n ∈ N.We observe that there is a positive integer N , where N is the number of basic elements of weight ≥ 2, such
that for every positive integer n one has the following:

N |= ∀x(Ψn(x) → ΨN(x)).

As g ≡ N we note that the ideal g2 is defined in g by the formula ΨN(x). Now to conclude the proof of (1) we just need to
notice that bilinear maps in question are defined using Lie brackets which is already in the language so the statement (1)
follows.

To prove (2) one observes that by (1) fg has the same type as the type of fN . This implies that the formulas that interpret
the ring UP(fg)(fg) in fg are the same as the formulas that interpret UP(fN )(fN ) in U(fN ). Hence P(fN ) ≡ P(fg). �

Nowwe can prove that not only is the ring R interpreted in G = Nr,c(R) but also any group H ≡ G interprets a ring S ≡ R
and quotients of the lower central series of H are free S-modules of the same rank as the corresponding quotients of G.

Theorem 2.8. Assume G = Nr,c(R). Then the action of R on each of the quotients Γi(G)/Γi+1(G) is absolutely interpretable in G,
i.e. the modules

⟨R,Γi/Γi+1, δi⟩

are interpretable in the group G, where the predicate δi describes the action of R on Γi/Γi+1. Moreover if H ≡ G then there exists
a ring S ≡ R so that for each i,

Γi(H)/Γi+1(H) ∼= Γi(G)/Γi+1(G)⊗Z S,

and the formulas that interpret the action of S on each Γi(H)/Γi+1(H) are the same as the formulas that interpret the action R on
Γi(G)/Γi+1(G).

Proof. Let P = P(fLie(G)). Notice that N 2 ∼= ⊕
c
i=2Γi/Γi+1. By Theorem 2.2, R ∼= P and therefore P acts on each Γi/Γi+1, 2 ≤

i ≤ c . Hence the action of P on each Γi/Γi+1, 2 ≤ i ≤ c is absolutely interpretable since each factor Γi/Γi+1 is so by
Lemma 2.5. Now consider the case i = 1. Let us set g = Lie(G). We observe that the action of P on the quotient (g/gc)/
(g2/gc) is absolutely interpretable in g. Moreover the natural (group) isomorphism between (g/gc)/(g2/gc) and Ab(G) is
interpretable in G. This implies that the induced action of P on Ab(G) via the above isomorphism is absolutely interpretable
in G. So far we have proved that all the modules ⟨P,Γi/Γi+1, σi⟩, where the predicate σi describes the action of P on Γi/Γi+1,
are absolutely interpretable in G. Notice that an isomorphism of structures

ϕ : Ui(P) = ⟨P,Γi/Γi+1, σi⟩ → ⟨R,Γi/Γi+1, δi⟩ = Ui(R)
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is a pair (ϕ1, ϕ2) of isomorphisms ϕ1 : P → R, ϕ2 : Γi/Γi+1 → Γi/Γi+1 so that

ϕ2(σi(a, x)) = δi(ϕ1(a), ϕ2(x)), ∀a ∈ P,∀x ∈ Γi/Γi+1. (4)

Now for each i consider the pair (µ, idi)whereµ is the isomorphism supplied by Theorem 2.2 and idi is the identity map on
Γi/Γi+1. It is clear by the very construction of µ that (4) is satisfied for each i. Thus Ui(P) ∼= Ui(R).

To prove the moreover part note that for each i there are elements {ui1, . . . , ui,ni} of G whose cosets generate
Γi(G)/Γi+1(G) freely as an R-module. By the discussion above there exists a formulaΘi(x1, . . . , xni) of the language of groups
so that G |= Θi(ḡ) if and only if ḡ generate the quotient Γi(G)/Γi+1(G) freely as an R-module. Thus G |= ∃x̄Θi(x̄) for each i.
Therefore

H |= ∃x̄Θi(x̄).

