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Abstract 

The main result in this paper is the classification of simple Novikov algebras A with 
a maximal subalgebra H such that A/H has a finite-dimensional irreducible H-submodule. 
A second result deals with the extension of Hamiltonian operators. 

0. Introduction 

In [6] Gelfand and Dorfman formulated conditions for operators in the formal 

calculus of variations to have the Hamiltonian property. Following [6] consider an 

algebra of polynomials of symbols uz’, where u runs over some set of indices 

A = {0,1,2, . . . }. The “d’ff 1 erentiation with respect to x” is defined by 

d/dx = 1 u:+ "a/au:). 
i,a 

Let H be a matrix differential operator with matrix components Hij, i, j E A 
Suppose that 

Hij = 1 (CijkUf) + dijkui”d/dx). (1) 
k 

where are the cijk’s are scalars from the ground field F and d, = cijk + Cjik for all 

i, j, k E A. Let A be an algebra with basis ei, i E A Define a multiplication on A via 

ei 0 ej = Ck cijkek. Gelfand and Dorfman [6] proved that H is a Hamiltonian operator 

if and only if the algebra satisfies the identities 

(XOY) 0.2 = (XOZ)OY, (2) 

(xoy)oz + Y”(XOZ) = XO(Y”Z) + (Y”X)OZ. (3) 
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Now let H be a matrix differential operator of a more general type. 

Hij = C (&jkU$’ + CijkU:l) + dijkur’d/dx), 
k 

where aijk = - ajik,dijk = Cijk -I- Cj&. Along with the IIlUltiplkatiOIl 0 On A WC define 
another multiplication ei x ej = Ck &jkek. Again Gelfand and Dorfman proved that 
H is a Hamiltonian operator if and only if 

(a) the operation 0 satisfies (2) and (3), 
(b) the operation x gives a Lie algebra structure on A, i.e., 

uxv= --uxu, (wxu)xu+(l4xv)xw+(uxw)xU=o, (5) 

(c) the operations 0 and x are related by 

(w~u)xu-(w~u)xl4+(wxu)~u-(wxu)~u-w~(uxu)=0. (6) 

Example (S.I. Gelfand, cf. [6]). In any associative algebra with differentiation 8, the 
product a 0 b = a% satisfies (2) and (3). In particular, consider the algebra of poly- 
nomials in one variable x with the standard differentiation 8x = 1. The basis ci = xi, 
i 2 0, gives structural constants 

Cijk =@i+j-l,k, ei”ej=Ci,j,i+j_lei+j_l. 

Thus, the operator with matrix components 

(7) 

Hi, = ju!:‘j_ 1 + (i + j)ui+j_ rd/dx, i, j 2 0, (8) 

is Hamiltonian (this operator was first mentioned in [9]). 
In any algebra (A,o) which satisfies the identities (2) and (3), the operation 

a x b = ab - ba satisfies (5) and (6). Hence, for any scalar u E C, the operator 

H,j = C (a( j - i)Ujp’ + jui:‘j + (i + j)uzjd/dx), i, j 2 0 (9) 
k 

is Hamiltonian. 
Balinskii and Novikov [l] (see also [lo]) noted that finite-dimensional algebras 

satisfying (2) and (3) are crucial for the classification of linear Poisson brackets of 
hydrodynamical type. Papers [l, lo] were followed by a series of papers [2, 31, 
[ll-13, 151 on the classification of finite-dimensional algebras satisfying (2) and (3). 

In [l l-131 linear algebras satisfying the identities (2) and (3) were called Novikov 
algebras. These papers study simple finite-dimensional Novikov algebras of charac- 
teristic p > 2. The first shows that every such algebra is a deformation of certain 
graded Novikov algebra of dimension p”, while the second classifies all such algebras 
which contain an idempotent. The third classifies modules over such an algebra. 

In this paper we prove some classification theorems for infinite-dimensional Nov- 
ikov algebras over an algebraically closed field F of characteristic 0 under assump- 
tions similar to those on Lie algebras in [7]. First we investigate simple Novikov 
algebras A with maximal subalgebra H such that A/H has a nonzero finite-dimen- 
sional submodule. Such an algebra has a Weisfeiler filtration in a natural way, which 
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leads to a graded algebra G associated with A. For convenience, we list the examples 
of graded simple Novikov algebras that arise in this manner. 

Type I: G has a basis (xi} for i an integer with products given by xixj = xi+j. 
Type II: A has a basis {xi} for i an integer 2 - 1, and products are given by 

XiXj = (j + l)Xi+j* 

Type III: A has a basis {xi} for i an integer I 1, and products are given by 
XiXj = (j - l)Xi+j. 

Type IV: A has a basis {Xi} for i an integer, and products are given by 
xixj = (j + b)Xi+ j for some scalar /I # 1. 

We remark that the graded algebra of type I is just isomorphic to the algebra of 
Laurent polynomials, whereas the algebra of type II is just S. Gelfand’s example. The 
algebra III is isomorphic as an algebra to the algebra II. However, the isomorphism 
reverses instead of preserving the grading. 

