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a b s t r a c t

An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate
matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epi-
demiological studies of human exposure to ambient air particulate concentrations. The general approach for
research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the
nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial
scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps,
this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with
and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 con-
centration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air
Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step
forward in the approach for developing representative PM2.5 concentration datasets to correlate with in-
patient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for
myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective
of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in
addition to data from PM2.5 monitors and predictions from CMAQ. The second objective was to determine if
inclusion of AOD surfaces in HBM model algorithms results in PM2.5 air pollutant concentration surfaces
which more accurately predict hospital admittance and emergency room visits for MI, asthma, and HF. This
study focuses on the New York City, NY metropolitan and surrounding areas during the 2004–2006 time
period, in order to compare the health outcome impacts with those from previous studies and focus on any
benefits derived from the changes in the HBM model surfaces. Consistent with previous studies, the results
show high PM2.5 exposure is associated with increased risk of asthma, myocardial infarction and heart failure.
The estimates derived from concentration surfaces that incorporate AOD had a similar model fit and estimate
of risk as compared to those derived from combining monitor and CMAQ data alone. Thus, this study de-
monstrates that estimates of PM2.5 concentrations from satellite data can be used to supplement PM2.5

monitor data in the estimates of risk associated with three common health outcomes. Results from this study
were inconclusive regarding the potential benefits derived from adding AOD data to the HBM, as the addition
of the satellite data did not significantly increase model performance. However, this study was limited to one
metropolitan area over a short two-year time period. The use of next-generation, high temporal and spatial
resolution satellite AOD data from geostationary and polar-orbiting satellites is expected to improve pre-
dictions in epidemiological studies in areas with fewer pollutant monitors or over wider geographic areas.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Inc. This is an open access article u

.

1. Introduction

Fine particulate matter (PM2.5), defined as particles with
aerodynamic diameters r2.5 mm, has been shown to influence
the frequency and severity of respiratory and cardiovascular
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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diseases (e.g., Rom and Samet, 2006; Pope et al., 2004; Peters et al.,
2001; Norris et al., 1999). PM2.5 also increases inflammatory pro-
teins and heart rate variability (HRV) in healthy volunteers (Samet
et al., 2009). A common goal of public health programs in the
United States is a reduction in the frequency and severity of such
diseases (Talbot et al., 2009). In order to track the effects of an
ambient air pollutant, such as PM2.5, on public health, accurate
measurements of the air pollutant are necessary in both time and
space. PM2.5 concentrations measured by the United States En-
vironmental Protection Agency's (U.S. EPA's) national ground-
based ambient air pollutant network provide a foundation for air
pollution monitoring. The locations of individual PM2.5 monitors
across the nation are determined primarily by the requirements of
state and local air pollution control agencies based on federal
regulatory requirements for monitoring National Ambient Air
Quality Standards (NAAQS) non-compliance areas and high-
priority metropolitan areas. As a result, the national distribution of
monitors does not follow a uniform or a probabilistically-based
sampling plan, which would ensure some degree of optimal cov-
erage for all areas of the country. Instead, most PM2.5 monitors are
located in urban and suburban areas, and consequently, there are
significant gaps in coverage, particularly in rural regions. In addi-
tion, a subset of PM2.5 monitors make measurements only every
3 or 6 days. As a result, there are substantial gaps in temporal
coverage of PM2.5 concentrations measurements across the nation
as well.

Previous studies have addressed the spatial and temporal gaps
in data from air pollution monitors in order to reduce character-
ization errors and more accurately predict the association of
concentration data and health outcomes for epidemiological re-
search (e.g., Goldman et al., 2010; Sarnat et al., 2010). One ap-
proach to augment the limited amount of available ambient air
monitoring data is to combine these data with air quality model
predictions using a statistically-based model, such as a Hier-
archical Bayesian Model (HBM; McMillan et al., 2010). The HBM
uses observed monitor concentration values and so-called surro-
gate concentration values, such as air quality model output and
remotely-sensed data, to predict the “true” concentration surface
values. The HBM gives more weight to highly accurate monitoring
data in areas where monitoring data exist, and relies on bias-ad-
justed surrogate data in non-monitored areas. This approach
provides the ability to predict important pollution gradients and
uncertainties that might otherwise be unknown if only using in-
terpolation results based solely on air quality monitoring data. The
results derived from the HBM are useful for studies focused on
health outcomes across large regions.

Recognizing the potential of the HBM technique to address
spatial and temporal gaps in ambient PM2.5 monitoring data, the
Centers for Disease Control and Prevention (CDC) and U. S. EPA
sponsored the development of an HBM as part of the Public Health
Air Surveillance Evaluation (PHASE) project, which ran from 2004
to 2006 (CDC, 2016). PHASE was designed to identify spatial and
temporal interpolation tools that can be used to generate daily
surrogate measures of exposure to ambient air pollution, and re-
late those measures to available public health data. This initial
version of the PM2.5 HBM combined U.S. EPA PM2.5 monitoring
data and PM2.5 predictions from the Community Multi-scale Air
Quality (CMAQ) model (McMillan et al., 2010). The output from the
PHASE HBM was incorporated into the CDC National Environ-
mental Public Health Tracking Network (NEPHTN) for use by na-
tional, state, and local epidemiologists (Vaidyanathan et al., 2013).