for each i. By Lemma 2.6 Lie(G) ≡ Lie(H) and by Lemma 2.7,

S ≡ P ∼= R,

where S = P(fLie(H)). As a consequence of Lemma2.5Γi(G)/Γi+1(G) andΓi(H)/Γi+1(H) are interpreted by the same formulas
in the respective groups. So the actions of S and P on the corresponding quotients are interpreted by the same formulas.
So H |= ∃x̄Θi(x̄) implies that for each i there are ni elements of H whose quotients generate Γi(H)/Γi+1(H) freely as an
S-module. This finishes the proof. �

2.2. Interpreting R and its action on some R-invariant subgroups of Nr,c(R) in the group Nr,c(R)

The next step is to recover the action of R on the group G (or on some R-invariant subgroups of G) using first-order
formulas from the actions of R on the quotients of the lower central series in a way that same formulas interpret the action
of S on H (or on the corresponding S-invariant subgroups of H). Of course as expected the action cannot be completely
recovered. But we are able to prove the following statement.

Lemma 2.9. Let G = Nr,c(R). Let u be a Hall basic sequence for G. Consider the cyclic modules uR
ij = {ua

ij : a ∈ R}, viewed as
structures

⟨R, uR
ij, δij⟩,

where δij is the predicate describing the action of R on uR
ij. Then all the uR

ij are interpretable in (G, ū), where ū = (u11, . . . , u1r),
except possibly the ones generated by elements of weight 1. However when i = 1, the action of R on CG(u1j)/Z(G) is interpretable
in (G, u1j), for all 1 ≤ j ≤ r.

Proof. We prove that the cyclic R-modules generated by simple commutators of weight ≥ 2 in ū are interpretable in (G, ū).
Since each element of the basic sequence is a fixed product of integral powers of simple commutators of the same weight
the first part of the result (the case weight ≥ 2) follows. We proceed by a decreasing induction on the weight of simple
commutators.

Firstly note that R ∼= P(fG) by Theorem 2.2 since Lie(G) ∼= N (R, r, c) as R-Lie algebras. So R is absolutely interpretable
in G since P(fG) is interpretable in fG, fG is interpretable in Lie(G) by Lemma 2.7, and finally Lie(G) is interpretable in G by
Theorem 2.6. Moreover the action of R ∼= P(fG) on Z(G) = Γc is interpretable in G by Corollary 2.8. Hence the cyclic modules
uR
ci are interpretable in G. Fix k such that 1 < k < c. Let l be the dimension of the interpretation of R in G and f be the function

from the definable subset of G where R is defined on onto R. Assume the statement is true for all simple commutators of
weight i, k < i ≤ c. We prove the statement for elements of weight k. Each simple commutator of weight k is of the form
[h, g] where h is a simple commutator of weight k − 1 and g is a basic commutator of weight 1. Pick a ∈ R and y ∈ CG(g)
such that yZ(G) = gaZ(G). This choice can be made by Remark 1.7. Then by Hall–Petresco formula:

[h, y] = [h, ga
]

= (h−1g−1h)aga

= [h, g]aτ2(h−1g−1h, g)(
a
2)τ3(h−1g−1h, g)(

a
3) · · · τc(h−1g−1h, g)(

a
c). (5)

Let g ′
= τ2(h−1g−1h, g)(

a
2)τ3(h−1g−1h, g)(

a
3) · · · τc(h−1g−1h, g)(

a
c). Then g ′ is an element of Γk+1(G). Each τm(h−1g−1h,

g) is a product of integral powers of commutators in h−1g−1h and g . So there are integers bij(m) such that

τm(h−1g−1h, g) =

c∏
i=m+k−1

ni∏
j=1

u
bij(m)
ij .

Now the existence of the canonical polynomials associated to u implies the existence of polynomials

rij(x1, . . . xc, y(k + 1), . . . , y(c))
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where y(i) = (y11(i), . . . , yc,nc (i)), so that

g ′
=

∏
(i,j)∈I

u
rij((

a
1),...,(

a
c),b(k+1),...,b(c))

ij ,

where rij(
a
1


, . . . ,

a
c


, b(k + 1), . . . , b(c)) = 0 whenever i ≤ k. Since actually each rij is a sum of integral multiples of

products of binomial coefficients there is an equation expressible in the first-order language of rings so that its unique
solution is rij(

a
1


, . . . ,

a
c


, b(k + 1), . . . , b(c)). Now by induction hypothesis each cyclic module uR

ij, i > k is interpretable
in (G, ū). So there exists a first-order formula Φ(x, y1, . . . , yr , z1, . . . , zl) (note that any uij is a certain commutator in ū) of
the language of groups such that

g ′
= τ2(h−1g−1h, g)(

a
2)τ3(h−1g−1h, g)(

a
3) . . . τc(h−1g−1h, g)(

a
c)

