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a b s t r a c t

Let BS(m, n) denote the set of base sequences (A; B; C;D), with A and B of length m and C
and D of length n. The base sequence conjecture (BSC) asserts that BS(n + 1, n) exist (i.e.,
are non-empty) for all n. This is known to be true for n ≤ 36 andwhen n is a Golay number.
We show that it is also true for n = 37 and n = 38. It is worth pointing out that BSC is
stronger than the famous Hadamard matrix conjecture.
In order to demonstrate the abundance of base sequences, we have previously attached

to BS(n + 1, n) a graph Γn and computed the Γn for n ≤ 27. We now extend these
computations and determine the Γn for 28 ≤ n ≤ 35. We also propose a conjecture
describing these graphs in general.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

By binary respectively ternary sequencewemean a sequence A = a1, a2, . . . , am whose terms belong to {±1} respectively
{0,±1}. To such a sequencewe associate the polynomial A(z) = a1+a2z+· · ·+amzm−1. We refer to the Laurent polynomial
N(A) = A(z)A(z−1) as the norm of A. Base sequences (A; B; C;D) are quadruples of binary sequences, with A and B of length
m and C and D of length n, and such that

N(A)+ N(B)+ N(C)+ N(D) = 2(m+ n). (1.1)
(The last condition is equivalent to the vanishing of the sum of the aperiodic auto-correlation functions of A, B, C and D.) We
denote the set of such base sequences by BS(m, n). Base sequences, and their special cases such as normal and near-normal
sequences, play an important role in the construction of Hadamard matrices [5,11,12]. For instance, the recent discovery of
a Hadamard matrix of order 428 [6] used a BS(71, 36), constructed specially for that purpose.
As explained in [1], we can view the normal sequencesNS(n) and near-normal sequencesNN(n) as subsets of BS(n+1, n).

For normal sequences 2n must be a sum of three squares, and for near-normal sequences n must be even or 1. The base
sequences (A; B; C;D) ∈ BS(n+1, n) are normal respectively near-normal if bi = ai respectively bi = (−1)i−1ai for all i ≤ n.
The base sequence conjecture (BSC), first proposed explicitly in [1] (see also [5]), asserts that the BS(n+ 1, n) exist for all

integers n ≥ 0. Implicitly, it appears in earlier papers of Seberry and Yang. So far, BSC has been verified for all n ≤ 36 and it
is also well known that it holds when n is a Golay number, i.e., when n = 2a10b26c where a, b, c are nonnegative integers.
For the cases n ≤ 32 and references to previous work by other authors see [1,7–9,11]. For the cases n = 33, 34, 35 see [10]
or Tables 7–9, and for n = 36 see [4] or the next section and Table 10.
T -sequences are quadruples of ternary sequences, (X; Y ; Z;W ), all of the same length n such that for each index i exactly

one of the terms xi, yi, zi,wi is nonzero, and
N(X)+ N(Y )+ N(Z)+ N(W ) = n.

We denote by TS(n) the set of all T -sequences of length n. The T -sequence conjecture (TSC) asserts that TS(n) exist for all
integers n ≥ 1.
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In Section 2 we show that BSC is also valid for n = 37 and n = 38. Our example for n = 38 consists of near-normal
sequences. Consequently, the number 77 is a Yang number. We recall that Yang numbers are odd integers 2s+ 1 for which
NS(s) or NN(s) is not empty. We also update the status of the TSC.
Let α = (A; B; C;D) ∈ BS(m, n) and let a = A(1), b = B(1), c = C(1), d = D(1) and a∗ = A(−1), b∗ = B(−1), c∗ =

C(−1), d∗ = D(−1). By setting z = 1 in the norm identity (1.1), we see that the squares a2, b2, c2, d2, arranged in decreasing
order, form a partition of 2(m+ n). The same is true for the squares of a∗, b∗, c∗, d∗. We denote the former partition by pα
and the latter by p∗α .
In the early searches for base sequences BS(n + 1, n) the objective apparently was to construct, for each partition p of

2(2n+ 1) into four squares, base sequences α = (A; B; C;D) ∈ BS(n+ 1, n) such that pα = p. For this we refer the reader
to the paper [8] and its references. A more ambitious program to construct base sequences α = (A; B; C;D) ∈ BS(n+ 1, n)
with pα and p∗α specified was initiated in our paper [1]. For that purpose, we have defined there the graphs Γn, n ≥ 0.
In Section 3 we recall the definition of the Γn. These are undirected graphs with loops allowed but no multiple edges.

They were determined for n ≤ 27 by means of extensive computations of base sequences. We extend these computations
to cover the cases n = 28, 29, . . . , 35. The base sequences that we need are listed in Tables 2–9 in Appendix. On the basis of
these computations, we propose a conjecture about the isomorphism types of the graphs Γn and show that the conjecture
is valid for n ≤ 35.
In Section 4 we describe briefly our algorithm for exhaustive search of the base sequences BS(n+ 1, n).
In Section 5 we report the results of our recent searches for NS(n) and NN(n). We also describe what is currently known

about the existence of Yang numbers.

