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Abstract 

A unified treatment of incremental line-drawing algorithms understood from the viewpoint of rounded interpolation, 
covering Bresenham's algorithm, run-length algorithms, and multistep versions of both. @ 1999 Elsevier Science B.V. 
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1. Introduction 

The generation of line segment raster images (called lines hereafter) is an important basic graphics 
primitive. This is evidenced by the fact that graphics hardware tends to be benchmarked by the speed 
by which it can generate lines. Considerable interest has therefore been shown in designing efficient 
line scan-conversion algorithms. These algorithms select the pixels nearest to the line based on the 
geometry of a line relative to a coordinate grid, an abstraction of the raster display where grid points 
represent the centers of pixels. Most of the algorithms are incremental algorithms [1-4, 8, 10, 13, 
16]. Incremental algorithms are distinguished by the fact that they generate the rastered image of a 
line from one endpoint of a line to the other by selecting one or multiple pixels in each incremental 
step along a certain axis (x-axis for the lines with slope between 0 and 1). The choice of which 
pixels to set is made by testing the sign of a function called a discriminator. The discriminator obeys 
a simple recurrence formula which may be evaluated using only integer arithmetic and binary shifts. 
The first such algorithm was due to Bresenham [2]. His algorithm was easy to implement and it 
effectively set a standard for subsequent line scan conversion algorithms. 
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The number of pixels generated in each incremental step may be either fixed or variable. Algo- 
rithms which generate a fixed number of pixels in each incremental step are usually named according 
to the length of the incremental step along a chosen axis. We thus have single-step line algorithms 
which are represented by the first incremental line algorithm due to Bresenham; the double-step line 
algorithm of  Wu and Rokne [16] and the quadruple-step line algorithm of Bao and Rokne [1]. The 
double-step algorithm [16] is similar to Bresenham's algorithm but takes advantage of the special 
double-step pixel patterns and therefore reduces the number of incremental steps by one half. The 
quadruple-step algorithm [1] generates four pixels in each incremental step at the cost of  one to three 
decision tests, with the average being slightly less than two. More recently, Graham and Iyengar 
[11] presented a double- and triple-step incremental line algorithm with which has a double-step line 
generator potentially being able to set a third pixel in some of  the loop iterations. Gill [9] suggested 
N-step incremental line algorithms based on Bresenham's line algorithm. In Bresenham's algorithm, 
the sign of  a discriminator E predicts the pixel to be chosen at any step. For each possible N-step 
move, the changes to E for each step in the scan conversion process gives a set of  equations that 
must be satisfied such that the N-step pattern is next in the sequence making up a line. These 
equations form a test set that predicts the N-step move in advance. 

The incremental line algorithms which generate a variable number of  pixels in each incremental 
step are based on the observation that the rastered image of  a line with slope between 0 and 1 can 
be divided into slices of  horizontal runs (pixels with the same ordinate) or diagonal runs (pixels 
forming a 45 ° segment). A run of  pixels is generated in each incremental step. Line algorithms of  
this type are usually referred to as run-length slice algorithms [4, 8]. A two-state discriminator can 
be used to determine the length of the next run due to the property that the lengths of the runs are 
confined to two successive integers except for the first and the last run. This results in a scheme 
similar to the one used in algorithms generating fixed number of  pixels in each step. 

The run-length properties were first proven by Reggiori [12]. In [15] Rosenfeld derived them 
from the chord property of  a straight digital arc, the digitization of  a straight line segment. In the 
horizontal run-length slice line algorithm, the incremental direction is along the y-axis for calculating 
the horizontal runs of  the line with slope between 0 and 1 since two consecutive horizontal runs 
have an increment of  one in their ordinates. In [4] Bresenham used the property of  the so-called 
complementary line of  a line to calculate the diagonal runs of that line whose slope is between 
0.5 and 1. The run-length slice algorithms in [4] can be viewed as a single-step algorithm in the 
sense that the incremental step is one in the direction of  y-axis. Fung, Nicholl and Dewdney [8] 
presented a double-step version of  the run-length slice algorithm to further increase the efficiency of  
line generation. A major drawback of the run-length slice algorithm is the division operation required 
in the initialization part of  the algorithm. A method to avoid division was suggested in [8]. 

