
Journal of Algebra 337 (2011) 126–140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The isomorphism problem for universal enveloping algebras
of nilpotent Lie algebras ✩

Csaba Schneider a,b, Hamid Usefi c,∗
a Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
b Informatics Research Laboratory, Computer and Automation Research Institute, 1518 Budapest Pf. 63, Hungary
c Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St., Toronto, ON, Canada, M5S 2E4

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 September 2010
Available online 29 April 2011
Communicated by Michel Van den Bergh

Keywords:
Isomorphism problem
Nilpotent Lie algebras
Enveloping algebras

In this paper we study the isomorphism problem for the universal
enveloping algebras of nilpotent Lie algebras. We prove that if
the characteristic of the underlying field is not 2 or 3, then the
isomorphism type of a nilpotent Lie algebra of dimension at most 6
is determined by the isomorphism type of its universal enveloping
algebra. Examples show that the restriction on the characteristic is
necessary.
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1. Introduction

In this paper we examine the isomorphism problem for universal enveloping algebras of Lie al-
gebras. It is known that two non-isomorphic Lie algebras may have isomorphic universal enveloping
algebras; see for instance [RU, Example A]. All such known examples require that the characteristic
of the underlying field is a prime. In this paper we focus on nilpotent Lie algebras and prove the
following main result.

Theorem 1.1. The isomorphism type of a nilpotent Lie algebra of dimension at most 6 is determined by the
isomorphism type of its universal enveloping algebra over any field of characteristic not 2 nor 3.
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Theorem 1.1 is a consequence of Theorems 3.1 and 4.1. As shown by examples in Sections 3 and 4,
the requirement about the characteristic of the underlying field is necessary. In addition to proving
Theorem 1.1, we classify the possible isomorphisms between the universal enveloping algebras of
nilpotent Lie algebras of dimension at most 5 over an arbitrary field, and those of dimension 6 over
fields of characteristic different from 2 (see Theorems 3.1 and 4.1).

Little progress has ever been made on the isomorphism problem for universal enveloping alge-
bras. For a Lie algebra L, let U (L) denote its universal enveloping algebra (see Section 2 for the
definitions). Several invariants of L are known to be determined by U (L). For instance, if L is finite-
dimensional, then the (linear) dimension of L coincides with the Gelfand–Kirillov dimension of U (L)

(see [KL]). More recently Riley and Usefi [RU] proved that the nilpotence of L is determined by U (L)

and, for a nilpotent L, the nilpotency class of L can be determined using U (L). Moreover the isomor-
phism type of U (L) determines the isomorphism type of the graded algebra Gr(L) associated with
the lower central series of L (see Section 2 for the definitions). Malcolmson [M] showed that if L is
a 3-dimensional simple Lie algebra over a field of characteristic not 2, then L is determined by U (L)

up to isomorphism. Later Chun, Kajiwara, and Lee [CKL] generalized Malcolmson’s result to the class
of all Lie algebras with dimension 3 over fields of characteristic not 2.

By proving Theorem 1.1, we verify that the isomorphism problem for universal enveloping algebras
has a positive solution in the class of nilpotent Lie algebras with dimension at most 6 over fields of
characteristic different from 2 and 3. The proof of this result relies on the classification of nilpotent
Lie algebras with dimension at most 6. The classification of such Lie algebras of dimension at most 5
has been known for a long time over an arbitrary field. In dimension 6, several classifications have
been published, but they were often incorrect, and they usually only treated fields of characteristic 0.
Recently de Graaf [dG] published a classification of 6-dimensional nilpotent Lie algebras over an arbi-
trary field of characteristic not 2. As the classification by de Graaf has been obtained making heavy
use of computer calculations, and was checked by computer for small fields [Sch], we consider this
classification as the most reliable in the literature. The reason we do not treat 6-dimensional nilpotent
Lie algebras over fields of characteristic 2 is that, in this case, we do not know of a similarly reliable
classification.

Our strategy in proving Theorem 1.1 is to determine all pairs of nilpotent Lie algebras L1, L2
with dimension at most 6, such that the graded algebras Gr(L1) and Gr(L2) associated with the
lower central series are isomorphic. We know from [RU] that this is a necessary condition for
the isomorphism U (L1) ∼= U (L2). Such pairs can be read off from the list of nilpotent Lie algebras
with dimension at most 6 in [dG]. Next, for all such pairs, we either argue that U (L1) cannot be
isomorphic to U (L2), or we exhibit an explicit isomorphism between U (L1) and U (L2). Initially,
computer experiments played a role in determining the isomorphisms between universal envelop-
ing algebras of nilpotent Lie algebras. Recent work by Eick [E] describes a practical algorithm to
decide isomorphism between finite-dimensional nilpotent associative algebras. Her algorithm was
implemented in the ModIsom package [MI] of the GAP computational algebra system [GAP] and
the implementations work for algebras of dimensions up to about 100 over small finite fields.
We used this implementation to decide isomorphisms between the finite-dimensional, nilpotent quo-
tients Ω(L)/Ωk(L) of the augmentation ideals Ω(L) of U (L) (see Section 2 for notation). We re-
mark here an interesting observation. If L is nilpotent of class c then based on our calculations
the isomorphism type of the quotient Ω(L)/Ωc+1(L) determines the isomorphism type of L. So,
the question remains whether Ω(L)/Ωc+1(L) determines the isomorphism type of L in all dimen-
sions.

2. Preliminaries

In this section we summarize some important facts about universal enveloping algebras of Lie
algebras; see [D] for a more detailed background. We assume from now on that Lie algebras are
finite-dimensional, even though most of the results referred to in this section hold for a larger class
of Lie algebras.
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Let L be a Lie algebra over a field F. The universal enveloping algebra U (L) of L is defined as
follows. For i � 0, let L⊗i denote the i-fold tensor power of L and set

T =
∞⊕

i=0

L⊗i .