2. Current status of BSC

At the time when BSC was formulated in [1], it was known that it holds for n ≤ 32. This was extended to n ≤ 35 by
Kounias and Sotirakoglou [10]. The examples of BSC(n + 1, n) for n = 36 and n = 38 were constructed in the course of
our exhaustive searches for near-normal sequences [4,3]. We have recently constructed an example for n = 37. These three
examples will be given below.

Proposition 2.1. The base sequences BS(n+ 1, n) exist for n ≤ 38 (and for all Golay numbers n).

As explained above, it suffices to give examples of BS(n+ 1, n) for n = 36, 37 and 38. To avoid possible errors, we shall
give all base sequences in encoded compact form which is used in our computer program. Although this encoding scheme
has been described in several of our previous papers, we shall give the details once again for the convenience of the reader.
Let (A; B; C;D) ∈ BS(n+1, n).We encode thepairs (A; B) and (C;D) separately byusing the same scheme.Wedecompose

the pair (A; B) into quads[
ai an+2−i
bi bn+2−i

]
, i = 1, 2, . . . ,

[
n+ 1
2

]
,

and, if n = 2m is even, the central column
[
am+1
bm+1

]
. We can assume (and we do) that the first quad of (A; B) is

[
+ +

+ −

]
. We

attach to this particular quad the label 0. The other quads in (A; B) and all the quads of the pair (C;D), shown with their
labels, must be one of the following:

1 =
[
+ +

+ +

]
, 2 =

[
+ +

− −

]
, 3 =

[
− +

− +

]
, 4 =

[
+ −

− +

]
,

5 =
[
− +

+ −

]
, 6 =

[
+ −

+ −

]
, 7 =

[
− −

+ +

]
, 8 =

[
− −

− −

]
.

The central column (if present) is encoded as

0 =
[
+

+

]
, 1 =

[
+

−

]
, 2 =

[
−

+

]
, 3 =

[
−

−

]
.

If n = 2m is even, the pair (A; B) is encoded as the sequence q1q2 · · · qmqm+1, where qi, 1 ≤ i ≤ m, is the label of the ith
quad and qm+1 is the label of the central column. If n = 2m− 1 is odd, then (A; B) is encoded by q1q2 · · · qm, where qi is the
label of the ith quad for each i. We use the same recipe to encode the pair (C;D).
As an example, the base sequences

A = +,+,+,+,−,−,+,−,+
B = +,+,+,−,+,+,+,−,−
C = +,+,−,−,+,−,−,+
D = +,+,+,+,−,+,−,+

are encoded as 06142; 1675.
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Table 1
The numbers ν0 , ν1 and ν.

n ν0 ν1 n ν n ν0 ν1 n ν

0 1 0 1 1 20 5 2 21 5
2 1 1 3 1 22 5 4 23 4
4 2 1 5 2 24 4 3 25 7
6 2 1 7 2 26 4 3 27 6
8 3 1 9 3 28 5 3 29 7
10 2 2 11 2 30 4 4 31 8
12 4 1 13 5 32 6 4 33 7
14 2 3 15 3 34 5 5 35 5
16 4 2 17 5 36 6 3 37 12
18 3 2 19 4 38 5 6 39 6

40 9 4

With this notation, the three promised base sequences BS(n+ 1, n) are
n = 36 : 0764841234846532153; 165154775335162126
n = 37 : 0686287846153524326; 1153175814738523732
n = 38 : 07641237828515856281; 1782612553714317675.

Those for n = 36, 38 are in fact near-normal.
It is well known that there exist maps BS(m, n) → TS(m + n) and TS(n) → TS(2n). By using the Proposition 2.1 and

taking into account the [5, Remark V.8.47], we obtain

Corollary 2.2. Apart from the two undecided cases n = 79, 97, the T-sequences TS(n) exist for all n ≤ 100.

3. The Γ -conjecture

We begin by recalling the definition of the graph Γn. Its vertex set is the set of all partitions of 4n + 2 into four squares
(including 0 and with repetitions allowed). We postulate that Γn may have loops but we do not permit multiple edges.
There is a loop at a vertex p if and only if there exist base sequences α ∈ BS(n + 1, n) such that pα = p∗α = p. If p and q
are two distinct vertices, then {p, q} is an edge of Γn if and only if there exist base sequences β ∈ BS(n + 1, n) such that
{pβ , p∗β} = {p, q}. This completes the definition ofΓn.We refer to anyα ∈ BS(n+1, n) as awitness for the edge {pα, p

∗
α} ofΓn.

While BSC simply asserts that each BS(n + 1, n) is non-empty, we shall propose a new conjecture which gives the
description of the graphs Γn.
To state this new conjecture, we need some more notation. Let α be as above and assume that n is fixed. Note that

a ≡ b ≡ n + 1 (mod 2) and c ≡ d ≡ n (mod 2). Thus exactly two of the integers a, b, c, d are even. If n is even, one can
show (see [1]) that these two even integers are congruent to each other modulo 4. In that case we say that the vertex α is
even respectively odd if they are congruent to 0 respectively 2 modulo 4. Thus, for even n, the vertex set is partitioned into
even and odd vertices.
Let ν denote the number of vertices of Γn. If n is even, let ν0 respectively ν1 denote the number of even respectively odd

vertices of Γn. Of course, we have ν0 + ν1 = ν when n is even. In Table 1 we give, for 0 ≤ n ≤ 40, the value of ν for odd n
and the values of ν0 and ν1 for even n.
Let Km denote the complete graph onm vertices. Any two distinct vertices are joined by a single edge. However, Km has no

loops. If we enlarge Km by attaching a loop at each vertex, we obtain the graph K 0m. By Km,n we denote the complete bipartite
graph with m respectively n vertices in the first respectively second part. The disjoint union of two graphs will be written
as a sum.

