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Abstract 

 
Songs play a vital role in our day to day life. A song contains basically two things, vocal and 

background music. Where the characteristics of the voice depend on the singer and in case of background 
music, it involves mixture of different musical instruments like piano, guitar, drum, etc. To extract the 
characteristic of a song becomes more important for various objectives like learning, teaching, composing. This 
project takes song as an input, extracts the features and detects and identifies the notes, each with a duration. 
First the song is recorded and digital signal processing algorithms used to identify the characteristics. The 
experiment is done with the several piano songs where the notes are already known, and identified notes are 
compared with original notes until the detection rate goes higher. And then the experiment is done with piano 
songs with unknown notes with the proposed algorithm.    
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1. Introduction 

 The ability to derive the relevant musical information from a live or recorded performance is relatively 
easy for a trained listener, but highly non-trivial for a learner and computer. For a number of practical 
applications, it would be desirable to obtain this information in a quick, error-free, automated fashion. This 
thesis discusses the design of a software system that accepts as input a digitized waveform representing an 
acoustical music signal, and that attempts to derive the notes from the signal so that a musical score could be 
produced. This signal processing algorithm involved include event detection, or precisely   where within the 
signal the various notes actually begin and end, and pitch extraction , or the identification of  the pitches being 
played in each interval. The event detection is carried out using the time domain analysis of the signal, where 
the problem arise with different speed. The pitch detection is (nothing but frequency identification) is more 
complicated because of a situation we call harmonic ambiguity; this occurs when one pitch whose fundamental 
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frequency is an integer multiple of another pitch. The problem is solved by the careful signal processing in both 
the time domain signals and frequency domain signals. 

The main objective of this project is to create an aid tool for learning for Musicians, Producers, 
Composers, DJs, Remixer, Teachers and Music Students. This project can be treated as a box, where you give 
any song as input and get the features of the song out. The aim of this project is to propose methods to analyze 
and describe a signal, from where the musical parameters can be easily and objectively obtained, in a sensible 
manner. A common limitation find in the musical literature is that the way in which such paramete rs are 
obtained is intuitively satisfactory but, to our view, not very sound from a signal processing perspective.  

2. Literature Survey 
 
2.1 Sound 

A sound can be characterized by the following three quantities: (i) Pitch.(ii) Quality.(iii) Loudness. 

Pitch is the frequency of a sound as perceived by human ear. A high frequency gives rise to a high 
pitch note and a low frequency produces a low pitch note. A pure tone is the sound of only one frequency, such 
as that given by a tuning fork or electronic signal generator. The fundamental note has the greatest amplitude 
and is heard predominantly because it has a larger intensity. The other frequencies such as 2fo, 3fo, 4fo,... are 
called overtones or harmonics and they determine the quality of the sound. Loudness is a physiological 
sensation. It depends mainly on sound pressure but also on the spectrum of the harmonics and the physical 
duration. 

2.2 Musical Notes 
 

Human can hear signal frequency ranging from 20-20 kHz. From this wide range some part is 
associated with piano. Different pianos are having different ranges. Each tone of piano is having one particular 
fundamental frequency and represented by a note like C, D, ...etc. as shown in fig 1 .The later C is 12 half steps 
away the previous one and having double the fundamental frequency. Hence this portion (from one C 
immediate next C) is called one octave.  Different octaves are differentiated by C1,C2, etc. 

 
 

 
 

      
  

  
Fig 1. An octave of a piano 

 
2.2.1 Equation For the Frequency Table 
 

The basic formula for the frequency of the notes of the equal tempered scale is given by fn = f0  * (a) n                 

where f0= the frequency of one fixed note which must be defined. A common choice is  setting the A    above 
middle C(A4) at f0 =440 Hz, n = number of half steps away from the fixed note you are, fn=  the frequency of 
the notes n half steps away, a = (2)1/12  
 