As for the algebras IV, let Z denote the integers and consider the additive subgroup 
Z + Zg of F and its group algebra B = F[Z + Z/?]. Elements of B are linear 
combinations C kixdCi) where ki E F, 6(i) E Z + Zfl, and xdCi) is identified with the 
group element 6(i). The mapping ‘:x8 + 6~‘-~ extends to a differentiation of the 
algebra B giving rise to the Novikov multiplication, fg’ for J;g E B. The subspace 
A = F[Z + I?] spanned by elements xi+” for i E Z is closed under the product fg’. 
Thus A is a Novikov algebra. It is easy to see that x’+~(x~+~) = (j + B)x’+~+~, so A is 
the algebra of type IV. The Novikov algebra in this construction with /I = 1 is 
excluded from type IV because it does not arise from a Novikov algebra A with 
a maximal subalgebra H with the property that A/H has a finite-dimensional 
irreducible submodule. 

Our first result is the following: 

Theorem 1. Let A be a simple Novikov algebra over an algebraically closedJield F of 
characteristic 0, and let A contain a maximal subalgebra H such that A/H has 
a jinite-dimensional irreducible H-submodule. Then the associated graded algebra G is 
an algebra of type I, II, III, or IV. Conversely, each of these graded algebras satisfies the 
hypotheses of the theorem. The codimension of H isjinite exactly when G is of type II, 
and in this case the codimension is 1. 

The multiplications for each of the types of graded algebras arising here are special 
cases of the product xixj = (aj + fi)xi+j. The Hamiltonian operators with correspond 
to these graded algebras are 

Hij = c((aj + fi)Ui:‘j + [a(i + j) + 2B]ulo+‘jd/dx), 
k 

(10) 

where i,j, k run over all integers. 
Let A* denote the closure of A with respect to the topology induced by the 

filtration. 
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Theorem 2. Let A be and algebra satisfying the hypotheses of Theorem 1, and let the 
associated graded algebra G be of type II, III, or IV. Further if G is of type IV, suppose 
that b is not a nonzero integer. Then A* = G*. 

The proofs of these two theorems are found in Section 2. In Section 3 we prove that 
the only product x satisfying (5) and (6) on a graded algebra of type II, or of type IV 
with /I not an integer, is a scalar multiple of the commutator product, 
x x y = x 0 y - y 0 x. So in these cases the Hamiltonian operator (8) can be extended to 
the form (4) only as 

Hij = C(ct( j - i)$’ + (j + l)ai:‘j + (i + j + 2)$‘d/dx). 
k 

When A is of type IV and /l a nonzero integer, there exists a Lie product on A which is 
not a multiple of the commutator product. 

1. Modules over finite-dimensional algebras 

For our main theorems we need to develop some results about modules over 
finite-dimensional Novikov algebras over F. Let RA = {R, 1 x E A) where R, is right 
multiplication by x. 

Lemma 1.1. Let A be afinite-dimensional Novikov algebra, let M b ajinite-dimensional 
module for A, let 0 # w E M be such that Aw = 0, and let B, C, D be ideals of A. Then 

(a) wB.C+w.(BC+CB)=C*wB-tw*(BC+CB).Further, 

D(wB.C + w.(BC + CB)) 

cwB.DC+w(B.DC+DC.B)+wC.(DB+BD) 

+ wD.(BC + CB) + w.D(BC + CB), (11) 

(wB.C + w*(BC + CB))D 

cwB*CD+w(B.CD+CD*B)+wD*(BC+CB). 

(b) C(R”,w) c R;-‘(WC) + R:,(wC). 

(12) 

Proof. From wB.C c w-BC + Bw.C + B.wC = w*BC + B*wC and B-WC c 
w*BC + wB.C we obtain wB.C + w*(BC + CB) = C.wB + w.(BC + CB). Also, 

D(wB.C + w.(BC + CB)) 

c (D.wB)C + (wB.D)C + wB.DC + wD.(BC + CB) + w.D(BC + CB) 

c DC.wB + (D.wB + w.(DB + BD))C + wB-DC + wD.(BC + CB) 

+ w*D(BC + CB) 
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c wB*DC + w(B*DC + DC*@ + wC.(DB + BD) 

+ wD*(BC + Cl?) + w*D(BC + CB), 

(wB~C+w~(BC+CB))Dc(C~wB+w*(BC+CB))D 

cCD~wB+wD*(BC+CB) 

cwB*CD+w(B*CD+CD-B)+wD*(BC+CB) 

to give part (a). The case n = 1 of part (b) follows from part (a). For n 2 2 we proceed 
by induction using the relation (R:w)c = R:(wc) which follows from (2): 

C(R;w) = C*(R;- l w)A c C(R;-‘w)*A + (R;-‘w)CA + (R:-‘w)CA 

c R;-‘(WC) + R;-‘(WC) f (R;-‘(wC))A + (R;-‘w)C 

c R;-‘(WC) + R:(wC). i-J 

Lemma 1.2. Let A be a finite-dimensional Novikov algebra, Let M be a jnite-dimen- 
sionalfaithfil irreducible module for A, and let 0 # w E M be such that Aw = 0. Then 
A = Fe where e is an idempotent, and M = Fw. 

Proof. Let B be a nonzero ideal of A with BZ = 0. Taking C = B and D = A in (11) 
and (12), we see that wB. B is a submodule of M. On the other hand, taking 
D = C = B in (11) and (12) shows that B annihilates wB* B on either side. Since A acts 
faithfully, wB*B = 0. On the other hand, the choice C = D = A in (11) and (12) 
establishes that wB* A is a submodule, and the setting C = A, D = B in (11) and (12) 
show that wB. A is annihilated on both sides by B. Again the fidelity of the action of 
A implies that WB - A = 0. 

