
ELSEVIER Journal of Computational and Applied Mathematics 102 (1999) 3-19

JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

An integral linear interpolation approach to the design
of incremental line algorithms

Chengfu Yao, Jon G. Rokne *
Department of Computer Science, The University of Calgary, Calgary, Alberta, Canada, T2N 1N4

Received 28 June 1997; received in revised form 12 May 1998

Abstract

A unified treatment of incremental line-drawing algorithms understood from the viewpoint of rounded interpolation,
covering Bresenham's algorithm, run-length algorithms, and multistep versions of both. @ 1999 Elsevier Science B.V.
All rights reserved.

AMS classification: 65Y25; 68R99; 68V05

Keywords: Scan conversion of lines; Integral linear interpolation; Incremental algorithms; Run-length algorithms

1. Introduction

The generation of line segment raster images (called lines hereafter) is an important basic graphics
primitive. This is evidenced by the fact that graphics hardware tends to be benchmarked by the speed
by which it can generate lines. Considerable interest has therefore been shown in designing efficient
line scan-conversion algorithms. These algorithms select the pixels nearest to the line based on the
geometry of a line relative to a coordinate grid, an abstraction of the raster display where grid points
represent the centers of pixels. Most of the algorithms are incremental algorithms [1-4, 8, 10, 13,
16]. Incremental algorithms are distinguished by the fact that they generate the rastered image of a
line from one endpoint of a line to the other by selecting one or multiple pixels in each incremental
step along a certain axis (x-axis for the lines with slope between 0 and 1). The choice of which
pixels to set is made by testing the sign of a function called a discriminator. The discriminator obeys
a simple recurrence formula which may be evaluated using only integer arithmetic and binary shifts.
The first such algorithm was due to Bresenham [2]. His algorithm was easy to implement and it
effectively set a standard for subsequent line scan conversion algorithms.

* Corresponding author. E-mail: rokne@cpsc.ucalgary.ca.

0377-0427/99/S-see front matter (~) 1999 Elsevier Science B.V. All tights reserved.
PII: S 0 3 7 7 - 0 4 2 7 (9 8) 0 0 2 0 5 - 2

4 C. Yao, J.G. Rokne/Journal of Computational and Applied Mathematics 102 (1999) 3-19

The number of pixels generated in each incremental step may be either fixed or variable. Algo-
rithms which generate a fixed number of pixels in each incremental step are usually named according
to the length of the incremental step along a chosen axis. We thus have single-step line algorithms
which are represented by the first incremental line algorithm due to Bresenham; the double-step line
algorithm of Wu and Rokne [16] and the quadruple-step line algorithm of Bao and Rokne [1]. The
double-step algorithm [16] is similar to Bresenham's algorithm but takes advantage of the special
double-step pixel patterns and therefore reduces the number of incremental steps by one half. The
quadruple-step algorithm [1] generates four pixels in each incremental step at the cost of one to three
decision tests, with the average being slightly less than two. More recently, Graham and Iyengar
[11] presented a double- and triple-step incremental line algorithm with which has a double-step line
generator potentially being able to set a third pixel in some of the loop iterations. Gill [9] suggested
N-step incremental line algorithms based on Bresenham's line algorithm. In Bresenham's algorithm,
the sign of a discriminator E predicts the pixel to be chosen at any step. For each possible N-step
move, the changes to E for each step in the scan conversion process gives a set of equations that
must be satisfied such that the N-step pattern is next in the sequence making up a line. These
equations form a test set that predicts the N-step move in advance.

The incremental line algorithms which generate a variable number of pixels in each incremental
step are based on the observation that the rastered image of a line with slope between 0 and 1 can
be divided into slices of horizontal runs (pixels with the same ordinate) or diagonal runs (pixels
forming a 45 ° segment). A run of pixels is generated in each incremental step. Line algorithms of
this type are usually referred to as run-length slice algorithms [4, 8]. A two-state discriminator can
be used to determine the length of the next run due to the property that the lengths of the runs are
confined to two successive integers except for the first and the last run. This results in a scheme
similar to the one used in algorithms generating fixed number of pixels in each step.

The run-length properties were first proven by Reggiori [12]. In [15] Rosenfeld derived them
from the chord property of a straight digital arc, the digitization of a straight line segment. In the
horizontal run-length slice line algorithm, the incremental direction is along the y-axis for calculating
the horizontal runs of the line with slope between 0 and 1 since two consecutive horizontal runs
have an increment of one in their ordinates. In [4] Bresenham used the property of the so-called
complementary line of a line to calculate the diagonal runs of that line whose slope is between
0.5 and 1. The run-length slice algorithms in [4] can be viewed as a single-step algorithm in the
sense that the incremental step is one in the direction of y-axis. Fung, Nicholl and Dewdney [8]
presented a double-step version of the run-length slice algorithm to further increase the efficiency of
line generation. A major drawback of the run-length slice algorithm is the division operation required
in the initialization part of the algorithm. A method to avoid division was suggested in [8].

