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Abstract 

Prajs, J.R., On completeness of spaces of open mappings on continua, Topology and its 

Applications 41 (1991) 235-245. 

Among other things it is proved that the set of all open mappings between compacta X and Y 

is topologically complete if X is locally connected and Y is a graph, and this set is not topologically 

complete if it is nonempty and Y is a manifold of dimension > 1, or Y is the Menger universal 
curve, or Y is a pseudo-arc. 

Keywords: Continuous decomposition, metric continuum, open mapping, set in pointlike position, 

topologically complete space. 
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Introduction 

When homogeneity with respect to open mappings is studied, the question whether 

the set of all open mappings between two given compacta is completely metrizable 

naturally appears. Since the space of all continuous mappings between compacta 

is completely metrizable, the question is equivalent to the question raised by 

Charatonik and Mackowiak [2, Chapter 21, whether all open mappings form a Gs 

subset of the set of all continuous mappings. The general negative answer has been 

presented by Hohti in [3]. He has proved that the set of all open surjections of the 

Cantor set C onto itself is not a G6 subset of the space of all continuous autosurjec- 

tions of C. A modification, due to W.J. Charatonik, is mentioned in [3], to obtain 

a similar result for open mappings between continua (see Remark 3.2 below). On 

the other hand McAuley proved in [ 121 that the space of all open mappings between 

any locally connected continuum and an arc is topologically complete. In a conversa- 

tion with the author Hohti asked if McAuley’s result can be extended by replacing 

an arc by any locally connected continuum. Though this extension has occurred to 

be not true, the question was an inspiration for the results of this paper. The author 

wishes to express his thanks to Professor Hohti for fruitful discussions on spaces 

of open mappings. 
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In the next section we collect a few of general facts concerning spaces of open 

mappings. In the third section we introduce the notion of a set in pointlike position 

in the space, and, applying some strong theorems on continuous decompositions 

of the plane, the Menger universal curve and the pseudo-arc, we use this notion to 

obtain a number of negative results. In the last section we extend McAuley’s result 

replacing an arc by any graph. 

In this paper spaces are assumed to be metric. Spaces of mappings are equipped 

with the compact open topology and the sup metric. A map f: X + Y is said to be: 

- monotone, if f-‘(y) is connected for each y E Y, 

- light, if f-‘(y) is totally disconnected for each y E Y, 

- confluent, iff(C) = K for each continuum K c Y and each component C of 

f_'(K). 
The symbols c( X, Y), o( X, Y), mo( X, Y), lo( X, Y) denote the sets of all continuous, 

open, monotone open, light open mappings from X into Y, respectively. Let a space 

X be compact and AC X be a closed set. Then g,: X-, X/A denotes the natural 

quotient map obtained by identifying all points of A to a point. Manifold means 

here connected, compact, finitely or infinitely dimensional manifold. The symbol 

ab denotes an arc with a and b as the endpoints. An arc ab is called to be free in 

a space X provided the set ab -{a, b} is open in X. A continuum is called a graph 

if it is the finite union of its free arcs. The unit interval [0, l] is denoted by I. The 

symbol B(A, E) denotes the open ball around a set A with radius E. 

1. Some genera1 facts 

In this section we prove some general facts concerning Bore1 class of open 

mappings between compacta. First, recall that given compacta X and Y, the set 

0(X, Y) is known to be an Fc6 subset of c(X, Y) [2, Proposition 2.11. The sets of 

all monotone mappings, light mappings and confluent mappings are known to be 

G6 subsets of c(X, Y) (see [5; 4, Theorem 5, p. 109; 13, Theorem (2.10)]). 

1.1. Lemma. Let X, Y, 2 be topological spaces and sets A c c(X, Y), B c c( Y, Z), 
Cc c(X, 2) be such that A # 0 and 

(i) iff e A and gE B, then gf E C, 

(ii) iff E c(X, Y), g E c( Y, Z) and gf E C, then g E B. 
If C is a subset of c(X, Y) of Bore1 class cy, then B is a subset of c( Y, Z) of Bore1 

class a. 