This paper focuses on the methodology in the design of  line algorithms of incremental type. 
As has been mentioned above, the core of the existing incremental line algorithms is to choose a 
pixel or a group of pixels in each iteration step. The analyses are based on the geometry. Pixel 
patterns are studied individually for the derivation of  single-step, double-step, and quadruple-step 
algorithms. From the view point of numerical computation, selecting pixels to approximate a contin- 
uous line amounts to a problem of  linear interpolation. Because the pixels have integer coordinates, 
the interpolation should be treated in a discrete setting, i.e., the interpolation values should be rounded 
to integers and we call it integral linear interpolation. Integral linear interpolation will be used to 
derive incremental line algorithms. In its simplest case, we first discuss the relationship between 
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Bresenham's line algorithm and integral linear interpolation. We then illustrate how variations of 
the original Bresenham's line algorithm such as double-step and quadruple-step incremental line al- 
gorithms can be derived by using double-step and quadruple-step integral linear interpolation. This 
method also applies to the derivation of  the incremental run-length slice line algorithms, however, 
the discussion of  its relation to the linear interpolation is less straightforward. 

Careful attention is given to the equal-error problem for each of the algorithms because of  its 
importance for code portability. 

Algorithms to perform fast integral linear interpolation have been discussed by Field [5], Rokne 
and Yao [14], and Graham and Iyengar [11], the latter being a generalization of  their double- and 
triple-step line algorithm [ 10]. 

The topics in this paper are well known from other investigations, however, the approach is 
different from other relevant work. This results in a treatment that unifies a considerable body of 
literature on incremental line drawing. 

The paper is organized as follows. Section 2 gives some notations and conventions used throughout 
this paper. Section 3 introduces the technique of  integral linear interpolation. Sections 4 and 5 derive 
the single-step and double-step incremental line algorithms by means of integral linear interpolation. 
Section 6 uses the integral linear interpolation to derive run-length slice line algorithms. A conclusion 
is given in Section 7. 

2. Notations and conventions 

The discussion of  the line scan-conversion problem is constrained to lines with slopes between 
0 and 1 whose endpoint coordinates are integers. More specifically, we denote the two endpoints 
of  the line by (xs, Ys) and (xe, Ye) and we assume that Xe ~> Xs and Ye >/ Ys. Other lines with integer 
endpoints can be transformed to meet this condition via sign changes and/or coordinate swaps. 

The following notations are used throughout this paper: 
1. Ax  = xe - xs and A y  = ye - y~. 

2. In the context of  linear interpolation k is used to denote the distance between two consecutive 
interpolation points. For instance, performing linear interpolation over interval [a, b] with n + 1 
equidistant points including a and b, we have k = (b  - a) /n .  In the context of  line generation, 
however, k = A y / A x  denotes the slope of  the line. In this case k can still be considered as the 
distance of two consecutive interpolation points in a linear interpolation over interval [y~, Ye] with 
n = A x .  

3. [xJ denotes the largest integer which is not larger than x; Ix] denotes the smallest integer which 
is not smaller than x. [.J and ['1 are called the f l oor  and ceiling functions. 

4. A letter with a dot accent denotes the integer approximation to a linear interpolation point. The 
integer which is nearest to an linear interpolation point xi is xi = [xi + 0.5[ except when xi has a 
fractional part of  0.5. In this case xi = [xj or ~g = [xi + 0.5J is acceptable with the latter being the 
default choice. We also use ki = [x,-J or ki = [xi] as the integer approximation of xi in situations 
where the use of  these definitions helps to derive incremental run-length slice line algorithms. 

5. ¢= LkJ. 
6. C = L2kJ.  
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3. Integral linear interpolation 

3.1. L e a s t  error in tegral  linear interpolat ion 

The problem of  linear interpolation is to find a set of  n + 1 equidistant points on an interval 
[a, b], where the lower and upper bounds, a and b, are assumed to be integers for the time being. 
This is not necessary as the problem itself suggests, however, when this problem is related to line 
generation, a and b are usually integers or real numbers with some special relation which allows 
integer arithmetic as we will see in Section 6. 

Let us denote the original set of  interpolation points by 

a = a o ,  a l , . . . , a n  = b ,  

where ai --  a + i(b - a ) /n  = a + ik for i -- 0, 1 . . . .  , n. Then the integral approximation to the ith point 
can be obtained by rounding it to the nearest integer, i.e., 

dt~= l a + b - a i + o ' 5 ] n  (1) 

for i = 0, 1 . . . . .  n. Since ai is obtained by rounding a~ to the nearest integer, we call this type of  
linear interpolation least error integral linear interpolation. 

