
JOURNAL OF COMPUTER AND SYSTEM SCIENCES: 2, 1-12 (1968)

Deterministic Stack Automata and the Quotient Operator

J. E. HOPCROFT

Cornell University, Ithaca, New York

and

Betl Telephone Laboratories, !Vlurray Hill, 07971

AND

J. D. ULLMAN

Bell Telephone Laboratories, Murray Hill, 07971

Received July 15, 1967

A B S T R A C T

A stack automaton is a pushdown automaton with the added privilege of scanning
the contents of its pushdown tape without erasing. In this paper, the deterministic
stack automaton with a one-way input (dsa) is considered.

It is shown that if L is a language accepted by a dsa and R is a regular set, then
L/R = {w] for some x in R, wx is in L} is accepted by a dsa. As a corollary, end markers
are not needed on the input of the dsa. It is also shown that if L is accepted by a dsa,
then Max(L) = {w] w in L and for no x is wx in L} is accepted by a dsa.

I . INTRODUCTION

The stack automaton has been studied as an abstract recognition device [1], [2], [4].
The general device is nondeterministic, has a two-way input with end markers, a
finite control and a pushdown store called the stack. Unlike a pushdown automaton,
however, the stack automaton can cause its head to leave the top of the pushdown store
and scan the stack in a read-only mode. This paper is concerned with deterministic

one-way stack automata.
The study of operations on families of languages has proven important in the theory

of languages. Many of the closure properties of (deterministic) one-way pushdown
automata have been established for (deterministic) one-way stack automata [2]. In
particular, the family of languages accepted by one-way stack automata has been
shown to be closed under union, intersection with a regular set, concatenation, Kleene
closure, generalized sequential machine mappings and quotient with a regular set. (If
L 1 and L~ are languages, then the quotient of L1 with L2, denoted L1/L 2 , is the set

1
�9 1968 by Academic Press Inc.

57z12[x-x

HOPCROFT AND ULLMAN

{w] for some x in L2, wx is in L1}.) The family of languages accepted by deterministic
one-way stack automata has been shown to be closed under generalized sequential
machine mappings, intersection with a regular set and complementation. I t is known
[3] that i fL is accepted by a deterministic pushdown automaton and R is a regular set,
then L / R is a context free language. The corresponding result for the family of lan-
guages for determinist ic one-way stack automata was previously unknown and is
established in this paper.

Part of the interest in this result stems from the fact that the previously established
closure properties, with the exception of complementation, have been shown to hold
in general for (deterministic) one-way automata [5]. However, there are families of
languages defined by deterministic one-way automata not closed under quotient with
a regular set and thus a proof must depend on the particular structure of the device
under consideration. The technique of p roof used is new to the literature and should
have other applications.

Another reason for the interest in the quotient with a regular set is related to the
removal of endmarkers. For one-way stack automata, it is known that end markers on
the input are unnecessary for the nondeterminist ic case. For the determinist ic case the
left end marker is obviously unnecessary. Since the family of languages accepted by
deterministic one-way stack automata is closed under quotient with a regular set, the
right end marker is also unnecessary.

II . DEFINITIONS AND NOTATION

In this section we define the one-way stack automaton and provide the notation
necessary to establish the results of the paper.

Intuitively, a one-way stack automaton consists of an input terminal, a finite control,
and a stack. I t is assumed that an input symbol is supplied at the input terminal when
requested by the stack automaton, whereupon it is immediately used to determine the
next move. The stack is a conventional pushdown store with the added capabili ty of
scanning the stack interior in a read-only mode. A move of the device is determined
by the state of the finite control, the stack symbol scanned and an input symbol,
provided one is requested.

Formally a one-way stack automaton I (abbreviated sa) S is an 8-tuple
(K, T , I , ~, ~b , qo , Zo ,F) where:

1 The definition of sa given here differs from that in Ref. [2]. The major differences are the
absence of end markers on the input and the use of two functions governing the move of the sa;
o n e function being applicable only when the stack head is at the top of stack and the other
applicable only when the stack head is not at the top of stack. Due to the lack of end markers
it is not obvious that the two models are equivalent in the sense that they accept the same family
of languages. That the models are equivalent will follow from the main result of the paper.