⇔ (G, ū) |= Φ(g ′, ū, g1, . . . , gl)

where f (g1, . . . , gl) = a. By Theorem 2.8 the action of R on Ab(G) is interpretable in G so clearly there is a formulaΦ ′ of the
language of groups so that

yΓ2 = (gΓ2)
a
⇔ G |= Φ ′(y, g, g1, . . . , gl).

So we have

x = [h, g]a ⇔ (G, ū) |= ∃z, y(x = [h, y]z−1
∧ Φ(z, ū, g1, . . . , gl) ∧ Φ ′(y, g, g1, . . . , gl) ∧ [g, y] = 1). (6)

Thus the formula on the right hand side of ⇔ in (6) interprets the action of R on the abelian group [h, g]R with respect to
the parameters ū. We notice that g and h chosen above are some specific commutators in ū.

In order to prove that the action ofR on CG(u1j)/Z(G) is interpretable in (G, u1j) firstlywenotice that CG(u1j) = uR
1j ⊕ Z(G),

so the following equivalence should be clear.

xZ(G) = (u1jZ(G))a ⇔ xΓ2(G) = (u1jΓ2(G))a ∧ [x, u1j] = 1,

for all a ∈ R. But the right hand side is expressible in the first-order language of the enriched group (G, u1j). The result
follows now. �

Let

I =df {(i, ji) ∈ N × N : 1 ≤ i ≤ c, 1 ≤ ji ≤ ni}, (7)

where c comes from Nr,c and ni is the number of basic commutators of weight i. By definition there is a subset b =

{g1, . . . , gr} of G = Nr,c(R) and a Hall basic sequence u in b defining it as the R-completion of H = Nr,c(Z). Then there
are the canonical polynomials defining product and R-exponentiation in G. Hence for each ((i, j), (k, l)) in I × I there exists
a polynomial t ijklrs (x, y) in Q[x, y], where (r, s) in I , such that t ijklrs (a, b) belongs to R for each (a, b) ∈ R × R, and

[ua
ij, u

b
kl] = utijkl(a,b)

i+k+1 , ∀a, b ∈ R.

Corollary 2.10. Let G = Nr,c(R) and b = {g1, g2, . . . , gr} be generating set for G as an R-group. Let u be a Hall basic sequence
based on b. Then the following statements which are all true in G can be expressed using first-order formulas of the language of
the enriched group (G, u11, . . . , u1r).

1. For each 1 ≤ i ≤ c, the set

{ui1Γi+1(G), . . . , uiniΓi+1(G)}

generates Γi(G)/Γi+1(G) freely as an R-module.
2. For each 1 ≤ j ≤ r, CG(u1j) is abelian and

CG(u1j)/Z(G) = (u1jZ(G))R.

3. ua
iju

b
ij = u(a+b)

ij for all a, b ∈ R, if i > 1.

4. (a) [ua
ij, u

b
kl] = utijkl(a,b)

i+k+1 for all a, b ∈ R, if i > 1 and k > 1,

(b) [x, ub
kl] = ut1jkl(a,b)

k+2 , where x ∈ CG(u1j) and xZ(G) = (u1jZ(G))a, for all a, b ∈ R, if k > 1,

(c) [ua
ij, y] = utij1l(a,b)

i+2 , where y ∈ CG(u1l) and yZ(G) = (u1lZ(G))b, for all a, b ∈ R, if i > 1,

(d) [x, y] = ut1j1l(a,b)
2 where x ∈ CG(u1j) and y ∈ CG(u1l) are any elements such that xZ(G) = (u1jZ(G))a and yZ(G) =

(u1lZ(G))b for all a, b ∈ R.

