Part 1

Basic dualities

29

Chapter 3

The weakest precondition calculus

The role of a sequential program is to produce a final result at the end of a
terminating computation. Computations may possibly be non-deterministic
and also fail to terminate. The main characteristic of sequential programs is
that no interaction with its environment is possible. Programs written in clas-
sical programming languages like Pascal are examples of sequential programs.
Different semantics for this type of programs (and their relationships) are our
main interest in this first part.

The semantics of a programming language £ is a function which assigns to
each program in £ its meaning, that is, an element of a domain of meanings
chosen for modeling the computations specified by the program. There are
different approaches to the definitions of the semantic function and of the
semantic domain.

The operational approach is intended to specify the meaning of a program
in terms of the steps performed by an abstract machine when executing it.
Formally, a transition relation on the configurations of an abstract machine is
specified [94,161]: a transition from a configuration to another one represents
one atomic step of a computation. Then the semantic function is defined in
terms of the transition relation. A computation of a program may fail to termi-
nate if it contains an infinite transition sequence. A computation deadlocks if
there is a configuration reached by the computation from which no transition
is possible. The operational view of a program on the one hand corresponds
often to its intuitive meaning, but, on the other hand, it is not always abstract
enough to be computationally useful since it might require a rather detailed

31

BONSANGUE

and intricate analysis.

Another approach to semantics is the denotational one [177,142,186,81]: first
provide an appropriate semantic domain according to the principle that pro-
gram constructs denote values, and then define the semantic function in such
way that the meaning of each syntactic construction of a program is given
in terms of the meanings of its constituent parts. In particular fixed point
techniques are needed to deal with recursion. For sequential programs this
results in the relation between input and output values. Thus the most simple
abstract denotational domain for sequential programs is that of all functions
from a starting state space (the set of all admissible inputs values) to a final
state space (the set of all possible output values). The semantics of a program
is a function, which we call state transformer. In order to take into account
non-termination of programs it is a natural step to consider state transformers
employing complete partial orders with a bottom element—a fictitious state
representing non-termination. Within this framework, non-determinism can
be handled using powerdomains. The state transformer model reflects closely
the operational view of a program, but abstracts from the intermediate con-
figurations.

The axiomatic approach has different aims from the operational and the de-
notational ones: proving program correctness, analyzing program properties,
and synthesizing correct programs from formal specifications [56,12,58,17]. In-
formally, a sequential program is correct if it satisfies the intended relation
between input values and output value. Program correctness is expressed by
statements of the form {P}S{@Q}, where S is a sequential program, P is a
predicate on the set of input values (precondition) and @ is a predicate on the
set of output values (postcondition) [101]. The precondition P describes the
initial input values in which the program S is started, and the postcondition
() describes the set of the desirable output values. More abstractly, correct-
ness statements can be defined with the weakest precondition and the weakest
liberal precondition: programs can be identified with functions, called predi-
cate transformers, from predicates on the set of all possible output values to
predicates on the set of all admissible input values. The weakest (liberal) pre-
condition calculus was introduced by Dijkstra [56] as a mathematical tool for
reasoning about the partial and total correctness of programs, and it has been
further developed in [82,58,98|. This predicate transformer model is called ax-
iomatic because it relies only on algebraic properties of predicates (described
for example in [86]).

In this chapter we start by introducing the syntax of a sequential language.
Then we define three different state transformer semantic domains. Accord-

32

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

ingly, three state transformer semantics for our language are introduced and
related. We define two predicate transformer semantics, one by taking into
account the possibility of non-termination, and another one by not doing
so. State transformer semantics and predicate transformer semantics will be
proved to be equivalent. We conclude the chapter with a formal treatment of
a backtrack operator in the weakest precondition calculus.

3.1 The sequential language L,

We begin by introducing a simple sequential language £, which is inspired by
Dijkstra’s language of guarded commands [56]. The language constructors are
assignment, conditional, non-deterministic choice and sequential composition.
The language allows for recursion by means of procedure variables. Dijkstra’s
guarded commands, conditionals and recursive combinators can be expressed
in terms of the basic constructors of L.

All the constructors of the language are well-known. The free occurrence of
guards as a conditional is already present in Hoare [103]. The non-deterministic
choice is studied, for example, by De Bakker in [20]. More generally, the lan-
guage L, is a slight variation of Hesselink’s calculus of commands [95].

To define the language, we need as basic blocks the sets (v €) I'Var of (individ-
ual) variables, (e €) Exp of expressions, (b €) BExp of Boolean expressions,
and (z €) PVar of procedure variables, respectively. For a fixed set of values
Val, the set of states (s,t €)St is given by St = IVar — Val. As usual, for
every state s € St, individual variable v € IVar and value z € Val, s[z/v]
denotes the state which evaluates to s(v') for every v’ # v and evaluates to z
otherwise. Also, we postulate valuations

Ev: Exp — (St — Val) and Bv: BExp — P(St).

These functions provide, in a rather abstract way, the semantics of expressions
and Boolean expressions. Clearly £v(e)(s) = z means that the expression e
in a state s has value z, and, similarly, s € Bv(b) means that the Boolean
expression b is true in a state s. Notice that for simplicity we assume that the
evaluation of an expression and of a Boolean expression is deterministic and
always terminates.

The language below has assignment “:=’, conditional ‘b—’, sequential compo-
sition °;’, choice ‘00°, and recursion through procedure variables. Its syntax is

33

BONSANGUE

defined as follows.
Definition 3.1.1 (i) The set (S €) Staty of statements is given by
Su=v = e|b>|2|9;5]|5085.

