On the base sequence conjecture

Dragomir Ž. Đoković
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

ARTICLE INFO

Article history:

Received 30 August 2009
Received in revised form 17 February 2010
Accepted 5 March 2010
Available online 30 March 2010

Keywords:

Base sequences
Normal sequences
Near-normal sequences
T-sequences
Yang numbers

Abstract

Let $B S(m, n)$ denote the set of base sequences $(A ; B ; C ; D)$, with A and B of length m and C and D of length n. The base sequence conjecture (BSC) asserts that $B S(n+1, n)$ exist (i.e., are non-empty) for all n. This is known to be true for $n \leq 36$ and when n is a Golay number. We show that it is also true for $n=37$ and $n=38$. It is worth pointing out that BSC is stronger than the famous Hadamard matrix conjecture.

In order to demonstrate the abundance of base sequences, we have previously attached to $B S(n+1, n)$ a graph Γ_{n} and computed the Γ_{n} for $n \leq 27$. We now extend these computations and determine the Γ_{n} for $28 \leq n \leq 35$. We also propose a conjecture describing these graphs in general.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

By binary respectively ternary sequence we mean a sequence $A=a_{1}, a_{2}, \ldots, a_{m}$ whose terms belong to $\{ \pm 1\}$ respectively $\{0, \pm 1\}$. To such a sequence we associate the polynomial $A(z)=a_{1}+a_{2} z+\cdots+a_{m} z^{m-1}$. We refer to the Laurent polynomial $N(A)=A(z) A\left(z^{-1}\right)$ as the norm of A. Base sequences $(A ; B ; C ; D)$ are quadruples of binary sequences, with A and B of length m and C and D of length n, and such that

$$
\begin{equation*}
N(A)+N(B)+N(C)+N(D)=2(m+n) . \tag{1.1}
\end{equation*}
$$

(The last condition is equivalent to the vanishing of the sum of the aperiodic auto-correlation functions of A, B, C and D.) We denote the set of such base sequences by $B S(m, n)$. Base sequences, and their special cases such as normal and near-normal sequences, play an important role in the construction of Hadamard matrices [5,11,12]. For instance, the recent discovery of a Hadamard matrix of order 428 [6] used a $B S(71,36)$, constructed specially for that purpose.

As explained in [1], we can view the normal sequences $N S(n)$ and near-normal sequences $N N(n)$ as subsets of $B S(n+1, n)$. For normal sequences $2 n$ must be a sum of three squares, and for near-normal sequences n must be even or 1 . The base sequences $(A ; B ; C ; D) \in B S(n+1, n)$ are normal respectively near-normal if $b_{i}=a_{i}$ respectively $b_{i}=(-1)^{i-1} a_{i}$ for all $i \leq n$.

The base sequence conjecture (BSC), first proposed explicitly in [1] (see also [5]), asserts that the BS ($n+1, n$) exist for all integers $n \geq 0$. Implicitly, it appears in earlier papers of Seberry and Yang. So far, BSC has been verified for all $n \leq 36$ and it is also well known that it holds when n is a Golay number, i.e., when $n=2^{a} 10^{b} 26^{c}$ where a, b, c are nonnegative integers. For the cases $n \leq 32$ and references to previous work by other authors see [1,7-9,11]. For the cases $n=33,34,35$ see [10] or Tables 7-9, and for $n=36$ see [4] or the next section and Table 10.
T-sequences are quadruples of ternary sequences, $(X ; Y ; Z ; W)$, all of the same length n such that for each index i exactly one of the terms $x_{i}, y_{i}, z_{i}, w_{i}$ is nonzero, and

$$
N(X)+N(Y)+N(Z)+N(W)=n
$$

We denote by TS(n) the set of all T-sequences of length n. The T-sequence conjecture (TSC) asserts that TS (n) exist for all integers $n \geq 1$.

[^0]In Section 2 we show that BSC is also valid for $n=37$ and $n=38$. Our example for $n=38$ consists of near-normal sequences. Consequently, the number 77 is a Yang number. We recall that Yang numbers are odd integers $2 s+1$ for which $N S(s)$ or $N N(s)$ is not empty. We also update the status of the TSC.

Let $\alpha=(A ; B ; C ; D) \in B S(m, n)$ and let $a=A(1), b=B(1), c=C(1), d=D(1)$ and $a^{*}=A(-1), b^{*}=B(-1), c^{*}=$ $C(-1), d^{*}=D(-1)$. By setting $z=1$ in the norm identity (1.1), we see that the squares $a^{2}, b^{2}, c^{2}, d^{2}$, arranged in decreasing order, form a partition of $2(m+n)$. The same is true for the squares of $a^{*}, b^{*}, c^{*}, d^{*}$. We denote the former partition by p_{α} and the latter by p_{α}^{*}.

In the early searches for base sequences $B S(n+1, n)$ the objective apparently was to construct, for each partition p of $2(2 n+1)$ into four squares, base sequences $\alpha=(A ; B ; C ; D) \in B S(n+1, n)$ such that $p_{\alpha}=p$. For this we refer the reader to the paper [8] and its references. A more ambitious program to construct base sequences $\alpha=(A ; B ; C ; D) \in B S(n+1, n)$ with p_{α} and p_{α}^{*} specified was initiated in our paper [1]. For that purpose, we have defined there the graphs $\Gamma_{n}, n \geq 0$.

In Section 3 we recall the definition of the Γ_{n}. These are undirected graphs with loops allowed but no multiple edges. They were determined for $n \leq 27$ by means of extensive computations of base sequences. We extend these computations to cover the cases $n=28,29, \ldots, 35$. The base sequences that we need are listed in Tables $2-9$ in Appendix. On the basis of these computations, we propose a conjecture about the isomorphism types of the graphs Γ_{n} and show that the conjecture is valid for $n \leq 35$.

In Section 4 we describe briefly our algorithm for exhaustive search of the base sequences $B S(n+1, n)$.
In Section 5 we report the results of our recent searches for $N S(n)$ and $N N(n)$. We also describe what is currently known about the existence of Yang numbers.