Proof. Fix f E A and take the map F: c( Y, Z) + c(X, Z) defined by F(g) = gf This 

map is continuous and F-‘(C) = B by (i) and (ii). This implies the conclusion. 0 

1.2. Proposition. Let X, Y, Z be compacta and AC c(X, Y), Bc c( Y, Z), Cc 
c(X, Z), with A # 0, be the sets of all open (monotone open, light open) mappings in 
the respective sets of continuous mappings. If C is a Gi, subset of c(X, Z), then B is 
a G, subset of c( Y, Z). 
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Proof. For open and monotone open mappings we obtain the conclusion by Lemma 

1.1 because these mappings satisfy (i) and (ii). In the case of light open mappings 

take F defined in the proof of Lemma 1.1. In this case we have only (i) and thus 

B c F-‘(C). However, observe that F-‘(C) is composed of open mappings only. 

Intersecting the Gs set F-‘(C) with the G, set of all light mappings in c( Y, 2) we 

obtain B as a G6 set in c( Y, Z). 0 

1.3. Corollary. Let Y be a compactum. Zf there is a compactum X such that the set 
0(X, Y) (mo(X, Y), 10(x, Y)) is a nonempty G, subset of c( X, Y), then the set 

o( Y, Y) (mo( Y, Y), lo( Y, Y), respectively) is a G8 subset of c( Y, Y). 

1.4. Proposition. Let X and Y be compacta. Zf the set o(X x Y, X x Y) (mo(X x Y, 

XX Y), 10(x x Y, X x Y)) is of Bore1 class a in c(X x Y, XX Y), then the sets 

0(X,X) and o( Y, Y) (mo(X,X) and mo( Y, Y), 10(X,x) and lo( Y, Y)) are of 
Bore1 class a in c(X, X) and c( Y, Y), respectively. 

Proof. Let Ac c(X, X), B c c( Y, Y), Cc c(X x Y, X x Y) denote the set of all 

open (monotone open, light open) mappings in the respective spaces of continuous 

mappings. Consider the map F: c(X, X) + c(X x Y, X x Y) defined by F(f)(x, y) = 
(f(x), y). It is obvious that F is continuous and F(f) E C if and only iffe A. Thus 

A = F-‘(C) and the conclusion follows for A. The proof for B is similar. Cl 

In the next section we will see that the converse implication to that from Proposi- 

tion 1.4 does not hold true for X = Y = I. 

Recall that two spaces X and Y are said to be equivalent with respect to a class 

9 of mappings provided there are surjections f: X + Y and g: Y + X belonging 

to 9. 

Question 1. Let compacta X and Y be equivalent with respect to the class 9 of all 

open (monotone open, light open) mappings, and assume the set of all mapsf: X + X 

in 9 is a Gs set in c(X, X). Does it follow that the set of all maps f: Y + Y in 9 

is a G, set in c( Y, Y)? 

2. Sets in pointlike position and some negative answers 

Let A be a nonempty closed subset of a compactum X. We say that A is in 

pointlike position in X provided for each neighborhood U of A in X there is a 

homeomorphism h :X/A + X onto X such that hg,(x) =x for any x E X - U. 

The following theorem is crucial in this section. 

2.1. Theorem. LetXand Ybecompacta. Ifthereareamapf E 0(X, Y) Cf~mo(X, Y), 

f E lo( X, Y)) and a sequence {y,} c Y converging to some y E Y, y, # y, such that the 
sets f -‘(y”) are in pointlike position in X and f -l(y) is nondegenerate, then 0(X, Y) 
(mo(X, Y), lo(X, Y), respectively) is not a G6 set in c(X, Y). 
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Proof. Let F c c( X, Y) be the set of all open (light open, monotone open) mappings 

from X into Y and let f~ F, y, {y,} satisfy the assumptions of the theorem. Put 

A, =f-‘(y,,). Suppose F = nz=‘=, CJ,, where each CJ, is open in c(X, Y). A sequence 

{f”} c F such that limf, E n;=‘=, CJ” - F will be constructed, obtaining thus a contra- 

diction. We will inductively construct sequences: of positive numbers &k, &, of 

positive integers nk (k = 1, 2, . . .), and of mappings fk E F, k = 0, 1, . . . , which fulfil 

the following conditions. 