(ii) The set (d €) Decly of declarations is defined by Decly = PVar — Staty.
(iii) The language Loy is given by Decly x Staty.

The computational intuition behind assignments is as usual. The conditional
‘b—’ deadlocks in a state in which the Boolean expression ‘b’ does not evaluate
to true and acts as a skip otherwise. We assume deadlock is not signaled. The
sequential composition executes the first component and then it executes the
second component. The choice executes one of its components (the choice as
to which component is taken may be made by an implementation or, for non-
sequential languages, may be forced by some external factor). The intended
meaning of a procedure variable is body replacement.

We do not give an operational semantics for the language Ly, since we will
not deal with the connection between the operational and denotational se-
mantics (which, of course, is an important topic [160,22,23]). We concentrate
on state transformer and predicate transformer models, and we shall rely on
our computational intuition when formulating the semantic function.

3.2 State transformer models

In the state transformer approach programs are denoted by functions that
relate an input state s to the outcomes of all the computations of the program
when started in s. There are two important aspects to be considered. There
may be input states s for which the program deadlocks or fails to terminate. In
the first case, since no outcome is present, the input s is related to the empty
set. This is in accordance with the fact that if a program at input s can either
deadlock or produce some outputs then there is no reason to signal deadlock
as a result of a computation. In the second case we need to introduce a special
value—usually 1 —to which a non-terminating computation is mapped.

Some difficulties arise when we consider non-deterministic programs. Suppose
we have a procedure variable z € PVar declared as d(z) = v:=0; z, and let
us consider the programs

34

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

- Py = <d7 ZI)>
— Py=(d,v := 10z).

While program P; always terminates when activated, an execution of the
program P, gets stuck in a loop. An execution of the program Ps consists
of either executing the program P; or the program P,. Which of these three
programs should be considered equivalent by a state transformer semantics?

One view is to consider equivalent those programs which have computations
that may fail to terminate since nothing can be guaranteed for them. Hence
the program Pj3 should be identified with the program P, and it should differ
from the program P;.

Another view is to identify those programs that have the same sets of out-
comes, if any. Then the program P; should be identified with the program Ps,
and both should be different from the program Ps.

Finally, another view is to consider what actually happens: all three programs
are different. Below we give three state transformer domains corresponding to
these three views.

Smyth state transformers

Let X be the set of inputs and Y be the set of all possible outcomes of a class
of programs we consider. Computations that are possibly non-terminating are
identified (since nothing can be guaranteed of any of them) and mapped to
Y, = Y U{L}. Computations that deadlock are mapped to the empty set.

Definition 3.2.1 The set of Smyth state transformers from a set X to a set
Y s defined by

ST(X,Y)=X — (P(Y)U{Y.}).

In general, Smyth state transformers are ordered by the pointwise extension
of the superset order, that is, for 0,7 € ST5(X,Y)

o <7 if and only if Vz € X: o(z) D 7(x).

The above order can be justified as follows: the smaller the set of outcomes of
a program the more can be guaranteed of it. Smyth state transformers form a

35

BONSANGUE

poset with a least element given by the function mapping every z € X to Y,
(corresponding to the program which always fails to terminate, and for which
nothing at all can be guaranteed).

Not all Smyth state transformers are ‘reasonable’ denotations of programs.
In particular, we may wish to consider only programs which are finitely non-
deterministic:

ST (X, Y)=X = (Pa(Y)U{YL}),
where Pp, (Y) consists of the finite subsets of Y.

Lemma 3.2.2 For every set X and Y, both STg(X,Y) and STE(X,Y)
are complete partial orders.

Proof. Since the function Az € X.Y isin both ST¢(X, Y) and ST (X, V),
it is their least element. Assume now V is a directed set of functions in
STs(X,Y). It is easy to see that

(B.1)Az € X.({o(z) |0 € V}

is the least upper bound of V in STg(X, Y). If every o € Vis in STE" (X, Y)
then o(z) is either a finite set or { Y }. Thus also

(Mo(z) | o€V}

is a finite set or { Y } for every z € X. It follows that (3.1) is the least upper
bound of V also in STA"(X, V). O

An alternative way to prove that S T’g”(X , V) is a complete partial order is to
define it as the set of all functions from X to S(Y,)T, the Smyth powerdomain
with emptyset (added as a top element) of the flat cpo Y.

There are two basic operators for Smyth state transformers which can be used
as the semantical counterpart of the syntactical operators of L.

Definition 3.2.3 Let X, Y and Z be three sets. Define, for every r € X,
the union function O: STg(X,Y) x STs(X,Y) = STs(X,Y) by

(O’lle'Q)(.Z') = Ul(l') U O'Q(ZI)),

36

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

and the composition function ;: STg¢(X,Y) x STs(Y,Z) = STs(X,Z) by

Y, if L €oy(z) or
(01; 09)(z) = Jy € oq(z): L € 03(y)
U{o2(y) | y € o1(x)} otherwise.

These functions are monotone in both their arguments. Moreover, if o, and o
are in STA"(X, V), then also 0,00y is in STE" (X, V). Similarly, because the
finite union of finite sets is a finite set, if oy is an element of STE"(X, Y) and

0y is an element of ST (Y, Z) then their composition oy ; 0 is an element
of ST (X, 7).