Proof. Statement (1) is expressible by formulas of the language of (G,u) since the action of R on each Γi(G)/Γi+1(G) is
absolutely interpretable in G. The result for (2), (3) and (4) is a direct consequence of Lemma 2.9. �
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Thus we arrive at the following corollary.

Corollary 2.11. There is a formula Basis(x1, . . . , xr) of the language of groups so that if (g1, . . . , gr) ∈ Gr satisfies Basis(x̄) then
there exists a basic sequence u based on this set which satisfies statements (1)–(4) of Corollary 2.10.

Proof. In each item in the statement of Corollary 2.10 replace each u1j by the free variable x1j and each ukl, k > 1 by xkl
where xkl is obtained from the x1j the same way as ukl obtained from the u1j. One needs to notice that this way only finitely
many formulas are obtained. So their conjunction produces the formula Basis(x̄). �

Scrutinizing proof of Lemma 2.9 and Corollary 2.10 one notices that all the formulas involved in the interpretations
depend only on certain logical invariants of G.

Lemma 2.12. Let G = Nr,c(R) and H be a group such that G ≡ H. Then there is a ring S, where S ≡ R as rings, and a set
c = {h1, . . . , hr} of distinct nontrivial elements of H with a Hall basic sequence v in c such that the statements (1)–(4) of
Corollary 2.10 hold in H with R replaced by S, uij replaced by vij and Z(G) is replaced by Z(H).

Proof. Let Basis(x̄) be the formula obtained in Corollary 2.11. Since H ≡ G, we have

H |= ∃x̄Basis(x̄).

Let (h1, . . . , hr) be a tuple of elements ofH such thatH |= Basis(h̄) and v be the Hall basic sequence based on these elements.
Set S = P(fLie(H)). As a corollary of Theorem 2.8 statement (1) in Corollary 2.10 holds in H with uij replaced by vij.

Moreover

xZ(G) = (u1jZ(G))a ⇔ xΓ2(G) = (u1jΓ2(G))a ∧ [x, u1j] = 1.

So the right hand side of ‘‘⇔’’ can be used with corresponding replacements to interpret the action of S on CH(v1j)/Z(H).
This proves that Statement (2) holds in H with proper replacements.

To prove that (3) and (4) are true in H with proper replacements we will first prove that for 2 ≤ i ≤ c the sets

vSij = {vaij : a ∈ S}

are cyclic S-modules which are interpretable in the enriched structure (H, v̄). To do this we observe that vij, 2 ≤ i ≤ c ,
are products of integral powers of simple commutators in {v1j : 1 ≤ j ≤ r} since the same relations hold between the uij
and the u1j. Now using a decreasing induction on the weight of simple commutators in {v1j : 1 ≤ j ≤ c} we let Eq. (5) of
Lemma 2.9 define the S-exponents of these simple commutators. So by the observationmade above the S-exponents of each
vij, 1 ≤ i ≤ c , 1 ≤ j ≤ nc can be defined. Now since each uR

ij is a cyclic module and S-exponentiation in vSij is defined using
the action of R on uR

ij, S-exponentiation is actually an action and turns vSij into S-modules. We just remark that the S-module
structure of each vSij is interpretable in (H, v̄) using the same formulas that interpret the action of R on uR

ij. Moreover from
the above paragraph we have that the action of S on CH(v1j)/Z(H) is interpreted in H using the same formulas that interpret
the action of R on CG(u1j)/Z(G). The final point to consider is the polynomials tijkl. These polynomials make sense over any
binomial domain. Since R is a binomial domain and R ≡ S hence is S. So the polynomials tijkl can be regarded to be the same
if we identify the copies of Z inside the two rings. The statement follows now. �

2.3. A presentation for an abelian deformation of Nr,c(R) and concluding the proof of the characterization theorem

The significance of Lemma 2.12 is that statements (1)–(4) give us all the relations we need to define a QNr,c group.