The space L⊗0 is one-dimensional, generated by the unit of T , and is usually identified with F. The
sum T can be considered as an algebra over F with respect to the obvious multiplication defined on
the generators of T as

(v1 ⊗ · · · ⊗ vk) · (u1 ⊗ · · · ⊗ ul) = v1 ⊗ · · · ⊗ vk ⊗ u1 ⊗ · · · ⊗ ul,

for all v1, . . . , vk, u1, . . . , ul ∈ L. The algebra T is usually referred to as the tensor algebra of L. Let
I denote the two-sided ideal of T generated by elements of the form [u, v] − u ⊗ v + v ⊗ u. Then
the universal enveloping algebra U (L) of L is defined as the quotient T /I . We view L = L⊗1 as a Lie
subalgebra of U (L). Universal enveloping algebras have the following universal property.

Lemma 2.1. Suppose that L is a Lie algebra, A is an associative algebra, and let ϕ : L → A be a Lie algebra
homomorphism. Then there is a unique associative algebra homomorphism ϕ : U (L) → A such that ϕ|L = ϕ .

The linear subspace spanned by a subset X of a vector space is denoted by 〈X〉F . Recall that the
center Z(L) of a Lie algebra L is the ideal

〈
x ∈ L

∣∣ [x,a] = 0, for all a ∈ L
〉
F
.

The center of the universal enveloping algebra plays an important role in our arguments. The center
Z(A) of an associative algebra A is defined as

Z(A) = 〈x ∈ A | ax = xa, for all a ∈ A〉F.

It is clear that the subalgebra of U (L) generated by the center Z(L) of L lies in Z(U (L)).
Note that T+ = L⊗1 ⊕ L⊗2 ⊕· · · is a two-sided ideal in T , and the image of T+ in U (L) is referred to

as the augmentation ideal of U (L) and is denoted by Ω(L). The following is proved in [RU, Lemma 2.1].

Lemma 2.2. For Lie algebras L and K , U (L) ∼= U (K ) if and only if Ω(L) ∼= Ω(K ).

Investigating the isomorphism between U (L) and U (K ) will often be carried out, using Lemma 2.2,
through studying the isomorphism between Ω(K ) and Ω(L). For i � 1, let Ω i(L) denote the ideal of
Ω(L) generated by the products of elements of Ω(L) with length at least i. This way we obtain a
descending series in Ω(L):

Ω(L) � Ω2(L) � · · · .
The sequence Ω i(L) is a filtration on Ω(L): for x ∈ Ω i(L) and y ∈ Ω j(L) we have that xy ∈ Ω i+ j(L).

A basis for Ω i(L) can usually be constructed as follows. Let Li denote the i-th term of the lower
central series of L; that is L1 = L, and, for i � 1, Li+1 = [Li, L]. For an element v ∈ L, we define the
weight w(v) of v as the largest integer i such that v ∈ Li . A basis B = {v1, . . . , vd} of a Lie algebra L
is said to be homogeneous if the basis elements with weight at least i form a basis for Li . An element
of U (L) of the form m = vi1 vi2 . . . vik with i1 � i2 � · · · � ik is said to be a Poincaré–Birkhoff–Witt
monomial, or more briefly, a PBW monomial, in B. The weight w(m) of such a monomial is defined as
w(vi1 ) + w(vi2 ) + · · · + w(vik ).



C. Schneider, H. Usefi / Journal of Algebra 337 (2011) 126–140 129
Theorem 2.3. (See Proposition 3.1(1) in [R].) Let L be a Lie algebra with a homogeneous basis B and let t � 1.
Then the set of all PBW monomials in B with weight at least t forms an F-basis for Ωt(L), for every t � 1.

In this paper we are interested to discover, for a pair of nilpotent non-isomorphic Lie algebras L1
and L2, if U (L1) can be isomorphic to U (L2). Often we use the graded algebras Gr(Li) associated with
the lower central series of the Li to rule out the isomorphism between U (L1) and U (L2). For a Lie
algebra L, Gr(L) is defined as the algebra on the linear space

Gr(L) = L/L2 ⊕ L2/L3 ⊕ · · ·

with respect to the multiplication given by the rule

[
x + Li+1, y + L j+1] = [x, y] + Li+ j+1, for all x ∈ Li and y ∈ L j .

The following is proved in [RU, Proposition 4.1].

Theorem 2.4. For any Lie algebra L, the isomorphism type of U (L) determines the isomorphism type of Gr(L).
Consequently, if L is nilpotent of class 2, then the isomorphism type of U (L) determines the isomorphism type
of L.

Suppose that L1 and L2 are nilpotent Lie algebras such that U (L1) ∼= U (L2). Then Theorem 2.4 im-
plies, for all i, that dim Li

1 = dim Li
2, and that the nilpotency classes of L1 and L2 coincide. The second

statement of Theorem 2.4 is an easy consequence of the first statement if L is finite-dimensional.
Indeed, if L is a finite-dimensional Lie algebra of nilpotency class 2, then it is always isomorphic
to Gr(L). The same assertion without a restriction on the dimension is proved in [RU, Section 5].

The following lemma can be found in [RU, Lemma 5.1].

Lemma 2.5. Let L and K be Lie algebras and let ϕ : Ω(L) → Ω(K ) be an isomorphism. Then ϕ(Li +
Ω i+1(L)) = K i + Ω i+1(K ), for every positive integer i.

3. Nilpotent Lie algebras with dimension at most 5

In this section we determine all isomorphisms between the universal enveloping algebras of nilpo-
tent Lie algebras with dimension at most 5. A classification of such Lie algebras is well known and
can be found, for instance, in [dG]. The main result of this section is the following.

Theorem 3.1. Let L and K be nilpotent Lie algebras of dimension at most 5 over a field F such that U (L) ∼=
U (K ). Then one of the following must hold:

(i) L ∼= K ;
(ii) char F = 2; further L and K are isomorphic to the Lie algebras L5,3 and L5,5 or they are isomorphic to the

Lie algebras L5,6 and L5,7 in Section 5 of [dG].