This paper focuses on the methodology in the design of line algorithms of incremental type.
As has been mentioned above, the core of the existing incremental line algorithms is to choose a
pixel or a group of pixels in each iteration step. The analyses are based on the geometry. Pixel
patterns are studied individually for the derivation of single-step, double-step, and quadruple-step
algorithms. From the view point of numerical computation, selecting pixels to approximate a contin-
uous line amounts to a problem of linear interpolation. Because the pixels have integer coordinates,
the interpolation should be treated in a discrete setting, i.e., the interpolation values should be rounded
to integers and we call it integral linear interpolation. Integral linear interpolation will be used to
derive incremental line algorithms. In its simplest case, we first discuss the relationship between

C. Yao, J. G. Rokne l Journal of Computational and Applied Mathematics 102 (1999) 3-19 5

Bresenham's line algorithm and integral linear interpolation. We then illustrate how variations of
the original Bresenham's line algorithm such as double-step and quadruple-step incremental line al-
gorithms can be derived by using double-step and quadruple-step integral linear interpolation. This
method also applies to the derivation of the incremental run-length slice line algorithms, however,
the discussion of its relation to the linear interpolation is less straightforward.

Careful attention is given to the equal-error problem for each of the algorithms because of its
importance for code portability.

Algorithms to perform fast integral linear interpolation have been discussed by Field [5], Rokne
and Yao [14], and Graham and Iyengar [11], the latter being a generalization of their double- and
triple-step line algorithm [10].

The topics in this paper are well known from other investigations, however, the approach is
different from other relevant work. This results in a treatment that unifies a considerable body of
literature on incremental line drawing.

The paper is organized as follows. Section 2 gives some notations and conventions used throughout
this paper. Section 3 introduces the technique of integral linear interpolation. Sections 4 and 5 derive
the single-step and double-step incremental line algorithms by means of integral linear interpolation.
Section 6 uses the integral linear interpolation to derive run-length slice line algorithms. A conclusion
is given in Section 7.

2. Notations and conventions

The discussion of the line scan-conversion problem is constrained to lines with slopes between
0 and 1 whose endpoint coordinates are integers. More specifically, we denote the two endpoints
of the line by (xs, Ys) and (xe, Ye) and we assume that Xe ~> Xs and Ye >/ Ys. Other lines with integer
endpoints can be transformed to meet this condition via sign changes and/or coordinate swaps.

The following notations are used throughout this paper:
1. Ax = xe - xs and A y = ye - y~.

2. In the context of linear interpolation k is used to denote the distance between two consecutive
interpolation points. For instance, performing linear interpolation over interval [a, b] with n + 1
equidistant points including a and b, we have k = (b - a) /n . In the context of line generation,
however, k = A y / A x denotes the slope of the line. In this case k can still be considered as the
distance of two consecutive interpolation points in a linear interpolation over interval [y~, Ye] with
n = A x .

3. [xJ denotes the largest integer which is not larger than x; Ix] denotes the smallest integer which
is not smaller than x. [.J and ['1 are called the f l oor and ceiling functions.

4. A letter with a dot accent denotes the integer approximation to a linear interpolation point. The
integer which is nearest to an linear interpolation point xi is xi = [xi + 0.5[except when xi has a
fractional part of 0.5. In this case xi = [xj or ~g = [xi + 0.5J is acceptable with the latter being the
default choice. We also use ki = [x,-J or ki = [xi] as the integer approximation of xi in situations
where the use of these definitions helps to derive incremental run-length slice line algorithms.

5. ¢= LkJ.
6. C = L2kJ.

6 C Yao, J.G. Rokne/Journal of Computational and Applied Mathematics 102 (1999) 3-19

3. Integral linear interpolation

3.1. L e a s t error in tegral linear interpolat ion

The problem of linear interpolation is to find a set of n + 1 equidistant points on an interval
[a, b], where the lower and upper bounds, a and b, are assumed to be integers for the time being.
This is not necessary as the problem itself suggests, however, when this problem is related to line
generation, a and b are usually integers or real numbers with some special relation which allows
integer arithmetic as we will see in Section 6.

Let us denote the original set of interpolation points by

a = a o , a l , . . . , a n = b ,

where ai -- a + i(b - a) /n = a + ik for i -- 0, 1 , n. Then the integral approximation to the ith point
can be obtained by rounding it to the nearest integer, i.e.,

dt~= l a + b - a i + o ' 5] n (1)

for i = 0, 1 n. Since ai is obtained by rounding a~ to the nearest integer, we call this type of
linear interpolation least error integral linear interpolation.

Since

(l i • lai -q- 0.5J, i = 0, 1, . . . ,n,

we have

i.e.,

ai -- 0.5 < ili <~ ai + 0.5,

ai+l -- 0.5 < ai+l ~ ai+l q- 0.5,

a + ik - 0.5 < f i <~ a + ik + 0.5,

a + (i + 1) k - 0.5 < fi+l ~<a + (i + 1)k + 0.5.