Once we have defined the semantical operators which will denote the syntactic
operators ;" and ‘00 of the language L, we have almost all ingredients to define
a state transformer semantics for £y using ST s(St,St) as semantic domain:
we have only to define the semantics for the atomic commands ‘v := ¢’ and
‘b—’, and for the procedure variables ‘z’.

Definition 3.2.4 The semantic function Sts[-] is defined as the least func-
tion in Lo — ST s(St, St) such that, for all s € S,

Sts[(d,v:=e)](s) = {s[Ev(e)(s)/v]},
Sts[(d, b—=)](s) = {{8} if s € Bv(b)

0 otherwise,
Sts[{d, z)](s) = Sts[(d, d(z))](s),
Sts[(d, S ; $2)](s) = (Sts[(d,)] ; Sts[{d, 52)])(s),
Sts[(d, S1 O S»)](s) = (Sts[{d, S1)]OSts[{d, S2)])(s).

The well-definedness of the above semantics can be justified as follows. The
semantics Stg[-] can be obtained as the least fixed point of a higher order
transformation.

Lemma 3.2.5 Let F € Semg = Ly — STs(St,St) and define the function

37

BONSANGUE

Vg : Semg — Semg inductively, for all s € St, by

Vs(F)({d,v:=e))(s) = {s[Ev(e)(s)/v]},
Us(F)((d,b=))(s) = {{8} if s € By(b)

0 otherwise
Vs (F)((d, x))(s) = F((d, d(2)))(s),
Us(F)((d, 515 52))(s) = (Us(F)((d, 51)) ; Ws(F)({d, 52)))(s),
Us(F)((d, 510 52))(s) = (Vs (F)((d, 51))Bs(F)({d, 52)))(s),

Then Vg is well-defined, monotone, and the function Stg[-] defined in Defini-
tion 3.2.4 is the least fized point of Ug.

Proof. Well-definedness of Wy is readily checked. To prove monotonicity of
Ug assume F; < Fy in Semg. We show that Wg(Fy)((d,S)) < Ug(Fy)({d,S))
for any program (d, S) by induction on the structure of S. The base cases are
immediate, and for the cases when § = §; 0.5 or § = 57 ; 5> we use induction
and the fact that both the union function ‘00" and the composition function
‘s are monotone in each argument.

Finally, since STs(St,St) is a cpo, Semg is also a cpo. Thus, by Proposi-
tion 2.2.3 the function Wg has a least fixed point, which, from Definition 3.2.4,
is Stg[[']]. O

By structural induction on the statement S, and because STg"(St,St) is
closed under the union function ‘0’ and the composition function ‘;’, it follows
that Stg[(d, S)] € STL"(St, St) for every program (d, S) in L.

Hoare state transformers

Next we consider a domain of state transformers which can be used for iden-
tifying programs only on the basis of their sets of outcomes, if any. The main
difference with the Smyth state transformers is that now we do not wish to
record non-termination. Deadlocking computations are mapped to the empty
set, as before.

38

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

Definition 3.2.6 The set of Hoare state transformers from a set X to a set
Y is defined by

STy(X,Y)=X = P(Y).

Alternatively, Hoare state transformers can be defined as the cpo of all func-
tions from X to (#(Y,))., the Hoare powerdomain with emptyset (added as
a bottom element) of the flat cpo Y. We prefer our definition above since its
conceptually simpler (no extra bottom elements L have to be added to Y').

Since Hoare state transformers do not record non-termination, infinite sets
of outcomes are possible also for programs with a finite non-deterministic be-
haviour [20]. Consider for example the program (d, z) in £, where the program
variable z is declared as

dlz)=(v:=v+1;2z)0v:=0.

According to the intended meaning, if we start the above program in a state
where v = 0 then we expect that the program either fails to terminate or
delivers a state in which the variable v has an arbitrary natural number as
resulting outcome.

The set STy (X, Y) is ordered by the pointwise extension of the subset inclu-
sion, the natural order in P(Y’). Thus, for ¢ and 7 in STy (X, Y),
o <7 if and only if Vz € X: o(z) C 7(x).

The set ST (X, V') ordered as above forms a complete partial order with least
element given by the function Az € X.(). The least upper bound of a directed
set {o; | i € I} of state transformers in STy (X, Y) is calculated pointwise,
that is,

(Vd{oi i€ 1})(z) = Uloi(z) | i € I},

for all z € X.

It is important to note that STy (X, V) is isomorphic to P(X x Y), the set
of all relations on X and Y. This explains why the Hoare state transformer
semantics is often called relational semantics [160)].

39

BONSANGUE

Every state transformer in ST (X, Y) is a state transformer in STs(X, V).
Hence we can define a union function and a composition function exactly in
the same way as for the Smyth state transformers.

Definition 3.2.7 Let X, Y and Z be three sets. Define, for every r € X
the union function O: STy(X,Y) x STy(X,Y) —» STy(X,Y) by

(01009)(z) = o1(x) U oa(x),

and the composition function ;: STy (X, Y) x STy(Y,Z) = STy(X,Z) by

(015 02)(2) =U{o2(y) | y € 01(2)}
for every r € X.

The above ‘00" and °;’ are well-defined and continuous in each argument. We
are now in a position to define the Hoare state transformer semantics for L.

Definition 3.2.8 The semantic function Sty[-] is defined as the least func-
tion in Lo — ST y(St,St) such that,

Sty[(d,v:=e)] = Sts[(d,v:=¢)],
Stu[(d,b—)] = Sts[(d, b—)],

Sty[{d, z)] = Sty [(d, d(z))],

Stul(d, S ; S2)] = Stu[(d, S1)]; Stu[({d,)],
Sti[(d, Sy O S5)] = Sty[(d, S1)]OStx[(d, S2)]

The well-definedness of the above semantics can be proved in a similar way as
for the semantics Stg[-].