While the initial PHASE-based version of HBM, which in-
corporated PM2.5 monitor data and CMAQ PM2.5 concentration
predictions, represented a step forward in terms of generating
PM2.5 concentration fields that are accurate in time and space, it
did not take advantage of remotely-sensed data. Remote sensing
data, such as measurements of aerosol optical depth (AOD) taken
by the MODerate resolution Imaging Spectroradiometer (MODIS)
instruments on NASA's Terra and Aqua satellites, can provide in-
formation about PM2.5 concentrations in areas where ground-
based monitors do not exist. Satellite AOD is a unitless measure of
the scattering and absorption of sunlight by particulate matter in a
vertical column of the atmosphere between the satellite and
Earth's surface. AOD is related to PM2.5 concentrations, and many
studies have shown that AOD can be used to estimate ground-level
PM2.5 concentrations (e.g., Hoff and Christopher, 2009; van Don-
kelaar et al., 2010; Weber et al., 2010). Although satellite AOD data
do not represent the exact surface concentrations of PM2.5, they
capture the spatial distribution of the pollutant field in a way that
monitor point measurements cannot (Liu et al., 2009; Gutierrez,
2010). In recent years, there has been interest in using satellite
AOD data to assess the health effects of exposure to air pollutants
(e.g., Kloog et al., 2011). However, previous studies have been
limited to using satellite modeled data to conduct ecological stu-
dies of human health effects (e.g., Anderson et al., 2012a). This
study sought to use satellite data to assess health effects of PM2.5

using individual-level health data in a case-crossover analysis.
Satellite AOD represent physical observations of ambient PM2.5

and therefore have the potential to supplement PM2.5 monitor
data and CMAQ model output combined by the HBM. A key ob-
jective of this study was to determine if the inclusion of MODIS
AOD surfaces into the HBM results in PM2.5 concentration surfaces
that are more accurately able to predict associations and risks
related to hospital admittance and emergency department (ED)
visits for specific health outcomes at the individual patient level.
The initial PHASE-based HBM was modified to allow for the in-
corporation of MODIS AOD-based estimates of surface PM2.5 con-
centrations in addition to the basic components of PM2.5 monitor
data and CMAQ model output. PM2.5 concentration surfaces gen-
erated by the HBM were compared to data on visits to the ED for
asthma and inpatient hospitalizations for acute myocardial in-
farction (MI) and heart failure (HF). Case-crossover analyses were
conducted to estimate the impact of short-term variations in PM2.5

concentrations on the health effect outcomes using the metho-
dology described in Haley et al. (2009). The case-crossover method
has been used in recent years to assess the association of transient
environmental exposures on acute health events (e.g., Schwartz,
2004). This design has been shown to yield similar associations as
the traditional Poisson time series and the Cox Regression analysis
(Peters et al., 2006; Fosbøl et al., 2014), with the added advantage
of controlling for individual level confounding factors, trend and
seasonality, and allowing assessment of effect-modification (Car-
racedo-Martínez et al., 2010). In this design, study subjects serve
as their own controls, and the study is not subject to confounding
by between-subject time-invariant unknown or unmeasured
factors.

The New York City Metropolitan area of New York State was
selected for this study based on geographic location, prior research
on remote sensing of air pollution in those locations and avail-
ability of the New York State Department of Health (NYSDOH) to
participate. The study area included New York City and the sur-
rounding NY counties of Nassau, Suffolk, Westchester and Rock-
land (Fig. 1). Although the study area represents a limited geo-
graphic region, it was selected to allow for direct comparison to
previous research. To facilitate comparison of results to the work
of the PHASE project, the study period for this project covered the
years 2004 through 2006. The expected outcome was that PM2.5

concentration surfaces, as generated with the addition of satellite
AOD data, would be more accurate for predicting asthma, acute
MI, and heart failure health outcomes compared to surfaces that
only incorporated PM2.5 monitor data and CMAQ model output.



Fig. 1. Map of New York City study region.
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2. Data and methods

2.1. Hierarchical Bayesian Model

The following sections outline the input data and methodology
for developing estimated PM2.5 concentrations from the HBM.

2.1.1. PM2.5 concentration monitor data
Daily average PM2.5 monitor data from Federal Reference

Method (FRM) monitors for the entire study period of 2004–2006
were downloaded from U.S. EPA's Air Quality System (AQS) data-
base (U.S. EPA, 2016). Each 24-h monitor observation was mapped
to a 12 km�12 km resolution CMAQ grid cell to facilitate in-
tegration into the HBM. Data from a total of 83 monitoring loca-
tions were used to generate the PM2.5 input for the HBM. The HBM
was run on an area larger than the study region to reduce potential
edge effects on the estimated PM2.5 in the study region and to
include observations that may directly influence pollution con-
centrations in NYC. Specifically for the NYC study region, there
were 33 FRM PM2.5 monitors operating during the study period
located in 19 CMAQ grid cells (Fig. 2). The FRM sites in New York
are located in places that will likely have high concentrations of
PM2.5 and large monitoring scales (i.e., sites that see pollution
effects from numerous, widespread sources). This ensures that the
Fig. 2. Map of PM2.5 monitors and CMAQ gr
public is not exposed to higher ambient PM2.5 concentrations than
the concentrations from the FRM network reported for their area.
For the NYC study region, these sites are generally co-located with
school buildings in populated, urban areas. The analysis of PM2.5