Since there is a unique isomorphism class of nilpotent Lie algebras with dimension 1, and there
is a unique such class with dimension 2, the isomorphism problem of universal enveloping algebras
is trivial in these cases. Up to isomorphism, there are two nilpotent Lie algebras with dimension 3,
an abelian, and a non-abelian. By Theorem 2.4 their universal enveloping algebras must be non-
isomorphic. The number of isomorphism classes of 4-dimensional nilpotent Lie algebras is 3. One of
these algebras is abelian, the second has nilpotency class 2, and the third has nilpotency class 3.
Again, by Theorem 2.4, their universal enveloping algebras are pairwise non-isomorphic. This proves
Theorem 3.1 for Lie algebras of dimension at most 4.
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There are 9 isomorphism classes of nilpotent Lie algebras with dimension 5 and they are listed at
the beginning of Section 4 in [dG]. To simplify notation, we denote the Lie algebra L5,i in de Graaf’s
list by Li . Inspecting this list, we find that the sequence (dim L1,dim L2, . . .) for these Lie algebras,
after omitting the trailing zeros, are: (5), (5,1), (5,2,1), (5,1), (5,2,1), (5,3,2,1), (5,3,2,1), (5,2),
(5,3,2). Therefore Theorem 2.4 implies that if U (Li) ∼= U (L j) then either i = j, or {i, j} = {3,5}, or
{i, j} = {6,7}. The Lie algebras that are involved in these possible isomorphisms are as follows:

L3 = 〈
x1, x2, x3; x4; x5

∣∣ [x1, x2] = x4, [x1, x4] = x5
〉;

L5 = 〈
x1, x2, x3; x4; x5

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x2, x3] = x5
〉;

L6 = 〈
x1, x2; x3; x4; x5

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5
〉;

L7 = 〈
x1, x2; x3; x4; x5

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5
〉
.

Products that are zero are omitted from the multiplication tables above. For instance [x1, x3] = 0 in
L3 and in L5. Note that the bases of the Lie algebras given above are homogeneous. Further, basis
elements of different weights are separated by a semicolon. The multiplication tables given in [dG]
are somewhat different from the ones above, as we changed the orders of certain basis elements in
order to work with homogeneous basis. A possible source of confusion is that the symbols xi are used
to denote elements of different Lie algebras, but we believe that using different letters or introducing
a subscript or superscript would unnecessarily complicate the notation.

Lemma 3.2. If F is a filed of characteristic not 2, then Ω(L3)/Ω
4(L3) � Ω(L5)/Ω

4(L5) and Ω(L6)/Ω
5(L6) �

Ω(L7)/Ω
5(L7); consequently Ω(L3) � Ω(L5) and Ω(L6) � Ω(L7). Otherwise, Ω(L3) ∼= Ω(L5) and

Ω(L6) ∼= Ω(L7).

Proof. Suppose that char F �= 2 and set Bi = Ω(Li)/Ω
4(Li), for i = 3,5. First we show that B3 � B5.

We claim that Z(B5) � (B5)
2 while Z(B3) �� (B3)

2, which will imply that B3 � B5. As x3 ∈ Z(B3) \
(B3)

2, the second assertion of the claim is valid. In order to prove the first assertion, let w ∈ Z(B5).
We write w as a linear combination of PBW monomials:

w =
∑

i1�···�in

αi1,...,in xi1 · · · xin .

Then w ≡ α1x1 + α2x2 + α3x3 (mod (B5)
2). Since w is a central element in B5, we have [x1, w] =

[x2, w] = 0, and so

0 = [x1, w] ≡ α2[x1, x2] = α2x4
(
mod (B5)

3),

0 = [x2, w] ≡ α1[x2, x1] = −α1x4
(
mod (B5)

3).

Hence, α1 = α2 = 0. Since x5 ∈ L3
5, we have

0 = [x2, w] = α3[x2, x3] + α1,1
[
x2, x2

1

] + α1,2[x2, x1x2] + α1,3[x2, x1x3]
= α3x5 + α1,1(−2x1x4 + x5) − α1,2x2x4 − α1,3x3x4.

Since char F �= 2, we deduce that α3 = 0. Thus, w ∈ (B5)
2 as claimed.

Now set Bi = Ω(Li)/Ω
5(Li), for i = 6,7. Suppose, to the contrary, that f : B7 → B6 is an isomor-

phism. Since B7 is generated by x1 and x2, the map f is determined by the images f (x1) and f (x2).
As above, let us write f (x1) and f (x2) as linear combinations of PBW monomials:
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f (x1) =
∑

i1�···�in

αi1,...,in xi1 · · · xin ,

f (x2) =
∑

i1�···�in

βi1,...,in xi1 · · · xin .

As

f
([x1, x2]

) ≡ (α1β2 − α2β1)[x1, x2] = (α1β2 − α2β1)x3
(
mod (B6)

3), (1)

we obtain that α1β2 − α2β1 �= 0. Eq. (1) also gives

0 = f
([x1, x2, x2]

) ≡ β1(α1β2 − α2β1)[x1, x2, x1] = −β1(α1β2 − α2β1)x4
(
mod (B6)

4).

Since α1β2 − α2β1 �= 0, we must have β1 = 0. This implies that α1 �= 0 and β2 �= 0. Furthermore,
modulo (B6)

4, we have

f
([x1, x2]

) ≡ α1β2x3 + (α1β3 + α2β1,1 − α1,1β2)x4

+ (α1β1,2 − 2α2β1,1 + 2α1,1β2)x1x3 + (2α1β2,2 − α2β1,2 + α1,2β2)x2x3.

Hence f ([x1, x2, x2]) is equal to the following:

(−α1β
2
2 + α1β2β1,1

)
x5 − 2α1β2β1,1x1x4

− α1β2β1,2x2x4 + β2(α1β1,2 − 2α2β1,1 + 2α1,1β2)x3x3.