2. Current status of BSC

At the time when BSC was formulated in [1], it was known that it holds for $n \leq 32$. This was extended to $n \leq 35$ by Kounias and Sotirakoglou [10]. The examples of $\operatorname{BSC}(n+1, n)$ for $n=36$ and $n=38$ were constructed in the course of our exhaustive searches for near-normal sequences [4,3]. We have recently constructed an example for $n=37$. These three examples will be given below.

Proposition 2.1. The base sequences $B S(n+1, n)$ exist for $n \leq 38$ (and for all Golay numbers n).
As explained above, it suffices to give examples of $B S(n+1, n)$ for $n=36,37$ and 38 . To avoid possible errors, we shall give all base sequences in encoded compact form which is used in our computer program. Although this encoding scheme has been described in several of our previous papers, we shall give the details once again for the convenience of the reader.

Let $(A ; B ; C ; D) \in B S(n+1, n)$. We encode the pairs $(A ; B)$ and $(C ; D)$ separately by using the same scheme. We decompose the pair $(A ; B)$ into quads

$$
\left[\begin{array}{cc}
a_{i} & a_{n+2-i} \\
b_{i} & b_{n+2-i}
\end{array}\right], \quad i=1,2, \ldots,\left[\frac{n+1}{2}\right]
$$

and, if $n=2 m$ is even, the central column $\left[\begin{array}{l}a_{m+1} \\ b_{m+1}\end{array}\right]$. We can assume (and we do) that the first quad of $(A ; B)$ is $\left[\begin{array}{ll}+ & + \\ + & -\end{array}\right]$. We attach to this particular quad the label 0 . The other quads in $(A ; B)$ and all the quads of the pair $(C ; D)$, shown with their labels, must be one of the following:

$$
\begin{aligned}
& 1=\left[\begin{array}{ll}
+ & + \\
+ & +
\end{array}\right], \quad 2=\left[\begin{array}{ll}
+ & + \\
- & -
\end{array}\right], \quad 3=\left[\begin{array}{ll}
- & + \\
- & +
\end{array}\right], \quad 4=\left[\begin{array}{ll}
+ & - \\
- & +
\end{array}\right], \\
& 5=\left[\begin{array}{ll}
- & + \\
+ & -
\end{array}\right], \quad 6=\left[\begin{array}{ll}
+ & - \\
+ & -
\end{array}\right], \quad 7=\left[\begin{array}{ll}
- & - \\
+ & +
\end{array}\right], \quad 8=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right] .
\end{aligned}
$$

The central column (if present) is encoded as

$$
0=\left[\begin{array}{l}
+ \\
+
\end{array}\right], \quad 1=\left[\begin{array}{l}
+ \\
-
\end{array}\right], \quad 2=\left[\begin{array}{l}
- \\
+
\end{array}\right], \quad 3=\left[\begin{array}{l}
- \\
-
\end{array}\right] .
$$

If $n=2 m$ is even, the pair $(A ; B)$ is encoded as the sequence $q_{1} q_{2} \cdots q_{m} q_{m+1}$, where $q_{i}, 1 \leq i \leq m$, is the label of the i th quad and q_{m+1} is the label of the central column. If $n=2 m-1$ is odd, then $(A ; B)$ is encoded by $q_{1} q_{2} \cdots q_{m}$, where q_{i} is the label of the i th quad for each i. We use the same recipe to encode the pair ($C ; D$).

As an example, the base sequences

$$
\begin{aligned}
& A=+,+,+,+,-,-,+,-,+ \\
& B=+,+,+,-,+,+,+,-,- \\
& C=+,+,-,-,+,-,-,+ \\
& D=+,+,+,+,-,+,-,+
\end{aligned}
$$

are encoded as $06142 ; 1675$.

Table 1
The numbers v_{0}, v_{1} and ν.

n	ν_{0}	ν_{1}	n	v	n	ν_{0}	ν_{1}	n	v
0	1	0	1	1	20	5	2	21	5
2	1	1	3	1	22	5	4	23	4
4	2	1	5	2	24	4	3	25	7
6	2	1	7	2	26	4	3	27	6
8	3	1	9	3	28	5	3	29	7
10	2	2	11	2	30	4	4	31	8
12	4	1	13	5	32	6	4	33	7
14	2	3	15	3	34	5	5	35	5
16	4	2	17	5	36	6	3	37	12
18	3	2	19	4	38	5	6	39	6
					40	9	4		

With this notation, the three promised base sequences $B S(n+1, n)$ are

$$
\begin{aligned}
& n=36: 0764841234846532153 ; 165154775335162126 \\
& n=37: 0686287846153524326 ; 1153175814738523732 \\
& n=38: 07641237828515856281 ; 1782612553714317675 .
\end{aligned}
$$

Those for $n=36$, 38 are in fact near-normal.
It is well known that there exist maps $B S(m, n) \rightarrow T S(m+n)$ and $T S(n) \rightarrow T S(2 n)$. By using the Proposition 2.1 and taking into account the [5, Remark V.8.47], we obtain
Corollary 2.2. Apart from the two undecided cases $n=79,97$, the T-sequences $T S(n)$ exist for all $n \leq 100$.

3. The Γ-conjecture

We begin by recalling the definition of the graph Γ_{n}. Its vertex set is the set of all partitions of $4 n+2$ into four squares (including 0 and with repetitions allowed). We postulate that Γ_{n} may have loops but we do not permit multiple edges. There is a loop at a vertex p if and only if there exist base sequences $\alpha \in B S(n+1, n)$ such that $p_{\alpha}=p_{\alpha}^{*}=p$. If p and q are two distinct vertices, then $\{p, q\}$ is an edge of Γ_{n} if and only if there exist base sequences $\beta \in B S(n+1, n)$ such that $\left\{p_{\beta}, p_{\beta}^{*}\right\}=\{p, q\}$. This completes the definition of Γ_{n}. We refer to any $\alpha \in B S(n+1, n)$ as a witness for the edge $\left\{p_{\alpha}, p_{\alpha}^{*}\right\}$ of Γ_{n}.

While BSC simply asserts that each $B S(n+1, n)$ is non-empty, we shall propose a new conjecture which gives the description of the graphs Γ_{n}.