concentration from FRMmonitors is filter-based, and the filters are
collected on either a 3-day or a 6-day schedule, leading to missing
data on the days when the filters are collected for analysis and
subsequent reporting to the AQS database. When more than one
daily monitor observation fell within a CMAQ grid cell, the values
were averaged for that day. The resulting HBM input surface is an
array of average PM2.5 observations that have the dimensions of
day� lon� lat, where lat and lon are the CMAQ grid centroid lo-
cations and day is an indicator of day of the year. Those grid cells
that do not contain monitor readings on a given day are con-
sidered to have “missing” values.

2.1.2. CMAQ air quality model PM2.5 concentration predictions
The CMAQ modeling system (CMAS, 2016) incorporates key

physical and chemical transformations associated with the dis-
persion of air pollution at various geographic scales (Foley et al.,
2010). CMAQ was designed to approach air quality modeling in a
systematic manner by including state-of-the-science capabilities
for modeling multiple air quality issues, including tropospheric
ozone, air toxics, acid deposition, and fine particles (Hamilton
id cell locations in the NYC study area.



Table 1
HBM model runs.

Model Surface 1 Surface 2 Surface 3

A (Baseline) Monitors CMAQ –

B Monitors AOD (missing data) Aqua/Terra –

C Monitors AOD (missing data) Aqua/Terra CMAQ
D Monitors AOD (kriged) Aqua/Terra –

E Monitors AOD (kriged) Aqua/Terra CMAQ
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et al., 2009). CMAQ incorporates emission estimates from U.S.
EPA's Office of Air Quality Planning and Standards (OAQPS) current
emission inventories, observed emissions from major utility
stacks, and modeled estimates of natural emissions from biogenic
and agricultural sources from U.S. EPA's Biogenic Emissions In-
ventory System (BEIS). CMAQ relies on meteorological predictions
from a mesoscale model, such as the Weather Research and
Forecasting (WRF) or 5th generation Mesoscale Model (MM5).
Emissions and meteorology data are processed in CMAQ algo-
rithms, which simulate physical and chemical atmospheric pro-
cesses to provide estimated concentrations of air pollutants.

Traditionally, CMAQ has been used to predict air quality across
a regional or national domain at a resolution of 12 km�12 km,
and then to simulate the effects of various changes in emission
levels for policymaking purposes. The CMAQ model has been used
to identify locations of potential disproportionate air pollution
exposure and health effects (Hamilton et al., 2009) and is the basis
of the NOAA-EPA National Air Quality Forecasting Capability
(NAQFC), which provides operational ozone forecasts and devel-
opmental PM2.5 forecast guidance.

The daily average PM2.5 concentrations predicted by CMAQ were
subset to the grid cells that cover the study area (Fig. 2). The di-
mensions of the HBM input surface are the same as for the monitor
data; however, the CMAQ input data do not contain missing values.

2.1.3. Satellite AOD-based estimates of PM2.5 concentrations
AOD measured by the MODIS instrument onboard NASA's Terra

and Aqua satellites were downloaded for the years 2004–2006
from the NASA Level 1 and Atmosphere Archive and Distribution
System (LAADS) (NASA, 2016). The MODIS Terra and Aqua sa-
tellites have different overpass times, so the resulting data con-
sisted of two observations collected per day, per location. The re-
solution of the MODIS Collection 5 AOD data product is
10 km�10 km, therefore the data were re-mapped to the CMAQ
12 km grid for inclusion in the HBM. For each CMAQ grid cell
(represented by a polygon), the AOD values that overlapped a
specific grid cell were extracted, and the approximate fraction of
each AOD grid cell that was covered by the CMAQ polygon was
calculated. Those overlapping AOD values were used to calculate
the weighted-mean AOD for each CMAQ grid cell, using only those
AOD values that had fractions greater than 25% (i.e., more than 25%
of the 10 km�10 km AOD grid cell fell within the CMAQ grid
polygon). This remapping procedure was applied separately for the
AOD data from the Terra and Aqua satellites.

Drawing upon the methodologies of Zhang et al. (2009) and
Weber et al. (2010), the relationship between the dimensionless
AOD measurements from Aqua and Terra and 24-h average PM2.5

concentrations for this region were calculated using linear re-
gression methods to account for the spatial, seasonal and instru-
ment dependence on the relationship between the total-column
satellite observation of AOD and ground-level concentration. Since
the relationships have been shown to have a seasonal dependence
in the Eastern U.S., largely due to changes in the atmospheric
mixing height, each season was calculated independently. The
relationships were then used to convert AOD to estimated PM2.5

concentrations in mg/m3.
Two AOD input surfaces were generated to investigate the ef-
fect of missing data on the HBM predictions. The first allowed for
missing values in the AOD input surface. In this case, the two
observations of estimated PM2.5 from Aqua and Terra were aver-
aged using a weighted mean based on the standard error of the
linear regression model fit for each day. If one of the satellites did
not contain data for a given day and grid cell, then the data from
the other satellite was used. If a grid cell contained no data from
either satellite, then the data for that grid cell was considered
missing. The second input surface took into account the spatial
correlation of AOD by predicting data at grid cells that had no AOD
observations through the use of ordinary kriging to create con-
tinuous AOD surfaces. The observations were then converted to
estimated PM2.5 values and combined across platforms, as de-
scribed above.