As [x1, x2, x2] = 0 in Ω(L7), we must have f ([x1, x2, x2]) = 0. Since char(F) �= 2 and α1β2 �= 0, we get
β1,1 = 0. Thus the coefficient of x5 in f ([x1, x2, x2]) is −α1β

2
2 . This, implies that f ([x1, x2, x2]) �= 0,

which is a contradiction. Thus B6 � B7, as claimed.
Let us now assume that char F = 2, and prove Ω(L3) ∼= Ω(L5) and Ω(L6) ∼= Ω(L7). Note that

the map from L3 to Ω(L5) induced by x1 → x1, x2 → x2, x3 → x3 + x2
1 is a Lie homomorphism.

Hence, by Lemma 2.1, it can be extended to a homomorphism ϕ from Ω(L3) to Ω(L5). Since x1, x2,
and x3 + x2

1 form a generating set for Ω(L5), ϕ is onto. We need to show that ϕ is injective. Since
dimΩ(L3)/Ω

i(L3) = dimΩ(L5)/Ω
i(L5) (see Theorem 2.3), the homomorphism ϕ induces an isomor-

phism

ϕi : Ω(L3)/Ω
i(L3) → Ω(L5)/Ω

i(L5),

for every i � 1. Let x be a non-zero element in Ω(L3) such that ϕ(x) = 0. By Theorem 2.3, there exists
a positive integer i such that x ∈ Ω i−1(L3) \Ω i(L3). As ϕi is an isomorphism, we get ϕi(x) �= 0, which
is a contradiction. Hence ϕ is injective, and so Ω(L3) ∼= Ω(L5).

One can show precisely the same way that x1 → x1, x2 → x2 + x2
1 extends to an isomorphism from

Ω(L7) to Ω(L6). �
Lemma 3.2 in combination with Lemma 2.2, and the argument preceding it proves Theorem 3.1.
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4. 6-dimensional nilpotent Lie algebras

The isomorphisms between universal enveloping algebras of nilpotent Lie algebras of dimension 6
in characteristic different from 2 are described by the following theorem.

Theorem 4.1. Let L and K be nilpotent Lie algebras of dimension 6 over a field F of characteristic not 2. If
U (L) ∼= U (K ), then one of the following must hold:

(i) L ∼= K .
(ii) char F = 3; further L and K are isomorphic to one of the following pairs of Lie algebras in [dG, Section 5]:

L6,6 and L6,11; L6,7 and L6,12; L6,17 and L6,18; L6,23 and L6,25 .

Throughout this section F denotes a field with characteristic different from 2. The proof of The-
orem 4.1 is presented in this section. De Graaf [dG] lists the isomorphism types of 6-dimensional
nilpotent Lie algebras over an arbitrary field F of characteristic different from 2. De Graaf denotes
these Lie algebras by L6,i or L6,i(ε) where 1 � i � 26 and ε is a field element. To simplify notation
and to distinguish between the Lie algebras of Sections 3 and 4 we will denote L6,i with Ki and
L6,i(ε) with Ki(ε). Inspecting the list of Lie algebras, we obtain that the isomorphisms among the
graded Lie algebras associated with the lower central series of these Lie algebras are as follows:

(1) Gr(K3) ∼= Gr(K5) ∼= Gr(K10);
(2) Gr(K6) ∼= Gr(K7) ∼= Gr(K11) ∼= Gr(K12) ∼= Gr(K13);
(3) Gr(K14) ∼= Gr(K16);
(4) Gr(K15) ∼= Gr(K17) ∼= Gr(K18);
(5) Gr(K23) ∼= Gr(K25);
(6) Gr(K24(ε)) ∼= Gr(K9), for all ε ∈ F.

Let L and K be 6-dimensional non-isomorphic nilpotent Lie algebras over F. If U (L) ∼= U (K ) then,
by Theorem 2.4, L and K must both occur in one of these families. In Lemmas 4.2–4.7 we examine
the possible isomorphisms between the universal enveloping algebras of the Lie algebras that occur
in one of the families above. Using Lemma 2.2 we only examine the possible isomorphisms between
the augmentation ideals.

As with the 5-dimensional Lie algebras, we change the multiplication tables of the algebras pre-
sented in [dG] in order to work with homogeneous basis. The bases elements of different weights
are separated by a semicolon. Further, as in Section 3, we omit products of the form [xi, x j] = 0 from
the multiplication tables of the Lie algebras. For i = 3,5,6,7,9,10,11,12,13,14,15,16,17,18,23,25
we set Ui = U (Ki) and Ωi = Ω(Ki). Further, let U24(ε) and Ω24(ε) denote U (K24(ε)) and Ω(K24(ε)),
respectively.

4.1. Family (1)

First we deal with the isomorphism Gr(K3) ∼= Gr(K5) ∼= Gr(K10) where

K3 = 〈
x1, x2, x3, x4; x5; x6

∣∣ [x1, x2] = x5, [x1, x5] = x6
〉;

K5 = 〈
x1, x2, x3, x4; x5; x6

∣∣ [x1, x2] = x5, [x1, x5] = x6, [x2, x3] = x6
〉;

K10 = 〈
x1, x2, x3, x4; x5; x6

∣∣ [x1, x2] = x5, [x1, x5] = x6, [x3, x4] = x6
〉
.

Lemma 4.2. The algebras Ω3 , Ω5 , and Ω10 are pairwise non-isomorphic.

Proof. For i = 3,5,10, let Bi = Ωi/(Ωi)
4. It is enough to prove that the centers Zi = Z(Bi) have

different dimensions. The quotient Bi is spanned by the images of the PBW monomials with weight
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at most 3 and we will identify such a monomial with its image. We claim that Z3 = 〈x3, x4, (B3)
3〉F .

Set C = 〈x3, x4, (B3)
3〉F . Clearly, C � Z3. Let z ∈ Z3. Then z is a linear combination of PBW monomials

with weight at most 3. As usual, αi1,...,in is the coefficient of xi1 · · · xin in the PBW representation of z.
We may assume without loss of generality that all monomials in C occur with coefficient zero. First
we compute that

[x1, z] = α2x5 + α1,2x1x5 + 2α2,2x2x5 + α2,3x3x5 + α2,4x4x5 + α5x6.