Proposition 2.13 (Generators and Relations for a QNr,c Group). Let u be a Hall basic sequence for Nr,c(R). Then Nr,c(R, f̄ ) is
generated by

H = {ua
ij : (i, j) ∈ I, a ∈ R}

and defined by the relations R:

1. [ua
ij, u

b
kl] = utijkl(a,b)

i+k+1 , ∀a, b ∈ R, where for each (i, j), (k, l) ∈ I .

2. ua
iju

b
ij = u(a+b)

ij , 2 ≤ i ≤ c, 1 ≤ j = ji ≤ ni, ∀a, b ∈ R,

3. ua
1ju

b
1j = u(a+b)

1j uf j(a,b)
c , 1 ≤ j ≤ r, ∀a, b ∈ R.

Proof. LetH = ⟨H : R⟩.We notice that all the relations in the statement hold inNr,c(R, f̄ ). So there exists a homomorphism

φ : H → Nr,c(R, f̄ ), ua
ij → ua

ij.

The homomorphism φ is clearly surjective. To prove injectivity we need to prove any element x ofH can be uniquely written
in the form x = ua11

11 · · · uac,nc
c,nc = ua, which is called the standard form for x. This is because if 1 = φ(x) = ua in Nr,c(R, f̄ )

then aij = 0 for all (i, j) ∈ I (see (7) right before Corollary 2.10 for the definition of I ), which implies that x = 1. Order the
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set I lexicographically, i.e. (i, j) < (k, l) if i < k or if the two conditions i = k and j < l hold together. Now consider the set
S of all final segments of I and order S by comparing the least elements of its members using<. If x is any word in H then

x = ua1
k1,l1

· · · uam
km,jm

where each (ki, li) ∈ I and ai ∈ R. Let Ix be the final segment of I whose least element is the least subscript of u in x. If
Ix = {(c, nc)} bymultiple applications of relation (2) x can bewritten in the standard form. Assume anywordwwith Ix < Iw
can be written in the standard form and assume that Ix < {(c, nc)}. Let (k, l) be the least element of Ix. By assumption
(k, l) < (c, nc). So x has the form

x = ua1
k1,l1

· · · uai
ki,li

uai+1
k,l w,

0 ≤ i ≤ m−1, where eitherw is the empty word or Ix < Iw . By hypothesisw can be written in the standard form described
in the induction hypothesis. If i = 0 we are done. So assume i > 0. By applying either relations (2) or (3) finitely many times
we can assume that (k, l) < (ki, li). Notice that if we require to use relation (3) the word w is modified to a word w′. But
then Ix < Iw′ and we can apply the hypothesis tow′ to write it in the standard form. Now use

uai
ki,li

uai+1
k,l = uai+1

k,l uai
ki,li

[uai+1
k,l , u

ai
ki,li

],

and relation (1) to get

x = ua1
k1,l1

· · · uai−1
ki−1,li−1

uai+1
k,l w

′′

where Ix < Iw′′ . Hence the induction hypothesis can be applied tow′′. Hence a standard inductive argument on the number
of misplaced letters with respect to the standard form yields the result. �

Now the characterization theorem can be easily proven.

Proof of Theorem 1.1 (The Characterization Theorem). To prove the statement it is enough to prove that H has a
presentation like the one given in Proposition 2.13 for some ring S ≡ R and symmetric 2-cocycles f j : S+

× S+
→ ⊕

nc
i=1S

+.
Let S be the ring referred to in Lemma 2.12. For each j = 1, . . . , r consider the symmetric 2-cocycle kj corresponding to the
abelian extension of Z(H) by CH(v1j)/Z(H). Consider the obvious S-module isomorphisms

µ0 : Z(H) →

nc
i=1

S, vci → ei,

where ei is the i’th element of the standard basis of ⊕nc
i=1S, and

µ1 : CH(v1j)/Z(H) → S, v1j + Z(H) → 1,

and define f j : S+
× S+

→ ⊕
nc
i=1S

+ by

f j(a, b) = µ0(kj(µ−1
1 (a), µ

−1
1 (b))), ∀a, b ∈ S.