Egli-Milner state transformers

Finally we turn to the possibility of identifying programs on the basis of what
actually happens. Computations are mapped to the subset of all their possi-
ble outcomes, including L to denote the possibility of non-termination. Note
that we differ from the Smyth state transformers because we do not neces-

40

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

sarily identify computations which fail to terminate. As always, deadlocking
computations are mapped to the empty set.

Definition 3.2.9 The set of Egli-Milner state transformers from a set X to
a set Y 1is defined by

STH(X,Y)=X — P(Y U{L)).

The set STg(X,Y) can be turned into a cpo by the following order. For
o,71€ STg(X,Y),

Q
IN
ﬁ
=
&
=
o
o
=3
<
=
<C
8
m
s
l_
R
2
&
&
2
=
Il
pui
&

This ordering has been introduced for the semantics of non-deterministic pro-
grams by Egli [60], and it has been studied in detail by De Bakker [20]. It is
often referred to as the Egli-Milner ordering because Milner has defined it in
an essentially equivalent formulation (as reported by Plotkin [158]). The Egli-
Milner ordering is an approximation ordering: the computation represented
by 7 is ‘better’ than the one represented by o if, for any input z, 7(z) can be
obtained form o(z) by replacing the partialness in o(z) (represented by the
presence of L in o(z)) by some set of outcomes.

Not all Egli-Milner state transformers correspond to denotations of programs
that are finitely non-deterministic. We could restrict them by considering only
a finite set of outcomes. However, if a computation fails to terminate then an
infinite set of outcomes is also possible (essentially for the same reason as for
the Hoare state transformers). Therefore, we take STH" (X, V) to be the set
of all functions from the set X to all subsets of Y U{_L} which are either finite
or contain L.

Lemma 3.2.10 For every set X and Y, both ST (X, Y) and STE(X,Y)
are complete partial orders.

Proof. If Vis a directed set in ST (X, Y) then

41

BONSANGUE

U{o(z) | o € V} ifVo e V: 1 € o(z)

(32)\/V=2Az € X.
U{o(z) \ {L} | o € V} otherwise.

Assume now that o € ST (X, V) for every o € V, and let 2 € X. In order
to show that \/V is the least upper bound of V in ST (X, Y) we need to
prove that the set (\/ V)(z) is finite whenever L & (\V V)(x).

Assume L ¢ (VV)(z). Then by (3.2), there exists oy € V with L ¢ oo(z).
Since V is a directed set, for every o, € V, there exists o3 € V which is an
upper bound of both gy and o;. By definition of the Egli-Milner order and
because | ¢ oq(z) it must be the case that o9(z) = 0¢(z). Hence

U{o(z) | o € V} = 0o(z).

By (3.2) and because oy(z) is a finite subset of Y, (\VV)(z) is also a finite
subset of Y.

Finally, the function Az € X.{ 1} is the least element for both STg(X,Y)
and ST (X, V). Hence they both are cpo’s. O

As for the finitary Smyth state transformers, an alternative way to prove that
ST (X, Y) is a complete partial order is to define it as the set of all functions
from X to £(Y.) @ (1), the Plotkin powerdomain with emptyset (added by
means of a coalesced sum) of the flat cpo Y.

Next we give the semantical counterparts of the syntactic operators in L.

Definition 3.2.11 Let X, Y and Z be three sets. Define, for every x € X,
the union function O: STE(X,Y) x STE(X,Y) — STe(X,Y) by

(O’lle'Q)(.Z') = Ul(l') U O'Z(ZI)),

and the composition function ;: STp(X,Y) x STe(Y,Z) — STr(X,Z) by
(015 02)(z) = Hoz(y) [y € () \ {L}} U{L | L €or(z)}.

Both these functions are monotone in their arguments. Moreover, the set
ST];"(X, Y) is closed under the union operation, and, if o1 € ST];"(X, Y)

and 0, € ST (Y, Z) then oy ; 0, € ST (X, Z). We are now ready for the
definition of the Egli-Milner state transformer semantics of L.

42

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

Definition 3.2.12 The semantic function Stg[-] is defined as the least func-
tion in Lo — ST g(St,St) such that,

N

=e)] = Sts
tE >]] — tIS d b—>>]l

I [{d,v:=)],
I It

tg[(d, z)] = Stg[(d, d(z))],
I It
I It

tg

N

d,v
d,b
d,

n

Stp[(d, S1; S2)] = Stg[(d, S1)] ; Ste[(d, S2)],
Sta[(d, Sy O S = Stp[(d, S)]OSta[(d, S»)].

We omit the proof of the well-definedness of the above semantics since it can
be obtained in a similar way as for the semantics Stg[-].

Relating the three state transformer models

So far we introduced three state transformer semantics for £,. Next we discuss
how these semantics are related.

For fixed sets X and Y, define the functions Ep : STg(X,Y) = STx(X,Y)
and Es: STg(X,Y) — STs(X,Y) respectively by

YL if 1 € O'(ZI))
Ey(0)(z) = o(z) \ {1} and Es(0)(z) =
o(z) otherwise
for every 0 € STp(X,Y) and z € X. Then both Ey and Eg are strict,
continuous, and onto, as can be easily verified. Moreover, if o € ST];"(X, Y)
then Es(0) € STR' (X, Y).