STACK AUTOMATA AND THE QUOTIENT OPERATOR

(I) K is a finite set of states which contains q0, the start state.

(2) T is a finite set of stack symbols which contains b, the blank symbol and Z 0 ,
the start symbol.

(3) I is a finite set of input symbols.

(4) $ is a mapping from K • (I u {E}) x (T - - {b}) to subsets of K x {L, S, R}
and determines the next move of S when the stack head is not at the top of the stack.
(The stack is always a finite String of (T - - {b})* followed by blanks to the right. The
leftmost blank is called the top of stack.) The E in the second component of the argu-
ment represents the situation where the sa moves without requesting an input symbol.
The significance of L, S and R in the range of 8 is that the stack head moves left,
remains stationary, or moves right, respectively.

(5) 3b is a mapping from K • (I w { ~ }) x (T - {b}) to subsets of
K • [{S,L, E) a (T -- {b, Z0})] and determines the move of S when the stack head
is scanning the blank at the top of stack. The move depends not only on the present
state and an input symbol, if one is requested, but also on the r ightmost nonblank
stack symbol. The symbol S in the range of 8b signifies that the stack head does not
move, L signifies that it moves left without erasing the rightmost nonblank, and E
signifies a move left followed by the printing of a blank (erasing) over the rightmost
nonblank. A nonblank stack symbol in the range of 3b (we assume S, E and L are not
stack symbols) signifies that the symbol is printed over the blank a t the top of stack,
the stack head then moving one cell right to the new top of stack.

(6) F Z K is the set of final states.

Initially, q0 is the state of the sa, and all stack cells contain the blank symbol, b,
except one, which contains Z o . The stack head initially scans the cell immediately to
the fight of the one holding Z 0 (i.e., the top of stack). Note that Z 0 is never pr inted by
the sa, so Z 0 m arks the bot tom (left end) of the stack. We can assume that the stack
head never moves left from Z 0 . Tha t is, 8(q, a, Z0) does not contain (p, L) for q and p
in K, and a in I u {~}.

A configuration of S 2 is a combination of state, nonblank portion of the stack and
posit ion of the stack head. A configuration of S is denoted (q, y , i), where q is in K, y is
in (T - - {b}) * and i is an integer denoting the number of cells from the top of stack to
the cell scanned by the stack head (i.e., i = 0 if the head is at the top of the stack,
i - - 1 if at the r ightmost nonblank, etc.).

We define the relation F s between configurations of S as follows:

2 Unless otherwise stated, S always denotes the dsa (K, T, / , 8, ~ , q0, Z0, F). To avoid long
strings of quantifiers we adopt the following conventions for certain symbols (either with o r

without subscripts or primes). Unless otherwise stated, q is in K, a is in I u {c}, w and x are in I*,
Z is in T, y is in (T -- {b})*, and D is in {L, S, R} or {S, L, E} u (T -- {b, Z0}).

HOPCROFT AND ULLMAN

(1) For i > 0, if (ql, D) is in 3(q, a, Z), then

a : (q, ylZy2, i) Fs (ql, YIZY2, i + m) where i ::: I Y2 I + 1

and m = ~-1, 0 or --1 respectively as D = L, S or R.

(2) I f (ql, L) is in 8b(q, a, g) , then

a : (q, yZ, O) bs (q x , yZ, 1).

(3) If (ql, S) is in 8b(q, a, Z), then

a : (q, yZ, O) [-s (ql, yZ , 0).

(4) I f (qx, E) is in 8b(q, a, Z), then

a : (q, yZ, O) ~-s (ql, Y, 0).

(5) I f (qx, Zx) is in 8b(q, a, Z), Z 1 in 7", then

a : (q, yZ, O) ~'s (ql, Y Z Z I , 0).

I f for 1 ~ j ~ n, a~ : (qj, y j , ij) [-s (qJ§ Y~+I, ij+x), then

axa2...a,~: (ql, Yt , il) 1-* (q,,+x, Y,,'-x, in--~).