Subtracting Eq. (2) from Eq. (3), we get

k - 1 <fi+l --ai < k + 1,

(2)

(3)

or

k - l < A ~ i i < k + l .

If k is nonintegral, then Atii can either assume the value Fk-11 -- [k] = c or the value [k+ lJ = [k[+
1 - -c + 1. If k is integral, A~ig = k = [kJ --c. Letting ~i = a i + l - - a i - - (c -q- 0.5) we obtain

a i --~ C, ~i < 0,
a i+l= a i + c + l , ~i~>0.

C Yao, J.G. Rokne/Journal of Computational and Applied Mathematics 102 (1999) 3-19 7

It follows from n > 0 that Di = 2He/ retains the sign of e/. Since Di tunas out to be a conveniently
calculated quantity, it is chosen to be the discriminator and we have

&i + c, Di < O,
t i i+l = tii + c ÷ 1, D i >>- O. (4)

Noting that

8i : ai+l - - tii - - (c ÷ 0.5)
b - a

: a + (i + 1) . - - t i i - (c + 0.5),
n

it follows that

Oi = 2na + 2(i ÷ 1)(b - a) - 2ntii - - n(2c ÷ 1). (5)

Subtracting Di from Di+l yields

Di+1 - Di = 2(b - a) - 2n(tii+l - tii)-

Hence,

Di ÷ 2(b - a) - 2nc, Di < O,
Di+l= D i + 2 (b - a) 2n(c + l), D~ >~ O. (6)

The initial value for tii is

ti0 = a. (7)

Evaluating Eq. (5) for i = 0 determines the initial value of the discriminator

Do = 2 (b - a) - n(2c ÷ 1). (8)

An integerized algorithm for least error integral linear interpolation is thus obtained according to the
initial values given by Eqs. (7) and (8) and the recurrence formulas of Eqs. (4) and (6).

3.2. Rounding-up and rounding-down integral linear interpolation

If, instead of defining the integral interpolation points using Eq. (1), we round up each interpolation
point ai to the smallest integer which is greater than or equal to ai, i.e., we define

= Fail -- Fa + ml (9)

then we obtain the rounding-up integral linear interpolation.
Analogous to the derivation of the recurrence formulas for the least error integral linear interpo-

lation, we can generate similar recurrence formulas for the rounding-up integral linear interpolation
with only integer arithmetic. It follows from Eq. (9) that

ai <~ tii < ai t 1, (10)

ai+l -~< tii+l < ai+l + 1. (11)

8 C Yao, J.G. RoknelJournal of Computational and Applied Mathematics 102 (1999) 3-19

Proceeding as before we obtain the recurrences

{ ai + C, Di <~ 0,
(~i+l : &i + c + 1, Di > O, (12)

= ~, D i + b - a - n c , Di<~O,
Di+l (13) / D i + b - a n (c + l) , Di > O.

The initial value of the interpolation point is

ao = a (14)

and of the discriminator

Do = b - a - nc. (15)

Similarly, letting hi = Lai[= [a + kiJ, we define rounding-down integral linear interpolation. The
recurrence formulas for rounding-down integral linear interpolation are almost the same as the for-
mulas for the rounding-up integral linear interpolation and we get

• ~ r i + c , Di < O,
ai+l = ~. hi + c + 1, Di >~ O, (16)

D i + b - a - n c , Di < 0 ,
Di+l = Di + b a n(c + 1), Di >10. (17)

with

40 = a,

D o = b - a - n(c + 1).

(18)

(19)

The difference between (12), (13) and (16), (17) is just in the equality case for the update
formulas and in the initial value for Do.

4. Bresenham line algorithm and integral linear interpolation

Consider a line from (Xs, Ys) to (xe, Ye) which lies in the raster plane with an overlaid rectangular
coordinate grid mesh. The line is assumed to meet the conditions imposed in Section 2. Starting
from x = x s , Y=Ys, Bresenham's algorithm generates the rastered image of a line by increasing
the integer abscissa value by one in each iteration, then deciding which of the two neighboring
pixels, (x + 1,y) and (x + 1,y + 1) is closer to the true line and then moving to that position.
The algorithm chooses one of the two pixels by testing the sign of a discriminator. The decision
made effectively rounds the real ordinate value of the point on the real line with integer abscissa
x + 1 to the nearest integer. If an equal error instance occurs, Bresenham's algorithm will round the
real ordinate value up, i.e., choose the integer ordinate to be y + 1. The discriminator is updated
according to a simple recurrence formula. The following code constitutes the core of Bresenham's
line algorithm for generating lines with slopes between 0 and 1.