Lemma 3.2.13 For og,01 € STg(X,Y) and 0y € STg(Y, Z)

Es(0900y) = Es(09)0Es(01) and Eg(o¢Qoy) = Ex(og)0FEg(01),
Es(0o ; 01) = Es(09) 5 Es(o1) and Ex(0o; 01) = En(09) ; En(01).

Proof. Immediate from the definitions of Es and Ey, and of the union and
composition functions on the Egli-Milner, the Smyth and the Hoare state
transformers. O

43

BONSANGUE

Both the semantics based on the Smyth and Hoare state transformers are
projections, under Eg and FEpy respectively, of the semantics based on the
Egli-Milner state transformers.

Theorem 3.2.14 For all (d,5) € Lo, Es(Stu[(d, S)]) = Sts[(d,)] and
Ey(Stp[{d, $)]) = Stu[(d, 5)].

Proof. We prove that Egs(Stg[(d,S)]) = Sts[(d,S)]. The other equality
En(Stg[(d,S)]) = Stg[(d, S)] can be proved in a similar way.

Let Semp denote the set £, — STg(St,St), and define a monotone func-
tion Ug : Semp — Semp such that Stg[-] is the least fixed point of Vg
(the definition of ¥y can be obtained adapting the definition of Wg given
in Lemma 3.2.5).

By structural induction on S, following the definition of Vg, and using also
Lemma 3.2.13 it is straightforward to prove that the following diagram com-
mutes:

v
SemE £ SemE
AF.EgoF * AF.EgoF
Semg Semg.
Us

Since FEjg is strict and continuous and Semp is a cpo, we can use Proposi-

tion 2.2.5: the least fixed point of Wg coincides with the projection under

AF € Semp.Eg o F of the least fixed point of ¥y, showing that
Es(Ste[(d, 5)]) = Sts[(d, S)],

for all (d,S) € L,. O

3.3 Predicate transformer models

In this section we introduce predicate transformer models for sequential pro-
grams. We will proceed as follows. First we introduce informally predicate
transformers for partial and total correctness. Then we give a partial correct-
ness semantics and a total correctness semantics to L£y. Subsequently, we show

44

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

that for every state transformer there is an associated predicate transformer,
and conversely, every predicate transformer corresponds uniquely to a state
transformer. These relationships form the basic dualities we will study. The du-
ality between the predicate transformers for total correctness and the finitary
Smyth state transformers is well-known: it appears already in [194,14|, and it is
formally studied by Plotkin [159]. Various generalizations of this duality have
been studied in [29,10,40]. The connection between predicate transformers for
partial correctness and the Hoare state transformers is presented in [160].

Predicate transformers for partial and total correctness

Let X be a set. Intensionally, a predicate on X is a function which maps each
element of X to either true or false. We will use the extensional characteriza-
tion of a predicate as the set of all points of X for which, intensionally, the
predicate is true. This extensional view leads us to define the set of predicates
on X as P(X), the collection of all subsets of X. We will usually denote predi-
cates by P and (). Predicates are ordered by subset inclusion when not stated
otherwise.

Definition 3.3.1 A predicate transformer is a total function—typically de-
noted by w, p—from predicates on Y to predicates on X, that is

PT(Y,X)=P(Y)— P(X).

Predicate transformers are ordered by pointwise extension of the subset order
on X, that is, for m,p € PT(Y,X),

7w < p if and only if VP C Y:7(P) C p(P).

The poset of predicate transformers PT(Y, X) inherits much of the structure
of P(X): as PT(Y,X) is the pointwise extension of the complete Boolean
algebra P(X), it will also be a complete Boolean algebra. Meets and joins are
defined pointwise by

(/I\m)(P) = Om(P) and (\/m)(P) ={Jmi(P),

I I

for every set I, predicate transformers m; € PT(Y,X) (1 € I), and P C Y.
Also the complement —7 of a predicate transformer 7 € PT (Y, X) is defined

45

BONSANGUE

pointwise by

(=m)(P) =X\ 7(P),
for every P C Y.

Predicate transformers in PT (Y, X) can be used for the interpretation of a
program which starts from a state in X and eventually terminates in some
states that are elements of Y. We consider two different semantic models:

— The total correctness model: for a predicate P on Y and 7 € PT(Y, X),
the predicate 7(P) holds precisely for those inputs z € X for which each
computation of the program represented by 7 terminates in a final state
y € Y satisfying the predicate P;

— The partial correctness model: for a predicate P on Y and 7 € PT(Y, X),
the predicate 7(P) holds precisely for those inputs z € X for which each
computation of the program represented by 7 either fails to terminate or
terminates in a final state y € Y satisfying the predicate P.

In the total correctness model 7 (Y') holds precisely for those inputs z € X for
which each computation of the program represented by 7 terminates, whereas,
according to the partial correctness model (V) = X.

Not every predicate transformer represents a ‘reasonable’ program. For exam-
ple, a predicate transformer representing a program is required to preserve
non-empty intersections: every computation of a program S at input z termi-
nates in a final state y € Y satisfying the predicate (; P; if and only if every
computation of a program S at input z terminates in a final state y € Y
satisfying P; for all 7 € I.

Definition 3.3.2 Let X and Y be two sets. We define

(i) the domain of total correctness predicate transformers PT (Y, X) to
be the set of all predicate transformers in P(Y) — P(X) that preserve non-
empty intersections;

(ii) the domain of partial correctness predicate transformers PTp(Y, X)
to be the set of all total correctness predicate transformers m € PT (Y, X)
such that (V) = X.