To state this new conjecture, we need some more notation. Let α be as above and assume that n is fixed. Note that $a \equiv b \equiv n+1(\bmod 2)$ and $c \equiv d \equiv n(\bmod 2)$. Thus exactly two of the integers a, b, c, d are even. If n is even, one can show (see [1]) that these two even integers are congruent to each other modulo 4. In that case we say that the vertex α is even respectively odd if they are congruent to 0 respectively 2 modulo 4 . Thus, for even n, the vertex set is partitioned into even and odd vertices.

Let v denote the number of vertices of Γ_{n}. If n is even, let v_{0} respectively v_{1} denote the number of even respectively odd vertices of Γ_{n}. Of course, we have $\nu_{0}+v_{1}=v$ when n is even. In Table 1 we give, for $0 \leq n \leq 40$, the value of v for odd n and the values of v_{0} and v_{1} for even n.

Let K_{m} denote the complete graph on m vertices. Any two distinct vertices are joined by a single edge. However, K_{m} has no loops. If we enlarge K_{m} by attaching a loop at each vertex, we obtain the graph K_{m}^{0}. By $K_{m, n}$ we denote the complete bipartite graph with m respectively n vertices in the first respectively second part. The disjoint union of two graphs will be written as a sum.
Γ-conjecture. Γ_{n} is isomorphic to
(a) K_{v}^{0} if n is odd;
(b) $K_{\nu_{0}, \nu_{1}}$ if $n \equiv 2(\bmod 4)$;
(c) $K_{\nu_{0}}^{0}+K_{\nu_{1}}^{0}$ if $n \equiv 0(\bmod 4)$ except for $n=4,8,12$.

The graphs Γ_{n} for $n=4,8,12$ are described in [1]. Since we always have $v \geq 1$, BSC is a consequence of the Γ-conjecture if $n \not \equiv 2(\bmod 4)$. This would also be true when $n \equiv 2(\bmod 4)$ provided that one can show that both v_{0} and v_{1} are nonzero. We can formulate this as the following number-theoretical question.

Question. Let $S=\left\{k^{2}: k \in \mathbf{Z}\right\}$ respectively $T=\{k(k+1) / 2: k \in \mathbf{Z}\}$ be the set of squares respectively triangular numbers. Let $S_{2}=\{x+y: x, y \in S\}$ and $T_{2}=\{x+y: x, y \in T\}$. Does the set $\left\{4 x+y: x, y \in T_{2}\right\}$ respectively $\left\{2 x+y: x \in S_{2}, y \in T_{2}\right\}$ contain all even respectively odd nonnegative integers?
(The BSC implies that the answer is affirmative in both cases.)
We give now the current status of the Γ-conjecture.
Proposition 3.1. The Γ-conjecture is valid for $n \leq 35$.

Table 2
$B S(29,28)$.

Edge	$A \& B ; C$ \&	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
1-1	$076413275222630 ; 12875373652226$	9, -1, 4, -4	9, $-1,4,4$
1-2	076514146435673 ; 12566715632821	1, 7, 8, 0	9, $-1,4,4$
1-3	$076412161284762 ; 12876155137475$	5, 5, 0, 8	1, 9, 4, 4
1-4	$078482447637733 ; 12858753246321$	-9, 1, 4, -4	5, -3, 4, 8
1-5	$078451311636611 ; 12838752334113$	7, 7, 4, 0	$-1,-9,4,4$
2-2	$078461443688572 ; 12848552856354$	-7, 1, 0, -8	$1,-7,0,8$
2-3	$078457641147620 ; 12856747141347$	1, 7, 0, 8	5, -5, 8, 0
2-4	051782353215153 ; 17678365277211	7, 1, 0, 8	3, 5, 8, 4
2-5	$078485628682111 ; 12845558724283$	$1,-7,0,-8$	-7, -7, 0, 4
3-3	$077658617271583 ; 12852541333416$	-5, 5, 8, 0	$-5,5,0,-8$
3-4	$078466512613430 ; 12862352528373$	5, 3, 4, -8	5, -5, 0, 8
3-5	$078517356737323 ; 12747162866717$	-5, 5, 0, 8	7, -7, 0, 4
4-4	$078458231755712 ; 12835732236261$	-3, 5, 8, -4	5, -3, 4, 8
4-5	$078475657853170 ; 12876165548382$	-7, 7, 0, -4	5, 3, 4, 8
5-5	$078321422423580 ; 12887533734554$	7, $-7,-4,0$	7, -7, 4, 0
6-6	$078582621567150 ; 12456332286115$	3, 1, 10, -2	3, 1, 10, -2
6-7	$078467557578650 ; 12836515766382$	-9, 5, 2, -2	3, 1, 10, 2
6-8	$078416634842140 ; 12882758538342$	3, 1, -2, -10	7, 5, 2, 6
7-7	$076443181762112 ; 12868357554116$	5, 9, 2, 2	9, 5, -2, -2
7-8	$076411216766222 ; 12875653427313$	9, 5, 2, 2	5, -7, 2, 6
8-8	$078436621518110 ; 12886731231325$	7, 5, 6, -2	7,5, 6, 2

We have to construct witnesses of all hypothetical edges of Γ_{n}. This was accomplished in [1] for $n \leq 27$, while for $n=28$ two witnesses were missing. Tables $2-9$ of the Appendix confirm the Γ-conjecture for $n=28,29, \ldots, 35$ as they contain witnesses for all hypothetical edges of Γ_{n}.

We have partial results for $n=36$. Hypothetically, Γ_{36} has 27 edges. We list the witnesses for 19 of them in Table 10.
If n is odd, we use the (decreasing) lexicographic order of partitions to enumerate the vertices of Γ_{n}. If n is even, we enumerate first the even and then the odd vertices and arrange them (separately) in the lexicographic order. If $n \equiv 2(\bmod 4)$ then Γ_{n} is bipartite (and there are no loops). The symbol $i-j$ in the first column of the tables below denotes the edge joining the i th and the j th vertex. If $i=j$, it refers to the loop at the i th vertex.