2.2.2 Frequencies for Equal Tempered Scale at A4 = 440 Hz 
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Table 1. Notation to Frequency Mapping [Middle C is C4] 
 

n Note Fundamental Frequency(Hz) 
-4 F3 174.61 
-3 F3

# 185 
-2 G3 196 
-1 G3

# 207.65 
0 A4 220 
1 A4

# 233.08 
2 B4 246.94 
3 C4 261.63 
4 C4

# 277.18 
5 D4 293.66 
6 D4

# 311.13 
7 E4 329.63 

 
2.3 Digital Signal Processing for music 

 
2.3.1 Sampling 
 

When a sound wave is created by your voice (or a musical instrument), it's an  analog wave of 
changing air pressure. However, in order for a computer to store a sound wave, it needs to record discrete 
values at discrete time intervals. The process of recording discrete time values is called  sampling, and the 
process of recording discrete pressures is called quantizing. Recording studios use a standard sampling 
frequency of 48 kHz, while CDs use the rate of 44.1 kHz. Signals should be sampled at twice the highest 
frequency present in the signal. Humans can hear frequencies from approximately 20-20,000 Hz, which 
explains why common sampling frequencies are in the 40 kHz range.  

2.3.2 Frequency and Fourier Transforms 
 

A Fourier transform provides the means to break up a complicated signal, like a musical tone, into its 
constituent sinusoids. This method involves many integrals and a continuous signal. We want to perform a 
Fourier transform on a sampled (rather than continuous) signal, so we have to use 
the Discrete Fourier Transform instead.  

 

Fig 2. FFT of a Musical Signal 

From the fig 2 we can see that the index corresponding to the maximum amplitude represents the most 
significant frequency component, that can be found using the formula  
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f =  *fs                                                                  (1)          

Where i = index at which maximum amplitude exists , T = Total samples in the fft at a time. 

2.3.3 Padding with Zeroes 

Padding with zeroes, though a standard practice and useful in many applications, does not appear to 
significantly improve our data in this application. Though we have twice the frequency resolution, it's not 
yielding any better data. Quick tests padding with many more zeroes (1 part sample, 9 parts zeroes) show that 
though the peaks get rounder due to better frequency resolution, the discrepancy between the highest point on 
the original sample and the highest point on the padded sample is 1 Hz at most, which means that it is probably 
not worth the effort, even at low frequencies. 

3.  Methodology 

                            Detection                                               Identification 

  
                                                                                                                                      

Input Piano Song                                    Notes 
                                                                                                                                                                          

 
 

                                                                 
Fig 3. Flow-Chart 

 
The experiments are done on different songs, some downloaded and some recorded from the virtual 

piano.  Here each note follows a kind of similar pattern as shown in the fig 3. 
 

 
Fig 4. Piano note time domain analysis  

 
 The moment we press one note to the immediate other note, the amplitude is initially high enough and 

decreases with time. If we are able to detect the duration of each note from the time domain characteristics, we 
can detect and identify the frequency.  

 
3.1 Detection 

Averaging 

Width Selection  

Thresholding 

Finding Instant 

DFT 

Assignment 

Padding Zeroes 
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3.1.1 Averaging 

As there is large number of sample for a song and many fluctuations are also present, first step is 
averaging, where for every 100 samples average is found and the value is assigned to first sample, again for 
next 100 sample the average value is assigned to 2nd sample. This will not only reduce the number of samples 
but also remove the fluctuations present. 

 
Fig 5. Effect of Averaging 

 
When the decay in the signal is slow, the averaged signal is more densed. But in case of fast decaying 

the averaged signal represents the envelope of the original signal. 
 

3.1.2 Thresholding 
 

Constant Thresholding : After averaging we need to detect the peaks from the averaged signal. As the 
name suggests, in constant thresholding one optimum value is decided for which we are able to get maximum 
number of peaks. 

 

 
Fig 6. Signal after thresholding 

 
  Adaptive Thresholding : There are the possibilities when we take some constant threshold value, for 
some notes it may be higher than the maximum value of the note and for some notes it is low enough such that 
two peaks of the note get merged and only one peak (one note) could be detected. To overcome this problem 
the concept of adaptive thresholding came into picture.  
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Fig 7. Values of adaptive thresholding 

Even in adaptive thresholding one problem is, when there is long silence between two notes, the 
threshold value for the silence will be very low that supposed to be discarded.  