We deduce that α2 = α1,2 = α2,2 = α2,3 = α2,4 = α5 = 0. Now

[z, x2] = α1x5 + 2α1,1x1x5 − α1,1x6 + α1,3x3x5 + α1,4x4x5.

This implies that α1 = α1,1 = α1,3 = α1.4 = 0. Therefore Z3 = C as claimed. Since x3, x4, x3x3, x3x4,
x4x4 together with the PBW monomials with weight 3 form a basis for C , we obtain that dim C =
dim Z3 = 30. Similar argument shows that dim Z5 = 29, and dim Z10 = 28. Thus the Zi have different
dimensions, as required. �
4.2. Family (2)

We examine the following family of Lie algebras:

K6 = 〈
x1, x2, x3; x4; x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x6, [x2, x4] = x6
〉;

K7 = 〈
x1, x2, x3; x4; x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x6
〉;

K11 = 〈
x1, x2, x3; x4; x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x6, [x2, x4] = x6, [x2, x3] = x6
〉;

K12 = 〈
x1, x2, x3; x4; x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x6, [x2, x3] = x6
〉;

K13 = 〈
x1, x2, x3; x4; x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x6, [x2, x3] = x5, [x4, x3] = x6
〉
.

Lemma 4.3. The enveloping algebras Ω6 , Ω7 , Ω11 , Ω12 , and Ω13 are pairwise non-isomorphic provided that
char F �= 3. If char F = 3 then Ω6 ∼= Ω11 and Ω7 ∼= Ω12 and there is no more isomorphism among the algebras
in this family.

Proof. We claim, for i ∈ {6,7,11,12}, that Ω13 � Ωi . Note that L3 ∼= Ki/K 4
i , while L5 ∼= K13/K 4

13,
where L3 and L5 are 5-dimensional Lie algebras defined in Section 3. Thus, Ω(L3)/Ω

5(L3) ∼= Ωi/

(K 4
i + Ω5

i ) and Ω(L5)/Ω
5(L5) ∼= Ω13/(K 4

13 + Ω5
13). Suppose that f : Ωi → Ω13 is an isomorphism.

By Lemma 2.5, f (K 4
i + Ω5

i ) = K 4
13 + Ω5

13. Hence, f induces an isomorphism between Ωi/(K 4
i + Ω5

i )

and Ω13/(K 4
13 + Ω5

13). Thus,

Ω(L3)/Ω
5(L3) ∼= Ω(L5)/Ω

5(L5).

However Lemma 3.2 shows that Ω(L3)/Ω
4(L3) � Ω(L5)/Ω

4(L5). This contradiction implies that
Ω13 � Ωi , as claimed.

Next we show that Ω6 � Ω7 and that Ω11 � Ω12. First we argue that Ω6 � Ω7. Suppose on the
contrary that f : Ω7 → Ω6 is an isomorphism. Then f is determined by the images f (x1), f (x2),
f (x3). Write f (xi) as a linear combination of PBW monomials and let αi1,...,in , βi1,...,in and γi1,...,in
denote the coefficients of xi1 · · · xin in f (x1), f (x2), f (x3), respectively. Since x3 ∈ Z(Ω7), we have

0 = [
x1, f (x3)

] ≡ γ2x4 mod (Ω6)
3 and 0 = [

x2, f (x3)
] ≡ −γ1x4 mod (Ω6)

3.
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Therefore γ1 = γ2 = 0. Let us compute modulo (Ω6)
4 that

0 = f
([x2, x1, x2]

) ≡ β1(α1β2 − β1α2)x5.

If α1β2 − β1α2 = 0, then, as γ1 = γ2 = 0, it follows that f (xi) are linearly dependent modulo (Ω6)
2,

which is impossible. Thus β1 = 0 and α1β2 �= 0. Now computation shows, modulo (Ω6)
5, that

0 = f
([x1, x2, x2]

)

≡ (−α1β
2
2 + α1β2β11

)
x6 − 2α1β2β1,1x1x5 − α1β2β1,2x2x5 − α1β2β1,3x3x5 + δβ2x4x4

where δ = α1β1,2 − 2α2β1,1 + 2α1,1β2. Considering the coefficients of x6 and x1x5, we deduce that
either α1 = 0 or β2 = 0, which is a contradiction.

Let us now show that Ω11 � Ω12. Assume by contradiction that f : Ω12 → Ω11 is an isomorphism.
Then f is determined by the images f (x1), f (x2), and f (x3). As above, we write f (xi) as a linear
combination of PBW monomials and we let αi1,...,in , βi1,...,in and γi1,...,in denote the coefficients of
xi1 · · · xin in f (x1), f (x2), f (x3), respectively. Let us compute modulo (Ω11)

3 that

0 = f
([x1, x3]

) ≡ (α1γ2 − γ1α2)x4

and

0 ≡ f
([x2, x3]

) ≡ (β1γ2 − β2γ1)x4.

If the vector (γ1, γ2) is not zero, then the vectors (α1,α2) and (β1, β2) must be its scalar multiples
and so the f (xi) are linearly dependent modulo (Ω11)

2. Hence γ1 = γ2 = 0. Now we get a contradic-
tion using the same argument as in the previous paragraph.

Now assume that char F �= 3. Set Bi = Ωi/(Ωi)
5, for i = 6,7,11,12. Let Zi denote the center of

the Bi . We claim that dim Z6 = dim Z7 = 29 and dim Z11 = dim Z12 = 28. We only compute dim Z7,
as the computation of the other Zi is very similar. We claim that

Z7 = 〈
x3, x3x3, x3x3x3, (B7)

4〉
F
.