Since 

(l i • lai -q- 0.5J, i = 0, 1, . . . ,n,  

we have 

i.e., 

ai -- 0.5 < ili <~ ai + 0.5, 

ai+l -- 0.5 < ai+l ~ ai+l q- 0.5, 

a + ik - 0.5 < f i  <~ a + ik + 0.5, 

a + (i + 1 ) k -  0.5 < fi+l ~<a + ( i +  1)k + 0.5. 

Subtracting Eq. (2) from Eq. (3), we get 

k -  1 <fi+l --ai < k +  1, 

(2) 

(3) 

or 

k - l < A ~ i i < k + l .  

If k is nonintegral, then Atii can either assume the value Fk-11 -- [k] = c or the value [k+ lJ = [k[ + 
1 - -c  + 1. If  k is integral, A~ig = k =  [kJ --c.  Letting ~i = a i + l  - -  a i  - -  ( c  -q- 0.5) we obtain 

a i --~ C, ~i < 0, 
a i+l=  a i + c + l ,  ~i~>0. 
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It follows from n > 0 that Di = 2He/ retains the sign of  e/. Since Di tunas out to be a conveniently 
calculated quantity, it is chosen to be the discriminator and we have 

&i + c, Di < O, 
t i i+l  = tii + c ÷ 1, D i  >>- O. (4) 

Noting that 

8i : ai+l - -  tii - -  ( c  ÷ 0.5) 
b - a  

: a  + (i + 1 ) . -  - t i i -  (c + 0.5), 
n 

it follows that 

Oi = 2na + 2(i ÷ 1)(b - a) - 2ntii - -  n( 2c ÷ 1). (5) 

Subtracting Di from Di+l yields 

Di+1 - Di = 2(b - a) - 2n(tii+l - tii)- 

Hence, 

Di ÷ 2(b - a) - 2nc, Di < O, 
Di+l=  D i + 2 ( b - a )  2n(c + l ), D~ >~ O. (6) 

The initial value for tii is 

ti0 = a. (7) 

Evaluating Eq. (5) for i = 0  determines the initial value of  the discriminator 

Do = 2 ( b  - a) - n(2c ÷ 1). (8) 

An integerized algorithm for least error integral linear interpolation is thus obtained according to the 
initial values given by Eqs. (7) and (8) and the recurrence formulas of  Eqs. (4) and (6). 

3.2. Rounding-up and rounding-down integral linear interpolation 

If, instead of  defining the integral interpolation points using Eq. (1), we round up each interpolation 
point ai to the smallest integer which is greater than or equal to ai, i.e., we define 

= Fail -- Fa + ml (9) 

then we obtain the rounding-up integral linear interpolation. 
Analogous to the derivation of the recurrence formulas for the least error integral linear interpo- 

lation, we can generate similar recurrence formulas for the rounding-up integral linear interpolation 
with only integer arithmetic. It follows from Eq. (9) that 

ai  <~ tii < ai  t 1, (10) 

ai+l -~< tii+l < ai+l + 1. (11) 
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Proceeding as before we obtain the recurrences 

{ ai + C, Di <~ 0, 
(~i+l : &i + c + 1, Di > O, (12) 

= ~, D i + b - a - n c ,  Di<~O, 
Di+l (13) / D i + b - a  n ( c + l ) ,  Di > O. 

The initial value of  the interpolation point is 

ao = a (14) 

and of  the discriminator 

Do = b - a - nc. (15) 

Similarly, letting hi = Lai[ = [a + kiJ, we define rounding-down integral linear interpolation. The 
recurrence formulas for rounding-down integral linear interpolation are almost the same as the for- 
mulas for the rounding-up integral linear interpolation and we get 

• ~ r i + c ,  Di < O, 
ai+l = ~. hi + c + 1, Di >~ O, (16) 

D i + b - a - n c ,  Di < 0 ,  
Di+l = Di + b a n(c + 1), Di >10. (17) 

with 

40 = a, 

D o = b -  a -  n(c + 1). 

(18) 

(19) 

The difference between (12), (13) and (16), (17) is just in the equality case for the update 
formulas and in the initial value for Do. 

4. Bresenham line algorithm and integral linear interpolation 

Consider a line from (Xs, Ys) to (xe, Ye) which lies in the raster plane with an overlaid rectangular 
coordinate grid mesh. The line is assumed to meet the conditions imposed in Section 2. Starting 
from x = x s ,  Y=Ys, Bresenham's algorithm generates the rastered image of a line by increasing 
the integer abscissa value by one in each iteration, then deciding which of  the two neighboring 
pixels, (x + 1,y) and (x + 1,y + 1) is closer to the true line and then moving to that position. 
The algorithm chooses one of  the two pixels by testing the sign of a discriminator. The decision 
made effectively rounds the real ordinate value of the point on the real line with integer abscissa 
x + 1 to the nearest integer. If  an equal error instance occurs, Bresenham's algorithm will round the 
real ordinate value up, i.e., choose the integer ordinate to be y + 1. The discriminator is updated 
according to a simple recurrence formula. The following code constitutes the core of  Bresenham's 
line algorithm for generating lines with slopes between 0 and 1. 