Γ -conjecture. Γn is isomorphic to
(a) K 0ν if n is odd;
(b) Kν0,ν1 if n ≡ 2 (mod 4);
(c) K 0ν0 + K

0
ν1
if n ≡ 0 (mod 4) except for n = 4, 8, 12.

The graphsΓn for n = 4, 8, 12 are described in [1]. Sincewe always have ν ≥ 1, BSC is a consequence of theΓ -conjecture
if n 6≡ 2 (mod 4). This would also be true when n ≡ 2 (mod 4) provided that one can show that both ν0 and ν1 are nonzero.
We can formulate this as the following number-theoretical question.

Question. Let S = {k2 : k ∈ Z} respectively T = {k(k+ 1)/2 : k ∈ Z} be the set of squares respectively triangular numbers.
Let S2 = {x+ y : x, y ∈ S} and T2 = {x+ y : x, y ∈ T }. Does the set {4x+ y : x, y ∈ T2} respectively {2x+ y : x ∈ S2, y ∈ T2}
contain all even respectively odd nonnegative integers?

(The BSC implies that the answer is affirmative in both cases.)
We give now the current status of the Γ -conjecture.

Proposition 3.1. The Γ -conjecture is valid for n ≤ 35.
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Table 2
BS(29, 28).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 076413275222630; 12875373652226 9,−1, 4,−4 9,−1, 4, 4
1–2 076514146435673; 12566715632821 1, 7, 8, 0 9,−1, 4, 4
1–3 076412161284762; 12876155137475 5, 5, 0, 8 1, 9, 4, 4
1–4 078482447637733; 12858753246321 −9, 1, 4,−4 5,−3, 4, 8
1–5 078451311636611; 12838752334113 7, 7, 4, 0 −1,−9, 4, 4
2–2 078461443688572; 12848552856354 −7, 1, 0,−8 1,−7, 0, 8
2–3 078457641147620; 12856747141347 1, 7, 0, 8 5,−5, 8, 0
2–4 051782353215153; 17678365277211 7, 1, 0, 8 3, 5, 8, 4
2–5 078485628682111; 12845558724283 1,−7, 0,−8 −7,−7, 0, 4
3–3 077658617271583; 12852541333416 −5, 5, 8, 0 −5, 5, 0,−8
3–4 078466512613430; 12862352528373 5, 3, 4,−8 5,−5, 0, 8
3–5 078517356737323; 12747162866717 −5, 5, 0, 8 7,−7, 0, 4
4–4 078458231755712; 12835732236261 −3, 5, 8,−4 5,−3, 4, 8
4–5 078475657853170; 12876165548382 −7, 7, 0,−4 5, 3, 4, 8
5–5 078321422423580; 12887533734554 7,−7,−4, 0 7,−7, 4, 0
6–6 078582621567150; 12456332286115 3, 1, 10,−2 3, 1, 10,−2
6–7 078467557578650; 12836515766382 −9, 5, 2,−2 3, 1, 10, 2
6–8 078416634842140; 12882758538342 3, 1,−2,−10 7, 5, 2, 6
7–7 076443181762112; 12868357554116 5, 9, 2, 2 9, 5,−2,−2
7–8 076411216766222; 12875653427313 9, 5, 2, 2 5,−7, 2, 6
8–8 078436621518110; 12886731231325 7, 5, 6,−2 7, 5, 6, 2

We have to construct witnesses of all hypothetical edges of Γn. This was accomplished in [1] for n ≤ 27, while for n = 28
two witnesses were missing. Tables 2–9 of the Appendix confirm the Γ -conjecture for n = 28, 29, . . . , 35 as they contain
witnesses for all hypothetical edges of Γn.
We have partial results for n = 36. Hypothetically, Γ36 has 27 edges. We list the witnesses for 19 of them in Table 10.
If n is odd, we use the (decreasing) lexicographic order of partitions to enumerate the vertices of Γn. If n is even, we

enumerate first the even and then the odd vertices and arrange them (separately) in the lexicographic order. Ifn ≡ 2 (mod 4)
then Γn is bipartite (and there are no loops). The symbol i− j in the first column of the tables below denotes the edge joining
the ith and the jth vertex. If i = j, it refers to the loop at the ith vertex.
For instance, if n = 28 then there are eight vertices:

(1) (92, 42, 42, 1) (2) (82, 72, 1, 0) (3) (82, 52, 52, 0)
(4) (82, 52, 42, 32) (5) (72, 72, 42, 0)
(6) (102, 32, 22, 1) (7) (92, 52, 22, 22) (8) (72, 62, 52, 22)

Since 8, 4, 0 are all ≡ 0 (mod 4), the first five vertices are even. Since 10, 6, 2 are all ≡ 2 (mod 4), the remaining three
vertices are odd. The graph Γ28 is a disjoint union of K 05 on even vertices and K

0
3 on odd ones. The first fifteen base sequences

in Table 2 are witnesses for the edges of the ‘‘even’’ component K 05 , and the next six are witnesses for the edges of the ‘‘odd’’
component K 03 .
For a witness α ∈ BS(n + 1, n), the integers a, b, c, d determine the vertex pα as the partition of 4n + 2 with parts

a2, b2, c2, d2. Similarly, a∗, b∗, c∗, d∗ determine the vertex p∗α .