(i) If g E c(X, Y) and d(fk, g) c &k+l, then g E Uktl, 

(ii) d(fk+,,,,fk) < &k+r for m = 1, 2,. . . , 

(iii) O< &k+r <j&k, 

tiv) d(ynL, Y) <i&k, 

(v) %%tl, 6,) c %i i&k), 

(vi) Y, Yn !z %%,, 6k) for h # .h, 

(vii) %, bk+l )n %nA, Sk)=@ 

Namely, put f0 =J: Assume the construction is already done for k = 0, . . . , I- 1. 

Take any E, > 0 satisfying (i) for k = 1- 1, and, if 1> 1, also (iii) and (vii). Find any 

n, satisfying (iv) for k = 1, and find 6, satisfying (v) and (vi) for k = 1. Put W, = 

f-‘(B(y,,, 6,)) and, using the pointlike position of A,,,, take a homeomorphism 

h,: X/A,, + X such that hlgA,,,(x) =x for xg W,. Define f,:X+ Y by f;(x) = 

I;-,(g,,:,h;‘(x)). Observe that J; is well defined and continuous. Moreover note that 

fr E E Since the construction of mappings f;,f;+, , . . . is a modification of the map 

f,-, which changes nothing in Y - B(y, be,) and X -f;_‘,( B(y, $E,)) condition (ii) is 

obtained. The construction is complete. 

The sequence {fk} converges to some h E c(X, Y) by (ii) and (iii), and d(h,f,) L 

&k+,, k=O, I,..., by (ii). Applying (i) we infer that h E uk for k = 1, 2,. . . . Finally 

observe that the set h-‘(y) =f-‘(y) is nondegenerate while h-‘(y,,) =fk’(y,,) are 

degenerate. This implies that the decomposition of X into the fibers h-‘(p), p E Y, 

is not continuous at h-‘(y). Hence h is not open. Thus we have h ~nz==, U,, - E 

This contradiction completes the proof. •i 

The remaining part of this section is devoted to applications of Theorem 2.1. 

First, some results concerning manifolds will be proved. The following proposition 

is a consequence of the theorem of Moore [4, p. 5331 and of [4, Theorem 3, p. 5361. 

2.2. Proposition. Let K be a subcontinuum of the interior part of the unit square I’. 

Then K is in pointlike position in I’ if and only if it does not separate I’. 

Take the decomposition of the plane into pseudo-arcs constructed by Lewis and 

Walsh [lo], consider I’ as a compactification of the plane, and extend the decomposi- 

tion to a continuous decomposition of I’ by taking singletons in the boundary. 

The quotient space is homeomorphic to I” by the theorem of Moore [4, p. 5331 

again. Since a pseudo-arc does not separate the plane, we obtain the following by 

Propositions 2.1 and 2.2. 
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2.3. Proposition. The sets o(Z’, I’) and mo(Z’, I’) are not G, subsets ofc(Z’, I’). 

Now we apply Proposition 1.4 to the above result. 

2.4. Proposition. Zf X = I” for n 3 2, or X is the Hilbert cube I”, then the sets o( X, X) 

and mo(X, X) are not Gs subsets of c( X, X). 

This proposition can also be verified without using Proposition 1.4. In fact, let 

x=z*xz=, cY=O,l,..., w, and take the decomposition 9 of I’ described above. 

Extend it to I2 x I” by taking the sets P x {q} as elements, where P E 9 and q E I*. 

Observe that all elements P x {q} are in pointlike position in Z* x I” and the quotient 

space is homeomorphic to I* x I”. 

If X is a subset of a manifold Y with int X # 0, we can modify this decomposition 

of X to obtain all elements in the boundary degenerate, and then extend it to Y 

by taking singletons in Y-X. Then the quotient space is homeomorphic to Y. 

Hence, in view of Theorem 2.1, Proposition 2.4 remains true for any manifold X 

with dim X 2 2. Combining this fact with Corollary 1.3 we obtain the general negative 

answer for manifolds. 

2.5. Theorem. Let X be a compactum and Y be a manifold of dimension 32. Zf any 

of the sets 0(X, Y) and mo(X, Y) is nonempty, then it is not a G6 subset of c(X, Y). 

Now we are going to prove some results concerning the Menger universal curve 

M. First recall three strong results which we are going to use. 

Characterization Theorem (Anderson [I]). Every 1 -dimensional locally connected 

continuum which has no local separating points and has no open subset imbeddable in 

the plane, is homeomorphic to M. 