For instance, if $n=28$ then there are eight vertices:

(1)	$\left(9^{2}, 4^{2}, 4^{2}, 1\right)$	(2)	$\left(8^{2}, 7^{2}, 1,0\right)$	(3)	$\left(8^{2}, 5^{2}, 5^{2}, 0\right)$
(4)	$\left(8^{2}, 5^{2}, 4^{2}, 3^{2}\right)$	(5)	$\left(7^{2}, 7^{2}, 4^{2}, 0\right)$		
(6)	$\left(10^{2}, 3^{2}, 2^{2}, 1\right)$	(7)	$\left(9^{2}, 5^{2}, 2^{2}, 2^{2}\right)$	(8)	$\left(7^{2}, 6^{2}, 5^{2}, 2^{2}\right)$

Since $8,4,0$ are all $\equiv 0(\bmod 4)$, the first five vertices are even. Since $10,6,2$ are all $\equiv 2(\bmod 4)$, the remaining three vertices are odd. The graph Γ_{28} is a disjoint union of K_{5}^{0} on even vertices and K_{3}^{0} on odd ones. The first fifteen base sequences in Table 2 are witnesses for the edges of the "even" component K_{5}^{0}, and the next six are witnesses for the edges of the "odd" component K_{3}^{0}.

For a witness $\alpha \in B S(n+1, n)$, the integers a, b, c, d determine the vertex p_{α} as the partition of $4 n+2$ with parts $a^{2}, b^{2}, c^{2}, d^{2}$. Similarly, $a^{*}, b^{*}, c^{*}, d^{*}$ determine the vertex p_{α}^{*}.

4. Sketch of the algorithm

Our computer program is designed for exhaustive search of base sequences $B S(n+1, n)$ for $n \geq 7$. The search is divided into 18 cases by fixing the first three quads of the pair $(A ; B)$ and the first two quads of $(C ; D)$. The choice of these cases depends on the parity of n.

Cases for n odd

$(1) 065 ; 11$	$(2) 066 ; 11$	(3) $068 ; 11$	$(4) 061 ; 12$	$(5) 063 ; 12$	(6) $064 ; 12$
(7) $061 ; 16$	(8) $063 ; 16$	(9) $064 ; 16$	$(10) 016 ; 61$	$(11) 017 ; 61$	(12) $018 ; 61$
$(13) 016 ; 64$	$(14) 017 ; 64$	$(15) 018 ; 64$	$(16) 011 ; 66$	$(17) 012 ; 66$	$(18) 013 ; 66$

Cases for n even
(1) $076 ; 12$
(2) 077; 12
(3) 078; 12
(4) 076; 16
(5) 077; 16
(6) 078; 16
(7) 071; 18
(8) 072; 18
(9) 073; 18
(10) 065; 11
(11) 066; 11
(12) 068; 11
(13) 061; 12
(14) 063; 12
(15) 064; 12
(16) 061; 16
(17) 063; 16
(18) 064; 16

Each of the 18 cases is treated separately. The first quad of the pair $(A ; B)$ is always 0 . Thus the nth auto-correlation of $(A ; B ; C ; D)$ is 0 . The other four starting quads are chosen so that the $(n-1)$ th and $(n-2)$ th auto-correlation is 0 .

Table 3
BS (30, 29).

Edge	$A \& B ; C$ \&	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
1-1	068362252723438; 118624666538452	$4,-10,1,-1$	10, 4, 1, -1
1-2	068385638777645; 118722343573530	-10, 0, 3, 3	4, 10, -1, -1
1-3	066247531158121; 117543585724280	10, 4, 1, 1	0, 6, 9, 1
1-4	066217723624145; 117432416826461	8, 2, 7, 1	-10, 4, -1, 1
1-5	066417145712627; 117653654785220	6, 8, 3, 3	-4, 10, -1, -1
1-6	068385545252336; 118567425535130	2, -8, 5, 5	-4, 10, 1, 1
1-7	066427711368186; 117726654641520	2, 4, 7, 7	4, 10, -1, -1
2-2	066227632114544; 117768627585431	10, 0, -3, 3	0, 10, -3, 3
2-3	066244127461835; 117687675413252	6, 0, -1, 9	0, 10, 3, -3
2-4	066221154863181; 117586785628152	10, 0, -3, 3	8, 2, 1, 7
2-5	068246422128374; 118657526217580	6, -8, 3, 3	0, -10, 3, 3
2-6	068248487512863; 118768327622521	-2, -8, 5, -5	$0,-10,-3,3$
2-7	066325474783574; 117876865367552	-4, 2, -7, 7	10, 0, -3, 3
3-3	066425872412617; 117661785545180	6, 0, 1, 9	0,6, 1, 9
3-4	066225637518271; 117654433817272	6, 0, -1, 9	8, 2, 7, 1
3-5	066357474847817; 117581625334633	-8, 6, 3, 3	$6,0,-9,-1$
3-6	066213624581187; 117683252526141	6, 0, 9, -1	8, 2, 5, -5
3-7	066416178423476; 117671223663613	2, 4, 7, 7	0, 6, -9, -1
4-4	066415721365525; 117726281652351	8, 2, 7, 1	2, 8, 7, 1
4-5	066417218511536; 117644754226580	8, 6, 3, 3	2, 8, -1, 7
4-6	066242378263856; 117685486122122	2, -8, 7, 1	8, 2, -5, 5
4-7	066415277854231; 117662161546363	4, 2, 7, 7	-2, 8, -1, 7
5-5	016186616313366; 641515851514853	8, 6, 3, 3	6, 8, 3, 3
5-6	066424271211847; 117681267525360	8, 2, 5, 5	-6, 8, -3, -3
5-7	066227415141467; 117628153854530	8, 6, 3, 3	2, -4, 7, 7
6-6	068427113134776; 118653736872672	2, 8, -5, 5	-8, 2, -5, 5
6-7	066425635118187; 117765384785371	4, 2, -7, 7	2, 8, 5, -5
7-7	066347444712723; 117823654415150	2, 4, 7, 7	4, -2, 7, 7

Table 4
$B S(31,30)$.