2.1.4. HBM overview
For this study, the HBM was modified from the initial version

used in the PHASE project (Battelle, 2011). The updated HBM can
process input surfaces with missing data and can incorporate
multiple input datasets simultaneously. These modifications allow
the user to specify as many input surfaces (e.g., monitor, model,
AOD) as necessary or desired to model the concentration “re-
sponse” surface (e.g., selected combination[s] of monitor, model,
AOD input surfaces). Table 1 enumerates the model runs that were
performed and the corresponding input PM2.5 surfaces. For each of
the models, a daily, gridded surface of HBM-estimated PM2.5 was
generated and provided to NYSDOH for the epidemiologic analyses
of the three selected respiratory-cardiovascular chronic diseases.

The “baseline” method, Model A, is currently used by CDC and
U.S. EPA in the NEPHTN (CDC, 2016) to model PM2.5 concentrations
as a combination of the observed concentrations from the PM2.5

monitoring network and estimated concentrations from CMAQ. An
example of the model results and associated inputs for August 5,
2005 is provided in Fig. 3. The top panel for each Model is the
estimated combined surface, while the bottom panel shows the
input data. The HBM-combined surface is representative of 24-h
average PM2.5 concentrations. The high AOD observations for this
day correlate with a regional haze event that was observed in the
Mid-Atlantic region (Mubenga, 2005).

2.2. Case-crossover analysis

Time-stratified, case-crossover analyses were used to assess the
effect of PM2.5 on the risk of asthma ED visits and hospitalizations
and acute MI and heart failure inpatient hospitalizations (Janes
et al., 2005; Lu and Zeger, 2007; Mittleman, 2005). This method
compares the air quality just before someone enters the ED or the
hospital as an inpatient, with the air quality at reference times,
before and after, within the same pre-specified stratum of time,
when the person is not hospitalized or in the ED. Since each case
serves as its own control, many important slowly varying personal
characteristics that could be confounders, such as socioeconomic
factors and smoking, are controlled by design.

2.2.1. Health outcome data
Data on outpatient emergency department and inpatient cases

for asthma, and inpatient hospitalizations for MI and HF were
obtained from the New York State Planning and Research Co-
operative System (SPARCS) (NYSDOH, 2016). This system contains
billing and medical abstract information from all hospitals in New
York State except Federal and Veterans Administration hospitals.
NYSDOH Institutional Review Board and Data Protection Review
Board approvals were obtained to access individually identifying
information such as address, date of birth, and date of hospital
visit. All cases from January 1, 2004 to December 31, 2006 for



Fig. 3. Examples of input and combined PM2.5 datasets for the New York City study area on August 5, 2005.
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inpatient admissions were included in the initial analysis dataset
for MI and HF. Cases where the patient was less than 35 years old
were excluded for the cardiac outcomes because the pathophy-
siology of heart disease in younger patients is expected to be dif-
ferent than the pathophysiology of heart disease in older patients.
Any recurrences within a period of 15 days from the original
episode were excluded, with recurrences after that period con-
sidered as a new events. As some cases of asthma may be dis-
charged directly from the ED, additional data were included to
capture those cases. ED data in New York State has been available
since 2005. Therefore, ED and inpatient cases for asthma were
included from January 1, 2005 to December 31, 2006. Since asthma
is an episodic disease affecting all ages, no age-based exclusions
were made, and only recurrences within 7 days after the original
episode were excluded.

Health outcome visits were assigned the mean population-
weighted centroid corresponding to the patient's home postal ZIP
code. These centroids were calculated using 2006 ZIP code
boundaries obtained from TeleAtlass, and census block population
totals were obtained from the 2010. U.S. Census. Some ZIP codes in
New York are only represented with a single latitude and long-
itude as opposed to a polygon representing a boundary; patients
residing in these ZIP codes were assigned the geographic co-
ordinates of the point location. The study area included a total of
633 ZIP codes, which included 201-point ZIP codes. Each case was
mapped to an air pollution grid cell based on the population-
weighted or point ZIP code coordinates.

2.2.2. Meteorological data
Daily average meteorological data, including temperature, hu-

midity, and wind speed, were obtained from the National Climatic
Data Center (NCDC) at the ZIP-code level (NCDC, 2016). The
nearest station to each CMAQ grid centroid with weather data for
that day was used. This study focused on the apparent tempera-
ture (AT), as it directly relates to the human body's ability to cool
itself in hot conditions and the rate of heat transfer from a human
body to the atmosphere in cold conditions. It is measured in de-
grees Fahrenheit (˚F), and is derived from either (a) ambient
temperature and wind (wind chill), or (b) ambient temperature
and relative humidity. In this study, if the measured ambient
temperature in a particular grid cell fell to 50°F or less, the wind
chill was used in that grid cell for the AT (NOAA, 2016). When the
ambient temperature in a grid cell rose above 80°F, the heat index
was used as the measure of AT (Rothfusz, 1990). For temperatures
between 51°F and 80°F, the AT corresponded to the measured
ambient air temperature.