We define an sa, to be a deterministic one-way stack automaton (dsa) if, intuitively,
there is at most one move possible from any configuration. Formally, we say S is a
dsa, if, for each q in K, Z in T, and a in 1,

(1) 8(q, a, Z), 3(q, ,, Z), 8b(q, a, Z) and 8o(q, E, Z) each contain at most one element,

(2) 8(q, a, Z) nonempty implies 8(q, ~, Z) empty, and

(3) 8b(q, a, Z) nonempty implies 3b(q, ~, Z) empty.

An sa accepts a language by final state. The language accepted by an sa S, denoted
T(S) , is the set {w J w : (q0, Zo, 0) 1- 7 (q, y, i) for some q in F, y in T* and integer i)
and is called an sa language. A language accepted by a dsa is called a dsa language.
[Note that a string w may be written as alav..a n in several different ways depending
on which ai are e. Furthermore, w may take the configuration (q0, Z 0 , 0) to several
different configurations even for a dsa depending on the number of moves on ~ input
at the end of w. I f any one of these configurations contains a final state, then w is in
T(S)].

I I I . PRELIMINARY RESULTS

In this section we establish some preliminary results which will simplify the proof
of the main theorem.

STACK AUTOMATA AND THE QUOTIENT OPERATOR

First we show that acceptance by final state can be changed to acceptance by pair of
state and stack symbol scanned without affecting the family of languages accepted.

LEMMA 1. Let S be a dsa and let B1 = {(ql, Z1), (q2, Z2),..., (qm, Z,~)} and
B2 = {(Px, X1), (P2, Xz),..., (Pr, Xr)} be sets of pairs of state and stack symbol. Let L
be the set of all w in 1" such that either

(i) w : (qo , Zo , O) t-* (q, y Z , O)

for some y in (7" -- {b))* and (q, Z) in Ba , or (ii)

w : (qo , Zo , O) F-~ (q, yxZy~ ,j),

where j :=] Y2] + 1 and (q, Z) is in B 2 . Then L is a dsa language.

Proof. We construct a dsa S ' from S such that S ' accepts L. S ' has an unprimed, a
primed and a doubly primed state for each state of S. S ' simulates a move of S going
from an unprimed state to a doubly primed state. I f the stack head is at the top of
stack and the combination of state and top stack symbol is in B~, S ' on ~ input goes
to a primed version of the new state, accepts the input, and then enters an unprimed
version. If the combination of state and top stack symbol is not in B x , S' on ~ input
goes directly to the unprimed version. Likewise, if the stack head is not at the top of
stack, S ' goes from the doubly primed state to the unprimed version either through the
primed version or directly depending on whether or not the pair of state and stack
symbol scanned is in B2 �9

Formally let S ' = (K', T, I, 3', 3~, q0, Z 0 , F ') where K ' = {q, q', q" I q in K},
F = {q' [q in K), and 3' and 3' b are defined as follows.

(1)
(2)
(3)

(4)

(5)
(6)

Clearly

The language accepted by a dsa S by empty
{w ! w : (qo, Z0 ,0) t-* (q, e, 0) for some q in K}.

If 8(q, a, Z) = (ql , D), a D in {L, S, R}, then 3'(q, a, Z) --- (q~', D).

If (q, Z) is in B2, then 3'(q", E, Z) = (q', S) and 3'(q', e, Z) = (q, S).

If (q, Z) is not in B2, then 3'(q", e, Z) : (q, S).

If 3b(q, a, Z) - - (qx, D), D in {S, L, E) u T - {b, Zo} , then 80(q, a, Z) == (ql, D).

If (q, Z) is in B 1 , then ~'b(q", e, Z) = (q', S) and ~(q', ~, Z) = (q, S).

If (q, Z) is not in B1, then 3'b(q" , e, Z) ~ (q, S) .
T(S') - L .

stack, denoted N(S) , is the set

LEMMA 2. Let L C I* be a language accepted by some dsa by final state. Let $ be a
symbol not in I. Then there exists a dsa which accepts L$ = {w$ I w in L} by empty stack.

s Strictly speaking 8(q, a, Z) = {(qt, D)}. For simplicity of notation we delete the brackets.