Edge	$A \& B ; C \& D$	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
$1-5$	$0784614381231342 ; 128685615224114$	$1,-11,0,0$	
$1-6$	$0776853138438782 ; 128665371865672$	$-1,-9,6,-2$	
$1-7$	$0784216352512611 ; 128863554766615$	$-11,1,0,0$	$1,-7,6,6$
$1-8$	$0784864477847431 ; 128574476353272$	$11,-1,0,0$	$-5,-5,6,6$
$2-5$	$0776162345126151 ; 128868657542531$	$-11,1,0,0$	$3,3,10,2$
$2-6$	$0778853587261780 ; 128558541366151$	$9,5,0,-4$	$5,-9,0,4$
$2-7$	$0778511521651532 ; 128588623471636$	$-9,1,6,2$	$7,-1,6,6$
$2-8$	$0784216213317131 ; 128863657667445$	$5,9,0,-4$	$-5,-5,6,6$
$3-5$	$0764411241717863 ; 128763613567478$	$9,5,-4,0$	$-3,3,10,2$
$3-6$	$0776261117545653 ; 128813253753652$	$3,9,-4,4$	$9,-1,6,2$
$3-7$	$0784162254551610 ; 128865236166725$	$3,9,4,-4$	$7,1,6,6$
$3-8$	$0778565314743723 ; 128563665117166$	$9,3,4,-4$	$9,3,4$
$4-5$	$0778586368314251 ; 128566641315214$	$-5,5,6,6$	$3,7,8,0$
$4-6$	$0512656235371531 ; 165711846213678$	$-3,-3,10,2$	$3,7,0,8$
$4-7$	$0764323438577832 ; 128767756347465$	$9,1,2,6$	$7,8,8$
$4-8$	$0564376515151581 ; 118772615545132$	$-7,1,-6,6$	$7,3,8,0$

We proceed by selecting the 4th quad of $(A ; B)$ and the 3rd quad of $(C ; D)$ so that the $(n-3)$ th auto-correlation vanishes. We continue this procedure as far as possible. If no selection is possible, we backtrack. If we succeed in finding all the quads and the central column, then we test whether all the remaining auto-correlations vanish. If not, we backtrack. Otherwise we record the base sequences that we found. Note that this algorithm does not use any information about the possible sums a, b, c, d of the four constituent sequences. Thus we do not know in advance what these sums will turn out to be.

In order to handle the large values of n, say $n>31$, we modify the program by breaking it into two phases. The first (easy) phase is to collect into a file the initial segments of quads, say of length 8 for $(A ; B)$ and length 7 for $(C ; D)$. Such a file has several millions of rows (subcases). It takes only several minutes to generate this file. In the second phase we use a random number generator to select a row in this file as the entry point for our program. The program then completes the computation for a fixed number, say r, of consecutive rows starting from the chosen entry point. We may repeat this subroutine, say s times. In our runs, the product $r s$ was either 10000 or just 1000 . Usually we do not run the program to completion as this would require a prohibitively long time. We collect all base sequences that the program finds, and stop it after 5-6 days.

Table 5
$B S(32,31)$.

Edge	$A \& B ; C$ \&	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
1-1	0653276646881415; 1187615124567762	2, 0, 1, 11	-2, 0, -1, -11
1-2	0653477313582724; 1186645576741711	0, 2, 1, 11	0, 10, -1, 5
1-3	0664286361577533; 1177645461752362	0, 2, 1, 11	$4,10,-1,-3$
1-4	0664283673814787; 1176554618357311	-6, 0, 3, 9	-2, 0, 1, 11
1-5	0664483763412781; 1176755458517611	0, 2, 1, 11	4, 2, -5, 9
1-6	0663151725347817; 1178525218466222	2, 8, 7, -3	2, 0, 1, 11
1-7	0664457618863416; 1176713544647422	0, 2, 1, 11	-8, -6, -5, 1
1-8	0664286477134572; 1177653127576363	0, 2, -1, 11	4, 6, 5, -7
2-2	0663151774538174; 1178566324188782	0, 10, -5, 1	0, 10, 5, -1
2-3	0664134763185177; 1176835434253213	0, 10, 5, 1	4, 10, -1, 3
2-4	0663684725887517; 1177658146162731	-6, 0, 3, 9	10, 0, 1, -5
2-5	0663554568171527; 1177877658254711	2, 4, -5, 9	10, 0, 5, -1
2-6	0663284811641421; 1178625647454413	10, 0, 1, 5	2, 8, 3, 7
2-7	0653257763411145; 1187716272282540	6, 8, 5, 1	10, 0, -5, -1
2-8	0664463374577363; 1177365857427533	-4, 6, -5, 7	0, 10, 1, 5
3-3	0653271351241777; 1186637254782520	4, 10, 3, - 1	-4, 10, -3, 1
3-4	$0653485354761371 ; 1186373522521312$	0, 6, 9, 3	-4, 10, 3, 1
3-5	0663174726216214; 1178327566525642	10, 4, 1, 3	2, 4, -5, 9
3-6	0664256357162313; 1176615635414833	8, 2, 3, 7	4, 10, -3, 1
3-7	0653461761515422; 1187654414627381	10, 4, 1, 3	-6, 8, -5, 1
3-8	0653182153651377; 1186554317646211	4, 6, 7, 5	4, 10, 1, 3
4-4	0664287241436146; 1177658653747250	6, 0, -3, 9	6, 0, -9, 3
4-5	0664452175768367; 1175561631427380	-2, 4, 5, 9	6, 0, -9, 3
4-6	0664271564363774; 1176735233364512	0,6, 3, 9	-8, 2, -3, 7
4-7	0664463272861135; 1176513423426451	6, 0, 9, 3	-6, -8, -5, 1
4-8	0664151272416748; 1176758485764363	6, 4, -7, 5	6, 0, -9, 3
5-5	0653172153254877; 1186526273422531	2, 4, 9, -5	2, 4, -9, 5
5-6	0664463478185727; 1177653314631253	-4, 2, 5, 9	-8, 2, 3, 7
5-7	0653487153721511; 1186322757876711	6, 8, -1, 5	2, 4, 5, -9
5-8	0664161572851367; 1177726542361461	4, 6, 5, 7	4, 2, -5, 9
6-6	0653151463787817; 1187652534475472	$-2,8,-3,7$	2, 8, 3, -7
6-7	0664277581637113; 1177664515243633	2, 8, 3, 7	6, 8, 5, 1
6-8	0664475465821113; 1177546132182722	6, 4, 5, 7	2, 8, 7, -3
7-7	0664172363751142; 1176525365342831	8, 6, 5, -1	8, 6, -1, 5
7-8	0664475185416311; 1175416238735363	6, 8, 1, 5	6, 4, -5, 7
8-8	0664453177857275; 1176553815132731	-4, 6, 5, 7	4, -6, 7, 5

If necessary, we repeat this process several times, using different cases, until we find the witnesses for all edges of Γ_{n}.