It follows from Lemma 1.1(b) with C = A that the submodule generated by w is 
C,Riw, and this must be all of M since M is irreducible. But then 

cCR;(wB)=O, 
n 

MB=~(R;w)Bc~R;(wB)=O, 
n ” 

which contradicts the fidelity of the action of A. We conclude that A can contain no 
nonzero ideals which square to zero. Hence, A is a direct sum of ideals generated by 
orthogonal idempotents (see [15]). 

Suppose that A has k orthogonal idempotents, say el,ez, . . . ,ek. Let MI = 

@eMI vel = 0} and observe that MI is a submodule since eei * el = uel * ei = 0 and 
eiv.ei = - vei*ei = 0 for any VE MI. If MI = M, then eIM = e:M = eIM*eI c 
Me1 = 0, which contradicts the fidelity of the action of A. Then M, = 0. Using (2) and 
(3) we see that ye1 *e, = v-e: + elosel - el-uel = uel for all v E M. Thus, el acts as 
right identity on M, and by symmetry, each of the eis acts like the identity on M. It 
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follows immediately that Fw is a nonzero submodule of M, and hence M = Fw. Since 
the difference between two idempotents annihilates M, there can be only one idem- 
potent in A. 0 

Proposition 1.3. Let A be jnite demensional, and let M be a Jnite-dimensional faithful 
irreducible module for A. Then dim M = 1 and dim A = 1. 

Proof. For x E A, let 1, denote the action of A on M given by A,u = xv for u E M. 
Then from the defining relations of a Novikov algebra, [A,, A,] = &,,,, for x, y E A. 
This says that the operators 1, for x E A form a Lie algebra of operators on the vector 
space M. Since A is a direct sum of l-dimensional algebras modulo its solvable radical, 
A- is solvable as a Lie algebra. So these operators form a solvable Lie algebra of 
operators. Hence by Lie’s theorem, there exists a nonzero element w E M which is 
a common eigenvector for all of the A,‘s. If all of the A.,% annihilate w, then our result 
follows from Lemma 1.2. 

Thus, we may suppose that there exists x E A with xw = w. Then, WA = xw - A = 
xA.w c Fw, and so Fw is a submodule of M. By the irreducibility of M, we have 
M = Fw and dim M = 1. Since the kernel of the action on each side of M is of 
codimension no more than 1 in A, we see that dim A I 2. Suppose first that 
dim A = 2. Then there exists a nonzero z E A with zw = 0. The fidelity of the action of 
A implies that wz # 0, and we can normalize so that wz = w. Then there exists x E A 
withwx=Oandxw=w.Wehavezx~w=zw~x=0,andxz~w=xw~z=w=xw, 
showingthatzx,xz-xEFz.ButthenO=xz.w+z.xw-zx.w-x.zw=xz.w= 
xw = w. This contradiction rules out the case where dim A = 2. So dim A = 1, to 
complete the proof. 0 

2. Classification theorems 

We consider in this section a Novikov algebra A with a maximal subalgebra H such 
that A/H has a nonzero finite-dimensional H-submodule. 

Lemma 2.1. Let B be an arbitrary subalgebra of A. Then NA(B) = {a E A JaB + 
Ba c B} is a subalgebra of A. 

Proof. Let al,a2 E N,(B) and b E B. Then 

(aIa2)b = (alb)az E Baz E B, 

b(aIaz) = aI(baz) + (ba, - a,b)a, E aIB + BaI c B. 0 

Let V be a minimal nontrivial H-submodule of A/H, and let P be the preimage of 
V under A + A/H, so P is an H-bimodule, H c P E A, and v/H = V. From Lemma 
2.1 it follows that V is an irreducible H-module. Otherwise f E N,(H), which implies 
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that N,(H) = A and H is an ideal of A which contradicts the assumption that A/H is 
a nonzero H-module. 

Consider the Weisfeiler filtration of A induced by H and V [14]. Let K be the kernel 
of the representation of H on V. Since V is finite dimensional, it follows that H/K is 
finite dimensional as well. Now let K1 = {u E K I Va + aV E K}, and in general let 
Ki+l=(UEKiIT/a+U~VKi}.WedefineA,=H,A,=K,andAi=Ki_lfori22. 

Let 6 denote the linear span of all products of elements from g having i factors and an 
arbitrary arrangement of brackets. Define A-i = xi= 1 Vj for i 2 1. It is easy to see 
that 

. . . zA-~xA,,DA~I ..- 

is a filtration, that is AiAj c Ai+j for all i,j. Since 1 Y, Ai is a subalgebra of A properly 
containing H, it follows that A = C ‘? o. Ai. Let G be the graded algebra associated with 
the filtration above. Thus, G = @iczGi, where Gi = AI/AI+ 1 and the multiplication is 
defined by 

(U + Ai+l)(b + Aj+l)=Ub + Ai+j+l, for UE Ai,bE Aj. 

Remark 2.2. Since G-i = V is an irreducible faithful module over Go = H/K, it 
follows from the results of the last section that dim G_ 1 = dim G,, = 1. Let elements 
x - 1 and x0 span G _ 1 and Go, respectively. There exist scalars u, /? E F such that 

xf=/?xo, x0x-i =(/I-cL)X_i. 

Note that by the very definition of the Weisfeiler filtration the graded algebra G is 
transitive, that is if x E Gi for i 2 0 and if G-ix = xG_ I = (0), then x = 0. 