Set C = 〈x3, x3x3, x3x3x3, (B7)
4〉F . Clearly, C � Z7. Let z ∈ Z7 and write z as a linear combination of

PBW monomials with weight at most 4. We may assume that all PBW monomials in C occur with
coefficient 0 in z. Let βi1,...,ik be the coefficient of xi1 · · · xik . Then β3 = β3,3 = β3,3,3 = 0. First we
obtain that

0 = [z, x5] = β1[x1, x5] = β1x6,

and so β1 = 0. Also, [z, x3
1] = −3β2x2

1x4 + 3β2x1x5 − β2x6. So, β2 = 0. Next compute that

[
z, x2

1

] = −2β1,2x2
1x4 − 4β2,2x1x2x4 − 2β2,3x1x3x4

+ (β1,2 − 2β4)x1x5 + 2β2,2x2x5 + β2,3x3x5 + 2β2,2x4x4 + β4x6.

This implies that β1,2 = β2,2 = β2,3 = β4 = 0. Further,

[
z, x2

2

] = 4β1,1x1x2x4 − 2β1,1x2x5 − 2β1,1x4x4 + 2β1,3x2x3x4.
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Thus β1,1 = β1,3 = 0. Then

0 = [z, x1] = −β1,1,2x1x1x4 − 2β1,2,2x1x2x4 − β1,2,3x1x3x4 − 3β2,2,2x2x2x4 − 2β2,2,3x2x3x4

− β2,3,3x3x3x4 − β1,4x1x5 − β2,4x2
4 − β2,4x2x5 − β3,4x3x5 − β5x6,

and so β1,1,2 = β1,2,2 = β1,2,3 = β2,2,2 = β2,2,3 = β2,3,3 = β1,4 = β2,4 = β3,4 = β5 = 0. Further

0 = [z, x2] = 3β1,1,1x1x1x4 − 3β1,1,1x1x5 + β1,1,1x6

+ 2β1,1,3x1x3x4 − β1,1,3x3x5 + β1,3,3x3x3x4.

Hence β1,1,1 = β1,1,3 = β1,3,3 = 0. Thus z ∈ C , and so C = Z7 as required. Similar calculations show
that

Z6 = 〈
x3, x3x3, x3x3x3, (B6)

4〉
F
;

Z11 = 〈
x3x3, x3x3x3, (B6)

4〉
F
;

Z12 = 〈
x3x3, x3x3x3, (B6)

4〉
F
.

Thus the dimensions of Zi are as claimed. Hence, if char F �= 3 then, Ω6 � Ω11,Ω12 and Ω7 �

Ω11,Ω12.
Combining the results of the last two paragraph, we obtain that the algebras Ω6, Ω7, Ω11, Ω12,

Ω13 are pairwise non-isomorphic if char F �= 3.
Now suppose that char F = 3. We are required to show that Ω6 � Ω12, Ω7 � Ω11, Ω6 ∼= Ω11

and that Ω7 ∼= Ω12. Suppose that f : Ω12 → Ω6 is an isomorphism. Write f (x2) and f (x4) as linear
combinations of PBW monomials and let βi1,...,in and γi1,...,in denote the coefficient of xi1 · · · xin in
f (x2) and f (x4) respectively. By Lemma 2.5, f (x4) ≡ γ4x4 (mod (Ω6)

3). Then, modulo (Ω6)
4, 0 =

f ([x2, x4]) ≡ β1γ4x5, which gives that β1 = 0. As x4 = [x1, x2], we find that

γ1,1,1 = γ1,1,2 = γ1,1,3 = γ1,2,2 = γ1,2,3 = γ1,3,3 = γ2,2,2 = γ2,2,3 = γ2,3,3 = γ3,3,3 = 0.

Then

0 = f
([x2, x4]

) = (β2γ4 − β1,1γ4)x6 − β2γ1,4x4x4 + β1,2γ4x2x5 + β1,3γ4x3x5 − β1,1γ4x1x5.

This implies that β2γ4 = 0, and in turn that β2 = 0. However, this gives that f (x1), f (x2), f (x3) are
linearly dependent modulo (Ω6)

2, which is impossible. Hence Ω6 � Ω12, and very similar argument
shows that Ω7 � Ω11.

Finally we need to show that if char F = 3, then Ω6 ∼= Ω11 and Ω7 ∼= Ω12. The argument presented
in the proof of Lemma 3.2 shows that the map x1 → x1, x2 → x2, and x3 → x3 + x3

1 can be extended
to isomorphisms between Ω6 and Ω11 and between Ω7 and Ω12. �
4.3. Family (3)

K14 = 〈
x1, x2; x3; x4; x5; x6

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x5] = x6,

[x3, x4] = −x6, [x2, x3] = x5
〉;

K16 = 〈
x1, x2; x3; x4; x5; x6

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5,

[x2, x5] = x6, [x3, x4] = −x6
〉
.
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Lemma 4.4. The algebras Ω14 and Ω16 are not isomorphic.

Proof. Note that K14 and K16 are algebras with maximal class. Further, K14/(K14)
5 ∼= L6 and

K16/(K16)
5 ∼= L7. Now the argument presented in the first paragraph of the proof of Lemma 4.3

shows that Ω14 � Ω16. �
4.4. Family (4)

K15 = 〈
x1, x2; x3; x4; x5; x6

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5,

[x1, x5] = x6, [x2, x4] = x6
〉;

K17 = 〈
x1, x2; x3; x4; x5; x6

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6,

[x2, x3] = x6
〉;

K18 = 〈
x1, x2; x3; x4; x5; x6

∣∣ [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6
〉
.

Lemma 4.5. If char F �= 3 then Ω15 , Ω17 and Ω18 are pairwise non-isomorphic; otherwise the only isomor-
phism among these algebras is Ω17 ∼= Ω18 .