2.2.3. Census data
To assess effect modification due to socioeconomic status, ZIP

code level data were obtained from the 2000. U.S. Census for the
percent of population living under poverty for each ZCTA (U.S.
Census, 2002). Each health outcome record was assigned a value
for socioeconomic status based on the zip code of residence. Ta-
ble 2 shows the total county-level population for the study area.

2.2.4. Case-crossover methodology
A time-stratified bidirectional method of control selection was

used for the case-crossover analysis (Carracedo-Martinez et al.,
2010). Each health outcome case was linked to the PM2.5 exposure
data resulting from all of the HBM PM2.5 concentration surfaces
listed in Table 1 based on the CMAQ grid cell that the patient's ZIP
code of residence was assigned. One-month strata were used to



Table 2
County-level total population from 2000
Census.

County Total population

Richmond County 468,730
New York County 1,585,873
Nassau County 1,339,532
Rockland County 311,687
Kings County 2,504,700
Westchester County 949,113
Queens County 2,230,722
Suffolk County 1,493,350
Bronx County 1,385,108

Table 3
Descriptive statistics for 24-h average PM2.5 datasets modeled with the HBM in the
New York City area (67,952 12 km grid cells) averaged over the period 2004–2006
(mg/m3).

Model Mean Std dev Minimum Maximum

A (Baseline) 10.02 7.45 0.02 57.62
B 12.03 5.65 0.48 49.85
C 10.09 6.85 0.02 55.50
D 10.51 5.98 0.03 51.06
E 12.91 5.55 0.54 52.66
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compare cases with control days of 7, 14, and 21 days before or
after the case within the same stratum. Three control days were
selected for every case day sampled. The comparisons were also
made on the same day of the week to control for the possible
contribution of differences in personal activity patterns. The time
stratified design is not subject to bias resulting from time trends
because there is no pattern in the placement of referents relative
to the index time. Season and day of the week were also controlled
for by restricting referents to the same day of the week, month and
year as the index day. The time stratified design is considered a
localizable, ignorable design and therefore yields unbiased esti-
mates with conditional logistic regression analysis (Janes et al.,
2005).

Lagged values were created for all epidemiologic exposure
models to assess immediate (same day, i.e., lag 0) and delayed
(previous 4 days exposure, i.e., lags 1, 2, and 3, and 4, respectively)
effects of PM2.5 on health outcomes. For the meteorological time-
varying covariate of apparent temperature, the potential con-
founding role was evaluated as lag values of 0 and 1 day, with both
a linear and a quadratic term to account for potential non-linear
relationships between apparent temperature and health out-
comes. Confounding due to major holidays, including the day of a
holiday and the day after a holiday, as well as confounding by
season (i.e., spring/summer vs fall/winter) were also evaluated.
The dates for major holidays were obtained from the list of Federal
holidays provided by the U. S. Government Office of Personnel
Management (U.S. OPM, 2016).

2.2.5. Epidemiologic model building
A priori, different metrics were constructed to evaluate the

temporal relationship between the different HBM PM2.5 con-
centration surfaces and the time when an individual presented to
a hospital ED or was admitted to the hospital as an inpatient. For
asthma, ED cases and inpatient admissions were combined for
analysis. For MI and HF, only inpatient admissions were considered
in the analysis. The outcome measures were same day exposure: 1,
2, 3 and 4 days before the exposure day, and cumulative 2, 3, 4,
and 5-day mean exposure estimates. Using purposeful selection
with forward selection (Hosmer and Lemeshaw, 2000), the linear
and quadratic terms were retained for lag 0 and lag 1, AT, season,
holiday, and day after holiday dates in the preliminary model.

Once the confounding was resolved, all the interaction terms
were added that were decided a priori based on evidence from
disease pathology and prior literature. Effect modification was
assessed for season, race, sex, age, rural/urban status, poverty,
insurance and pre-existing diabetes or hypertension. Significance
of the interaction terms was evaluated at po0.20 level, and the
final model was selected, containing all relevant confounders and
interaction terms, which provided the best fit according to the
Akaike Information Criterion Correction (AICC) value for all models
used. The AICC provides a measure of the quality of the statistical
models used for a given input dataset based on the number of
estimated model parameters, the maximum value of the likelihood
function for a model, and sample size. The model selected with the
lowest AICC value is the model that minimizes the “information
losses” in the statistical analysis. Odds ratios estimates were cal-
culated for a change of 10 μg/day in daily mean PM2.5 values using
conditional logistic regression with Proc PHREG in SAS™ statistical
software Version 9.1. The coefficients for referent group and in-
teractive terms were then linearly combined to assess effect
modification in models with significant effect modifiers.
3. Results and discussion