Our objective in the next series of lemmas is to establish that dim Gi = 1 for i 2 1, 
and that a basis {Xi} with xi E Gi can be chosen SO that xixj = (ja + B)xi+j for all 
i and j. 

Lemma 2.3. x_ 1xo = /3x_ 1, 

Proof. If a z B, then 

(B - a)x-1x0 =(x0x-1)x0 =(x0x0)x-1 = /3X0X_1 = /q/T? - tl)X_l, 

which implies x- 1x0 = /Ix- 1. If a = /I, then x0x- I = 0. By the transitivity of G we 
may assume that x- 1xo = yx- 1 where y # 0. But then 

yx-1x0 =(x-1x0)x0 =(x0x-1)x0 +x-1(x0x0) -x0(x-1x0) 

= x_1(xoxo) = /T?X_lXO, 

which implies /I = y. q 
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Lemma 2.4. For any xi E Gi, 

(a) Xix0 = BXi Und 

(b) xoxi = (in! + p)xi. 

Proof. (a) The assertion is valid for i = 0, and we proceed by induction on i. For 
i 2 1, (xixo)x- 1 = (xix- 1)x0 = fixiX- 1 by the inductive assumption. Hence, 

(XIX0 - fiXi)X_ 1 = 0. 

We also have 

X-1(XiXO) = Xi(X-1x0) + (X-1Xi - XIX-1)X0 

= PXiX- 1 + fi(X_ 1Xi - XIX- 1) = bX_ 1xi 

by Lemma 2.3 and the inductive assumption. Thus, 

X- 1 (XIX0 - flXi) = 0. 

By the transitivity of G we conclude that Xix0 = Bxi. 
(b) Again the assertion is valid for i = 0, and we proceed by induction on i. We have 

X_1(XOXi) = X0(X-1Xi) + (X-1X0 - XOX_1)Xi 

= ((i - l)a + /3)X- 1Xi + ax- 1Xi = (ia + fi)X- 1Xi, 

so 

X-l(X()Xi - (ia + fl)Xi) = 0. 

On the other hand, 

(XOXi)X- 1 = (XiXO)X_ 1 + XO(XiX- 1) - Xi(XOX_ 1) 

=pXiX-1 +((i- 1)a +/?)XiX-1 -(-a +/3)XiX-1 =(ia + b)XiX_1, 

so 

(XOXi - (ia + fl)Xi)x_l = 0. 

Again by the transitivity of G we conclude that XoXi = (ia + B)xi. 0 

Lemma 2.5. dim Gi I 1 for any i 2 1. 

The proof of this lemma will be given in 4 steps. For any a E A, let p(a) denote the 
right ideal of A generated by a. 

Step 1: dim Gi I 1 for i 2 1 ifxo E p(xml) and x_~ E p(xo). 

Proof. It follows from the hypotheses of this step that if a E G satisfies x_ lu = 0 then 
p(x_ l)u = 0 and hence xou = 0. Similarly, xou = 0 implies x- lu = 0. Now let i be the 
first natural number such that dim Gi 2 2. In particular, i 2 1 and dim Gi _ 1 I 1. Then 
there exists a nonzero element a E Gi such that x_ lu = 0. By the remark above, this 
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implies xoa = 0, so ia + /3 = 0. Then x0 Gi = (0) and hence x- I Gi = (0). Again since 
dim Gi > dim Gi- 1, there exists a nonzero element b E Gi such that bx_ 1 = 0. This 
contradicts the transitivity of G. 0 

Step 2: dim G1 I 1. 

Proof. If dim Gi 2 2, there exists a nonzero element a E G1 such that ax- I = 0. By 
the transitivity of G we have x _ ra # 0, and moreover we can assume that x- 1a = x0. 
Hence, x0 E p(x_ r). Similarly, there exists 0 # b E G1 such that x_ Ib = 0. In this case 
we may assume that bx_ 1 # 0, and moreover that bx_ 1 = x0. We have 

xob = (xeIu)b = (x_Ib)u = 0. 

On the other hand, xob = (a + P)b. Hence a + B = 0, which implies 0: - fi # 0. Now, 
xoxml = (-tl + B)x-~, and thus x_~ E p(xo). By Step 1, dimG, I 1. 0 

Step3: dimGiI1 fori ifa#fi. 

Proof. For any ai E Gi with i 2 1 we have 

(-CI +fi)X- lUi=(XoX-l)Ui=(XoUi)X-l=(ia +fi)UiX-1. (13) 

This implies that if ai # 0 then six_ I # 0. Indeed, if UiX_ i = 0 then x _ rui = 0, which 
contradicts the transitivity of G. 

Now let i 2 1 be the first integer such that dim Gi 2 2. Then there exists 0 # ui E Gi 
with six- 1 = 0. Thus, X- lui # 0. But from what we have proved above it follows that 

R(X-,)'-'(X-,Ui)=(...(X-lUi)x-l)...)X-1 #O. 

Hence, x0 E P(x-~). On the other hand, x0x-i = (-c1 + /3)x_ r, and hence 
X- 1 E p(x0). Then dim Gi I 1 by Step 1. 0 
Step4 dimGi<lfori>lifa=fl. 