D =  2Ay - Ax; 
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for (i = 0; i <<, Ax; + + i) { 
plot(x, y); 
if  (D i> O) { 

y = y +  1; 
D = D - 2Ax; 

} 
x = x  + 1; 
D = D + 2Ay; 

} 
Now let us view the line generation problem from a different perspective. Denote the ordered 

sequence of  abscissa of  pixels on the line from xs to xe; by Y" and the ordered sequence of ordinate 
of  pixels from Ys to Ye by ~ .  There is a one to one correspondence between the elements of these 
two sequences. Since Ax >1 Ay, x is increased by one each step a pixel is determined. Hence 

YC = {xs,xs + 1, . . .  ,xe}. 

The elements in ~ are the results of  the least error integral linear interpolation performed on the 

interval [ y ,  Ye]: 

0~ = {Ys = Y0' Y l ' ' ' ' '  Yn = Ye}, 

where n = Ax. In the case of  Ay < n there exist Yi and )~+l for i = 0, 1 . . . . .  n - 1 such that ~ = )~i+~. 
Replacing a, b by Ys, Y¢ and n by Ax in the least error integral linear interpolation formulas obtained 
in Section 2.1, we get the following recurrence relations: 

~" 33i + c, D~ < 0, (20) A+, 
L 3)i + c + 1, Di~>0. 

{ D~ + 2Ay - 2cAx, D,- < 0, (21 ) 
Di+l = Di + 2Ay - 2(c + 1)Ax, Di >/O. 

The initial value of the discriminator becomes 

Do = 2Ay - (2c + 1)Ax. (22) 

The relation between Eqs. (20)- (22)  and Bresenham line algorithm is revealed by examining the 
value of  c which is trivially determined: 

0, O < ~ k <  1, A y < A x ,  (23) 
c =  1, k = l ,  A x = A y ,  

where k is the slope of  the line. If  c = 0  Eqs. (20) and (21) can be simplified to 

{))i, D~ < 0, (24) 
-Yi+I ~--- -Yi + 1, Di ~ O. 

Di + 2Ay, Di < 0, (25) 
Di+l = Di + 2Ay - 2Ax, Di ~ 0, 
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and the initial value of  the discriminator becomes 

Do --- 2 A y  - Ax. (26) 

These recurrence relations are identical to those employed in Bresenham's algorithm. If c = 1, i.e., 
Ax  = Ay ,  the line forms a 45 ° angle with respect to the positive x-direction. The recurrence formulas 
become 

l Y i + l ,  D i < O ,  
J~ i+ l = J~ i + 2, Di >1 0, 

(27) 

Di, Di < O, 
Di+l = Di - 2Ax,  Di >lO, 

(28) 

and the initial value of the discriminator becomes 

Do = - Ax. (29) 

These formulas differ from those used in Bresenham's algorithm. But since the initial value of 
discriminator is negative, and according to Eq. (28) it will never change in the process of  iteration, 
therefore, according to Eq. (27), the value of  ))i will increase by one in each iteration to form a 45 ° 
move. We therefore conclude that least error integral linear interpolation over the interval [Ys, Ye] 
results in a line algorithm which is equivalent to Bresenham line algorithm. 

5. Double-step line algorithm and least error integral linear interpolation 

5.1. Double - s t ep  line a lgor i thm 

The double-step line algorithm [16] which improves Bresenham's algorithm is based on the ob- 
servation that if  a point (xi, Yi) at the lower left corner of a 2 × 2 mesh representing an already 
plotted pixel in the line with slope between 0 and 1 is given, then only the four pixel patterns 
shown in Fig. 1 can be formed in a double-step increment in the x-direction under the conditions on 
the line given in Section 2. Starting from (Xs, Ys), the x coordinate is now incremented by two raster 
units. Then if the pixel at the right-lower (the right-upper) corner of  the 2 x 2 mesh is selected, it 
is clear that pattern 1 (4) occurs. This means that in each case the middle pixel can be plotted with 
no extra work. If  pattern 2 or 3 occurs (abbreviated pattern 2 (3) in the sequel), then some extra 
work has to be done in order to distinguish which of the two patterns have to be plotted. It was 