Both the total and partial correctness predicate transformers are closed under
arbitrary meets (defined pointwise) and functional composition. The closure
under arbitrary meets turns PT7(Y, X) into a complete lattice.

46

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

We are now ready for the definition of two predicate transformer semantics
for Ly. We define them as the greatest and the least fixed point of a monotone
function on the domain of all possible predicate transformer semantics for L.

Lemma 3.3.3 Let F € Semy = Ly — PT ¢(St,St) and define the function
W Semy — Semy inductively, for all P C St, by

Ui (F)(d,v:=e))(P) = {s|s[Ev(e)(s)/v] € P},

Ur(F)(d, b=))(P) ={s|seBv(b) = s€P},

U (F)((d, z))(P) = F((d, d(2)))(P),

U (F)((d, S5 52))(P) = Wr(F)((d, 5))(¥r(F)((d, 52))(P)),
Vo (F)((d, 51 0 52))(P) = ¥r(F)((d, 51))(P) N W7 (F)((d, 5))(P).

Then Y is well-defined and monotone.

Proof. Both well-definedness and monotonicity are immediately proved us-
ing induction on the structure of S € £,. O

As a consequence of Proposition 2.2.1, ¥ has both least and greatest fixed
points. We denote them by Wp,[-] and Wip,[-], respectively. The names Wp,
and Wip, stands for ‘weakest precondition’ and ‘weakest liberal precondition’,
respectively (the subscripts indicate the language to which they are referred
to).

Dijkstra’s weakest precondition calculus [56] can be expressed by the semantics
Wpo[] if we allow ‘enough’ Boolean expressions in BExp. For example, the
meaning of Dijkstra’s guarded command b—S is the predicate transformer
Wpol(d, b— ; S)]; the meaning of Dijkstra’s conditional command

if b1—>51 | b2—>52 fi

is equivalent to Wpy[(d, z)] where the procedure variable z is declared by
d(z) = ((bi—; S1) O (by—; S)) O (b3— ; 1)

and Bv(bs) = St \ (Bv(b1) U Bv(by)). Finally, Dijkstra’s iteration command

do b1—>51 | b2—>52 od

47

BONSANGUE

corresponds to Wpy[(d, z)] where the procedure variable z is declared by

d(z) = (b= 81) 5 2) B (b= 5 52) 5 7)) O bs—,

and Bv(bg) = St \ (Bv(bl) N Bv(bz))

Another form of conditional command ‘{b}’ for b € BExp, is often consid-
ered [95]. The computational intuition behind the command ‘{b}’ is that it
is undefined in a state in which the Boolean expression ‘b’ does not evalu-
ate to true and acts as a skip otherwise. Identifying undefined with failure
of termination (nothing can be guaranteed for an undefined statement), we
obtain that the meaning of ‘{b}’ is equivalent to the predicate transformer
Wpol{d, z)] where z is a procedure variable declared as d(z) = b— O (b'—; z)
and Bv(b") = St \ Bv(b).

By definition, the Wp,[-] semantics is about the total correctness of L£y. Next
we show that Wip,[-] is concerned with the partial correctness of L.

Lemma 3.3.4 For every (d,S) € Ly, Wipy[(d, S)](St) = St.

Proof. We prove, by induction on «, that \If ((d S))(st) = st for all ordi-
nals a.

For a = 0, it is straightforward to see (by structural induction on §) that
qﬂg((d, S))(St) = St. Note that if S = z, for £ € PVar, then

U ((d,))(St) = FT((d, d(z)))(St)

where F'T is the top element of Semy, that is, the function mapping every
program {d, S) € Ly and every P C St to St. Hence F'' ((d, d(z)))(St) = St.

Next we assume for an ordinal « that for all ordinals 3 < «,

2((d, 8))(st) = st,

and we prove that also U ((d S))(St) = St. Recall that

7((d.5)) V(AT | B <a})((d,9))(st).

48

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

By structural induction on S we verify that the above right-hand side equals
St. The only interesting case is when S = z for x € PVar:

U (A7 | B <a})((d,z))(St)
(M| 8 <a})((d, d(2)))(st)
= ﬂ{\I/T ((d,d(z)))(St) | B<a} [meets are pointwise|
= N{St| B <a} [induction hypothesis|
= ©St.

We can conclude that \IJ ((d S))(St) = St for every ordinal a.. Since Wip,[-]
is defined as the greatest fixed point of ¥, by Proposition 2.2.4 there exists
an ordinal A such that Wip,[-] = W% Therefore Wip,[(d, S)](St) = St for
every (d,S) € Ly. O

Intuitively, the Wp,[-] and the Wipy[-] semantics of £, agree with the informal
characterization of the total and partial correctness models. To make these
correspondences precise we will give duality theorems which relate the state
transformer models with these predicate transformer models.

The total correctness model

Smyth state transformers capture the operational meaning of programs for
the total correctness semantic model. To determine their associated predicate
transformers we define the function w: STs(X,Y) — PT (Y, X) by

(3.3)w(o)(P)={z € X | o(z) C P},

for 0 € STs(X,Y) and P C Y. Well-definedness of w is easily verified. If
o(z) = Y, then z ¢ w(o)(P) for all predicates P of Y. Accordingly, if o
is the denotation of a program then z € w(o)(P) precisely for those inputs
x € X for which each computation of the program represented by o terminates
in a final state y € Y satisfying the predicate P.