So consider the group Nr,c(S, f̄ ) with the presentation as in the statement of Proposition 2.13, S replaced by R. Comparing
statements of Lemma 2.12 and Proposition 2.13 it is clear that the map

φ : H → Nr,c(S, f̄ ), vaij → ua
ij, ∀(i, j) ∈ I, a ∈ S,

is a homomorphism of groups. It is also injective since elements of H and Nr,c(S, f̄ ) have unique representations va and ua

respectively. Surjectivity is clear. Thus our result follows. �

3. Central extensions and elementary equivalence

The aim of this section is to prove that for any two elementarily equivalent binomial domains R and S

Nr,c(R, f̄ ) ≡ Nr,c(S, ḡ)

for any symmetric 2-cocycles f i and g i, 1 ≤ i ≤ nc .

Lemma 3.1. The group Nr,c(R) is absolutely interpretable in the ring R and the formulas involved in the interpretation depend
only on R being a binomial domain.

Proof. Pick any free generating set for Nr,c(R) as an R-group and the P. Hall basic sequence based on this set. Consider
the polynomials p and q associated to this sequence (see Section 1.3.3). These polynomials provide a

∑c
i=1 ni dimensional

interpretation of Nr,c(R) in R. Indeed this object is the group of R-points of a nilpotent algebraic group. Since the formulas
involved in the interpretation depend only on p and q and these polynomials do not depend on R as far as R is a binomial
domain the statement follows. �
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Corollary 3.2. If R ≡ S where R and S are some binomial domains then Nr,c(R) ≡ Nr,c(S).

An inspection of Lemma7.1 in [23] shows that its assumption ‘B is abelian’ is not necessary for its proof. Thus the following
result holds.

Lemma 3.3. Let

1 → A → G → B → 1

be a central extension of an abelian groups A by a group B. Let (J,D) be an ultrafilter. Then GJ/D is isomorphic to a central
extension of AJ/D by BJ/D .

Lemma 3.4. For any choice of f̄ , Nr,c(R) ≡ Nr,c(R, f̄ ).

Before giving the proof of this lemma we need to recall a few concepts and results from abelian group theory and model
theory of abelian groups.

Let A ≤ B be abelian groups. Then A is called a pure subgroup of B if ∀n ∈ N, nA = nB ∩ A. It is a fairly easy exercise to
show that if A ≤ B are abelian groups such that the quotient group B/A is torsion-free, then A is a pure subgroup of B.

An abelian group A is called pure-injective if A is a direct summand in any abelian group B that contains A as a pure
subgroup.

The following theorem expresses a connection between pure-injective groups and uncountably saturated abelian
groups.

Theorem 3.5 ([7], Theorem 1.11). Let κ be any uncountable cardinal. Then any κ-saturated abelian group is pure-injective.

We would like to mention that the definition of pure-injectivity in [7] is equivalent to ours though seemingly different
(see [9], Chapter VII).

Let us go back now to the proof of Lemma 3.4.

Proof of Lemma 3.4. We will prove the statement using ultrapowers. We need to remark that if R is a binomial domain
then for any ultrafilter (J,D) , RJ/D is also a binomial domain. In particular, the additive groups of both of them are torsion-
free.

SetG = Nr,c(R) andH = Nr,c(R, f̄ ). In Lemma1.6weobtained a 2-cocycle k so thatH is a central extension of Z(G) = Z(H)
by G/Z(G) = H/Z(H) via k.

Choose (J,D) so that (R+)J/D is ω1-saturated and consider G1 = Nr,c(RJ/D) and

H1 = Nr,c(RJ/D, (f 1)D , . . . , (f r)D)

where each (f i)D ∈ Z2((R+)J/D,⊕
nc
i=1(R

+)J/D), is the obvious 2-cocycle induced by f i. Now by our choice of (J,D) and
remarks preceding the proof any abelian extension of ⊕nc

i=1(R
+)J/D by (R+)J/D is a split extension. Therefore for each i

(f i)D ∈ B2


(R+)J/D,

nc
i=1

(R+)J/D


.

This in turn implies that

r−
i=1

(f i)D ∈ B2


r

i=1

(R+)J/D,
nc
i=1

(R+)J/D


.