Proof. Choose an arbitrary nonzero element x1 E Gr. From (13) it follows that 
x1x- 1 = 0, and hence x_ 1x1 = yxo for some y # 0. Suppose that dim Gi 2 2 but 
dim Gi- 1 I 1 for some i 2 2. For an arbitrary element Xi E Gi we have 

(X-1Xi)Xl =(X-1X1)X{ = YXOXi = y(ia + fi)Xi, 

where y(ia + /?) # 0. Since dim Gi > dim Gi- 1, there exists a nonzero Xi E Gi such that 
x-Ix~ = 0. But then 0 = (~-1xi)x1 = y(ia + fl)xiy a contradiction. 0 

This completes the proof of Lemma 2.5. 0 

Lemma 2.6. There exists u nonzero element ~1 E G1 such thut xixj = (ja + fi)xi+j 
whenever -1 _<i,j,i+j<l. 

Proof. From the choice of a,/? and from Lemmas 2.3 and 2.4, it follows that for an 
arbitrary element x1 E G1 the assertion of the lemma is true for all products except 
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possibly x-lx1 and xlxml. By (13) we have 

(-Lx + /9)x-1x1 = (CI + /9)X1X- 1. (14) 

Suppose that c( - fi # 0 and CI + /? # 0. At least one of the products x1x_ 1,x_ 1x1 is 
nonzero by transitivity, and hence both are nonzero by (14). We can divide x1 by 
a scalar so that x...~x~ = (LX + fi)xO. Then x1x-i = (--c( + #I)x,, by (14). 

Now let a = /3. Then a + /I # 0 and thus x1x_ 1 = 0. Then X_ ix1 # 0 and we can 
normalize x1 so that xP1xl = (a + /I)x,,. Similarly, if CY + fi = 0 then a - /I # 0 and 
therefore x-lx1 = 0. We can then normalize x1 so that x1x-l = (-a + /3)x0. 0 

Lemma 2.7. Let u + /I # 0, and let x0 E Go and x1 E G1 be given. Define the elements 
xk E Gk for k 2 2 inductively by xk = (a + /?- ‘xk- 1~1. Then 

(a) X-1xk = (ka + fi)xk-l and xkx-1 = (--cI + fi)xk_l fir k 2 0. 
(b) xixj = (ja + p)xi+j for i, j 2 0. 

Proof. (a) The assertion follows from Lemma 2.6 for k = 0, 1, and we proceed by 
induction on k. If k 2 2, 

x-1(&p1x-l) = xk-1(x-1x1) +(x-l&-l - xk-lx-l)& 

= (a + @+1x,, + kCCXk-lXl = j(a + B)Xk-1 + kc+ + fl)Xk-1 

= (ka + fib + /-+k- 1 

by the inductive hypothesis. Since xk = (a + /?-lxk_lxl, it follows that 
X_lXk = (kcr + fi)xk_l. Now 

(Xk-1X1)x-l = (xk-lx-1)x1 = (--a + b)xk-2x1 = (--a + p)(@, + @Xk-1, 

Hence, xkx_l =(-a •/- &&l. 
(b) If i = 0 or j = 0 the assertion follows from Lemma 2.4. Thus, we may assume 

that i 2 1 and thus xi = (CI + ~)-lX~_l~l. We have 

(Xi- 1Xl)Xj = (Xi- 1Xj)Xl = (ja + p)Xi+ j- 1X1 

by the inductive assumption. IJ 

Corollary. If a + fi # 0, then xk spans Gk for k 2 1. 

Now let us examine the positive part of G under the assumption that to + /I = 0. 
Since x: = 0 in this case, one possibility is that G2 = 0, which implies that Gi = 0 for 
i 2 2 by transitivity. Suppose that Gz # 0. We observe for nonzero Xi E Gr where i 2 2 
that (13) implies that x- iXi = 0 if and only if xix- 1 = 0 since -a + /I # 0 # iol + 8. 
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By the transitivity of G, x- 1xi and xix- 1 are both nonzero. Since Gz # 0, our 
observation implies that x- lGZ # (0). Choose x2 E Gz such that 

x- 1x2 = (2a + b)Xl . (15) 

Lemma 2.8. Let tl + /? = 0 and let x2 E Gz satisfy (15). Define xk E Gk for k 2 3 by 

xk = (ka -t fi)-lxlxk_l. Then 

(a) X_lxk = (kcr + @‘&-l and XfX-1 = (-Ct + ,!?)xk-l for k 2 0; 

(b) XiXj = (ja + b)Xi+j for i,j 2 0. 

Proof. (a) Again we may assume that k 2 2. By (13) the assertions x- 1xk = 
(ka + B)xk_ 1 and xkx_ 1 = (-a + fi)xk_ r are eqUiVdent. Hence by the choice of x2, 
both assertions are valid for k = 2. For k 2 3, we have 

= (-a + B)((k - l)a + fl)xk- 1. 

It remains to note that ((k - 1)~ + &lxk_l = xk. 
(b) Again if i = 0 or j = 0, the assertion is valid. Thus, we assume that i 2 1 and 

j 2 1. By our remarks just before Lemma 2.7, it is sufficient to prove that 
(Xixj)X- 1 = (ja + p)Xi+jx- 1. By part (a) and by the inductive hypothesis, 

(XiXj)X-1 =(XiX-1)Xj =(-a + @)Xi-1Xj=(-M + /J)(jOr + B)Xi+j-1 

and(ja + b)Xi+jX-1 =(jz +/?)(-a +/3)xi+j_l bypart(a).Thisfinishestheproofof 
the lemma. 0 

Corollary. For any k 2 0, xk # 0, and thus xk spans Gk. 