We are now in a position to show that STs(X, Y) and PT (Y, X) are order-
isomorphic, and that the two semantics Stg[-] (based on the Smyth state
transformers) and Wp,[-] (based on the total correctness predicate transform-
ers) are isomorphic. To define an inverse for the function w above we need the
following lemma. It is a variation of the stability lemma in [159,10].

49

BONSANGUE

Lemma 3.3.5 Let m be a predicate transformer in PT (Y, X) and ¢ € X
with x € w(Y). Then there is a set q(x,) such that

z € n(P) if and only if q(z,7) C P,

for every P C Y.

Proof. Define ¢(z,7) = N{Q € P(Y) | z € n(Q)}. If z € 7(P) then
clearly ¢(z,m) C P. For the converse we use the fact that total correctness
predicate transformers preserve non-empty intersections. Since z € 7(Y'), the
set {@Q € P(Y) |z € n(Q)} is non-empty. Hence

m(g(z,m) = {=(Q) | z € 7(Q)},

from which it follows that z € 7(¢(z,7)). Because ¢(z,7) C P and 7 is
monotone (preserving non-empty intersections),

m(q(z, m)) € 7(P).
Thus ¢ € 7(P). O

For any partial correctness predicate transformer n the above lemma shows
that ¢(z,) exists and that it is uniquely determined. This set can be used to
obtain a state transformer from a predicate transformer. Indeed, we can now

define w™': PT+(Y,X) — STs(X,Y) by

(3.4 (1) (z) = q(z,m)if z € 7(Y)

Y, otherwise,

for every m € PT7(Y,X) and z € X.

Theorem 3.3.6 The function w: STg(X,Y) — PT¢(Y,X) is an order

isomorphism with inverse w'.

Proof. We first prove that both w and w~! are monotone. Let oy < 09 in
STs(X,Y) and let P C Y. If z € w(oy)(P) then oy(z) C P. But oy(z) C

20

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

o1(z), hence also oy(z) C P. It follows that z € w(oq)(P). Hence w(oy) <
W(O'g) in PTT(Y,X)

Assume now that m; < mp in PT (Y, X) and take z € X. The only interesting
case is when w () (z) # Y. In this case z € m, (V). Since 7, (V) C mo(Y),
z € m(Y). Hence w™'(m)(z) = q(z,m). But ¢(z,m) C ¢(z,m) because
71 < my. Thus w™(my)(z) C w™(m)(z).

1

Next we prove that both w and w™! are isomorphisms. For w in PT (Y, X)

and P C Y we have

w((w™(m)(P)={z € X |w™!(7)(z) C P}
={zeX|zen(Y)&q(z,7) C P}
={zeX|zen(Y)&zen(P)} [Lemma 3.3.5

=m(P). |[r is monotone]

Conversely, let 0 in STg(X,Y) and z in X. If o(z) = Y then z € w(o)(Y).
Hence w™'(w(o))(z) = Y = o(z). Otherwise w™(w(0))(z) = ¢q(z,w(0)). By
definition of w, z € w(o)(P) if and only if o(z) C P for all P C Y. Hence,
by Lemma 3.3.5, ¢(z,w(c)) = o(z), from which we conclude w!(w(0))(z) =
o(z). O

Assume o € ST (X, Y), and let V be a directed set of subsets of V. Then

(3.5)0(z) C|JY = FP € Vio(z) C P

because V is directed and o(z) is either a finite set or Y. Hence

w(@)(UV)=Ulw(o)(P) | P €V},

that is, w(o) is continuous. Conversely, if 7 is a continuous predicate trans-
former in PT (Y, X) then w !(x) € STE (X, Y) because the set q(z,) is
finite. This can be proved using the property that every set is the directed
union of all its finite subsets. Hence

q(z,m) = |J{P C ¢(z,7) | P finite}
& zen(J{P C q(z,7) | P finite}) [Lemma 3.3.5]
& g e | J{r(P)| P Cpn q(z,m)} [ris continuous|

ol

BONSANGUE

& 3P Cgp, q(z,m): g(z, m) C P. |Lemma 3.3.5]

Therefore the isomorphism of Theorem 3.3.6 restricts to an isomorphism be-
tween STE"(X, V) and the continuous predicate transformers in PT ¢(V, X).

Lemma 3.3.7 Let oy € STs(X,Y) and 01,09 € STs(Y,Z). Then

w(oy O 09)(P) = w(oy)(P) Nw(oz)(P), and
w(oy ;01)(P) = w(oo)(w(o1)(P)),

forall P C 7.

Proof. For P C Z we have

w(oy O 0y)(P)={z € X | (01 D op)(x) C P}
={z € X | o1(z) Uoy(z) C P}
={z € X |oi(z) CP&oy(z) C P}
={z e X|o(z) CP}N{zr e X |oy(z) C P}
=w(01)(P) Nw(a2)(P);

and also

w(og;01)(P)={z € X | (00;01)(z) C P}
={z e X | |U{o1(y) | y € oo(2)} C P}
={zeX|L¢goo(z)&Vy € oo(z):01(y) C P}
={z € X |oo(z) C{y | oi(y) C P}}
={z € X |og(z) Cw(o1)(P)}

=w(00)(w(01)(P)).
By Theorem 3.3.6 and the above lemma it follows that if 7y € PT (Y, X)
and my,m € PT7(Z,Y) then

u):l(m A\ 71'2) :wil(m) a w*1(7r2)

Ympom) =w (m) ; w t(m).