Now by the definition of the 2-cocycle k, G1 andH1 are equivalent as extensions of Z(G1) = Z(H1) by G1/Z(G1) = H1/Z(H1).
So in particular, G1 ∼= H1. Therefore by Lemma 3.3,

(Nr,c(R))J/D ∼= G1 ∼= H1 ∼= (Nr,c(R, f̄ ))J/D,

which implies that,

Nr,c(R) ≡ Nr,c(R, f̄ ). �|

Thus Theorem 1.2 is a direct corollary of Lemmas 3.1 and 3.4.

4. A QNr,c-group which is not Nr,c

In this section we prove the existence of a QNr,c-group over a certain ring, i.e. a group that is an abelian deformation of
Nr,c(R) over a certain ring R, which is not an Nr,c-group over any ring. Before that we need to have a description of abstract
isomorphisms of free nilpotent Lie algebras.
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Lemma 4.1. Let ψ : N (R, r, c) → N (S, r, c) be a Lie ring isomorphism. Let ψ1 : g/Z(g) → h/Z(h) and ψ0 : g2 → h2 be the
isomorphisms induced by ψ . Then there is a ring isomorphism µ : R → S such that

ψ1(a(x + Z(g))) = µ(a)ψ1(x + Z(g)), ∀a ∈ R,∀x ∈ g,

and

ψ0(ax) = µ(a)ψ0(x), ∀a ∈ R,∀x ∈ g2.

Proof. We prove that P(fg) ∼= P(fh). Then Theorem 2.2 implies the existence of an isomorphism between R and S. Consider
the map:

µ : P(fg) → P(fh), (φ1, φ0) → (ψ1φ1ψ
−1
1 , ψ0φ0ψ

−1
0 ).

Firstly we need to check if P(fh) is actually the target of the map defined. This is a consequence of the fact thatψ is a Lie ring
isomorphism. Indeed pick any x, y ∈ h. Then,

fh(ψ1φ1ψ
−1
1 (x + Z(h)), y + z(h)) = ψ0(fg(φ1ψ

−1
1 (x + Z(h)), ψ−1

1 (y + Z(h)))

= ψ0φ0fg(ψ−1
1 (x + Z(h)), ψ−1

1 (y + Z(h)))

= ψ0φ0ψ
−1
0 fh(x + Z(h), y + Z(h)).

The map µ being a homomorphism follows from

ψi(φi + φ′

i )ψ
−1
i = ψiφiψ

−1
i + ψiφ

′

iψ
−1
i ,

and

ψiφiφ
′

iψ
−1
i = ψiφiψ

−1
i ψiφ

′

iψ
−1
i ,

i = 1, 2.
One can easily check that

µ′
: P(fh) → P(fg), (θ1, θ0) → (ψ−1

1 θ1ψ1, ψ
−1
0 θ0ψ0),

is the inverse of µ.
We also denote the isomorphism obtained from R to S byµ. Now choose x ∈ g and let a ∈ R. By Theorem 2.2 there exists

(φ1, φ0) ∈ P(fg) so that a(x + Z(g)) = φ1(x + Z(g)). Then

ψ1(a(x + Z(g)) = ψ1φ1(x + Z(g))
= ψ1φ1ψ

−1
1 ψ1(x + Z(g))

= µ(a)ψ1(x + Z(g)).

One can repeat this argument for ψ0 easily. This finishes the proof. �

Lemma 4.2. Assume that η : G = Nr,c(R, f̄ ) → Nr,c(S) = H is an isomorphism of groups. Then the rings R and S are isomorphic
via a mapµ : R → S. Moreover if η1 : Ab(G) → Ab(H) is the isomorphism induced by η and η0 : Z(G) → Z(H) is the restriction
of η to Z(G) then we have

η1((xΓ2(G))a) = (η1(xΓ2(H)))µ(a), ∀x ∈ G,∀a ∈ R,

and

η(xa) = (η(x))µ(a), ∀x ∈ Z(G),∀a ∈ R.

Proof. To obtain the isomorphismµ : R → S wemay use Lemma 4.1 since Lie(G) ∼= N (R, r, c) and Lie(H) ∼= N (S, r, c), as
Lie algebras. Consider the Lie ring isomorphismψ : g = Lie(G) → Lie(H) = h induced by η and defineψ1,ψ0 andµ similar
to the ones described in Lemma 4.1.