D = 2Ay - Ax;

C Yao, J.G. RoknelJournal of Computational and Applied Mathematics 102 (1999) 3-19 9

for (i = 0; i <<, Ax; + + i) {
plot(x, y);
if (D i> O) {

y = y + 1;
D = D - 2Ax;

}
x = x + 1;
D = D + 2Ay;

}
Now let us view the line generation problem from a different perspective. Denote the ordered

sequence of abscissa of pixels on the line from xs to xe; by Y" and the ordered sequence of ordinate
of pixels from Ys to Ye by ~ . There is a one to one correspondence between the elements of these
two sequences. Since Ax >1 Ay, x is increased by one each step a pixel is determined. Hence

YC = {xs,xs + 1, . . . ,xe}.

The elements in ~ are the results of the least error integral linear interpolation performed on the

interval [y , Ye]:

0~ = {Ys = Y0' Y l ' ' ' ' ' Yn = Ye},

where n = Ax. In the case of Ay < n there exist Yi and)~+l for i = 0, 1 n - 1 such that ~ =)~i+~.
Replacing a, b by Ys, Y¢ and n by Ax in the least error integral linear interpolation formulas obtained
in Section 2.1, we get the following recurrence relations:

~" 33i + c, D~ < 0, (20) A+,
L 3)i + c + 1, Di~>0.

{ D~ + 2Ay - 2cAx, D,- < 0, (21)
Di+l = Di + 2Ay - 2(c + 1)Ax, Di >/O.

The initial value of the discriminator becomes

Do = 2Ay - (2c + 1)Ax. (22)

The relation between Eqs. (20)- (22) and Bresenham line algorithm is revealed by examining the
value of c which is trivially determined:

0, O < ~ k < 1, A y < A x , (23)
c = 1, k = l , A x = A y ,

where k is the slope of the line. If c = 0 Eqs. (20) and (21) can be simplified to

{))i, D~ < 0, (24)
-Yi+I ~--- -Yi + 1, Di ~ O.

Di + 2Ay, Di < 0, (25)
Di+l = Di + 2Ay - 2Ax, Di ~ 0,

10 C. Yao, J. G. Rokne / Journal of Computational and Applied Mathematics 102 (1999) 3-19

and the initial value of the discriminator becomes

Do --- 2 A y - Ax. (26)

These recurrence relations are identical to those employed in Bresenham's algorithm. If c = 1, i.e.,
Ax = Ay , the line forms a 45 ° angle with respect to the positive x-direction. The recurrence formulas
become

l Y i + l , D i < O ,
J~ i+ l = J~ i + 2, Di >1 0,

(27)

Di, Di < O,
Di+l = Di - 2Ax, Di >lO,

(28)

and the initial value of the discriminator becomes

Do = - Ax. (29)

These formulas differ from those used in Bresenham's algorithm. But since the initial value of
discriminator is negative, and according to Eq. (28) it will never change in the process of iteration,
therefore, according to Eq. (27), the value of))i will increase by one in each iteration to form a 45 °
move. We therefore conclude that least error integral linear interpolation over the interval [Ys, Ye]
results in a line algorithm which is equivalent to Bresenham line algorithm.

5. Double-step line algorithm and least error integral linear interpolation

5.1. Double - s t ep line a lgor i thm

The double-step line algorithm [16] which improves Bresenham's algorithm is based on the ob-
servation that if a point (xi, Yi) at the lower left corner of a 2 × 2 mesh representing an already
plotted pixel in the line with slope between 0 and 1 is given, then only the four pixel patterns
shown in Fig. 1 can be formed in a double-step increment in the x-direction under the conditions on
the line given in Section 2. Starting from (Xs, Ys), the x coordinate is now incremented by two raster
units. Then if the pixel at the right-lower (the right-upper) corner of the 2 x 2 mesh is selected, it
is clear that pattern 1 (4) occurs. This means that in each case the middle pixel can be plotted with
no extra work. If pattern 2 or 3 occurs (abbreviated pattern 2 (3) in the sequel), then some extra
work has to be done in order to distinguish which of the two patterns have to be plotted. It was

II1 y~) ~ ~ ~ I F

cxl, xl, xl,2 IT I I xi,yil;"
Patternl Pattern2 Pattern3 Pattern4

Fig. 1. The four double-step patterns.

C Yao, J.G. RoknelJournal of Computational and Applied Mathematics 102 (1999) 3-19 11

conjectured by Freeman [6, 7] and proved by Reggiori [12] (see also [13, 16]) that only two pattern
types may occur simultaneously: either 1 and 2 (3) or 2 (3) and 4. This can be proven in a more
straightforward manner using the run-length properties of a rastered line which will be discussed in
Section 6. From these results the double-step strategy is given by
1. I f 0 ~ k <0 .5 , then

Do = 4Ay - Ax, (30)

{ D~ + 4Ay, Di < 0 (pattern 1),
Di+l = Di + 4Ay - 2Ax, Di >>- O (pat tern2 or 3). (31)

2. If 0.5 ~<k ~< 1, then

Do = 4 Ay - 3Ax, (32)

f D~ + 4Ay - 2Ax, Di < 0 (pattern 2 or 3),
Di+l /. Di + 4(Ay - Ax), D~ >~ 0 (pattern 4).