II1 y~ ) ~ ~ ~  I F 

cxl,  xl,  xl,2 IT I I  xi,yil;" 
Patternl Pattern2 Pattern3 Pattern4 

Fig. 1. The four double-step patterns. 
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conjectured by Freeman [6, 7] and proved by Reggiori [12] (see also [13, 16]) that only two pattern 
types may occur simultaneously: either 1 and 2 (3) or 2 (3) and 4. This can be proven in a more 
straightforward manner using the run-length properties of a rastered line which will be discussed in 
Section 6. From these results the double-step strategy is given by 
1. I f 0 ~ k  <0 .5 ,  then 

Do = 4Ay - Ax, (30) 

{ D~ + 4Ay, Di < 0 (pattern 1), 
Di+l = Di + 4Ay - 2Ax, Di >>- O (pat tern2 or 3). (31) 

2. If  0.5 ~<k ~< 1, then 

Do = 4 Ay - 3Ax, (32) 

f D~ + 4Ay - 2Ax, Di < 0 (pattern 2 or 3), 
Di+l /. Di + 4(Ay - Ax), D~ >~ 0 (pattern 4). 

(33) 

To distinguish between pattern 2 and 3 requires the test 

2Ay, if 0 ~< k < 0.5, (34) 
D i <  2 ( A y - A x )  if  0.5 -%<k~<l 

resulting in pattern 2 if the test is passed, pattern 3 if not. 

5.2. Designing double-step line algorithm using double-step integral linear interpolation 

In this subsection we show that the integral linear interpolation methodology lends itself to the 
design of  double-step line algorithm by extending it to a double-step incremental version. Again the 
integral linear interpolation used is of  the least error type. 

Double-step integral linear interpolation was discussed in [14] and we therefore only outline the 
algorithm for double-step linear interpolation here. We then show its relation to the double-step line 
algorithm. 

We first introduce following notation: 

 =a2i=a+ i'l 
.,ii [A~+0.5 l= t i2 i  ' i = 0 , 1  . . . .  , . 

We can easily prove that 

2k - 1 < AJt i =Ai+I - -  Ai < 2k + 1. 

The values that can be assumed by AA~ are therefore L2kJ = C or L2k + lJ = C + 1. Following the 
same development as in Section 3 we obtain that the formulas to calculate Ai and/3~ are 

Ai -q- C, Di < 0 ,  
Ai4-1~- Ai -}- f -b-1, D i d O ,  (35) 
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and 

Di + 4(b - a) - 2nC, Di < 0, 
Di+l= D i + 4 ( b - a ) - 2 n ( C +  l) ,  Di>-O 

(36) 

with the initial values being 

-~0 = a, Do = 4(b - a) - n(2C + 1). (37) 

The midpoint between Ai and -~i+l, i.e., d2~+l, can be determined by an extra test: 

A i .71- C, D i < 2(b - a) - 2n(C - c), 
d2i+l= A i + c + l ,  D i > > - 2 ( b - a ) - 2 n ( C - c ) .  (38) 

The test can be saved if AAi is even, i.e., AAi--2m where m is a nonnegative integer. In this case, 
we simply have 

a2i+l = A  i -{- m. 

The above recurrence formulas result directly in a double-step line algorithm since what we really 
need to calculate is the set of y-coordinates of the pixels on the rastered line, and it is readily 
understood that this can be achieved by performing double-step linear interpolation over interval 
[Ys, Ye]. Replacing a,b by Ys, Ye, A,d by Y, 3~, and n by Ax in Eqs. (35) and (36) yields the following 
recurrence formulas for calculating y coordinates of the pixels: 

I~+~ { Ik,., +C, Di<O, (39) 
= I ? + C + l ,  Di~>0, 

Di .-[- 4Ay  - 2AxC, Oi < O, 
Di+l = Di + 4Ay  2Ax (C  + 1), Di >1 O, (40) 

where I?i = fi2i and C is interpretered as [2Ay/AxJ = [2k]. If  A l?i is odd, i.e., C is odd if Di < 0 
or C + 1 is odd if Di >i O, according to Eq. (39) we have 

{ Yi -'[- C, Di < 2Ay  - 2Ax(  C - c ), 
))2i+l= Y / + c + l ,  D i > ~ 2 A y - 2 A x ( C - c ) .  