As an example, we mention that the construction of Table 6 took in total about 1423 days of CPU time. For this table, we ran the parallelized version of our program on two machines at the same time, one used 128 processors at 3.0 GHz and the other 64 processors at 2.2 GHz . The program constructed in total 2640 different base sequences $B S(33,32)$.

5. Recent results on normal and near-normal sequences

We give here a brief summary of our recent results on these two types of sequences and on Yang numbers. Let us begin by quoting Theorem V.8.38 from the recent handbook [5].

Theorem 5.1. There is no $N S(n)$ for $n=6,14,17,21,22,23,24,27,28,30$ (all other orders of $n<31$ exist). NS(31) is the first unknown case.

We have carried out exhaustive searches for $N S(n)$ for $n=31,33,34,35,36,37,38,39$ and did not find any such sequences. As 32 and 40 are Golay numbers, we therefore have the following improvement.

Proposition 5.2. For $n \leq 40, N S(n)=\emptyset$ if and only if

$$
n \in\{6,14,17,21,22,23,24,27,28,30,31,33,34,35,36,37,38,39\}
$$

The first unknown case is $n=41$.
Yang conjecture (see [5, Conjecture V.8.39]) asserts that $N N(n)$ exist for all even integers n. This has been known to be true when $n \leq 30$ (see [1] and [5, Remark V.8.40]). Complete classification of near-normal sequences has been carried out recently in our notes $[2,4,3]$ for all even $n \leq 40$. It turns out that they exist for all even $n \leq 40$. Thus Yang conjecture remains open.

Consequently, we have the following result about Yang numbers (compare with [5, Theorem V.8.42.1]).

Table 6
BS (33, 32).

Edge	$A \& B ; C$ \&	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
1-1	07643661131422181; 1286331583848171	11, 3, 0, 0	11, 3, 0, 0
1-2	$07644347541711811 ; 1287716551833826$	3,11, 0, 0	7, -9, 0, 0
1-3	$07642434354781830 ; 1286715346831111$	$-1,1,8,8$	$3,-11,0,0$
1-4	07642414351367712; 1284656553724755	3,11, 0, 0	7, $-1,8,4$
1-5	07643151228512711; 1287676581466462	11, 3, 0, 0	-5, -5, 8, 4
1-6	$07641116654178182 ; 1283857157633244$	3, 11, 0, 0	7, 7, 4, 4
2-2	$07841512343414140 ; 1663752642548557$	9, 7, 0, 0	9, 7, 0, 0
2-3	$06613883181363680 ; 1166661118633681$	1, -1, 8, 8	9, 7, 0, 0
2-4	07641411467215623; 1287676534628461	9, 7, 0, 0	1, 7, 4, 8
2-5	$07644776741834562 ; 1283561165748383$	$-7,9,0,0$	5, 5, 4, 8
2-6	$07642431513713560 ; 1283556571663853$	7, 9, 0, 0	7, -7, 4, 4
3-3	07237773326362331; 1863661181633311	1, 1, 8, 8	1, 1, 8, 8
3-4	07641562387182580; 1285614117616664	1, $-1,8,8$	1, 7, 8, 4
3-5	$07644814118241362 ; 1284626522431467$	5, 5, 8, -4	1, 1, 8, 8
3-6	$07786885528463431 ; 1286525731546371$	-7, -7, 4, 4	1, 1, -8, 8
4-4	$07632712148552560 ; 1283745543432111$	7, 1, 8, 4	7, 1, 8, 4
4-5	07643457175562810; 1283871353112172	1, 7, 8, 4	5, -5, 4, 8
4-6	$07644123143216771 ; 1287661715652463$	7, 7, 4, 4	7, -1, 8, 4
5-5	07641561751648621; 1285616124737125	5, 5, 8, 4	5, 5, 8, 4
5-6	$07642753664476473 ; 1285131344465413$	-5, 5, 8, 4	7, -7, 4, 4
6-6	$07842423683125320 ; 1288686675821473$	7, -7, -4, -4	7, -7, 4, 4
7-7	$07632833612216140 ; 1285664844541762$	11, 1, 2, -2	11, 1, 2, 2
7-8	$07632578175158550 ; 1283617225865111$	-1, 5, 10, 2	11, 1, 2, 2
7-9	$07644318776114630 ; 1284842363371533$	1, 11, 2, -2	9, 3, 2, 6
7-10	07645728186111662; 1281566243114774	3, 7, 6, 6	11, -1, 2, 2
8-8	07641431563668731; 1287676571651331	1, 5, 2, 10	5, 1, 10, 2
8-9	07632612542858710; 1285326563571112	5, -1, 10, 2	9, 3, 6, 2
8-10	$07786157654765620 ; 1287671165413323$	-3, 7, 6, 6	5, -1, 10, 2
9-9	$07643428324116160 ; 1287761355637215$	9, 3, 2, 6	9, 3, 6, 2
9-10	07644764313231670; 1282876155416351	3, 9, 6, 2	3, -7, 6, 6
10-10	07786231134327142; 1287335713121563	3, 7, 6, 6	7, 3, 6, 6

Table 7
$B S(34,33)$.