4. Sketch of the algorithm

Our computer program is designed for exhaustive search of base sequences BS(n+ 1, n) for n ≥ 7. The search is divided
into 18 cases by fixing the first three quads of the pair (A; B) and the first two quads of (C;D). The choice of these cases
depends on the parity of n.

Cases for n odd

(1) 065; 11 (2) 066; 11 (3) 068; 11 (4) 061; 12 (5) 063; 12 (6) 064; 12
(7) 061; 16 (8) 063; 16 (9) 064; 16 (10) 016; 61 (11) 017; 61 (12) 018; 61
(13) 016; 64 (14) 017; 64 (15) 018; 64 (16) 011; 66 (17) 012; 66 (18) 013; 66

Cases for n even

(1) 076; 12 (2) 077; 12 (3) 078; 12 (4) 076; 16 (5) 077; 16 (6) 078; 16
(7) 071; 18 (8) 072; 18 (9) 073; 18 (10) 065; 11 (11) 066; 11 (12) 068; 11
(13) 061; 12 (14) 063; 12 (15) 064; 12 (16) 061; 16 (17) 063; 16 (18) 064; 16

Each of the 18 cases is treated separately. The first quad of the pair (A; B) is always 0. Thus the nth auto-correlation
of (A; B; C;D) is 0. The other four starting quads are chosen so that the (n − 1)th and (n − 2)th auto-correlation is 0.
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Table 3
BS(30, 29).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 068362252723438; 118624666538452 4,−10, 1,−1 10, 4, 1,−1
1–2 068385638777645; 118722343573530 −10, 0, 3, 3 4, 10,−1,−1
1–3 066247531158121; 117543585724280 10, 4, 1, 1 0, 6, 9, 1
1–4 066217723624145; 117432416826461 8, 2, 7, 1 −10, 4,−1, 1
1–5 066417145712627; 117653654785220 6, 8, 3, 3 −4, 10,−1,−1
1–6 068385545252336; 118567425535130 2,−8, 5, 5 −4, 10, 1, 1
1–7 066427711368186; 117726654641520 2, 4, 7, 7 4, 10,−1,−1
2–2 066227632114544; 117768627585431 10, 0,−3, 3 0, 10,−3, 3
2–3 066244127461835; 117687675413252 6, 0,−1, 9 0, 10, 3,−3
2–4 066221154863181; 117586785628152 10, 0,−3, 3 8, 2, 1, 7
2–5 068246422128374; 118657526217580 6,−8, 3, 3 0,−10, 3, 3
2–6 068248487512863; 118768327622521 −2,−8, 5,−5 0,−10,−3, 3
2–7 066325474783574; 117876865367552 −4, 2,−7, 7 10, 0,−3, 3
3–3 066425872412617; 117661785545180 6, 0, 1, 9 0, 6, 1, 9
3–4 066225637518271; 117654433817272 6, 0,−1, 9 8, 2, 7, 1
3–5 066357474847817; 117581625334633 −8, 6, 3, 3 6, 0,−9,−1
3–6 066213624581187; 117683252526141 6, 0, 9,−1 8, 2, 5,−5
3–7 066416178423476; 117671223663613 2, 4, 7, 7 0, 6,−9,−1
4–4 066415721365525; 117726281652351 8, 2, 7, 1 2, 8, 7, 1
4–5 066417218511536; 117644754226580 8, 6, 3, 3 2, 8,−1, 7
4–6 066242378263856; 117685486122122 2,−8, 7, 1 8, 2,−5, 5
4–7 066415277854231; 117662161546363 4, 2, 7, 7 −2, 8,−1, 7
5–5 016186616313366; 641515851514853 8, 6, 3, 3 6, 8, 3, 3
5–6 066424271211847; 117681267525360 8, 2, 5, 5 −6, 8,−3,−3
5–7 066227415141467; 117628153854530 8, 6, 3, 3 2,−4, 7, 7
6–6 068427113134776; 118653736872672 2, 8,−5, 5 −8, 2,−5, 5
6–7 066425635118187; 117765384785371 4, 2,−7, 7 2, 8, 5,−5
7–7 066347444712723; 117823654415150 2, 4, 7, 7 4,−2, 7, 7