Now let us see what happens with the negative part of G. By the very definition of 
the Weisfeiler filtration, xi d _ r Gi is generated by G_ 1, which is the linear span of x- i. 
If a = B, then x? I = 0, and so Gi = (0) for i < - 1. Hence, A _ 1 is a subalgebra, and so 
A = A- 1 by the maximality of H. This shows that H has codimension 1 in A when 
a = /I. We turn to the case a # /I. 

Lemma 2.9. Zf a # /I, dejne Xi = ( - ~1 + fl)- 'xi+ 1~- 1 for i I - 2. Then, for i < 0, 

(12) holds and 

XOXi = (icr + fi)Xip Xix0 = BXi, 

XlXi = (ia + /3)Xi+l, xix1 = (a + D)xi+l. 

Proof. The proof of the first two relations proceeds by induction on 1 i 1 in a manner 
identical to the proof of Lemma 2.4. From the first relation it follows that (13) holds 
for i < 0. The fourth relation follows by definition, and the third one from this using 

((13). Cl 
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Lemma 2.10. For arbitrary integers i, j, we have 

XiXj = (ja + fl)Xi+j. 

Proof. If i 2 - 1 and j 2 - 1, the result follows from Lemmas 2.7 and 2.8. Thus, we 
may assume that at least one of i, j is less than - 1, and hence that CI # /I. We will use 
induction on [iI + 1 j 1. 

Let i I - 2. Then Xi = ( -LY + b)-lXi+lX_l and we have 

(xi+lX-l)xj=(xi+lxj)X-l =(j~+B)xi+j+lX-l =(j~+B)(-~ +B)xi+j 

by the inductive assumption. Hence, we can assume that i 2 - 1 and j I - 2. 
If i = - 1, then by (13), 

X-lXj=(-Cr+fi)-‘(jCr+fi)XjX-1=(jCt+~)Xj-1. 

The assertion is true for i = 0. Let i 2 1. Using Xj = ( -u + b)Xj+ lx- 1, we have 

Xi(Xj+ IX- 1) = Xj+l(XiX- 1) + (XiXj+ 1 - Xj+ lXi)X- 1 a 

Since 1 j + 11 < ( j I and I i - 1 ( < ) i 1, the induction assumption implies 

Xj+l(XiX-1) = (-a + B)((i - 1)a + p)Xi+jy 

xixj+ 1 - Xj+lXi = (j + 1 - i)CtXi+j+l. 

Hence Xi(xj+ l~_ 1) = ( -a + b)( ja + fl)Xi+j, which proves the lemma. 0 

The definition of the Weisfeiler filtration implies that the negative part 
G-1 + G-2 + ... of G is generated by x_ 1, giving the following: 

Corollary. Gi is spanned by Xi even for i < 0. 

Proof of Theorem 1. We have shown that A has a basis {Xi} satisfying XiXj = 
(jcr + b)xi+j. If a = 0 = 8, A_ 1 is a subalgebra properly larger than H = &, SO that 
A = A_ 1. But because the products in G are all zero, H is an ideal of A, to contradict 
simplicity. Thus, the case M: = 0 = /? does not arise here. If a = 0 and /I # 0, we can 
replace each Xi by fl- ’ times itself to obtain type I. 

We may suppose then for the remainder of the proof that tl # 0. Replacing each 
Xi by GI-~ times itself, and replacing /3 by fia, our product reduces to 
Xixj = (j + p)Xi+j. If b = 1, then A _ 1 is a subalgebra properly containing H, and SO 
A = A- 1. This gives an algebra of type II. If /I = - 1, then x: = 0. In this case it is 
possible that Xi = 0 for i 2 2, which leads to type III. If any Xi # 0 for i 2 2, it is easy 
to see that all of them are nonzero and that we have an algebra of type IV. When 
fl # 1, - 1, neither xl nor x_ 1 is nilpotent, so that all xi)s are nonzero for i E Z. So, this 
case leads only to type IV. lJ 
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Proof of Theorem 2. Let the graded algebra G have the basis (Xi} with products given 
by xixj = (j + p)xi+j (i runs over all integers 2 when A is of type IV, i 2 - 1 for type 
II, and i < 1 for type III). We consider first types II and IV. We will show that A* has 
a dense subalgebra which is (topologically) isomorphic to G. This will imply the 
assertion of the theorem. Choose a set of elements {Hi} in A which are preimages of the 
elements {xi} in G, SO that di E Ai but &$Ai+l, and Zi6j G (j + B)&+j(modAi+j+l). 

Our first aim is to find an element a0 E A,* which is a preimage of x0 in G and which 
has the property that ai = /Iao. We will use induction on n to construct a sequence of 
elements ao,n in A such that ao. 1 = Go, a& - /Iu~,~ E A,, and uo,,+ l s uo,. (mod A,). 
Supposee that elements ao, 1, . . . , ao,, have been constructed. For any y E F we have 

(ao,n + Y4l)2 - B(ao,n + Y4J 

= (& - Bao,n) + Y(ao,.K + zna0.n - Pa,) + Y”$ 

- (& - @o.A + Y@ + 8)G (mod A,+ I). 

We can choose y so that the right side lies in A,, 1 since n + /I # 0 by the hypotheses of 
Theorem 2. Let uo,“+i = ao,n + y&. The sequence {uo,,> has been defined, and the 
element a0 = lim,,, uo,” has the required property. 