There were two key objectives of this study. The first was to
demonstrate that the HBM could be expanded to include input
surfaces from satellite AOD data, in addition to PM2.5 monitor data
and CMAQ predictions of PM2.5. The use of the three methodolo-
gies (monitor, model, AOD) to assess the PM2.5 concentrations in
the New York City geographical area represents an attempt to find
the “true” but unmeasurable PM2.5 concentration values. The
CMAQ-based concentration values improve the spatial extent of
PM2.5, but assume uniform concentrations throughout each grid
cell, which is unrealistic. The AOD-based concentration values
provide spatial coverage, while yielding values based on actual
physical measurements via remote sensing (satellites), which are
converted to estimated concentration values. As shown in Fig. 3,
the combination of these two methods provides a varying, non-
uniform spatial estimate of PM2.5 concentrations compared to
using data from only monitors or from monitors and CMAQ. In this
way, this study has successfully shown that the HBM model can
incorporate the addition of AOD data and generate realistic PM2.5

concentration surfaces. Subsequently, these HBM-generated PM2.5

concentration surfaces were compared with data on inpatient
hospitalizations and emergency room visits for asthma and in-
patient hospitalizations for MI and HF using case-crossover
analysis.

The average PM2.5 values for the study period in New York City
and surrounding areas according to the baseline HBM (Model A)
were 10.02 (77.45) μg/m3 (Table 3). The other HBM combined
surfaces had similar averages over the study period with B and E
having slightly higher averages of 12.03 and 12.91 μg/m3, respec-
tively. Though these results are not valid for regulatory purposes,
they can be compared to the PM2.5 NAAQS to evaluate potential
health effects from ambient PM2.5 conditions. The average con-
centration values of all of the HBM PM2.5 combined surfaces across
the three-year study period are below the secondary annual PM2.5

NAAQS of 15 μg/m3. However, two of the HBM combined surfaces
have an average concentration value that is above the primary
annual NAAQS value of 12 μg/m3. The maximum daily con-
centration averages for each HBM combined surface all exceed the
24-h NAAQS value of 35 μg/m3, which highlights the fact that
there were areas in the study region where ambient PM2.5 con-
centrations posed an acute health risk.



Table 4
Descriptive statistics for Myocardial Infarction, Heart Failure and Asthma Cases in
New York City and surrounding areas.

Primary diagnosis Myocardial
infarctiona

Heart
failurea

Asthmab

ICD9 code 410 428 493
Number of cases 60,939 114,137 236,568
Number of control days 182,817 342,411 709,704
Mean age (in years) 70.22 74 27.29
Average percentage of adults liv-
ing below poverty

15.38 18.22 25.66

Male gender (percent) 55.6 46.2 46.44

Additional diagnoses
Diabetes (percent) 35.43 43.23 3.76
Hypertension (percent) 55.89 54.82 6.6

Race
Whites (percent) 62.88 55.22 21.92
Blacks (percent) 14.86 25.97 41.25

Payment source
Medicare (percent) 51.18 61.35 7.14
Medicaid (percent) 9.26 11.45 20.26

Mean PM2.5 for Baseline model
on case days in mg/m3

12.44 12.78 13.08

Mean PM2.5 for Baseline model
on control days in mg/m3

12.32 12.66 12.98

a Excludes cases o35 years of age and recurrences within 15 days of initial
occurrence. Admission dates from 1st Jan 2004–31st December 2006.

b Excludes recurrences o7 days. Inpatient and ED cases from 1st January
2005–31st December 2006 were combined.
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Table 4 provides descriptive statistics for the cases and popu-
lation of patients for the three health outcomes investigated in this
study, MI, HF and asthma. Overall, there were 60,939 inpatient
cases of MI after excluding cases with missing ZIP code informa-
tion, cases where the patient was aged less than 35 years and cases
that represented recurrences within 15 days of original episode.
After these exclusions, the average age for the cases was 70 years,
approximately 56% male and 63% White. There were 114,137 in-
patient cases for heart failure after making exclusions similar to
Fig. 4. Case crossover analysis of association of MI (myocardial infarction) hospitalization
City Study area 2004–2006.
those for the MI analysis. The average age was 74 years but there
was a lower percentage of males (46.2%) and White race (55.2%) as
compared to those in the MI dataset. There were a total of 236,568
inpatient and ED cases presenting for asthma during the study
period from Jan 1, 2005 to Dec 312,006 with exclusions only for
those cases representing a recurrence within 7 days of initial oc-
currence. The average age for asthma patients was 27 years and
they were more likely to be Black (41.25%) and female (54%).

Figs. 4–6 provide Odds Ratios (OR) and 95% Confidence Inter-
vals (CI) for a 10-μg increase in PM2.5 association with inpatient
admissions for MI and HF and ED and inpatient admissions for
asthma in the study area, respectively. The 5 HBM PM2.5 combined
surfaces (A through E, each for asthma, MI, and HF resulting in 15
total concentration surfaces/fields examined) yielded similar re-
sults. Model A (baseline model) and Model C had a consistently
better fit based on AICC criterion and had a slightly better precision
(based on the standard error of estimates).