HOPCROFT AND ULLMAN

Proof. Let S be a dsa accepting L by final state. Without loss of generality we
assume that S never erases Z 0 since we can replace 3b(q, a, Z 0) = (q l , E) b y
8b(q, a, Z0) = (q2, S), where q2 is a new state from which no move is possible, and
q2 is in F only if qa is in F. Furthermore, we may assume that S never makes an
infinity of moves on ~ input [2].4

For each q in K, let q' be a new symbol and K ' be the set of all such q'. We construct
S ' = (K ~A K ' u {~}, T, I u {$}, ~', 3b, qo, Zo, $) to accept L$ by empty stack as
follows. S ' behaves as S until S enters a final state. I f S enters a final state and no move
on E input is possible, then on input $, S ' enters the special state q. On an input in I , S '
behaves as S. I f S enters a final state, and moves on r input are possible, S ' makes the
moves on ~ input but uses pr imed states. When no further move on r input is possible,
S ' on input $ enters ~ and on an input in I returns to an unpr imed state, behaving as S.
The state ~ causes S ' to raise its stack head to the top of the stack and then erase the
stack. Formal ly

(1) For q in K - - F, 3'(q, a, Z) = 3(q, a, Z).

(2) Fo r q in F, if 3 (q ,E ,Z) is empty, then 3 ' (q , $, Z) = (~ , S) and for
a :/6 r $'(q, a, Z) = 3(q, a, Z).

(3) For q in F, if 3(q, r Z) = (qx, D), then 3'(q, E, Z) = (q~, D) and for q in K, if
3(q, r Z) - - (qx, D), then S'(q', , , Z) = (ql , D).

(4) For q in K, if 3 (q , e , Z) is empty, then 3 ' (q ' , $, Z) = (~ , S) and for
a ~ e, $'(q', a, Z) = 3(q, a, Z).

(5) Statements similar to (1) to (4) above hold for 3b.

(6) 3(q, e, Z) -- (~, R) and 3b(~, E, Z) = (~, E).

Clearly S ' is deterministic and accepts L$ by empty stack.

T h e main theorem of the paper states that the family of languages accepted by dsa
is closed under quotient with a regular set. The gist of the proof is to show that a dsa
can be modified so that it will have "sufficient information" to answer the question:
"Does there exist an input sequence in a regular set such that if the sequence is applied
to the dsa in its present configuration, the dsa will end up in a configuration in which
it accepts the input ?" Part of the needed information is stored on the stack and part
in the finite control.

We now describe the construction by which the dsa is modified so as to store the
needed additional information on the stack. To this end we introduce a finite automaton
which later will be fixed to be a finite automaton accepting the regular set with respect
to which the quotient is taken.

4 Although the model in Ref. [2] is different, the same technique applies.

STACK AUTOMATA AND THE QUOTIENT OPERATOR

Let S be a dsa and let A = (K a , / , 3A, PO, FA) 5 be a finite automaton. There exists
a dsa S ' which operates as S except that whenever S prints a stack symbol, S ' prints
both the stack symbol and a mapping which answers the following two questions:

(1) For qx and q2 in K and PI and P2 in KA, does there exist an input string w
which will take S from state ql to q2 and take A from state pa top2 while S either keeps
its stack head steady or moves the stack head lower on the stack and back ?

(2) For ql in K and PI in KA does there exist an input string w which causes S in
state ql to erase its stack (possibly first increasing the length) and causes A in state Pl

to enter a final state ?

To this end let ~ be a mapping from K • K a • K • KA to {0,1} • {0,1} and let C
be the set of all such mappings. Let y be a string of nonblank stack symbols. The

mapping ~ is said to describe y if when ~(qx, P l , q2, P2) = (ix, iz), then

(1) i x = 1 if and only if there exists w in I* such that 3A(Pl, W) = Pa and
w : (ql ,Y, 1) k*(q2 ,y , 1) by a sequence of moves in which the stack head never
reaches the top of stack (i.e., S never enters a configuration (q', y, 0) for any q' in K).