Table 4
BS(31, 30).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–5 0784614381231342; 128685615224114 3, 3, 10,−2 1,−11, 0, 0
1–6 0776853138438782; 128665371865672 −11, 1, 0, 0 −1,−9, 6,−2
1–7 0784216352512611; 128863554766615 11,−1, 0, 0 1,−7, 6, 6
1–8 0784864477847431; 128574476353272 −11, 1, 0, 0 −5,−5, 6, 6
2–5 0776162345126151; 128868657542531 9, 5, 0,−4 3, 3, 10, 2
2–6 0778853587261780; 128558541366151 −9, 1, 6, 2 5,−9, 0, 4
2–7 0778511521651532; 128588623471636 5, 9, 0,−4 7,−1, 6, 6
2–8 0784216213317131; 128863657667445 9, 5,−4, 0 −5,−5, 6, 6
3–5 0764411241717863; 128763613567478 3, 9,−4, 4 −3, 3, 10, 2
3–6 0776261117545653; 128813253753652 3, 9, 4,−4 9,−1, 6, 2
3–7 0784162254551610; 128865236166725 9, 3, 4,−4 7, 1, 6, 6
3–8 0778565314743723; 128563665117166 −5, 5, 6, 6 9, 3, 4, 4
4–5 0778586368314251; 128566641315214 −3,−3, 10, 2 3, 7, 8, 0
4–6 0512656235371531; 165711846213678 9, 1, 2, 6 3, 7, 0, 8
4–7 0764323438577832; 128767756347465 −7, 1,−6, 6 7, 3, 8, 0
4–8 0564376515151581; 118772615545132 5, 5, 6, 6, 7, 3, 8, 0

We proceed by selecting the 4th quad of (A; B) and the 3rd quad of (C;D) so that the (n − 3)th auto-correlation vanishes.
We continue this procedure as far as possible. If no selection is possible, we backtrack. If we succeed in finding all the
quads and the central column, then we test whether all the remaining auto-correlations vanish. If not, we backtrack.
Otherwise we record the base sequences that we found. Note that this algorithm does not use any information about the
possible sums a, b, c, d of the four constituent sequences. Thus we do not know in advance what these sums will turn out
to be.
In order to handle the large values of n, say n > 31, wemodify the program by breaking it into two phases. The first (easy)

phase is to collect into a file the initial segments of quads, say of length 8 for (A; B) and length 7 for (C;D). Such a file has
several millions of rows (subcases). It takes only several minutes to generate this file. In the second phase we use a random
number generator to select a row in this file as the entry point for our program. The program then completes the computation
for a fixed number, say r , of consecutive rows starting from the chosen entry point. We may repeat this subroutine, say s
times. In our runs, the product rs was either 10000 or just 1000. Usually we do not run the program to completion as this
would require a prohibitively long time. We collect all base sequences that the program finds, and stop it after 5–6 days.
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Table 5
BS(32, 31).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 0653276646881415; 1187615124567762 2, 0, 1, 11 −2, 0,−1,−11
1–2 0653477313582724; 1186645576741711 0, 2, 1, 11 0, 10,−1, 5
1–3 0664286361577533; 1177645461752362 0, 2, 1, 11 4, 10,−1,−3
1–4 0664283673814787; 1176554618357311 −6, 0, 3, 9 −2, 0, 1, 11
1–5 0664483763412781; 1176755458517611 0, 2, 1, 11 4, 2,−5, 9
1–6 0663151725347817; 1178525218466222 2, 8, 7,−3 2, 0, 1, 11
1–7 0664457618863416; 1176713544647422 0, 2, 1, 11 −8,−6,−5, 1
1–8 0664286477134572; 1177653127576363 0, 2,−1, 11 4, 6, 5,−7
2–2 0663151774538174; 1178566324188782 0, 10,−5, 1 0, 10, 5,−1
2–3 0664134763185177; 1176835434253213 0, 10, 5, 1 4, 10,−1, 3
2–4 0663684725887517; 1177658146162731 −6, 0, 3, 9 10, 0, 1,−5
2–5 0663554568171527; 1177877658254711 2, 4,−5, 9 10, 0, 5,−1
2–6 0663284811641421; 1178625647454413 10, 0, 1, 5 2, 8, 3, 7
2–7 0653257763411145; 1187716272282540 6, 8, 5, 1 10, 0,−5,−1
2–8 0664463374577363; 1177365857427533 −4, 6,−5, 7 0, 10, 1, 5
3–3 0653271351241777; 1186637254782520 4, 10, 3,−1 −4, 10,−3, 1
3–4 0653485354761371; 1186373522521312 0, 6, 9, 3 −4, 10, 3, 1
3–5 0663174726216214; 1178327566525642 10, 4, 1, 3 2, 4,−5, 9
3–6 0664256357162313; 1176615635414833 8, 2, 3, 7 4, 10,−3, 1
3–7 0653461761515422; 1187654414627381 10, 4, 1, 3 −6, 8,−5, 1
3–8 0653182153651377; 1186554317646211 4, 6, 7, 5 4, 10, 1, 3
4–4 0664287241436146; 1177658653747250 6, 0,−3, 9 6, 0,−9, 3
4–5 0664452175768367; 1175561631427380 −2, 4, 5, 9 6, 0,−9, 3
4–6 0664271564363774; 1176735233364512 0, 6, 3, 9 −8, 2,−3, 7
4–7 0664463272861135; 1176513423426451 6, 0, 9, 3 −6,−8,−5, 1
4–8 0664151272416748; 1176758485764363 6, 4,−7, 5 6, 0,−9, 3
5–5 0653172153254877; 1186526273422531 2, 4, 9,−5 2, 4,−9, 5
5–6 0664463478185727; 1177653314631253 −4, 2, 5, 9 −8, 2, 3, 7
5–7 0653487153721511; 1186322757876711 6, 8,−1, 5 2, 4, 5,−9
5–8 0664161572851367; 1177726542361461 4, 6, 5, 7 4, 2,−5, 9
6–6 0653151463787817; 1187652534475472 −2, 8,−3, 7 2, 8, 3,−7
6–7 0664277581637113; 1177664515243633 2, 8, 3, 7 6, 8, 5, 1
6–8 0664475465821113; 1177546132182722 6, 4, 5, 7 2, 8, 7,−3
7–7 0664172363751142; 1176525365342831 8, 6, 5,−1 8, 6,−1, 5
7–8 0664475185416311; 1175416238735363 6, 8, 1, 5 6, 4,−5, 7
8–8 0664453177857275; 1176553815132731 −4, 6, 5, 7 4,−6, 7, 5