For MI, there was a significant increased risk for exposure on the
same day (Lag 0) for the Baseline model (OR¼1.018; 95% CI: 1.005,
1.032), Model C (OR¼1.017; 95% CI: 1.003, 1.031) and Model D
(OR¼1.017; 95% CI: 1.001, 1.034) (Fig. 4). Results for exposure on pre-
vious 4 days and for cumulative exposure showed slightly elevated risk
but did not approach statistical significance. No significant effect
modification due to season, poverty, pre-existing diabetes or hy-
pertension, insurance status, race, age-group or gender was found. Si-
milarly, an elevated risk of heart failure at lag 0 for the Baseline model
(OR¼1.017; 95% CI: 1.008, 1.027), Model C (OR¼1.017; 95% CI: 1.006,
1.020) and Model D (OR¼1.018; 95% CI: 1.006, 1.031) was observed
(Fig. 5). There was no significant effect modification for the association
between PM2.5 and heart failure by any of the covariates listed for MI.

In multivariate models for asthma, highest significant risks
were found for lag 1 (Baseline Model OR¼1.028; 95% CI: 1.021,
1.034) and cumulative 0–4 (Baseline Model OR¼1.055; 95% CI:
1.044, 1.066) (Fig. 6). For all of the examined models, exposures up
to 4 days before were associated with increased risk of asthma
with decreasing strength of association for the higher lags. A cu-
mulative effect of exposure was also apparent with a distributed
lag effect for exposures up to 4 days.
cases with a 10 unit change in PM2.5 using various air pollution models in New York



Fig. 5. Case crossover analysis of association of HF (heart failure) hospitalization cases with a 10 unit change in PM2.5 using various air pollution models in New York City
Study area 2004–2006.

Fig. 6. Case crossover analysis of association of asthma hospitalization and ED cases with a 10 unit change in PM2.5 using various air pollution models in New York City Study
area 2005–2006.
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On assessment of effect modification, significant multiplicative
interactions with gender, inpatient/ED status and age for exposure
at lag 1 were found (Table 5). Females who were aged r14 who
were admitted with a primary diagnosis of asthma had the highest
risk associated with PM2.5 exposure on the previous day. In con-
trast males 414 years of age who presented with asthma at the
ED had the lowest risk of these four categories. Similarly for cu-
mulative exposure to PM2.5, significant multiplicative interaction
was found for age and exposure model (Table 6). Young children
admitted for asthma had the highest risk associated with a cu-
mulative exposure in the previous 3 days (Baseline Model
OR¼1.093 (95% CI (1.070, 1.116)) while the lowest increased risk
was among older individuals who presented at the ED (Baseline
Model OR¼1.031 (95% CI (1.018, 1.044)).

Sensitivity analyses were conducted by restricting analysis to
those inpatient heart disease cases that were transferred from the



Table 5
Effect modification results for case-crossover analyses: Odds ratios for Asthma with
10-unit change in PM2.5 (lag1).

Model A

Inpatients ED patients

Females Marginal OR 95% CI Marginal OR 95% CI
Ager14 1.069 1.053 1.086 1.046 1.033 1.059
Age414 1.038 1.024 1.052 1.015 1.005 1.025

Males
Ager14 1.055 1.039 1.071 1.032 1.021 1.044
Age414 1.024 1.009 1.04 1.002 0.99 1.013

AIC: 699,015.75
Model C

Inpatients ED patients

Females Marginal OR 95% CI Marginal OR 95% CI
Ager14 1.073 1.055 1.092 1.049 1.036 1.063
Age414 1.039 1.025 1.054 1.016 1.006 1.027

Males
Ager14 1.058 1.041 1.075 1.034 1.022 1.046
Age414 1.024 1.008 1.041 1.001 0.989 1.014

AIC: 699,019.14

Multivariate adjusted for app temp (lag0 and lag1, linear) and (lag0 and lag1,
quadratic ) holidays, day after holidays and season

Table 6
Effect modification results for case-crossover analyses: odds ratios for asthma with
10-unit change in PM2.5 concentration (cumulative average of days 0–3): .

Model A

Inpatients ED patients
Marginal OR 95% CI Marginal OR 95% CI

Ager14 1.093 1.07 1.116 1.069 1.054 1.085
Age414 1.053 1.034 1.074 1.031 1.018 1.044
AIC: 698,983.2
Model C

Inpatients ED patients
Marginal OR 95% CI Marginal OR 95% CI

Ager14 1.098 1.074 1.123 1.074 1.057 1.091
Age414 1.058 1.037 1.08 1.034 1.02 1.049
AIC: 698,985.3

Multivariate adjusted for apparent temperature (lag0 and lag1, linear) and (lag0
and lag1, quadratic ) holidays, day after holidays and season
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ED and by including only those recurrences that occurred after 28
days. However, the results for all models remained virtually un-
changed with these restrictions. For asthma, additional analysis
after excluding young children less than 2 years yielded results
similar to those without the additional age restriction.