(2) i., = 1 if and only if there exists w in I* such that 3A(Pl, w) is in FA and

w : (ql , Y, O) k] (q~, ~, 0).

I t is important to note that if the same a describes bo thy andy ' , then for Z in T, the
same c~' describes y Z and y 'Z . That is, if a stack symbol is added to the stack, the
mapping describing the new stack depends only on the new stack symbol and the

mapping describing the old stack3

LEMMA 3.

i f and only i f

Let S be a dsa and A be a finite automaton. There exists a dsa

t

S' = (K, T • C, I, 3', 3b, q0, [Z0, %], 0) 7 such that

x : (qo, [Zo, %], O) ks*. (q, [Zo, %][Z1, a~]...[Z,,, a,], i)

x : (qo, Zo, o) k~ (q, ZoZl...z., i),

and for 0 <~ i ~ n, ~i is the mapping that describes ZoZv. .Zi .

5 A finite automaton A is a 5-tuple (K A , I, 3a, Po, FA) where K a is a finite set (of states),
I is a finite set (of inputs), 3 A is a mapping from K a • I to K a , P0 is in K A (the start state),
and F A_CK a (the final states). 3a is extended to K A • I* as follows. For eachp in K A,
a in I and x in 1", 8A(p, ~) = p and 3a(P, xa) = 8a(3a(p, x), a). The set accepted by A is
{x [8a(p0, x) in FA}. A set is regular if and only if it is accepted by some finite automaton.
A will always denote the finite automaton (K A ,/ , Sa, P0, FA).

6 Although we shall not prove it here, there is an effective procedure for constructing the
new mapping from the stack symbol and old mapping.

7 Unless other wise stated, S ' will always denote the dsa (K, T • C, L 3', 8't, q0, [Zo, s0], ~).

HOPCROFT AND ULLMAN

Proof. The functions 8' and 8~ are defined in the following manner.

(1) 3'(q, a, [Z, ~]) = 3(q, a, Z). (If the stack head of S ' is in the stack, then S '
disregards the mappings and moves exactly as S.)

(2) I f 3b(q, a, Z) = (ql, D), D in {S,L, E}, then 3~(q, a, [Z, ~]) = (ql, D). (if with
stack head at the top of the stack, S does not move its stack head or moves it left, then
S ' does likewise. If S erases a stack symbol, then S ' erases the corresponding stack
symbol and mapping.)

(3) If 3b(q, a, .7..1) = (ql, Z~), Z 2 in T, then 3~(q, a, [Zx, ~1]) = (ql, [Z2, az])
where n2 is the mapping which describes yZ2, y being any string in T* described by

s ~x.
Clearly S ' satisfies the conditions of the lemma.

Next we show that the dsa S ' of Lemma 3 can be further modified so that when it
moves its stack head into the stack, it can carry information in its finite control to
answer the question: For q in K and p in K A does there exist a w in I* which causes S
to erase its stack and for which 8A(p, w) is in FA ?

To this end let m be a mapping from K • KA to {0,1} and let M be the set of all
such maps. Let y = [Zo, ~0][Zt, nl]...[Zi, ~i]...[Z,~, ~,] be a string in (T • C)*
with the property that for 0 ~ j ~ n, ~ describes ZoZ 1 ... Z~. The mapping m is said
to be associated with [Zi, oq] in the string y if m(q, p) = 1 if and only if there exists
w in I* such that 3a(p, w) is in Fa and w : (q, ZoZa... Z~ ... Z~, n -- i + 1) F* (ql, E, O)
for some qt in K.