Nextweconstructapreimagea_,~A*_,ofx_,suchthatuou_~=(-1+~)a_~. 
To do this we shall again construct a sequence of elements a-,,, in A such that 
U_ 1.1 = &,,u,u_ l,n - ( - 1 + &z_ I,n E A,* and a_ l,n+l = a_ l,n(mod A,). Suppose 
that the elements a- 1, 1, . . . , a _ 1, n have been constructed. For any scalar y E F we have 

aoh-1,” + r&J -(-I + M-l,, + r&J 

= (u~u-~,~ - (-1 + B)u-~,,) + y(n + l)a”,(modA:+l). 

Find y so that the right side lies in A:, 1, and let a_ l,n+ 1 = a_ l,n + y&. Then define 

a-1 = lim,,, u-~,,. 
In the same way we can find a preimage al of x1 with the property that 

UlJUl = (1 + B)Ul. 
Let L(uo), R(uo) denote, respectively, the operators of left and right multiplication 

by the element uo. It is not difficult to prove that the operator L(uo): A,* + A,* is 
a bijection. Hence, an arbitrary element a E AC can be represented as a = uob for some 
bEA:. Then au0 = (uob)uo = (uouo)b = jGzob = j&z. We have shown that 
(R(uo) - /?)A,* = (0), and in particular, ala0 = /Ial. Since (R(uo) - fl)A%, c Ao. we 
have (R(u,) - /?)2A* 1 = (0), giving (a- luo)uo = 2flu_ luo - /12u_ 1. The calculation 

a&-i&J = a-l(U,UO) + (al+1 - a-~a&&) 

= flu- 1urJ + ( - 1 + P)u_ 14) - (a- la&o 

= pa-$0 + (-1 + fi)U_lUO - 2/3u_iuo + B%_1 = - u_,u, + /?‘U_i 

shows that (Quo) + ~)u_~u~ = P’u-~. We have ~_~a, = /?u_~ + a* where u* E A,*. 
Since (L(uo) + l)u_ 1 = jk- 1, it follows that (L(uo) + l)u* = 0. In view of the 



348 J.M. Osborn, E. Zelmanov~Journal of Pure and Applied Algebra 101 (1995) 335-352 

restrictions we have imposed on /3, the operator L(ae) + 1 is invertible on A;. Thus 
a* = 0 and a_ lao = j3a- 1. 

Similarly we have a_ lal = (1 + fi)uo + a*, for some u* E AT. Now 

a&_ Ial) = a- l(U&) + (u&L 1 - a- ~Ul&z~ = /3u- Ial ) 

or in operator form, (L(uo) - /?)(a_ lul) = 0, which implies (L(uo) - @a* = 0. Since 
the operator L(uo) - fl is bijective on A:, it follows that a* = 0 and 
a-la1 = (1 f /?)uo. Then the formula (13) implies that 

Since /? # - 1 by assumption, we conclude that ala_ 1 = ( - 1 + P)uo. It is easy to see 
that the elements a- 1, uo, al generate a subalgebra which is dense in A* and topologi- 
tally isomorphic to G. 

Now let G be of type III. We shall prove that in this case A z G. Let elements Ui E A 

for i I 1 be preimages of the elements xi. Since AZ = (0), it follows that uluO = - al 
and uOul = 0. Suppose that a$ = - a0 + yul and ala_, = - 2uo + <ai for r,< E F. 

Then 

(ala- &I = ( -2% + <u&20 = - 2( -a0 + yu1) - <al. 

On the other hand, 

(ala-&lo = (uiu())u-1 = - ala_r = 2uo - tar. 

We conclude that y = 0 and ai = - uo. 
Let u~u_~= -2u_,+~u0+~u1 for QEEF. The element u-l-~uo-~eul is 

a preimage of x _ 1 as well. Taking a _ 1 - quo - ($.su, instead of a- 1, we get 
uOul = - 2~_~. Now 

- 2UlU-1 = ur(uou_J = u&u-~) + (Ui&J - ueur)u-1. 

Since ala_, = - 24 + (al and uOul = 0, the right side is equal to 
-2~: - ala_, = 2uo - ~,a_~. Therefore, ala-l = - 2uo. Also 

-2U-lUl = (uou_l)u~ = (u@z~)u_~ = 0. 

- 2u_ r&J = (a&_ l)UO = u~u_l = - a()u_ 1 = 2u_ 1) 

~~u_~u~ = Oandu_luo = - a- 1. It is not difficult to see that the elements a_ 1, uo, al 
generate A and that the mapping ui + Xi for i = - LO, 1 is extendable to an isomor- 
phism. 0 

For algebras of type I, or type IV with /? = 0, - 1, - 2, . . . , the assertion of the 
theorem is not valid. To see this for type I, consider the algebra with basis {Xi}isx and 
the multiplication 

Xixj = Xi+ j f (ja + BIG+ j+ 19 
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where a, fl E F and c1 # 0. Then the graded algebra G associated with A is of type I. But 
A is not commutative, so is not embeddable in G*. 

Let B be the algebra with the basis {Xi}iez and the multiplication 

where k is a fixed nonnegative integer. Then B is a Novikov algebra with associated 
graded algebra G of type IV (with fi = - k). It is not difficult to check that G* contains 
a nonzero element x0 which squares to a scalar multiple of itself, whereas B* contains 
no such element. Thus, B* and G* are not isomorphic. 