Proof. Note that K15/(K15)
5 ∼= L6 and K17/(K17)

5 ∼= L7 ∼= K18/(K18)
5. Applying the same method as

in the proof of Lemma 4.3 yields that Ω15 � Ω17 and Ω15 � Ω18.
Suppose that char F �= 3, and let us show that Ω17 � Ω18. Assume, by contradiction, that f : Ω17 →

Ω18 is an isomorphism. Then f is determined by the images f (x1) and f (x2). Let f (x1) ≡ α1x1 +α2x2
and f (x2) ≡ β1x1 + β2x2 modulo Ω2

18. Let δ = α1β2 − α2β1. Clearly, δ �= 0. Note that f (x3) ≡ δx3

(mod Ω3
18). Thus, f (x4) ≡ α1δx4 (mod Ω4

18) and f (x6) ≡ α3
1δx6 (mod Ω6

18). Also, f ([x2, x3]) ≡
β1δx4 (mod Ω4

18). We deduce that β1 = 0. Now we write

f (x2) ≡ β2x2 + u0 + x1u1 + x2
1u2 + x3

1u3
(
mod Ω4

18

)
,

f (x3) ≡ δx3 + v0 + x1 v1 + x2
1 v2 + x3

1 v3
(
mod Ω4

18

)
,

where each ui and vi is a linear combination of (possibly trivial) PBW monomials that do not in-
volve x1. Since f (x3) ≡ δx3 (mod Ω3

18), we deduce that weight of v0 + x1 v1 + x2
1 v2 is at least 3.

Similarly, weight of u0 + x1u1 is at least 2. Note that [u0, vi] = [ui, v0] = 0. So,

0 ≡ f
([x3, x2]

) ≡ β2

3∑

i=1

[
xi

1, x2
]
vi − δ

2∑

j=1

[
x j

1, x3
]
u j

(
mod Ω5

18

)
. (2)

Expanding out the commutators in Eq. (2), we observe that x2
1x3 v3 is the unique term in Eq. (2)

that has the highest exponent of x1. Since char(F) �= 3, this can happen only if v3 ∈ Ω18. Thus,
x2

1x3 v3 ∈ Ω5
18. The highest exponent of x1 in Eq. (2) then appears in x1x3 v2 and x1x4u2. So, these

terms have to cancel out with each other. We deduce that u2 ∈ Ω18 and v2 ∈ Ω2
18. Now Eq. (2) re-

duces to β2x3 v1 ≡ δx4u1 (mod Ω5
18). This implies that u1 ∈ Ω2

18 and v1 ∈ Ω3
18. So, if we write

f (x2) ≡ β2x2 + u0 + x1u1 + x2
1u2 + x3

1u3 + x4
1u4

(
mod Ω5

18

)
,

f (x3) ≡ δx3 + v0 + x1 v1 + x2
1 v2 + x3

1 v3 + x4
1 v4

(
mod Ω5

18

)
,

then each ui and vi is a linear combination of (possibly trivial) PBW monomials that do not involve
x1, u0 has weight at least 2, v0 has weight at least 3, weight of x1 v1 + x2

1 v2 + x3
1 v3 + x4

1 v4 is at least 4,
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and weight of x1u1 + x2
1u2 is at least 3. Thus,

−α3
1δx6 = f

([x3, x2]
) ≡ β2

4∑

i=1

[
xi

1, x2
]
vi − δ

3∑

j=1

[
x j

1, x3
]
u j

(
mod Ω6

18

)
. (3)

Arguing as in Eq. (2), we deduce that Eq. (3) reduces to the following:

−α3
1δx6 ≡ β2x3 v1 − δx4u j

(
mod Ω6

18

)
.

The latter is possible only if α1 = 0 or δ = 0. Since we have already proved that β1 = 0 it follows that
δ = 0 which is a contradiction.

The argument in the proof of Lemma 3.2 shows, for char(F) = 3, that the map x1 → x1, x2 →
x2 + x3

1 can be extended to an isomorphism between Ω17 and Ω18. �
4.5. Family (5)

K23 = 〈
x1, x2, x3; x4, x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x6, [x1, x3] = x5, [x2, x3] = x6
〉;

K25 = 〈
x1, x2, x3; x4, x5; x6

∣∣ [x1, x2] = x4, [x1, x4] = x6, [x1, x3] = x5
〉
.

Lemma 4.6. The algebras Ω23 and Ω25 are not isomorphic.

Proof. Suppose that char F �= 3 and assume, by contradiction, that f : Ω25 → Ω23 is an isomorphism.
For i = 1,2,3, write f (xi) as a linear combination of PBW monomials and assume that αi1,...,in ,
βi1,...,in , and γi1,...,in are the coefficients of xi1 · · · xin in f (x1), f (x2), and f (x3), respectively. Then

0 = f
([x2, x3]

) ≡ (β1γ2 − β2γ1)x4 + (β1γ3 − β3γ1)x5
(
mod Ω3

23

)
,

and hence β1γ2 −β2γ3 = β1γ3 −β3γ1 = 0. Since f induces an isomorphism between Ω25/(Ω25)
2 and

Ω23/(Ω23)
2, we obtain that β1 = γ1 = 0. Note that

f (x5) = f
([x1, x3]

) ≡ α1γ2x4 + α1γ3x5
(
mod Ω3

23

)
.

Thus, 0 = f ([x1, x5]) ≡ α2
1γ2x6 (mod (Ω23)

4), which gives that γ2 = 0. Now we calculate f ([x2, x3])
modulo (Ω23)

4 to show that β2γ3 = 0. As [x4,Ω23] � (Ω23)
4, we have, modulo (Ω23)

4, that

f
([x2, x3]

) ≡ β2γ3x6 + β2γ1,1(x6 − 2x1x4) − β2γ1,2x2x4 − β2γ1,3x3x4

+ 2(β1,1γ3 − β3γ1,1)x1x5 + (β1,2γ3 − β3γ1,2)x2x5 + (β1,3γ3 − β3γ1,3)x3x5.

This gives that β2γ3 = 0 which implies that the images f (x2), f (x2), f (x2) are linearly dependent
modulo (Ω23)

2, which is a contradiction. �
4.6. Family (6)

We consider the following Lie algebras:

K9 = 〈
x1, x2, x3; x4; x5, x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x2, x4] = x6
〉;

K24(ε) = 〈
x1, x2, x3; x4; x5, x6

∣∣ [x1, x2] = x4, [x1, x4] = x5, [x1, x3] = εx6,

[x2, x4]=x6, [x2, x3] = x5
〉
.
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The family K24(ε) is a parametric family of Lie algebras such that K24(ε1) ∼= K24(ε2) if and only if
there is a ν ∈ F such that ε1ν

2 = ε2 (see [dG]).