 
3.1.3 Width Selection for Finding instant 
 
 Once the thresholding is done, our aim is to detect the occurences of the peaks from the signal we get 
after thresholding. 
 

 

 
Fig 8. Width selection (a) Signal after thresholding (b) Minimum Width 

 
 The width of the window contains all zeroes is selected on the basis of worst case scenario. For our 

song it is found as 57, so the width was chosen as 50 for safety. The worst case depends on the speed for a 
given sampling frequency. For slow songs it is more and for faster one it is less. So irrespect ive of the song, the 
minimum width was decided as per following equation, Wmin=  where, fs = sampling frequency, A = 
Total number of samples in the original signal that corresponds to one sample in the averaged signal 

 
3.2 Identification 
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 So far we have decided the instants at which the notes are played (key is pressed).  The time duration 
from the first instant to the second instant is the duration of the first note being played, from second to third 
instant, it’s second note being played and so on. Now our aim is to identify these notes based.  
 
3.2.1 Padding Zeroes 
 
 For a given note duration, if crop the corresponding instants of the original signal and find the discrete 
fourier transform, the results are not close enough as required. So we need to pad the zeroes. We can pad the 
zeroes with different length and different part of the cropped signal and find the DFT that will give the different 
results. Different part means it can be either only before the cropped version, after it or both the sides with 
different length. From these different variations the closest results are obtained in the case where the section of 
zeroes with the same length is padded both the sides of the cropped version. So DFT of the resultant signal is 
found to determine the notation.  
 
3.2.3 Finding Frequency and Assigning Notation 
 

After padding zeroes, the DFT of the resultant signal is found. Then the corresponding frequency of a 
particular note is found using equation (1) and the actual note is assigned using table 1. 

 

4. Simulation Results 

The experiment was done with different songs like Happy Birthday, Jingle Bell, Twinkle-Twinkle, etc. 
The results of Happy Birthday are shown below.  
 
         Happy Birthday  

Total Length (L) = 830063 samples; Time (t) = 26 sec; Sampling Frequency (fs) = 32000 Hz; 
Sampling Period (Ts) = 31.25 μs; Total Present Notes (P) =25; Total identifies Notes (D) = 25 

 

 
Fig 9. (a) Results Amplitude v/s Time (samples)  (b) Frequency (Hz) v/s Time (sec) 
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Table 2. Results obtained 
Sr. No. Frequency Detected(Hz) Frequency Assigned(Hz) Output Notes time (sec) 

1 393.9440624 391.995436 G4 3.0875 

2 394.937165 391.995436 G4 3.8375 

3 441.6215282 440 A4 3.99375 

4 393.7113194 391.995436 G4 5.0875 

5 525.7324486 523.2511306 C5 5.9375 

6 496.1716113 493.8833013 B4 7.14375 

7 393.9087979 391.995436 G4 9.0875 

8 395.5372436 391.995436 G4 9.828125 

9 441.7132749 440 A4 9.9875 

10 393.686712 391.995436 G4 11.09375 

11 590.350206 587.3295358 C5 12.00625 

12 525.4171797 523.2511306 B4 12.9375 

13 393.8059943 391.995436 G4 15.08125 

14 394.937165 391.995436 G4 15.84063 

15 788.3976356 783.990872 G5 16.17188 

16 665.6706126 659.2551138 E5 16.97188 

17 662.3520922 659.2551138 E5 17.075 

18 525.7559079 523.2511306 C5 17.9375 

19 496.0954288 493.8833013 B4 19.14688 

20 441.5441926 440 A4 19.94688 

21 701.768031 698.4564629 F5 22.07188 

22 702.6373901 698.4564629 F5 22.82188 

23 662.2568821 659.2551138 E5 23.07188 

24 525.6850915 523.2511306 C5 23.9375 

25 590.3044482 587.3295358 D5 25.0125 

 

5. Conclusion 

In this project, the frequencies of a piano song is detected, corresponding notes are identified with 
duration. The method used here for note identification is more optimised than previously used methods. 
By varying the parameters like threshold values and width, we can get the desired results with time 
duration of each note. Thus project can be treated as an aid tool for learning. 
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