Any x ∈ g can be uniquely written as (x)1 + (x)2 where (x)1 ∈ Ab(G) and (x)2 ∈ g2. So we obviously have that

η1((xΓ2(G))a) = (ψ(a(xΓ2(G))))1
= (µ(a)ψ(xΓ2(G))+ z)1, for some z ∈ Z(g)
= (µ(a)ψ(xΓ2(G)))1
= (η1(xΓ2(G)))µ(a)

for all x in G. A similar argument using φ0 and ψ0 instead of φ1 and ψ1 proves that

η(xa) = η(x)µ(a), for all x ∈ Z(G). �
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Theorem 4.3. Let η : G = Nr,c(R, f̄ ) → Nr,c(S) = H be an isomorphism of groups. Then for each 1 ≤ j ≤ r we have that
f j ∈ B2(R+,⊕

nc
i=1R

+), i.e. each f j is a 2-coboundary.

Proof. Let the tuple of elements u of G be the one appeared in Definition 1.5 of a QNr,c-group. Set η(uij) = vij for all (i, j) ∈ I .
Let η1 : Ab(G) → Ab(H) be the group isomorphism induced by η. By Lemma 4.2 there exists an isomorphism µ : R → S of
rings so that η1((xΓ2(G))a) = (η1(xΓ2(G)))µ(a), for all a in R and x inG. This implies that {v11Γ2(H), . . . , v1rΓ2(H)} generates
Ab(H) freely as an S-module since {u11Γ2(G), . . . , u1rΓ2(G)} generates Ab(G) freely as an R-module. So c = {v11, . . . , v1r}
generates H as an S-group. Let v be the Hall basic sequence in c then every element h of H has a unique representation va.
Set J = {(i, j) ∈ I : 2 ≤ i ≤ c} and M =

∑nc
i=2 ni. By Lemma 4.2

η(ua
1j) = v

µ(a)
1j vg(µ(a))2 , ∀a ∈ R,

where g = (gij)(i,j)∈J : S → SM is a function determined by η. Since ua
1j ∈ CG(u1j)we have to have that vµ(a)1j vg(µ(a))2 ∈ CH(v1j).

Remark 1.7 implies that gij = 0 for all (i, j) such that 2 ≤ i ≤ nc−1. Hence one could write

φ(ua
1j) = v

µ(a)
1j vg(µ(a))c , ∀a ∈ R.

Choose two arbitrary elements b and b′ in S. Then,

vb+b′

1j = vb1jv
b′

1j

= φ(uµ
−1(b)

1j )v−g(b)
c φ(uµ

−1(b′)

1j )v−g(b′)
c

= φ(uµ
−1(b)

1j )φ(uµ
−1(b′)

1j )v−g(b)−g(b′)
c

= φ(uµ
−1(b+b′)

1j uf j(µ−1(b),µ−1(b′))
c )v−g(b)−g(b′)

c

= vb+b′

1j vµf
j(µ−1(b),µ−1(b′))+g(b+b′)−g(b)−g(b′)

c ,

where µf j =df (µf
j
k)1≤k≤nc . The identity above clearly shows that

µf j(µ−1(−), µ−1(−)) ∈ B2


S+,

nc
i=1

S+


.

Since µ is a ring isomorphism this implies that all f j, j = 1, . . . , r , are 2-coboundaries as claimed. �

Lemma 4.4 (Belegradek, [2]). There is a ring R, R ≡ Z such that Ext(R+, R+) ≠ 0.

Proof of Theorem 1.3. By Lemma 4.4 there exists a ring R such that R ≡ Z and Ext(R+, R+) ≠ 0. Then by Theorem 4.3 there
has to exist 2-cocycles f i : R+

× R+
→ ⊕

(nc )
i=1R

+, 1 ≤ i ≤ n, such that

H = Nr,c(R, f 1, . . . , f n) � Nr,c(R).

We note that H � Nr,c(S) for any binomial domain S by Theorem 4.3. Moreover H ≡ G by Lemma 3.4. �
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