(41 ) 

In the case of AYi being even, the midpoint 3~2~+1 is readily obtained. The initial value of the 
discriminator becomes 

Do = 4Ax  - (2C + 1 )Ay. (42) 

Noting that the value of c is determined according to Eq. (23) then the value of C is, from the 
following equation, 

0, 0 ~< k < 0.5, 
C =  1, 0 .5~<k<  1, (43) 

2, k = l ,  

and we can now easily see that the above recurrence formulas for double-step integral linear in- 
terpolation over interval [ys, y~] are identical to the recurrence formulas used for double-step line 
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algorithm in [16] for the case of  0 ~< k < 1, and they are correct in the case of k = 1 though the 
resulting formulas are different from those of  double-step line algorithm. We omit the derivation 
here since it is quite easy. 

The advantage of  using linear interpolation technique in designing double-step line algorithm 
is obvious. The discussion on double-step pixel patterns and the differentiation of  the two cases 
depending on the slope of  a line being greater or less than 0.5 is no longer needed. Only one set 
of  recurrence formulas is derived which corresponds to different sets of  formulas derived in [16] 
depending on the value of C. In an analogous manner we can design a quadruple-step least error 
integral linear interpolation algorithm, and it is readily understood that quadruple-step line generation 
[1] is just a special case of quadruple-step least error integral linear interpolation. 

6. Run-length line algorithm based on integral linear interpolation 

6.1. Horizontal run-lenoth line aloorithm 

In Sections 2 and 3, we reduced the problem of  line generation to the problem of least error 
integral linear interpolation over the interval [Ys, ye] with n = Ax. An alternative method one would 
naturally consider is to reduce the problem of line generation to the problem of performing linear 
interpolation over the interval [Xs,Xe] with n = Ay. Since Ay ~ Ax, this will in general reduce the 
number of iteration steps. Unfortunately, this is not helpful as is illustrated by Fig. 2. 

The fact that there exist identical elements in the sequence ~/ when 0 ~< k < 1 is visualized by 
the horizontal runs of  the pixels in the rasterized line. This provides us with a clue for finding the 
start of  each horizontal runs by means of integral linear interpolation since the start of  each run has 
an integral x-coordinate. We impose a set of  horizontal mid-lines y -- ys + i - 0.5, i = 1,. . . ,  Ay (see 
Fig. 3). The x-coordinate of  the intersection of  the line from (x,  Ys) to (Xe, y~) with line y = ys + i - 0 . 5  
is denoted by xi. It is then readily understood that rasterized image of  the half open line segment 
whose projection on the x axis is the half open interval [xi,xi+~ ) is the horizontal run from Ixil to 
[xi+l] - 1. Thus, except for the first horizontal run which starts from x~, each horizontal run starts 
from Fxil. To compute Fx,- 7 we convert this problem to a problem of rounding-up integral linear 
interpolation as introduced in Section 2.2. 

L~2 

'lb, • L~' t  k 

dlL J l ~  
/ 1 1 1 ~  I F  

r i l l  d ~ d k  
~ [,"~q F I F 

I I I I I 

Fig. 2. Linear interpolation over the interval [xs,xe]. 
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F~7 

• ~ F  I F  • F  

L L  L L  L ~ L :  

r~7 r~7 r~7 

Fig. 3. Horizontal run of the pixels in a rasterized line and finding the starting position of each run by rounding-up integral 
linear interpolation. 

Introducing auxiliary point x0 = X s -  Ax /2Ay ,  we get n + 1 (n = A y )  equally spaced points since we 
use n mid-lines to intersect the line from (xs, Ys) to (xe, Ye) (see Fig. 3). The distance between x~ and 
xi+] is Ax/Ay ,  and the last point is x,, =xe  - Ax /2Ay .  Remember that what we really need are the 
integer points 2] , . . .  ,2n where 2~ = [x~ 1 is the beginning of (i + 1 )th horizontal run. The beginning of 
the first horizontal run is Xs. We now perform rounding-up integral linear interpolation over interval 
[x0,xn] to obtain these integer points. Referring to the derivation of  the recurrence formulas for 
rounding-up integral linear interpolation in Section 2.2, we substitute Xo,X,, for a and b, respectively. 
Here n is changed to Ay; ai  is changed to x~; and c =  [kJ = L ( x , -  xo)/nJ. The lower and upper 
bounds of  the interval are no longer integers, which seems to be a barrier in performing integral 
linear interpolation using only integral arithmetic. This difficulty can be overcome by examining the 
equations Xn --XO = Xe --Xs = AX. The discriminator Di used is different from that defined in Section 
2.2. Since 

X i - - 1 - - 2 i - - C = X o + ( i +  I )  x ' - x °  2 i - - C  
Ay  

Ax 1 ) Ax 
--Xs 2Ay  + ( i  + ~ 2 ~ - c ,  

we define 

Di = 2Ay(xi+l - xi - c)  

= 2Ayxs  - Ax  + 2(i + 1)Ax - 2Ay2i  - 2Ayc .  