Decomposition Theorem (Wilson [ 14, Theorem I]). For any locally connected con- 

tinuum X there is a monotone open map f: M + X, such that each point-inverse set is 

homeomorphic to M. 

Homeomorphism Extension Theorem (Mayer, Overseegen and Tymchatyn [ 11, 

p. 341). Let K and L be closed, nonlocally separating subsets of M, and h : K + L be 

a homeomorphism. Then h extends to a homeomorphism of M onto itself: 

The following is an observation on the neighborhoods of point (O,O, 0) in M 

combined with the homogeneity of M. 
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2.6. Observation. For euery x E M there are arbitraril.v small open neighborhoods U 

of x such that cl U is homeomorphic to M and bd (I does not locally separate cl U. 

2.7. Lemma. For any proper subcontinuum X of M the following conditions are 

equivalent: 

(a) X is in pointlike position in M, 

(b) M/X is homeomorphic to M, 

(c) gx(X) is not a local separating point of M/X. 

Proof. (a) + (b) is trivial. Equivalence (b) f+ (c) is a consequence of the Characteri- 

zation Theorem. Assume M/X is homeomorphic to M and let W be any neighbor- 

hood of X in M. Find a neighborhood U of gx(X) as in Observation 2.6 such that 

gX’( U) c W. Then K = g;‘(cl U) is homeomorphic to M by the Characterization 

Theorem. Moreover, the homeomorphism h : bd U + bd K defined by h(x) = g%‘(x) 

can be extended to a homeomorphism h*: cl U + K by the Homeomorphism 

Extension Theorem, and then to a homeomorphism h**: M/X+ M putting 

h**(x) = g;‘(x) for x E M/X -cl U. We have (a), and thus the proof is complete. Cl 

An easy proof of the following lemma is left to the reader. 

2.8. Lemma. Letf: X + Ybe a monotone surjection between locally connected continua 

Xand Y, YE Y, andputA=f-‘(y). Ifg,(A) is a local separating point of X/A, then 

y is a local separating point of Y. 

Now we formulate the main result concerning the space M. 

2.9. Theorem. Let X be a locally connected continuum with injinitely many nonlocally 

separatingpoints. Then the sets o( M, X) and mo( M, X) are not G6 subsets of c( M, X). 

Proof. Let f: M + X be a monotone open map guaranteed by the Decomposition 

Theorem, and {x,} be a sequence of nonlocally separating points in X converging 

to some X~E X with x,, #x0. The sets f -‘(x,,) are in pointlike position in M by 

Lemmas 2.8 and 2.7. The conclusion follows by Theorem 2.1. 0 

Note that the sets o(M, M) and mo(M, M) are not Gs subsets of c(M, M) by 

Theorem 2.9. Applying Corollary 1.3 we obtain the following. 

2.10. Corollary. Let X be a compacturn. If any of the sets 0(X, M) and mo(X, M) 

is nonempty, then it is not a Gb subset of c(X, M). 

In view of the Decomposition Theorem and some other results of [14] we have 

quite good information about open mappings on the Menger universal curve. The 

situation is completely different when the Sierpiriski universal plane curve S is 
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considered. It is not known, for example, if S admits a monotone open map onto 

itself which is not a homeomorphism. Neither can the author answer the following 

question. 

Question 2. Is the set a(S, S) a G6 subset of c(S, S)? 

Now some results concerning pseudo-arc will be presented. The author thanks 

Dr K. Omiljanowski for a good suggestion in solving the pseudo-arc case. 

Let P be a pseudo-arc. First, we will show that each proper subcontinuum of P 

is in pointlike position in P We will use the following two results of Lewis. 

Stable Homeomorphism Theorem (Lewis [8]). For any open U in P and any two 
points x, y E U such that the irreducible continuum between x and y lies in U, there is 

ahomeomorphismh:P-,Psuchthath(x)=yandh(p)=pforpEP-U. 

Lifting Homeomorphism Theorem (Lewis [9]). Padmits a continuous decomposition 
9 into pseudo-arcs such that each homeomorphism h : P/55 + P/9 can be lifted to a 

homeomorphism h*: P + P. 

We will also use the following lemma, perhaps already known and easy to prove 

with the help of chain coverings. We omit the proof. 

2.11. Lemma. Let U, and U, be neighborhoods of a subcontinuum PO of Psuch that 
int(P- U,) # 0. Then there is a homeomorphism h : P+ P such that h(P,,) = P,, and 

h(U,)c U,. 