Edge	$A \& B ; C$ \& D	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
1-1	01643272281847733; 64437112182612640	2, 0, 11, 3	0, 2, 3, 11
1-2	06426183724377472; 16715585714616133	0, 2, 3, 11	10, 0, -5, 3
1-3	01714352388163846; 64462212371615313	2, 0, 11, 3	4, 10, 3, 3
1-4	06444714358667236; 16771235115272541	0, 2, 9, 7	2, 0, -3, 11
1-5	01644816586568712; 64715715371825472	2, 0, -3, 11	4, 6, 9, -1
1-6	01716725382367832; 64164177317682140	2, 0, 3, 11	8, 6, -5, 3
1-7	01235326158287371; 66571275124148160	6, 0, 7, 7	0, 2, 3, 11
2-2	06437211421686264; 16748465174364121	10, 0, 3, 5	0, -10, 3, 5
2-3	01846171746522125; 64311276482826751	10, 4, 3, -3	0, 10, 3, 5
2-4	01644135625178262; 64186575647548281	10, 0, -5, -3	0, 2, 7, 9
2-5	06552354172663716; 11746533381536372	6, 4, -1,9	0, 10, 3, 5
2-6	06175464158337517; 12653715652536332	0, 10, 5, 3	$-6,8,5,3$
2-7	01745856378115355; 64775443215125130	0, 6, 7, 7	-10, 0, 3, -5
3-3	06632247171213645; 11382325857554252	10, 4, 3, -3	4, 10, 3, -3
3-4	01738165165617653; 64433237582218162	4, 10, 3, -3	2, 0, 7, 9
3-5	06176424834163271; 12441571842462262	6, 4, 9, -1	4, 10, -3, 3
3-6	06441362614513772; 16776763822163151	8, 6, 3, 5	10, 4, 3, -3
3-7	06482612536431236; 12461662575778260	10, -4, 3, 3	0, 6, 7, 7
4-4	01848235737566316; 61242628662324763	0, 2, 7, -9	2, 0, 7, -9
4-5	06864765526373544; 11471612568726141	-2, 0, 9, 7	4, 6, 9, -1
4-6	01644614754247125; 64187352131157381	8, 6, 3, 5	2, 0, 7, 9
4-7	06862467734722615; 11675136251536272	2, 0, 7, 9	0, 6, 7, -7
5-5	06178545552317721; 16157375762546143	4, 6, 1,9	$6,-4,1,9$
5-6	01837321432341743; 64381477511564642	6, 4, -1, 9	8, 6, 3, 5
5-7	01782525345315536; 61216753588111360	6, 0, 7, 7	$4,6,-1,-9$
6-6	06554252236661836; 11257264681477341	8, $-6,3,5$	6, 8, 3, 5
6-7	01176167385241254; 66482625745862150	8, 6, 3, -5	6, 0, 7, 7
7-7	01653673337281734; 61473278766448712	$0,6,-7,7$	$6,0,-7,7$

Table 8
BS $(35,34)$.

Edge	A \& B; C \& D	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
1-6	$076761387537518140 ; 12564355586883173$	-3, 11, -2, -2	$-1,-11,0,4$
1-7	$076544121368256783 ; 12564782516511413$	1, -1, 10, 6	11, 1, 0, -4
1-8	$076813248638665463 ; 12447117137868357$	$-3,-5,-2,10$	11, 1, 4, 0
1-9	$076518224314621143 ; 12526647176348573$	11, 1, 0, 4	9, 7, 2, 2
1-10	076813687885775451; 12534322471376448	-11, 1, 4, 0	7, 7, 6, 2
2-6	$076813155217615621 ; 12534846527651176$	9, 5, 4, 4	11, 3, -2, 2
2-7	076813446761268643; 12534882516521623	-1, 1, 10, -6	9, -5, 4, 4
2-8	$076823855753834630 ; 12441164836225723$	-5, -3, 10, -2	5, -9, 4, 4
2-9	$076541256821114362 ; 12663152258827675$	9, 5, 4, -4	7, -9, -2, 2
2-10	$076814553215115552 ; 12534517187266537$	7, 7, 2, 6	9, 5, 4, 4
3-6	$076423483282237882 ; 12837164638247415$	$-3,-11,2,2$	3, $-1,8,8$
3-7	$053765656464871261 ; 17765746348615187$	1, 1, -6, 10	$3,-1,-8,-8$
3-8	$076544215376333280 ; 12662553656248264$	3, 1, 8, -8	-3, -5, 10, -2
3-9	076541326141144653; 12565462867178642	9, 7, 2, -2	$-1,-3,-8,8$
3-10	$076541313864244753 ; 12565532682263655$	1, 3, 8, -8	7, -7, 2, 6
4-6	076821154786531510; 12441254686615465	5, 7, 8, 0	11, -3, -2, 2
4-7	076542388881587133; 12634625571747754	$-7,-5,0,8$	-1, 1, 10, -6
4-8	$076821421676434513 ; 12441325771765766$	5, 3, 2, 10	7, 5, 8, 0
4-9	$076535878535141762 ; 17677852174231455$	-5, 7, 0, 8	9, -7, 2, -2
4-10	076764325821511142; 12563712335271855	7, 7, 6, 2	5, -7, -8, 0
5-6	076541434617337753; 12565287475625713	-3, 11, 2, 2	7, -3, -8, -4
5-7	$076531753465353411 ; 12456864615253117$	3, 7, 8, 4	1, 1, 6, 10
5-8	$076543211437821351 ; 12664184625565624$	7, 3, 8, -4	5, -3, 10, 2
5-9	$076542443567112150 ; 12634755737233827$	9, 7, -2, 2	3, $-7,8,4$
5-10	$076532871428885871 ; 12455284637661614$	-7, -7, 6, 2	7, 3, 8, 4

Table 9
BS (36, 35).

Edge	$A \& B ; C \& D$	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
$1-1$	$066128524558167276 ; 115512428681612272$	$-4,-2,-11,-1$	
$1-2$	$061752175573814614 ; 123367131555842723$	$-2,11,1$	$-4,2,11,-1$
$1-3$	$066224581257478141 ; 114662461732721433$	$-2,4,-1,11$	$-4,-6,9,3$
$1-4$	$065532351825386471 ; 16425237255181721$	$6,0,9,5$	$2,4,11,1$
$1-5$	$061754416162673578 ; 123357118657181721$	$4,-2,11,1$	$-10,4,-1,5$
$2-2$	$061751252386515416 ; 123355426257165781$	$2,8,5,7$	$0,6,-5,-9$
$2-3$	$016414317335677244 ; 616264816227573640$	$10,4,5,-1$	$6,-4,9,3$
$2-4$	$016815552241223875 ; 611817576227536871$	$4,10,5,1$	$-4,10,1,-5$
$2-5$	$016622578364127651 ; 615115726753232751$	$10,-4,-1,5$	$6,0,-9,-5$
$3-3$	$016735472553122818 ; 617256517744612640$	$8,2,7,5$	$-4,-6,3,-9$
$3-4$	$065532881558483613 ; 116421432717756380$	$6,0,5,9$	$-2,8,-5,7$
$3-5$	$064713642432155468 ; 123473144616418230$	$0,-6,5,9$	$6,4,9,3$
$4-4$	$068753558343827566 ; 116258162734771362$	$-6,-4,5,9$	$-6,4,3,9$
$4-5$	$063828821524645187 ; 128664764835184882$	$2,-8,-7,-5$	$8,2,5,7$
$5-5$	$016567812318227135 ; 611513566817626551$	$8,2,7,5$	