Thus, the results from this study confirm previous findings (e.g.,
Talbot et al., 2009; Haley et al., 2009), indicating that as PM2.5

concentrations increase, the risk of asthma attacks, HF and MI also
increase (e.g., Anderson et al., 2012b). The results also show that
females, children less than 14 years old, and patients requiring
hospitalization were at higher risk of asthma attacks after PM2.5

exposure. Other studies have found positive associations between
PM2.5 and respiratory health in children (Schwartz and Neas,
2000) and females (Paulu and Smith, 2008).

The results of the study are inconclusive regarding the second
objective, which was to determine if addition of AOD data to the
HBM results in PM2.5 air pollutant concentration surfaces that
more accurately predict hospital admittance and emergency room
visits for MI, asthma, and HF. Only minor differences in the relia-
bility and precision of estimates based on model fit and standard
errors of the estimates were found across the five (5) PM2.5 ex-
posure models tested in the analysis. In general, Model C (which
combined data from three sources, monitors, CMAQ, and AOD
[with missing data]) had results very similar to the Model A
(baseline model using monitors and CMAQ) in terms of model fit,
point estimate and precision. Model D (which combined monitor
data with kriged AOD data) also had similar results in terms of
point estimates, precision and model fit when compared to the
baseline model. Models B and E had a somewhat lower precision
than Models A, C and D. Thus, the model surfaces that in-
corporated AOD data were not definitively more accurate for
predicting asthma, acute MI, and heart failure health outcomes
compared to surfaces that only incorporated PM2.5 monitor data
and CMAQ model output. Given the limited geographical area and
the narrow time period of this study (2004–2006), it is difficult to
make any generalizations regarding the results of this study,
however. This study represented the first test of incorporating
AOD data into the HBM. HBM surfaces that include AOD data, in
addition to PM2.5 monitor data and CMAQ estimates of PM2.5, are
expected approach the “true” ambient PM2.5 concentration values.
It is expected that HBM surfaces that incorporate AOD data will be
more useful for epidemiological studies over a longer time period
and/or for a wider geographic area.
4. Conclusions

This study used ambient concentrations of PM2.5 as a proxy for
an individual's actual exposure to fine particulates. Actual ex-
posures may be influenced by the extent to which ambient PM2.5

concentrations infiltrate into indoor air spaces (such as auto-
mobiles, homes, schools, and work places) and the activity pat-
terns of individuals (such as outdoor exercise, walking, commut-
ing, etc.). MI and HF are indicators of underlying chronic heart
disease. Chronic heart disease and asthma are long term medical
conditions that progress at varying rates over a lifetime with many
other environmental, biomedical and social factors. The study
examined one event out of this continuum of disease to assess
whether a high exposure to PM2.5 may act as a trigger or pre-
cipitating factor. The cause of a specific disease episode may be
defined as a precipitating event, prevailing condition, or specific
factor that is necessary for disease occurrence, when it occurs,
assuming all other factors or potential contributing conditions
have no impact. Using this standard definition of disease causa-
tion, one or more events, conditions, or factors may be simulta-
neous precipitating cause(s) of a disease incident. In other words,
PM2.5 exposure in this scenario may be a contributing factor
among others, but there is no way to determine if it is included as
one of the minimum set of factors responsible for the observed
increases in asthma, HF and MI. In order to link PM2.5 exposure
directly to asthma, HF and MI diseases, it must be shown to be the
one of the necessary contributing factors to each disease, thereby
demonstrating that there exists a complete causal mechanism
explaining these disease occurrences. Applying the sufficient cause
model (Rothman and Greenland, 2005; Rothman, 1976) to this
situation, PM2.5 exposure (at some point in time) must be a ne-
cessary causal factor in the disease models for asthma, HF and MI.
The best way to illustrate this would be to examine baseline cases
of asthma, HF and MI where there is no PM2.5 exposure is present.
If those cases subsequently experienced PM2.5 exposure, without
changes in other factors, and the incidence and severity of asthma,
HF and MI increased for those particular cases, the scenario would
clearly demonstrate that PM2.5 exposure is the final causal com-
ponent that explains these health outcomes.

Overall, the results of this study indicate that for one me-
tropolitan area over a two year time period for asthma and a three
year time period for MI and HF, estimates of PM2.5 concentrations
from satellite data can be used to supplement PM2.5 monitor data
in the estimates of risk associated with three common health
outcomes, but the addition of the satellite data does not sig-
nificantly increase model performance. Instead, the PM2.5
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concentration fields generated for this study using PM2.5 monitor
data, CMAQ PM2.5 predictions, and satellite-based PM2.5 estimates
yielded health association estimates that were comparable to
those calculated using a combination of only monitor and model
data. However, this study was restricted to one urban area with a
relatively dense monitoring network covering the high-population
portions of the study region. The use of satellite AOD data should
improve predictions in epidemiological studies in areas with fewer
pollutant monitors or over wider geographic areas. The next steps
for this project will be to repeat the experiment for a different
metropolitan area (i.e., Baltimore, Maryland) to see if the same
results hold. In addition, the release advent of next generation,
high spatial and temporal resolution satellite AOD data, such as
the MODIS 3 km-resolution AOD or AOD from the upcoming
GOES-R geostationary satellite (Schmit et al., 2005), which will
launch in October 2016, may hold the key to providing added
value to PM2.5 concentration fields.
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