2.12. Lemma. For every E > 0 and every continuum PO s. P there is a homeomorphism 
h:P+Psuch thath(x)=xforxEP-B(P,,e) and diamh(P,)<E. 

Proof. Consider the following commutative diagram 

where g: I;, + P, is a quotient map guaranteed by the Lifting Homeomorphism 

Theorem for a pseudo-arc P,, and &8 is the decomposition of p, into the elements 

d-‘(x) for x belonging to a closed set F 5 P, with int F # 0, and into singletons in 

p, - g^-‘( F). Since any monotone nondegenerate image of a pseudo-arc is a pseudo- 

arc both P, and P, / 53 are pseudo-arcs, and we can assume that 

(i) P,/?3 = P, 
(ii) PO = g,g-‘(x0) = g-‘(x,) for some X~E PI - F (all proper nondegenerate sub- 

continua of P are equivalent-see Lehner’s result [6]), 

(iii) g-‘( P, -F) c B( P,,, E) (by Lemma 2.11). 
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Fix an element x, E P, - F close enough to bd( P, - F), such that diam g-‘(x,) < E 

and the irreducible continuum between x0 and x, is contained in P, - F. Then there 

is a homeomorphism h, : P, + PI such that h,(x,) =x, and h(x) =x for x E F by the 

Stable Homeomorphism Theorem. This homeomorphism can be lifted to a homeo- 

morphism fi, : @, + P, by the Lifting Homeomorphism Theorem. Observe that the 

function h : P-, P, h(y) = g,h*,g;‘(y), is a well-defined homeomorphism which 

satisfies our requirements. Cl 

2.13. Theorem. Each proper subcontinuum of P is in pointlike position in P. 

Proof. Let U be any neighborhood of a proper subcontinuum PO of P. Put Ed= 

Sd(P,, P- U) and E,+, =f&,,. Take a homeomorphism ho: P+ P guaranteed by 

Lemma 2.12 for E = co, and put P, = h,(P,). If ho,. . . , h,, PO,. . . , P,,+, are already 

defined, take a homeomorphism h,,, : P-, P guaranteed by Lemma 2.12 for E = E,+, , 

PO = P,,, and put Pnc2 = h,+,(P,,+,). Observe that the map h = lim, h,. . . h, induces 

a homeomorphism h*: P/P,+ P, defined by h*(y)= hg;i(y), which can be that 

required by the definition of the pointlike position of PO in P. Cl 

Now, taking any continuous decomposition of P into pseudo-arcs, and applying 

Theorems 2.1 and 2.13, we see that the sets o(P, P) and mo(P, P) are not G6 subsets 

of c(P, P). Combining this with Corollary 1.3 the main result concerning pseudo-arcs 

is obtained. 

2.14. Theorem. Let X be a compacturn. If any of the sets 0(X, P) and mo(X, P) is 

nonempty, then it is not a G6 set in c(X, P). 

We end this section with another proof of the result of Hohti [3] concerning the 

Cantor set C. 

2.15. Proposition (Hohti). The set o( C’, C) is not a Gb set in c( C, C). 

Indeed, observe that the projection p : C x C + C has fibers {x} x C in pointlike 

position in C x C. Since C x C is homeomorphic to C, the result is obtained by 

Theorem 2.1. 

3. Open mappings onto locally connected continua and some positive results 

We begin this section with the following observation. Let X be any compactum 

and Y be a locally connected continuum. It is an obvious consequence of a result 

of Lelek and Read [7, Theorem 5.11 that a map f: X + Y is light open if and only 

if it is light confluent. On the other hand, all light confluent maps form a Gb subset 

of c(X, Y) (see the beginning of the second section). 
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3.1. Observation. For any compactum X and any locally connected continuum Y the 

set 10(x, Y) is a G6 subset of c(X, Y). 

3.2. Remark. The assumption that Y is locally connected cannot be omitted. In 

fact, in [3] it is observed (the observation is due to W.J. Charatonik) that for the 

Cantor set C and the space cone(C) = C x I/C x (1) the set o(cone(C), cone(C)) 

is not a G, set in c(cone(C), cone(C)). However, the maps used in the argument 

were light, and thus it actually follows that lo(cone( C), cone(C)) is not topologically 

complete. 