3. Lie products on Novikov algebras 

In this section we find all products x defined on a Novikov algebra A of type II, and 
for certain algebras of type IV, with the property that 

(wu) x u - (WV) x u + (w x u)v - (w x u)u - w(u x u) = 0, (16) 

and with the property that A is a Lie algebra under x . Such a product x on A will be 
called a Lie algebra structure defined on A. We also exhibit a counterexample for the 
remaining algebras of type IV. Since type III algebras are isomorphic to type II 
algebras (they differ abstractly only in having different filtrations), the answer for type 
III is the same as for type II. 

Theorem 3.1. The only Lie algebra structure possible on a Novikov algebra A of type II, 
or of type IV when p is not a nonzero integer, is a scalar multiple of the structure A-. 

Proof. We work with the basis {xi} of A where i ranges over the integers 2 - 1 for type 
II and over all integers for type IV. Let x be a Lie structure on A, and suppose that 
Xi X xj = xk aijkx&. Since X iS antiCOmmUtatiVe, ajik = aijk. If A iS Of type II, We take 
aijk = 0 if either i < - 1 orj < - 1. Substituting u = Xi, v = xj, w = xk in (16) gives 

0 = (i + p)Xk+i X xj - (j + fi)x,+jx xi + CQXlxj 
1 

- 7 akjl%Xi - Xk 7 aijlxl 

=(i + B)~ak+i,j,l$ -(j + B)Cak+j,i,l& + (j + P)Cakil%+j 

1 1 

- (i + P)CakjlXl+i -(I + P)Caijl%+k. 

1 I 

The coefficient of xI is 

o = ci + filak+i,j,l - (j •+ fi)ak+j,i,l + (j + fi)ak,i,l-j 

-(i + B)+j,l-i - (2 - k + fi)ai,j,,-,. (17) 
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Setting j = 0 gives 

and setting k = 0 in this gives 

0 = (i + B)ai,O,l - (i + B)aO,O,l-i - (I + B)G,O,l = 6 - l)aiOl, 

using the anticommutativity of x . Thus, UiOi = 0 except when I = i. Hence, 
xi x x0 = cioixi. Setting 1 = i + k in (18) and dividing by i + 8, we obtain 

%+i,O,k+i = ak.0.k + ai.0.i (19) 

fori# -p.Ifi= -pandkf -fl, we can reverse the roles of i and k to see that (19) 
still holds. Thus, (19) holds when A is of type II (and hence /3 = 1). When A is of type 
IV, the validity of (19) when i = - /3 = k # 0 follows from the cases of (16) that we 

have already established, since 

a-8,0.-B + a-&O,-fi = a-p,o,-fl + q,o,‘J + u_28,0,_28 

= a0,o.o + U-28,0, -2s = a-2/3,0. -2/?* 

Thus ai,o,i = i~l,o, 1 for all i E 2. 

Now taking k = 0 in (17) gives 

0 = (i + P)ui,j,l - (j + B)uj,i,l + (j + P)aO,i,l-j - (i + PJaO.j,l-i - (I f B)%j,l 

= (i +j - 1 + B)ui,j,l + (j + S)aO,i,l-j - (i + B)O,j,l-i. (20) 

The case when I = i + j is 

bG,j,i+j = (j + Bbi,O,i - (i + P)“j,0,j3 (21) 

and for I# i + j, Eq. (20) becomes 0 = (i + j - I + P)ai,j,l. Thus, aiji = 0 except when 
I = i +j or when t = i +j + /3_ When /3 # 0, we deduce from (21) that 

ui,j,i+j = (i -_ih,0,~ for all i, j. If /I is not an integer, then 1 is never i + j + p, and so 
the theorem holds. We are left with the case when A is of type II and hence p = 1. 

Writing cij = ai,j,i+j+ 1, Eq. (17) with 1 = i + j + k + 1 becomes 

0 = (i + l)ck+i,j - (j + l)ck+j,i + (j + l)cki - (i + 1)ckj - (i +j + 2)cij. (22) 

Setting j = - 1, we obtain 0 = (i + l)ck+i, _ 1 - (i + l)ck, -1 - (i + Z)Ci, - 1, or 

Ck+i,-1 =ck,-1 + ci,-1 

for i# -1. When k= - 1 we obtain ci- 1, _ 1 = ci, _ r. Since co, _ i = 0 by the last 
paragraph, we have c,,- 1 = 0 for any positive integer n by induction. For n < 0, we 
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alsohavec,,_i=Osincec,,-,=c _“,_ 1-c-2,,-1=0.Thenk=-1in(22)yields 

O =(j + l)ci-l,j-((j + l)cj-l,i + (j + l)C-r,i-(i + l)C-l,j-(i +j + 2)cij 

or 

(i + j + 2)Cij = (i + l)Ci_l,j - (j + l)Cj-1,i + (j + l)C-l,i -(i + l)C-l,j 

=(i+ l)Ci-l,j-((j+ l)Cj-l,i. 

It is easy to deduce from this using induction that c,,,,, = 0 for any positive integers 
n,m. This completes the case when A has type II. 0 

If A is an algebra of type IV with /I a nonzero integer, then A has Lie products 
x which satisfy (16) and which are not scalar multiples of the commutator. For 
example, let xi X X-z@ = - X-z@ Xxi = (i + p)xi_b where i # 0, -2p, let xi x 

X-i - 28 = ( - i - B)x -B where i # 0, - 28, and let all other products xi x xj be zero. It 
can be verified that the product x defined in this way satisfies the Jacobi identity and 
the identity (16). 
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