We now define a function A of M • T • C into M which relates the mapping associ-
ated with [Zi_x, ~-1] to the symbol [Zi-1, ~i-1] and the mapping associated with [Zi, ~i]-
Formally d(ml, [Z, ~]) = m 2 where m2(q,p) = 1 if and only if there exists a in
I U {E}, ql and q2 in K, Pl and p~ in KA such that (i) the first component of ~(q, p, q~, Px)
is 1, (ii) 3(ql, a, Z) -- (q2, R) and 8~(pa, a) ---- p~, and (iii) m~(q2 ,p2) = 1. [For the
dsa with stack head at position n - - i ~ 0 to erase the stack, the stack head must first
get to the top of the stack. To do so the stack head must, possibly first wig-
gling below position n - i (first component of ~ ~- 1), pass through position
n - - (i T 1) (3(q 1 , a, R) ~: (q2, R)) and starting from this position ultimately get to
the top and erase the stack (m x = 1)].

d is extended to M • (T • C)* as follows. For each m in M, X in T • C and y in
(T • C)*, A (m ,c)= m and A(m, y X) = d(A(m,y) ,X) . The inverse function is
defined by A-~(m, y) = {m' [A(m', y) -- m}.

In the next lemma a dsa S" is constructed from S'. S" simulates S' . Whenever the
stack head of S ' enters the stack, the stack head of S" enters the stack. However, S"
also computes in its finite control, the mapping m associated with the stack symbol

s If there is no y in T* described by ~z, then ~'~(q, a, [Zj , e~l]) can be left undefined since
[Z1, ~1] will never appear on the stack.

STACK AUTOMATA AND THE QUOTIENT OPERATOR

scanned. Whenever the stack head moves lower on the stack, the mapping A deter-
mines uniquely the new mapping m to be stored in the finite control. The crux of proof
is to compute the new m whenever the stack head moves higher on the stack. The
difficulty is that d-1 is not necessarily unique. In the situation where A-1 is multivalued,
S" must determine the appropriate m in A-t without losing the position on the stack.
T h e details of this construction are given in the next lemma.

LEMMA 4. Let S be a dsa.Let S ' be the dsa constructed from S according to Lemma 3.
There exists a dsa S" -- (K", 7' • C, 1, 3", 3~ , qo, [Zo, %], 0) such that:

(1) x : (qo, [Z0, %], 0) Fs*, (q, [Z o , no] ... [Zn, an], 0) i f and only i f

x : (qo, Zo, 0) F*s (q, zo ... z , , 0),
(2) x : (qo, [Zo, %], 0) F~,, ([q, md, [Zo, %] ... [Z , , a,], n - - i + 1), i > 0,

if and only ~[x : (qo , Zo , O) F* (q, Z o ... Z,, , n -- i q- 1) and m, is the mapping asso-
ciated with [Zi , a/] in the string [Z0, %] ... [Zn, a~].

Proof. S" is to behave exactly as S', except when S ' moves into the stack. Thus

(1) I f 3;(q, a, [Z, ~]) =- (qt , S), (qx, E) or (ql , [Z1, ~x]), then

3;(q, a, [Z, a]) = 3'b(q, a, [Z, a]).

When S ' moves into the stack, S" must compute the appropriate table m. Thus

(2) I f 3;(q, a,[Z, a]) = (qx ,L), then 3;(q, a, [Z, a]) = ([ql, mo],L) were m o is the
mapping associated with the top nonblank symbol of the stack. (N.B.: m o depends
only on [Z, ~]).

(3) For each q in K let ~ be a new symbol and l e t / s be the set of all such symbols.

(a) I f 3'(q, a, [Z, a]) = (ql, L), then for each m in M,

3"([q, m], a, [Z, ~]) = ([~71, m],L).

(b) For each ql in /~, m in M, and [Z, a] in T X C,

8"([~1, m], ,, [z, ~]) = ([ql, A(m, [Z, ~])], S).

(Whenever S ' moves left, S" moves left and then computes the new table.)

(4) If 3'(q, a, [Z, a]) = (qx, S), then for each m in M,

8"([q, m], a, [Z, c~]) = ([ql, m], S).