In the remaining part of this section we will investigate the class d of all continua 

Y satisfying 

(a) Y is locally connected and for any locally connected continuum 

X the set 0(X, Y) is topologically complete. 

One of McAuley’s results from [12] may be formulated as follows. 

McAuley’s theorem. The unit interval I belongs to ~4. 

The next proposition is a consequence of the Decomposition Theorem and 

Corollary 1.3. Similarly as in the previous section, M denotes the Menger universal 

curve. 

3.3. Proposition. A locally connected continuum Y belongs to SI if and only if the set 

o( M, Y) is topologically complete. 

Indeed, assume there is a locally connected continuum X such that 0(X, Y) is 

not a G6 set in c(X, Y). The set o(M, X) is nonempty by the Decomposition 

Theorem, and thus o( M, Y) is not a Gs set in c( M, Y) by Corollary 1.3. The converse 

implication is trivial. 

Theorem 2.9 implies the following evaluation of the class d. 

3.4. Theorem. If a continuum Y belongs to d, then almost all points of Y 1ocall.v 

separate Y. 

Now we modify the argument for McAuley’s theorem to prove the following 

lemma. 

3.5. Lemma. Let X and Y be locally connected continua and an arc ab c Y be free in 

Y Then the set G of all surjections f : X + Ysuchthatthemapflf-‘(ab):f-‘(ab)+ab 

is open, is a Gs set in c(X, Y). 
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Proof. Let {a,}, (6,) be sequences in ab -{a, b} such that lim Q, = a and lim b, = b. 
Denote by c,,(X, Y) the set of all surjections in c(X, Y), and put 

A,, = {f~ c,(X, Y): there is a point x E X such that x’=f(x) E a,b and 

f(B(x, Vm))n(ax’-{a,x’l)=Ol, 

B,, = {f~ c,(X, Y): there is a point x E X such that x’=f(x) E ab, and 

f(B(x,Ilm))n(x’b-(x’,b))=(d). 

Observe that the sets A,,, B,,,, are closed in c,(X, Y). Indeed, let fk E A,, with 

some xI, E X fulfilling x; =fk(xk) E a,b and fk(B(xk, l/m))n (ax; -{a, XL}) =0, and 

f = lim fk. We can assume that lim X~ = x,, lim x; = x; for some xg E X and xb E a&. 

Since the set ax;-{a,~/,} is open in Y, we have f(B(x,, l/m))n(axh-{a,xl})=0. 

This implies that f E A,,,,,. The proof for B,, is similar. 

Put A = U:,,=, (A,, u II,,,,). Since c~(X, Y) is closed in c(X, Y) it suffices to 

show that G = cJX, Y) -A. The inclusion G c co(X, Y) -A is obvious. Let g E 

c,,(X, Y) -A, CJ be open in g-‘(ab) and x E U. Put x’ = g(x). Since g r~ A,,,, u B,,, 
for any m and n, there are sequences { pk} , {qk} both converging to x in X such 

that the arcs p;qL, where p; = g(pk), q; = g(qk), are closed neighborhoods of x’ in 

ab. By the local connectedness of X there are continua I+ in X containing x, pk 
and qk with lim diam Lli = 0. Take an open set W in X such that U = g-‘( ab) n W 
and take Lk contained in W. Then a continuum irreducible either between pli and 

g-‘(qL)n Lk or between qk and g-‘(pb)n Lk contained in Lk, lies in U. Hence 

x’ E int g( U). Therefore the map g 1 g-‘( ab) : g-‘( ab) --, ab is open, and thus g E G. 

The proof is complete. 0 

An easy proof of the next lemma we leave to the reader. 

3.6. Lemma. Let a graph Y be the finite union of its free arcs a,b,, . . . , a,b,. Then 

for any compactum X and any surjection f: X + Y the mapping f is open if and only 
if the maps f lf’( a,b,) : f -‘( a,b,) + akbk are open for k = 1,. . . , n. 

We obtain the following extension of McAuley’s theorem by Lemmas 3.5 and 3.6. 

3.7. Theorem. Any graph belongs to Op. 

Theorems 3.4 and 3.7 form a partial solution of the following problem, which 

ends the paper. 

Problem. Find an internal characterization of all continua in &. 
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