Proposition 5.3. For odd integers $n \leq 81, n$ is a Yang number if and only if
$n \notin\{35,43,47,55,63,67,71,75,79\}$.
The first unknown case is $n=83$.

Acknowledgements

The author is grateful to NSERC for the continuing support of his research. Most of this work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca). The author also thanks the referees for their valuable suggestions.

Appendix. Lists of base sequences

See Tables 2-10.

Table 10
BS (37, 36).

Edge	$A \& B ; C \& D$	a, b, c, d	$a^{*}, b^{*}, c^{*}, d^{*}$
$1-1$	$0642483723773112832 ; 162444213616245723$	$1,1,-12,0$	
$1-4$	$0781647583615324282 ; 167557211545523777$	$-1,-9,0,-8$	
$1-5$	$0876588628114455150 ; 161427612285272431$	$-1,-1,0,12$	$9,7,-4,0$
$1-6$	$0764841234846532153 ; 165154775335162126$	$-1,1,-12,0$	
$2-5$	$0767144683434761771 ; 124873577128343623$	$7,-3,8,8$	$-9,-4,0$
$2-6$	$0785618342468563210 ; 126551157157241538$	$-5,11,0,0$	$-5,-11,0,0$
$3-4$	$0764214143622153442 ; 164323881543744174$	$3,-3,8,8$	$-1,-9,8,0$
$3-5$	$0616123851727712413 ; 123473518825755738$	$-3,11,-4,0$	
$3-6$	$0785641356385516141 ; 126547124474373121$	$9,7,-4,0$	$11,3,0,-4$
$4-5$	$0616123816854524630 ; 123473466224661443$	$3,3,8,8$	$9,7,0,4$
$4-6$	$0865126576744588551 ; 161271417534556246$	$9,-1,8,0$	$1,9,0,-8$
$5-5$	$0717855753413764382 ; 186871154644661856$	$-3,-3,8,8$	$9,-7,0,-4$
$5-6$	$0615512388414537671 ; 126528535625368412$	$-7,9,0,4$	$7,-9,-4,0$
$7-7$	$0864743671415823362 ; 163242244661482565$	$3,3,8,-8$	$-1,3,6,-10$
$7-8$	$0778285253655118732 ; 128814612256532345$	$-1,3,10,-6$	$5,9,2,6$
$7-9$	$0764367614152248343 ; 162525438825532618$	$-3,1,10,-6$	$7,5,6,-6$
$8-8$	$0762165645151374421 ; 162127434137824455$	$3,1,6,-10$	$5,9,2,-6$
$8-9$	$0868124566444233641 ; 161842144127757326$	$9,5,6,2$	$5,9,2,-6$
$9-9$	$0637461414423752660 ; 128647367258131611$	$5,-7,6,6$	$7,5,-6,-6$

References

[1] D.Ž. Đoković, Aperiodic complementary quadruples of binary sequences, The Journal of Combinatorial Mathematics and Combinatorial Computing 27 (1998) 3-31;
D.Ž. Đoković, Aperiodic complementary quadruples of binary sequences, The Journal of Combinatorial Mathematics and Combinatorial Computing 30 (1999) 254 (Correction).
[2] D.Ž. Đoković, Classification of near-normal sequences, Discrete Mathematics, Algorithms and Applications 1 (3) (2009) 389-399.
[3] D.Ž. Đoković, Hadamard matrices of small order and Yang conjecture, Journal of Combinatorial Designs (2010), in press (doi:10.1002/jcd.20249). Available as a preprint on: arXiv:0912.5091v1 [math.CO] 27 Dec. 2009.
[4] D.Ž. Đoković, A new Yang number and consequences, Designs, Codes and Cryptography 54 (2010) 201-204.
[5] H. Kharaghani, C. Koukouvinos, Complementary, base and Turyn sequences, in: C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, 2nd ed., CRC Press, Boca Raton, FL, 2007, pp. 317-321.
[6] H. Kharaghani, B. Tayfeh-Rezaie, A Hadamard matrix of order 428, Journal of Combinatorial Designs 13 (2005) 435-440.
[7] C. Koukouvinos, S. Kounias, J. Seberry, Further results on base sequences, disjoint complementary sequences, $O D(4 t$; $t, t, t, t)$ and the excess of Hadamard matrices, Ars Combinatoria 30 (1990) 241-256.
[8] C. Koukouvinos, S. Kounias, K. Sotirakoglou, On base and Turyn sequences, Mathematics of Computation 55 (1990) 825-837.
[9] C. Koukouvinos, J. Seberry, Addendum to further results on base sequences, disjoint complementary sequences, $O D(4 t$; $t, t, t, t)$ and the excess of Hadamard matrices, Congressus Numerantium 82 (1991) 97-103.
[10] S. Kounias, K. Sotirakoglou, Construction of orthogonal sequences, in: Proc. 14-th Greek Stat. Conf. 2001, pp. 229-236 (in Greek).
[11] J. Seberry, M. Yamada, Hadamard matrices, sequences and block designs, in: J.H. Dinitz, D.R. Stinson (Eds.), Contemporary Design Theory: A Collection of Surveys, J. Wiley, New York, 1992, pp. 431-560.
[12] C.H. Yang, On composition of four-symbol δ-codes and Hadamard matrices, Proceedings of the American Mathematical Society 107 (1989) $763-776$.

[^0]: E-mail address: djokovic@uwaterloo.ca.