The only case remaining is the situation where S in state q moves right and enters
state ql �9 Since A-1(m, [Z, ~]) may not be unique, S" must somehow determine the
element of A-a(m, [Z, ~]) associated with the symbol to the right of [Z, a] on the stack.
I f A-l(m, [Z, ~]) is unique and 8'(q, a, [Z, ~]) = (qx, R), then

8"([q, m], a, [Z, a]) = - - ([ql, A- ' (m, [Z, a])], R). If A-l(m, [Z, ~]) = {ml, m z ,..., mr},

10 HOPCROFT AND ULLMAN

r >7 2, then S" moves in the following manner. Assume the stack of S is Y.I/~_ I ... Y1 ~
where Yn = Zo . Furthermore, assume S is scanning Yi when it moves right one
symbol. S" moves right one symbol, computes .4-X(m, Yi) = {m 1 , m 2 , m,} and then
continues to move right (up the stack), computing for each j, 1 ~ j ~< r, A-l(m;, Yi-1),
A-~(mJ, Y i - ' ,Y , - I) , A - l (m~ , Y~-a Y i - z Yi-a), etc. until one of two conditions is
reached.

(1) S" reaches the top of stack.

(2) S" reaches a symbol Y~ for which A-X(mj , YzYz+ 1 ... Yi-x) is nonempty for
only one value of j .

In case (1), clearly that m~ for which A- l (m~ , 111112 ... Y~-x) contains m 0 is the
desired mapping. In case (2), the m s such that .4-X(mj, YzYz+l ... Yi-x) is nonempty is
the desired mapping. Now, having determined the correct mapping, S" must return
its stack head to the symbol Yi-a �9 The process of finding Yi-1 is similar for both cases
and only case 2 will be handled. Let k be such that only A-a(mg , Y*Yz+I ... Y i - I)
is nonempty. S" selects m' from A - l (m e , Y~+IYz+2..-Y/-1) and m" from
A-l(m~" , Yt+xY~+2 ... Yi-x) where me. is any mapping in {ml, m2 mr) other than
me with A-X(mk, , Yz+lYl+2 ... Yi-a) nonempty. Clearly some such m e, exists since
S" stops moving right at the first symbol for which condition 2 above is satisfied.
Finally S " moves left computing A(m' , Yz+l), A(m' , Y~+IY,+2) and A(m", Yr+l),
A(m", Yl+l Yz~ 2) until a symbol Yn is reached such that

,~(m', Y,_~Y,+~ ... Y~) = A(m", Y~+IYz+~ ... Y~).

At this point S" moves its stack head one symbol right and enters state [ql, me] where
ql is the state that S entered when it moved right. The claim is made that h = i and
thus the stack head of S" is properly positioned to simulate the next move of S. To see
this, note that m' and m" in A - l (m , YL+IY,+o ... Y~) implies A(m', Y~+aY~_z ... Y~) =
A(m", Y~.xy~_2 ... Yi) = m. Thus h ~ i. Furthermore m' in A - l (m e , Y~+xYz+a ... Yi-1)

and m" in A- l (me , , Y , qx Yz+2 ... Yi-1), me V i: me , , implies A(m', Yz+i Yz+2 ... Y i -x) = me
and A(rn", Y~+aY,+=...Yi_l) = m~,. Thus a(m' , Y,+IY,+z.. .Y~) ::/:: A(m", y;+ly,_2. . .y ,)
for g < i. Therefore h =: i. (Intuitively, as the stack head moves back down the stack
Yn is the first symbol reached for which

a(m' , Y,+xYz+= ... Y,) = A(m", Y,+,Yz+2 ... Y~,)

and since this is certainly true by the time the symbol Y~ is reached, h must be less
than or equal i. On the other hand, once a symbol Ya is reached such that the two

D Note that we have renumbered the symbols on the stack so that the numbers increase
from top to bottom. The reason for this is to facilitate understanding of the construction by
making the subscript of the stack symbol correspond to the position on the stack.

STACK AUTOMATA AND THE QUOTIENT OPERATOR I l

quantities are equal, they remain equal for all symbols lower on the stack. But since
they are not equal at Yi-x, h must be greater than i - - 1 and hence h = i).

IV. MAIN RESULTS

Using L e m m a 4, it is easily shown that the class of languages accepted by dsa by
final state is closed under quotient with a regular set.

THEOREM I. I lL C I* is accepted by a dsa by final state and R C I* is a regular set,
then L/R is accepted by a dsa.