(33)

To distinguish between pattern 2 and 3 requires the test

2Ay, if 0 ~< k < 0.5, (34)
D i < 2 (A y - A x) if 0.5 -%<k~<l

resulting in pattern 2 if the test is passed, pattern 3 if not.

5.2. Designing double-step line algorithm using double-step integral linear interpolation

In this subsection we show that the integral linear interpolation methodology lends itself to the
design of double-step line algorithm by extending it to a double-step incremental version. Again the
integral linear interpolation used is of the least error type.

Double-step integral linear interpolation was discussed in [14] and we therefore only outline the
algorithm for double-step linear interpolation here. We then show its relation to the double-step line
algorithm.

We first introduce following notation:

 =a2i=a+ i'l
.,ii [A~+0.5 l= t i2 i ' i = 0 , 1 , .

We can easily prove that

2k - 1 < AJt i =Ai+I - - Ai < 2k + 1.

The values that can be assumed by AA~ are therefore L2kJ = C or L2k + lJ = C + 1. Following the
same development as in Section 3 we obtain that the formulas to calculate Ai and/3~ are

Ai -q- C, Di < 0 ,
Ai4-1~- Ai -}- f -b-1, D i d O , (35)

12 C Yao, J. G. Rokne l Journal of Computational and Applied Mathematics 102 (1999) 3-19

and

Di + 4(b - a) - 2nC, Di < 0,
Di+l= D i + 4 (b - a) - 2 n (C + l) , Di>-O

(36)

with the initial values being

-~0 = a, Do = 4(b - a) - n(2C + 1). (37)

The midpoint between Ai and -~i+l, i.e., d2~+l, can be determined by an extra test:

A i .71- C, D i < 2(b - a) - 2n(C - c),
d2i+l= A i + c + l , D i > > - 2 (b - a) - 2 n (C - c) . (38)

The test can be saved if AAi is even, i.e., AAi--2m where m is a nonnegative integer. In this case,
we simply have

a2i+l = A i -{- m.

The above recurrence formulas result directly in a double-step line algorithm since what we really
need to calculate is the set of y-coordinates of the pixels on the rastered line, and it is readily
understood that this can be achieved by performing double-step linear interpolation over interval
[Ys, Ye]. Replacing a,b by Ys, Ye, A,d by Y, 3~, and n by Ax in Eqs. (35) and (36) yields the following
recurrence formulas for calculating y coordinates of the pixels:

I~+~ { Ik,., +C, Di<O, (39)
= I ? + C + l , Di~>0,

Di .-[- 4Ay - 2AxC, Oi < O,
Di+l = Di + 4Ay 2Ax (C + 1), Di >1 O, (40)

where I?i = fi2i and C is interpretered as [2Ay/AxJ = [2k]. If A l?i is odd, i.e., C is odd if Di < 0
or C + 1 is odd if Di >i O, according to Eq. (39) we have

{ Yi -'[- C, Di < 2Ay - 2Ax(C - c),
))2i+l= Y / + c + l , D i > ~ 2 A y - 2 A x (C - c) .

(41)

In the case of AYi being even, the midpoint 3~2~+1 is readily obtained. The initial value of the
discriminator becomes

Do = 4Ax - (2C + 1)Ay. (42)

Noting that the value of c is determined according to Eq. (23) then the value of C is, from the
following equation,

0, 0 ~< k < 0.5,
C = 1, 0 .5~<k< 1, (43)

2, k = l ,

and we can now easily see that the above recurrence formulas for double-step integral linear in-
terpolation over interval [ys, y~] are identical to the recurrence formulas used for double-step line

c Yao, J.G. RoknelJournal of Computational and Applied Mathematics 102 (1999) 3-19 13

algorithm in [16] for the case of 0 ~< k < 1, and they are correct in the case of k = 1 though the
resulting formulas are different from those of double-step line algorithm. We omit the derivation
here since it is quite easy.

The advantage of using linear interpolation technique in designing double-step line algorithm
is obvious. The discussion on double-step pixel patterns and the differentiation of the two cases
depending on the slope of a line being greater or less than 0.5 is no longer needed. Only one set
of recurrence formulas is derived which corresponds to different sets of formulas derived in [16]
depending on the value of C. In an analogous manner we can design a quadruple-step least error
integral linear interpolation algorithm, and it is readily understood that quadruple-step line generation
[1] is just a special case of quadruple-step least error integral linear interpolation.