If necessary, we repeat this process several times, using different cases, until we find the witnesses for all edges
of Γn.
As an example, we mention that the construction of Table 6 took in total about 1423 days of CPU time. For this table, we

ran the parallelized version of our program on two machines at the same time, one used 128 processors at 3.0 GHz and the
other 64 processors at 2.2 GHz. The program constructed in total 2640 different base sequences BS(33, 32).

5. Recent results on normal and near-normal sequences

We give here a brief summary of our recent results on these two types of sequences and on Yang numbers. Let us begin
by quoting Theorem V.8.38 from the recent handbook [5].

Theorem 5.1. There is no NS(n) for n = 6, 14, 17, 21, 22, 23, 24, 27, 28, 30 (all other orders of n < 31 exist). NS(31) is the
first unknown case.

We have carried out exhaustive searches for NS(n) for n = 31, 33, 34, 35, 36, 37, 38, 39 and did not find any such
sequences. As 32 and 40 are Golay numbers, we therefore have the following improvement.

Proposition 5.2. For n ≤ 40, NS(n) = ∅ if and only if

n ∈ {6, 14, 17, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39}.

The first unknown case is n = 41.

Yang conjecture (see [5, Conjecture V.8.39]) asserts that NN(n) exist for all even integers n. This has been known to be
true when n ≤ 30 (see [1] and [5, Remark V.8.40]). Complete classification of near-normal sequences has been carried out
recently in our notes [2,4,3] for all even n ≤ 40. It turns out that they exist for all even n ≤ 40. Thus Yang conjecture remains
open.
Consequently, we have the following result about Yang numbers (compare with [5, Theorem V.8.42.1]).
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Table 6
BS(33, 32).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 07643661131422181; 1286331583848171 11, 3, 0, 0 11, 3, 0, 0
1–2 07644347541711811; 1287716551833826 3, 11, 0, 0 7,−9, 0, 0
1–3 07642434354781830; 1286715346831111 −1, 1, 8, 8 3,−11, 0, 0
1–4 07642414351367712; 1284656553724755 3, 11, 0, 0 7,−1, 8, 4
1–5 07643151228512711; 1287676581466462 11, 3, 0, 0 −5,−5, 8, 4
1–6 07641116654178182; 1283857157633244 3, 11, 0, 0 7, 7, 4, 4
2–2 07841512343414140; 1663752642548557 9, 7, 0, 0 9, 7, 0, 0
2–3 06613883181363680; 1166661118633681 1,−1, 8, 8 9, 7, 0, 0
2–4 07641411467215623; 1287676534628461 9, 7, 0, 0 1, 7, 4, 8
2–5 07644776741834562; 1283561165748383 −7, 9, 0, 0 5, 5, 4, 8
2–6 07642431513713560; 1283556571663853 7, 9, 0, 0 7,−7, 4, 4
3–3 07237773326362331; 1863661181633311 1, 1, 8, 8 1, 1, 8, 8
3–4 07641562387182580; 1285614117616664 1,−1, 8, 8 1, 7, 8, 4
3–5 07644814118241362; 1284626522431467 5, 5, 8,−4 1, 1, 8, 8
3–6 07786885528463431; 1286525731546371 −7,−7, 4, 4 1, 1,−8, 8
4–4 07632712148552560; 1283745543432111 7, 1, 8, 4 7, 1, 8, 4
4–5 07643457175562810; 1283871353112172 1, 7, 8, 4 5,−5, 4, 8
4–6 07644123143216771; 1287661715652463 7, 7, 4, 4 7,−1, 8, 4
5–5 07641561751648621; 1285616124737125 5, 5, 8, 4 5, 5, 8, 4
5–6 07642753664476473; 1285131344465413 −5, 5, 8, 4 7,−7, 4, 4
6–6 07842423683125320; 1288686675821473 7,−7,−4,−4 7,−7, 4, 4
7–7 07632833612216140; 1285664844541762 11, 1, 2,−2 11, 1, 2, 2
7–8 07632578175158550; 1283617225865111 −1, 5, 10, 2 11, 1, 2, 2
7–9 07644318776114630; 1284842363371533 1, 11, 2,−2 9, 3, 2, 6
7–10 07645728186111662; 1281566243114774 3, 7, 6, 6 11,−1, 2, 2
8–8 07641431563668731; 1287676571651331 1, 5, 2, 10 5, 1, 10, 2
8–9 07632612542858710; 1285326563571112 5,−1, 10, 2 9, 3, 6, 2
8–10 07786157654765620; 1287671165413323 −3, 7, 6, 6 5,−1, 10, 2
9–9 07643428324116160; 1287761355637215 9, 3, 2, 6 9, 3, 6, 2
9–10 07644764313231670; 1282876155416351 3, 9, 6, 2 3,−7, 6, 6
10–10 07786231134327142; 1287335713121563 3, 7, 6, 6 7, 3, 6, 6