Lemma 4.7. The algebras Ω9 and Ω24(ε) are not isomorphic, for all ε ∈ F. Furthermore, Ω24(ε1) ∼= Ω24(ε2)

if and only if K24(ε1) ∼= K24(ε2), for every ε1, ε2 ∈ F.

Proof. Since x3 ∈ Z(Ω9) \ (Ω9)
2, we have that Z(Ω9) �� (Ω9)

2. Let ε ∈ F. We claim that Z(Ω24(ε)) �
(Ω24(ε))2. Let z ∈ Z(Ω24(ε)) and write z as a linear combination of PBW monomials in which αi1,...,in
denotes the coefficient of x1 · · · xn . First we compute, modulo (Ω24(ε))3, that 0 = [z, x3] ≡ α1εx6 +
α2x5, which gives that α2 = 0. Then,

[z, x2] ≡ α1x4 + (−α3 − α1,1)x5 + 2α1,1x1x4 + α1,2x2x4 + α1,3x3x4
(
mod Ω4

24(ε)
)
,

which shows that α1 = α3 = 0. Hence z ∈ (Ω24(ε))2, and so Z(Ω24(ε)) � (Ω24(ε))2, as claimed. This
implies that Ω9 � Ω24(ε).

Let us now prove the second assertion of the lemma. Without loss of generality, we assume that
ε2 �= 0. Let K = K24(ε2) and Ω = Ω(K ). Suppose that f : Ω24(ε1) → Ω is an algebra isomorphism.
As usual, for i = 1,2,3, we write the images f (xi) as linear combinations of PBW monomials, and let
αi1,...,in , βi1,...,in and γi1,...,in denote the coefficients of xi1 · · · xin in f (x1), f (x2), and f (x3), respectively.
Since f ([x1, x3]), f ([x2, x3]) ∈ Ω3, we deduce that α1γ2 − α2γ1 = 0 and that β1γ2 − β2γ1 = 0. Since
the images f (x1), f (x2), f (x2) are linearly independent modulo Ω2, this gives that γ1 = γ2 = 0. Set
δ = α1β2 − α2β1. Since f (x1), f (x2), and f (x3) are linearly independent modulo Ω2, we have δ �= 0.
Further,

f (x4) = [
f (x1), f (x2)

] ≡ δ[x1, x2] = δx4
(
mod Ω3).

Thus, f ([x1, x4]) ≡ α1δx5 + α2δx6 (mod Ω4). So, modulo Ω4, we have,

f
([x2, x3]

) ≡ (β1γ4 + β2γ3 + β2γ1,1)x5 + (ε2β1γ3 − β1γ2,2 + β2γ1,2 + β2γ4)x6

+ (β1γ1,2 − 2β2γ1,1)x1x4 + (2β1γ2,2 − β2γ1,2)x2x4 + (β1γ2,3 − β2γ1,3)x3x4.

As f ([x1, x4]) = f ([x2, x3]) we obtain the following equations:

β1γ4 + β2γ3 + β2γ1,1 = α1δ; (4)

ε2β1γ3 − β1γ2,2 + β2γ1,2 + β2γ4 = α2δ; (5)

β1γ1,2 − 2β2γ1,1 = 0; (6)

2β1γ2,2 − β2γ1,2 = 0; (7)

β1γ2,3 − β2γ1,3 = 0. (8)

Now we use the relation ε1[x2, x4] = [x1, x3]. So, modulo Ω4, we have

f
([x2, x4]

) ≡ β1δx5 + β2δx6,

f
([x1, x3]

) ≡ (α1γ4 + α2γ3 + α2γ1,1)x5 + (ε2α1γ3 − α1γ2,2 + α2γ1,2 + α2γ4)x6

+ (α1γ1,2 − 2α2γ1,1)x1x4 + (2α1γ2,2 − α2γ1,2)x2x4 + (α1γ2,3 − α2γ1,3)x3x4.
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We get the following equations:

α1γ4 + α2γ3 + α2γ1,1 = ε1β1δ; (9)

ε2α1γ3 − α1γ2,2 + α2γ1,2 + α2γ4 = ε1β2δ; (10)

α1γ1,2 − 2α2γ1,1 = 0; (11)

2α1γ2,2 − α2γ1,2 = 0; (12)

α1γ2,3 − α2γ1,3 = 0. (13)

Eqs. (6) and (11) imply that γ1,1 = γ1,2 = 0. Similarly γ2,2 = γ2,3 = γ1,3 = 0. Thus the system of
equations above are reduced to the following:

β1γ4 + β2γ3 = α1δ; (14)

ε2β1γ3 + β2γ4 = α2δ; (15)

α1γ4 + α2γ3 = ε1β1δ; (16)

ε2α1γ3 + α2γ4 = ε1β2δ. (17)

Set

p1 = (−1/2)ε1β2δ
−2 − (1/2)ε2α1γ3δ

−3;
p2 = (1/2)α1γ4δ

−3 + α2γ3δ
−3;

p3 = α2δ
−2 − (1/2)β2γ4δ

−3;
p4 = (−1/2)α1δ

−2 − (1/2)β2γ3δ
−3.

We can check that

p1(β1γ4 + β2γ3 − α1δ) + p2(ε2β1γ3 + β2γ4 − α2δ)

+ p3(α1γ4 + α2γ3 − ε1β1δ) + p4(ε2α1γ3 + α2γ4 − ε1β2δ) = ε1 − ε2γ
2

3 δ−2.

Thus, considering that δ �= 0, the equation ε1 = ε2γ
2

3 δ−2 follows from Eqs. (14)–(17). However this
implies that K24(ε1) ∼= K24(ε2) as claimed. �
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