6. Run-length line algorithm based on integral linear interpolation

6.1. Horizontal run-lenoth line aloorithm

In Sections 2 and 3, we reduced the problem of line generation to the problem of least error
integral linear interpolation over the interval [Ys, ye] with n = Ax. An alternative method one would
naturally consider is to reduce the problem of line generation to the problem of performing linear
interpolation over the interval [Xs,Xe] with n = Ay. Since Ay ~ Ax, this will in general reduce the
number of iteration steps. Unfortunately, this is not helpful as is illustrated by Fig. 2.

The fact that there exist identical elements in the sequence ~/ when 0 ~< k < 1 is visualized by
the horizontal runs of the pixels in the rasterized line. This provides us with a clue for finding the
start of each horizontal runs by means of integral linear interpolation since the start of each run has
an integral x-coordinate. We impose a set of horizontal mid-lines y -- ys + i - 0.5, i = 1,. . . , Ay (see
Fig. 3). The x-coordinate of the intersection of the line from (x, Ys) to (Xe, y~) with line y = ys + i - 0 . 5
is denoted by xi. It is then readily understood that rasterized image of the half open line segment
whose projection on the x axis is the half open interval [xi,xi+~) is the horizontal run from Ixil to
[xi+l] - 1. Thus, except for the first horizontal run which starts from x~, each horizontal run starts
from Fxil. To compute Fx,- 7 we convert this problem to a problem of rounding-up integral linear
interpolation as introduced in Section 2.2.

L~2

'lb, • L~' t k

dlL J l ~
/ 1 1 1 ~ I F

r i l l d ~ d k
~ [,"~q F I F

I I I I I

Fig. 2. Linear interpolation over the interval [xs,xe].

14 C. Yao, J. G. Rokne / Journal of Computational and Applied Mathematics 102 (1999) 3-19

F~7

• ~ F I F • F

L L L L L ~ L :

r~7 r~7 r~7

Fig. 3. Horizontal run of the pixels in a rasterized line and finding the starting position of each run by rounding-up integral
linear interpolation.

Introducing auxiliary point x0 = X s - Ax /2Ay , we get n + 1 (n = A y) equally spaced points since we
use n mid-lines to intersect the line from (xs, Ys) to (xe, Ye) (see Fig. 3). The distance between x~ and
xi+] is Ax/Ay , and the last point is x,, =xe - Ax /2Ay . Remember that what we really need are the
integer points 2] , . . . ,2n where 2~ = [x~ 1 is the beginning of (i + 1)th horizontal run. The beginning of
the first horizontal run is Xs. We now perform rounding-up integral linear interpolation over interval
[x0,xn] to obtain these integer points. Referring to the derivation of the recurrence formulas for
rounding-up integral linear interpolation in Section 2.2, we substitute Xo,X,, for a and b, respectively.
Here n is changed to Ay; ai is changed to x~; and c = [kJ = L (x , - xo)/nJ. The lower and upper
bounds of the interval are no longer integers, which seems to be a barrier in performing integral
linear interpolation using only integral arithmetic. This difficulty can be overcome by examining the
equations Xn --XO = Xe --Xs = AX. The discriminator Di used is different from that defined in Section
2.2. Since

X i - - 1 - - 2 i - - C = X o + (i + I) x ' - x ° 2 i - - C
Ay

Ax 1) Ax
--Xs 2Ay + (i + ~ 2 ~ - c ,

we define

Di = 2Ay(xi+l - xi - c)

= 2Ayxs - Ax + 2(i + 1)Ax - 2Ay2i - 2Ayc .

Hence,

D i + l - Di = 2Ax - 2Ay(2i+l -- xi)

= ~ 2Ax - 2Ayc , Di <~ O,

1 2 A x - 2 A y (c + l) , Di > O.

Let

r = A x m o d A y and F = A x m o d 2Ay ,

C Yao, J.G. Rokne/Journal of Computational and Applied Mathematics 102 (1999) 3-19 15

. ~:.~ w¢~.. J.-.-q

d L d h • I~,,"11[~
. ~ ' ~ _ _ ~ " " , ,

Fx] Fx]

Fig. 4. A line with equal error cases.

then

Ayc = Ax - r, 2 A y [A x / 2 A y J = Ax - F

and we have the recurrence formulas

{ xi + c, Di <<. O,
"~i+1 ~- -~i + c + 1, Di > 0,

Di + 2r, Di <<. O,
Di+l = Di + 2r - 2Ay, Di > O.

The initial values of ~ and Di are

-Xo = s ~ = X s - = X s - (c > l) ,

(44)

(45)

(46)

D o = 2 A y (x s - k o - c) + A x = 2 A y l A~Ay I - 2 A y c

= Ax - ~ - 2(Ax - r) + Ax = 2r - F,

+ Ax

(47)

where > denotes the right binary shift operation.
Equal error instances are treated in a manner consistent with the Bresenham line algorithm as is

illustrated in Fig. 4. This is because we use rounding-up to obtain the initial point of the horizontal
run. Some properties of a rastered line can be derived directly from Eq. (45):
1. Except for the first and the last run, the lengths of horizontal runs are confined to two consecutive

integers c and c + 1.
2. The sum of the lengths of the first and the last horizontal run is either c + 1 or c + 2.
3. Pixel patterns 1 and 4 in Fig. 1 cannot occur in one line since the occurrence of pattern 1 implies

a horizontal run of length at least 3 and the occurrence of pattern 4 implies a horizontal run of
length 1 which is neither the first nor the last horizontal run of the line. This contradictions
property 1.