Table 7
BS(34, 33).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 01643272281847733; 64437112182612640 2, 0, 11, 3 0, 2, 3, 11
1–2 06426183724377472; 16715585714616133 0, 2, 3, 11 10, 0,−5, 3
1–3 01714352388163846; 64462212371615313 2, 0, 11, 3 4, 10, 3, 3
1–4 06444714358667236; 16771235115272541 0, 2, 9, 7 2, 0,−3, 11
1–5 01644816586568712; 64715715371825472 2, 0,−3, 11 4, 6, 9,−1
1–6 01716725382367832; 64164177317682140 2, 0, 3, 11 8, 6,−5, 3
1–7 01235326158287371; 66571275124148160 6, 0, 7, 7 0, 2, 3, 11
2–2 06437211421686264; 16748465174364121 10, 0, 3, 5 0,−10, 3, 5
2–3 01846171746522125; 64311276482826751 10, 4, 3,−3 0, 10, 3, 5
2–4 01644135625178262; 64186575647548281 10, 0,−5,−3 0, 2, 7, 9
2–5 06552354172663716; 11746533381536372 6, 4,−1, 9 0, 10, 3, 5
2–6 06175464158337517; 12653715652536332 0, 10, 5, 3 −6, 8, 5, 3
2–7 01745856378115355; 64775443215125130 0, 6, 7, 7 −10, 0, 3,−5
3–3 06632247171213645; 11382325857554252 10, 4, 3,−3 4, 10, 3,−3
3–4 01738165165617653; 64433237582218162 4, 10, 3,−3 2, 0, 7, 9
3–5 06176424834163271; 12441571842462262 6, 4, 9,−1 4, 10,−3, 3
3–6 06441362614513772; 16776763822163151 8, 6, 3, 5 10, 4, 3,−3
3–7 06482612536431236; 12461662575778260 10,−4, 3, 3 0, 6, 7, 7
4–4 01848235737566316; 61242628662324763 0, 2, 7,−9 2, 0, 7,−9
4–5 06864765526373544; 11471612568726141 −2, 0, 9, 7 4, 6, 9,−1
4–6 01644614754247125; 64187352131157381 8, 6, 3, 5 2, 0, 7, 9
4–7 06862467734722615; 11675136251536272 2, 0, 7, 9 0, 6, 7,−7
5–5 06178545552317721; 16157375762546143 4, 6, 1, 9 6,−4, 1, 9
5–6 01837321432341743; 64381477511564642 6, 4,−1, 9 8, 6, 3, 5
5–7 01782525345315536; 61216753588111360 6, 0, 7, 7 4, 6,−1,−9
6–6 06554252236661836; 11257264681477341 8,−6, 3, 5 6, 8, 3, 5
6–7 01176167385241254; 66482625745862150 8, 6, 3,−5 6, 0, 7, 7
7–7 01653673337281734; 61473278766448712 0, 6,−7, 7 6, 0,−7, 7
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Table 8
BS(35, 34).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–6 076761387537518140; 12564355586883173 −3, 11,−2,−2 −1,−11, 0, 4
1–7 076544121368256783; 12564782516511413 1,−1, 10, 6 11, 1, 0,−4
1–8 076813248638665463; 12447117137868357 −3,−5,−2, 10 11, 1, 4, 0
1–9 076518224314621143; 12526647176348573 11, 1, 0, 4 9, 7, 2, 2
1–10 076813687885775451; 12534322471376448 −11, 1, 4, 0 7, 7, 6, 2
2–6 076813155217615621; 12534846527651176 9, 5, 4, 4 11, 3,−2, 2
2–7 076813446761268643; 12534882516521623 −1, 1, 10,−6 9,−5, 4, 4
2–8 076823855753834630; 12441164836225723 −5,−3, 10,−2 5,−9, 4, 4
2–9 076541256821114362; 12663152258827675 9, 5, 4,−4 7,−9,−2, 2
2–10 076814553215115552; 12534517187266537 7, 7, 2, 6 9, 5, 4, 4
3–6 076423483282237882; 12837164638247415 −3,−11, 2, 2 3,−1, 8, 8
3–7 053765656464871261; 17765746348615187 1, 1,−6, 10 3,−1,−8,−8
3–8 076544215376333280; 12662553656248264 3, 1, 8,−8 −3,−5, 10,−2
3–9 076541326141144653; 12565462867178642 9, 7, 2,−2 −1,−3,−8, 8
3–10 076541313864244753; 12565532682263655 1, 3, 8,−8 7,−7, 2, 6
4–6 076821154786531510; 12441254686615465 5, 7, 8, 0 11,−3,−2, 2
4–7 076542388881587133; 12634625571747754 −7,−5, 0, 8 −1, 1, 10,−6
4–8 076821421676434513; 12441325771765766 5, 3, 2, 10 7, 5, 8, 0
4–9 076535878535141762; 17677852174231455 −5, 7, 0, 8 9,−7, 2,−2
4–10 076764325821511142; 12563712335271855 7, 7, 6, 2 5,−7,−8, 0
5–6 076541434617337753; 12565287475625713 −3, 11, 2, 2 7,−3,−8,−4
5–7 076531753465353411; 12456864615253117 3, 7, 8, 4 1, 1, 6, 10
5–8 076543211437821351; 12664184625565624 7, 3, 8,−4 5,−3, 10, 2
5–9 076542443567112150; 12634755737233827 9, 7,−2, 2 3,−7, 8, 4
5–10 076532871428885871; 12455284637661614 −7,−7, 6, 2 7, 3, 8, 4