Hence, 

D i + l  - Di = 2Ax  - 2Ay(2i+l -- xi)  

= ~ 2Ax - 2Ayc ,  Di <~ O, 

1 2 A x -  2 A y ( c  + l ) ,  Di > O. 

Let 

r = A x m o d A y  and F = A x  m o d  2Ay ,  
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Fig. 4. A line with equal error cases. 

then 

Ayc = Ax - r, 2 A y [ A x / 2 A y J  = Ax - F 

and we have the recurrence formulas 

{ xi + c, Di <<. O, 
"~i+1 ~-  -~i + c + 1, Di > 0, 

Di + 2r, Di <<. O, 
Di+l = Di + 2r - 2Ay,  Di > O. 

The initial values of  ~ and Di are 

-Xo = s ~ = X s -  = X s - ( c > l ) ,  

(44) 

(45) 

(46) 

D o = 2 A y ( x s - k o - c ) + A x = 2 A y  l A~Ay I - 2 A y c  

= Ax - ~ - 2(Ax - r)  + Ax = 2r - F, 

+ Ax 

(47) 

where > denotes the right binary shift operation. 
Equal error instances are treated in a manner consistent with the Bresenham line algorithm as is 

illustrated in Fig. 4. This is because we use rounding-up to obtain the initial point of  the horizontal 
run. Some properties of  a rastered line can be derived directly from Eq. (45): 
1. Except for the first and the last run, the lengths of  horizontal runs are confined to two consecutive 

integers c and c + 1. 
2. The sum of  the lengths of  the first and the last horizontal run is either c + 1 or c + 2. 
3. Pixel patterns 1 and 4 in Fig. 1 cannot occur in one line since the occurrence of  pattern 1 implies 

a horizontal run of  length at least 3 and the occurrence of  pattern 4 implies a horizontal run of  
length 1 which is neither the first nor the last horizontal run of  the line. This contradictions 
property 1. 

Here we see that properties of  the pixel patterns of  rastered lines are derived by integral linear 
interpolation without referring to geometry. 
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Fig. 5. Lines(bottom) and their complementary lines (top). Diagonal runs in lines are obtained by calculating horizontal 
runs of the complementary lines. Empty circles in (b) denote the pixels which should be generated by Bresenham line 
algorithm. This suggest that we use rounding-down integral linear interpolation to calculate the end positions of horizontal 
runs of the complementary line. The hatched circles denote this adjustment. 

6.2. Diagonal run-length algorithm 

A rasterized line can be divided into slices of  horizontal runs so that multiple pixels can be 
rendered in each iteration, as shown above. However, when the slope of the line is greater than 
0.5, the length of  each horizontal run reduces to 1 or 2 since c = LAx/AyJ = 1. In this case, the 
advantage of the horizontal run-length algorithm is greatly reduced. In the extreme case of slope 
being 1, the length of  each run reduces to 1 and we actually obtain a single-step algorithm. We can, 
however, divide the line into diagonal runs since the starting of  a new horizontal run is equivalent 
to a diagonal move of  the pixel and each horizontal move of  a pixel can be viewed as the starting 
of  a new diagonal run. 

The diagonal runs of a line can be obtained by calculating the horizontal runs of its complementary 
line [4]. For a line with Ay > 0.5Ax, i.e., slope of  line > 0.5, we compute the horizontal runs of  its 
complementary line starting from (Xs, Ys) and ending at (xe, y'e) where y'~ -- Ax - Ye, and reverse the 
role of  horizontal steps to diagonal steps to obtain the complementary incremental step sequence of  
the line to be drawn (see Fig. 5(a)). Interchanging the role of  horizontal steps and diagonal steps 
also interchanges the step choice for the equal error instance. So if we use the horizontal run-length 
algorithm of Section 5.1 to compute the diagonal runs of  a line with slope > 0.5, the equal error 
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default is a horizontal move (see Fig. 5(b)), resulting in a discrepancy between lines generated by 
Bresenham line algorithm and lines generated in this manner. This discrepancy can be eliminated 
by obtaining the horizontal runs through calculating the end positions of  the horizontal runs of  its 
complementary line using rounding-down integral linear interpolation and then changing horizontal 
runs to diagonal runs. Thus ~i = [xJ is the end of the ith run, and we simply obtain a diagonal run 
which ends at abscissa ki. In the case of drawing a line with slope less than or equal to 0.5, we 
still use rounding-up integral linear interpolation to calculate the horizontal runs of the line since 
a rastered line generated in this manner is identical to the rastered line generated by Bresenham's 
algorithm no matter if there exist equal error instances. 