Here we see that properties of the pixel patterns of rastered lines are derived by integral linear
interpolation without referring to geometry.

16 C. Yao, J. G. Rokne / Journal of Computational and Applied Mathematics 102 (1999) 3-19

51F .~q • q • 511w
/

d & • k • I r ' ~ &
5 1 ~ F'~ q • 5 IV

r'', M~/'q
/2' ~Y""

" & J & • L / d •
I ~ I V • • 5 •

AlL A L • k.,~k
, w / / " d'"

• f N •

, ,L~4h , L / , L

(a) (b)

Fig. 5. Lines(bottom) and their complementary lines (top). Diagonal runs in lines are obtained by calculating horizontal
runs of the complementary lines. Empty circles in (b) denote the pixels which should be generated by Bresenham line
algorithm. This suggest that we use rounding-down integral linear interpolation to calculate the end positions of horizontal
runs of the complementary line. The hatched circles denote this adjustment.

6.2. Diagonal run-length algorithm

A rasterized line can be divided into slices of horizontal runs so that multiple pixels can be
rendered in each iteration, as shown above. However, when the slope of the line is greater than
0.5, the length of each horizontal run reduces to 1 or 2 since c = LAx/AyJ = 1. In this case, the
advantage of the horizontal run-length algorithm is greatly reduced. In the extreme case of slope
being 1, the length of each run reduces to 1 and we actually obtain a single-step algorithm. We can,
however, divide the line into diagonal runs since the starting of a new horizontal run is equivalent
to a diagonal move of the pixel and each horizontal move of a pixel can be viewed as the starting
of a new diagonal run.

The diagonal runs of a line can be obtained by calculating the horizontal runs of its complementary
line [4]. For a line with Ay > 0.5Ax, i.e., slope of line > 0.5, we compute the horizontal runs of its
complementary line starting from (Xs, Ys) and ending at (xe, y'e) where y'~ -- Ax - Ye, and reverse the
role of horizontal steps to diagonal steps to obtain the complementary incremental step sequence of
the line to be drawn (see Fig. 5(a)). Interchanging the role of horizontal steps and diagonal steps
also interchanges the step choice for the equal error instance. So if we use the horizontal run-length
algorithm of Section 5.1 to compute the diagonal runs of a line with slope > 0.5, the equal error

C Yao, J.G. RoknelJournal of Computational and Applied Mathematics 102 (1999) 3-19 17

default is a horizontal move (see Fig. 5(b)), resulting in a discrepancy between lines generated by
Bresenham line algorithm and lines generated in this manner. This discrepancy can be eliminated
by obtaining the horizontal runs through calculating the end positions of the horizontal runs of its
complementary line using rounding-down integral linear interpolation and then changing horizontal
runs to diagonal runs. Thus ~i = [xJ is the end of the ith run, and we simply obtain a diagonal run
which ends at abscissa ki. In the case of drawing a line with slope less than or equal to 0.5, we
still use rounding-up integral linear interpolation to calculate the horizontal runs of the line since
a rastered line generated in this manner is identical to the rastered line generated by Bresenham's
algorithm no matter if there exist equal error instances.

If we define

then the derivation of recurrence formulas for the rounding-down integral linear interpolation is
similar to the derivation of recurrence formulas for rounding-up integral linear interpolation and we
get

. f Yci + c, Di < O,
Xi+l = ~ fC i + c + 1, Di >~ O, (48)

{Di + 2r,
Di+l = Di + 2r - 2Ay,

with

L x = s = Xs -- ,~,

Do = Ax + 2Ay(g - c - 1).

Di < O,
Di ~ O, (49)

(5O)

(51)

6.3. Double-step run-length algorithm

Combining the double-step technique and the run-length technique we can easily derive the double-
step run-length line algorithm by using integral linear interpolation. Here we give a brief derivation
since the method is almost the same as the method we have used to derive the double-step incremental
line algorithm except that we use rounding-up linear interpolation here rather than least error integral
interpolation.

Notations used in Section 6.1 will still be used in this section. Define

S i i = X 2 i = X s - 2A-----y + i~--}y, i = 0 , 1 , . . . , ,

£ i = FXil = & , .