Table 9
BS(36, 35).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 066128524558167276; 115512428681612272 4,−2, 11, 1 −4,−2,−11,−1
1–2 061752175573814614; 123367131555842723 4, 10, 5, 1 −4, 2, 11,−1
1–3 066224581257478141; 114662461732721433 6, 0, 9, 5 −2, 4,−1, 11
1–4 065532351825386471; 116425237255181721 4,−2, 11, 1 −4,−6, 9, 3
1–5 061754416162673578; 123357118657181721 2, 8, 5, 7 2, 4, 11, 1
2–2 061751252386515416; 123355426257165781 10, 4, 5,−1 −10, 4,−1, 5
2–3 016414317335677244; 616264816227573640 4, 10, 5, 1 0, 6,−5,−9
2–4 016815552241223875; 611817576227536871 10,−4,−1, 5 6,−4, 9, 3
2–5 016622578364127651; 615115726753232751 8, 2, 7, 5 −4, 10, 1,−5
3–3 016735472553122818; 617256517744612640 6, 0, 5, 9 6, 0,−9,−5
3–4 065532881558483613; 116421432717756380 0,−6, 5, 9 −4,−6, 3,−9
3–5 064713642432155468; 123473144616418230 6, 0, 9, 5 −2, 8,−5, 7
4–4 068753558343827566; 116258162734771362 −6,−4, 3, 9 6, 4, 9, 3
4–5 063828821524645187; 128664764835184882 2,−8,−7,−5 −6, 4, 3, 9
5–5 016567812318227135; 611513566817626551 8, 2, 7, 5 8, 2, 5, 7

Proposition 5.3. For odd integers n ≤ 81, n is a Yang number if and only if

n 6∈ {35, 43, 47, 55, 63, 67, 71, 75, 79}.

The first unknown case is n = 83.
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See Tables 2–10.
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Table 10
BS(37, 36).

Edge A & B; C & D a, b, c, d a∗, b∗, c∗, d∗

1–1 0642483723773112832; 162444213616245723 1, 1, 12, 0 1, 1,−12, 0
1–4 0781647583615324282; 167557211545523777 −1,−1, 0, 12 −1,−9, 0,−8
1–5 0876588628114455150; 161427612285272431 1,−1, 12, 0 9, 7,−4, 0
1–6 0764841234846532153; 165154775335162126 3,−3, 8, 8 −1, 1,−12, 0
2–5 0767144683434761771; 124873577128343623 −5, 11, 0, 0 7,−9,−4, 0
2–6 0785618342468563210; 126551157157241538 3,−3, 8, 8 −5,−11, 0, 0
3–4 0764214143622153442; 164323881543744174 11, 3, 0, 4 −1,−9, 8, 0
3–5 0616123851727712413; 123473518825755738 9, 7,−4, 0 −3, 11,−4, 0
3–6 0785641356385516141; 126547124474373121 3, 3, 8, 8 11, 3, 0,−4
4–5 0616123816854524630; 123473466224661443 9,−1, 8, 0 9, 7, 0, 4
4–6 0865126576744588551; 161271417534556246 −3,−3, 8, 8 1, 9, 0,−8
5–5 0717855753413764382; 186871154644661856 −7, 9, 0, 4 9,−7, 0,−4
5–6 0615512388414537671; 126528535625368412 3, 3, 8,−8 7,−9,−4, 0
7–7 0864743671415823362; 163242244661482565 −1, 3, 10,−6 −1, 3, 6,−10
7–8 0778285253655118732; 128814612256532345 −3, 1, 10,−6 5, 9, 2, 6
7–9 0764367614152248343; 162525438825532618 3, 1, 6,−10 7, 5, 6,−6
8–8 0762165645151374421; 162127434137824455 9, 5, 6, 2 5, 9, 2,−6
8–9 0868124566444233641; 161842144127757326 5,−7, 6, 6 5, 9, 2,−6
9–9 0637461414423752660; 128647367258131611 7, 5, 6, 6 7, 5,−6,−6
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