If  we define 

then the derivation of  recurrence formulas for the rounding-down integral linear interpolation is 
similar to the derivation of  recurrence formulas for rounding-up integral linear interpolation and we 
get 

. f Yci + c, Di < O, 
Xi+l = ~ fC i + c + 1, Di >~ O, (48 ) 

{Di  + 2r, 
Di+l = Di + 2r - 2Ay,  

with 

L x = s = Xs -- ,~, 

Do = Ax + 2Ay(g  - c - 1). 

Di < O, 
Di ~ O, (49) 

(5O) 

(51) 

6.3. Double-step run-length algorithm 

Combining the double-step technique and the run-length technique we can easily derive the double- 
step run-length line algorithm by using integral linear interpolation. Here we give a brief derivation 
since the method is almost the same as the method we have used to derive the double-step incremental 
line algorithm except that we use rounding-up linear interpolation here rather than least error integral 
interpolation. 

Notations used in Section 6.1 will still be used in this section. Define 

S i i = X 2 i = X s -  2A-----y + i~--}y, i = 0 , 1 , . . . ,  , 

£ i  = FXil = & , .  

Using arguments similar to what was used to derive Eqs. (40) and (41) in Section 5.1 we obtain 
the following recurrence formulas: 

{X, + C, D, <. O, 
) ( i+ l=  X i + C + I ,  D i > O ,  

(52) 
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Di -I- 2R, 
Di+l = Di  + 2R - 2 A y ,  

where 

2 Ax  
C =  ~2kJ = L A--YYJ' R = 2 A x m o d A y ,  
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Di <~ O, 
Di > O, 

(53) 

Di = 2 / l y ( S / + l  - )~'i - C )  

= 2Ayxs  - Ax  + 4(i + 1)Ax  - 2 A y X i  - 2 A y C .  

The initial values of  X~ and Di are: 

-~0 =x0 =Xs - c >> 1, (54) 

Do = 2R - •, (55) 

where F = Ax  mod 2A y. 
To calculate the midpoint ~2i+l between )(~ =x2~ and )/',+1 =:~2i+2, we note the fact that x2~+~ = 

Ix2i+l] and the difference k2i+l - )/'i can be either c or c + 1. We thus have 

~ S i  -~- c, x2i+ l  - - ~ i  - c ~ 0 ,  

J : z i + ' = [ X i + c + l ,  X z i + , - X i - c > O .  

Let 

di = 2A y(x2i+l -- X i  - c ). 

Deriving a bit further we get 

di =De - 2 A x  + 2 A y ( C  - c). 

The formula to calculate k2i+~ is therefore 

= f Xi  .3f_ c, Di <~ 2 A x  - 2 A y ( C  - c), 
~2i+1 (56) 

X i + c +  l ,  Di > 2 A x - 2 A y ( C - c ) .  

In the case of)/'i+l - ~  being even, no extra test is need, and we simply have 

"~2i+ 1 = X i  + m, 

where m is an integer and )/'i+l - ) (~ = 2m. 
We thus have all the formulas to implement a double-step horizontal run-length line algorithm. 

A double-step run-length line algorithm was also discussed by Fung et al. [8] using a different 
method. 
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7. Conclusion 

We have presented an approach to the design of  incremental line algorithms in this paper which 
reduces the problem of  designing incremental line algorithms to the problem of  integral linear in- 
terpolation over the y extent or the x extent o f  a line. This new treatment unifies a considerable 
body of  literature on incremental line drawing and it has the advantage o f  simplifying the derivation. 
The variations o f  the original Bresenham line algorithm become natural extensions of  the algorithm 
under this framework, and the properties o f  rastered lines upon which the double-step and the run- 
length slice line algorithms are based are the direct results o f  the integral linear interpolation. Further 
enhancement of  existing algorithms, e.g., to incorporate the double-step technique into a run-length 
slice algorithm, becomes straightforward using this new technique, as is shown in the last subsection. 
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