Using arguments similar to what was used to derive Eqs. (40) and (41) in Section 5.1 we obtain
the following recurrence formulas:

{X, + C, D, <. O,
) (i+ l= X i + C + I , D i > O ,

(52)

18

Di -I- 2R,
Di+l = Di + 2R - 2 A y ,

where

2 Ax
C = ~2kJ = L A--YYJ' R = 2 A x m o d A y ,

C. Yao, J.G. Rokne l Journal of Computational and Applied Mathematics 102 (1999) 3-19

Di <~ O,
Di > O,

(53)

Di = 2 / l y (S / + l -)~'i - C)

= 2Ayxs - Ax + 4(i + 1)Ax - 2 A y X i - 2 A y C .

The initial values of X~ and Di are:

-~0 =x0 =Xs - c >> 1, (54)

Do = 2R - •, (55)

where F = Ax mod 2A y.
To calculate the midpoint ~2i+l between)(~ =x2~ and)/',+1 =:~2i+2, we note the fact that x2~+~ =

Ix2i+l] and the difference k2i+l -)/'i can be either c or c + 1. We thus have

~ S i -~- c, x2i+ l - - ~ i - c ~ 0 ,

J : z i + ' = [X i + c + l , X z i + , - X i - c > O .

Let

di = 2A y(x2i+l -- X i - c).

Deriving a bit further we get

di =De - 2 A x + 2 A y (C - c).

The formula to calculate k2i+~ is therefore

= f Xi .3f_ c, Di <~ 2 A x - 2 A y (C - c),
~2i+1 (56)

X i + c + l , Di > 2 A x - 2 A y (C - c) .

In the case of)/'i+l - ~ being even, no extra test is need, and we simply have

"~2i+ 1 = X i + m,

where m is an integer and)/'i+l -) (~ = 2m.
We thus have all the formulas to implement a double-step horizontal run-length line algorithm.

A double-step run-length line algorithm was also discussed by Fung et al. [8] using a different
method.

C Yao, J.G. RoknelJournal of Computational and Applied Mathematics 102 (1999) 3-19 19

7. Conclusion

We have presented an approach to the design of incremental line algorithms in this paper which
reduces the problem of designing incremental line algorithms to the problem of integral linear in-
terpolation over the y extent or the x extent o f a line. This new treatment unifies a considerable
body of literature on incremental line drawing and it has the advantage o f simplifying the derivation.
The variations o f the original Bresenham line algorithm become natural extensions of the algorithm
under this framework, and the properties o f rastered lines upon which the double-step and the run-
length slice line algorithms are based are the direct results o f the integral linear interpolation. Further
enhancement of existing algorithms, e.g., to incorporate the double-step technique into a run-length
slice algorithm, becomes straightforward using this new technique, as is shown in the last subsection.

References

[1] P. Bao, J. Rokne, Quadruple-step line generation, Comput. Graph. 13 (4) (1989) 461-469.
[2] J.E. Bresenham, Algorithm for computer control of digiter plotter, IBM Syst. J. 4 (1965) 25-30.
[3] J.E. Bresenham, Incremental line compaction, Comput. J. 25 (1982) 116-120.
[4] J.E. Bresenham, Run length slice algorithms for incremental lines, in: R.A. Earnshaw (Ed.), Fundamental Algorithms

for Computer Graphics, NATO Computer and Systems Series, vol. 17, Springer, New York, 1985, pp. 59-104.
[5] D. Field, Incremental linear interpolation, ACM Trans. Graph. (1985) 1-11.
[6] H. Freeman, On the encoding of arbitrary geometric configurations, IRE Trans. EC-102 (1961) 260-268.
[7] H. Freeman, Boundary encoding and processing, in: B.S. Lipkin, A. Rosenfeld (Eds.), Picture Processing and

Psychopictories, Academic Press, New York, 1970, pp. 241-266.
[8] K.Y. Fung, T.M. Nicholl, A.K. Dewdney, A run-length slice line drawing algorithm without division operations,

Comput. Graph. Forum 3 (1992) 267-277.
[9] G.W. Gill, N-step and incremental straight-line algorithms, IEEE Comput. Graph. Appl. May (1994) 66-72.

[10] P. Graham, S. Iyengar, Double- and triple-step incremental generation of lines, in: Proc. 1993 ACM Computer
Science Conf., New York, 1993.

[11] P. Graham, S. Iyengar, Double- and triple-step incremental linear interpolation, IEEE Comput. Graph. Appl. May
(1994) 49--53.

[12] G.B. Regiori, Digital computer transformations for irregular line drawings, Tech. Rep. 403-22, Department of
Electrical Engineering and Computer Science, New York Univ., April 1972.

[13] J. Rokne, B. Wyvill, X. Wu, Fast line scan-conversion, ACM Trans. Graph. 9 (4) (1990) 376-388.
[14] J. Rokne, C. Yao, Double-step incremental linear interpolation, ACM Trans. Graph. 11 (2) (1992) 183-192.
[15] A. Rosenfeld, Digital straight line segments, IEEE Trans. Comput. C-23 (1974) 1264-1269.
[16] X. Wu, J. Rokne, Double-step generation of lines and circles, Comput. Vision Graph. Image Process. 37 (1987)

331-344.