Proof. Let $ be a symbol not in I, let R' = R$ and let .4 -= (KA, I U {$}, 8A, q0, Fa)
be a finite automaton accepting R'. By Lemma 2, construct a dsa S accepting L$ by
empty stack. By Lemmas 3 and 4 construct S" from S and R'. Let B 1 = {(q, [Z, a])] 3
ql in K, Pl in F~ for which the second component of ~q , P0, ql , Pl) is 1) and let
B 2 :=: {([q, m], [Z, a]) m(q, Po) = 1). Now the set

{x [x : (qo, [Zo, %], O) ks*. (q, y[Z, o~], 0), (q, [Z, ~]) in B x or

x : (qo, [Z0, %], 0) ks*, ([q, m],yx[Z, ~]Ya ,J),J =]Y2 + 1 and ([q, m], [Z, a]) in B2}
is L/R. Thus by Lemma 1, L/R is accepted by a dsa by final state.

Other authors [2] have considered dsa with end markers. TM A language L _C I* is
accepted by a dsa in their formulation, if r r and $ not i n / , is accepted by a dsa in
our formulation. Clearly if r is accepted in our formulation, then so is L$. Thus by
Theorem 1, L is accepted. Thus the family of languages accepted by dsa is the same
with or without end markers.

COROLLARY. I f cL$, L C_ I*, r and $ not in I, is accepted by a dsa, then L is accepted
by a dsa.

Proof. I f r is accepted by a dsa S = (K, T, I • {r $), 8, 3b, qo, Zo, F), then
clearly L$ is accepted by the dsa ~ = (K u/(7, T, I u {r 8, ~b, qo, Zo,F) where
~7 = {~ [q in g) , ~(q, a, Z) ---- 8(q, a, Z) for a in I u {$, e), ~(~, ~, Z) = (qx, D) if
3(q, E, Z) = (ql , D), ~(~, r Z) = 8(q, r Z), and ~b is defined in a manner similar to &
The corollary follows from Theorem 1 by letting R = {$}.

Remarks. An operation closely related to quotient with a regular set is the operation
Max defined by Max(L) = {x [x is in L and for no y in I* - - {~} is xy in L}. Let F be

10 There are other differences in the models but it is easily shown that these other differences
do not affect the family of languages accepted.

12 HOPCROFT AND ULLMAN

the set of final states of a dsa accepting L. By letting R = I* - - {~} and modifying the
construction of Theorem 1 so that B 1 == {(q, [Z, ~])l q in F and for no q' and p ' is the
second component of a(q, Po, q',P') = 1} and B 2 = {([q, m], [Z, oL])[q in F and
m(q, P0) = 0} we obtain a dsa accepting Max(L).

Since Z ' * - - L = Max(Z'*$ u LSZ*)/$, the family of languages accepted by a
nondeterminist ic sa is not closed under Max since it is not closed under complement.
This provides an alternate proof that the family of languages accepted by dsa is
properly contained in the family of languages accepted by an sa.

An sa is said to be nonerasing if for each q in K, a in I u {c} and Z in T - - {b},
8o(q, a, Z) is contained in K • [{S,L) to (T - -{b , Z0})]. The techniques used in this
paper can be used to show that the family of languages accepted by nonerasing dsa
is closed under quotient with a regular set. Lemma 2 is no longer valid, and is replaced
by a lemma stating that L$ can be accepted by a dsa which enters an accepting con-
figuration when the stack head is at the top of stack. Appropriate changes must also be
made in Lemmas 3 and 4.

REFERENCES

1. S. GINSnUR(;, S. GI~r'mACH, AND M. HaaaIsoN. J. ACI~I 14, 172-201 (1967).
2. S. GINSnURG, S. GnRmACH, n-~'D M. HAnaZSON. J. AC34 14, 389--418 (1967).
3. S. G~snua~ a.~u S. Gay.roaCH. Info. Control 9, 620-648 (1966).
4. J. HoPel~ovT A,~D J. ULL1MA'N'. J. Computers Syst. Sci. 1, 166-186 (1967).
5. J. IIoPcROVT ANn J. ULLMAN. BSTJ 46, 1793-1829 (1967).