52

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

Below we demonstrate the equivalence between the Wp,[-] semantics and the
Sts[-] semantics of Ly.

Theorem 3.3.8 For all {d,S) € Ly we have
w(Sts[(d, $)]) = Wp,[(d, 5)] and w™ (Wp[(d, $)]) = Sts[(d, 5)].

Proof. We begin by proving that w(Sts[-]) is a fixed point of ¥,. We proceed
by structural induction on the statement S. If S = v := e then, for P C St,

w(Sts[(d,v:=e)])(P)={s € St | Stg[(d,v:=e)](s) C P}
={s €8t |s[év(e)(s)/v] € P}
= Wr(w(Sts[)((d, v:=€))(P).

If S = b— then, for P C St,

w(Sts[(d, b—=)])(P)={s € St | Stg[(d, b—)](s) C P}
={seSt|seBv(b) = se€P}
= Wr(w(Sts[-)((d, b=))(P).

If §$ =z then

w(Sts[(d, r)]) = w(Sts[{d, d(2))]) = Vr(w(Sts[])({d, z)).

Assume now S = 5; ; S5. Then, for P C St,

U (w(Sts[]))()
= \IJT((U(StS [H] T

[[Si; 52>
w(Sts[

[

[

:)(P

)((d, S1) (U (w(Sts[])({d, $2))(P))

(d, S1)])(w(Sts[{(d, S2)])(P)) [induction hypothesis]|
(d,S1)] ; Sts[(d, S2)])(P) |Lemma 3.3.7]

(d, S5 S)])(P).

d
)
= w(St)
= w(Sts)
= w(Stg

In case S = 5 O S, we proceed similarly. Therefore Stg[-] is a fixed point of
U r. Since Wpy[-] is the least fixed point of ¥,

(3.6)Wpo[(d, 5)] < w(St[{d, }]),

23

BONSANGUE

for all (d,S) € L. Following essentially the same pattern, we can prove that
w™H(Wp,[-]) is a fixed point of the semantic transformation ¥g defined in
Lemma 3.2.5. Hence

(3.7)St[(d, $)] < w™ (Wpy[(d, S)]).

Because w and w~! form an order isomorphism, we can conclude that the
inequalities in (3.6) and (3.7) are in fact equalities. O

Since for all (d, S) € Lo, Sts[(d, S)] is in STE"(St,St), and the latter domain
is isomorphic to the set of continuous predicate transformers in PT 1 (St, St),
the following corollary is immediate from Theorem 3.3.8.

Corollary 3.3.9 For (d,S) € Ly, the predicate transformer Wpy[(d, S)] is
continuous. O

The partial correctness model

We relate the set of Hoare state transformers to the set of partial correctness
predicate transformers by restricting and co-restricting the isomorphism of
Theorem 3.3.6.

The set of Hoare state transformers STy (X, Y) is a subset of STs(X, V). If
we apply the function w to a Hoare state transformer o € ST (X, Y) then

wo)(Y)={reX|ox) CY}=X.

Thus w(o) is a partial correctness predicate transformer in PTp(Y, X). Con-
versely, if 7 is a partial correctness predicate transformer in PTp(Y, X) then,
by applying w™! to m we obtain a Hoare state transformer because r € 7(Y)
for all x € X. Therefore, by Theorem 3.3.6 we have the following isomorphism.

Theorem 3.3.10 The functionw:STy(X,Y) — PTp(Y, X) is an isomor-
phism with inverse w™'. O

Note that the above isomorphism is not an order isomorphism. If o4 < 05 in
STy(X,Y) then, for all P C Y,

w(o)(P) 2 w(oz)(P)

o4

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

because o1(z) C oy(z) for all z € X. Similarly, for 7, m € PTp(Y,X), if
71 (P) C mo(P) for all P C Y then w™'(m) > w™!(my) in STxH(X, V).

Theorem 3.3.11 For all (d,S) € Ly we have
w(Stx[(d, S)]) = Wipe[(d, $)] and w™ " (Wipy[(d, S)]) = Stx[(d, 5)].

Proof. In a way similar to the proof of Theorem 3.3.8, we first note that
w(Sty[({d, S)]) is a fixed point of ¥r. Hence

(3-8)w(Str[(d, SH])(P) S Wip[{d, S)](P),

for all (d, S) € Ly, P C St. Similarly, Sty [(d, S)](z) C w Y (Wip,[(d, S)])(z)
for all z € X. Since w and w~! are monotone with respect to the opposite of
the Hoare order, it follows that the above inclusions are, in fact, equalities. O

Total and partial correctness, together

Egli-Milner state transformers denote programs on the basis of what ‘actu-
ally” happens. In the predicate transformer model this is done by describing
both the total and the partial correctness of a program [58]. The relationship
between the two domains is described informally by Nelson [154], it is briefly
mentioned by De Roever [167| and De Bakker [20], and it has been proved in
its full generality in [37,40].

First we need to characterize those pairs of predicate transformers in the
total and partial correctness models which denote the semantics of the same
computation. To this end, assume m; and 75 denote the semantics of the same
program in the total and partial correctness model, respectively. Intuitively it
holds that, for every predicate P on the output state space Y,

(3.9)m (P) =m (Y) N 7ma(P)

because, 7 (P) holds for an input state z if and only if every computation of
the program denoted by 7; at input z terminates (and hence = € m;(Y)) in a
final state satisfying the predicate P (and hence z € my(P)).

Definition 3.3.12 Let X and Y be two sets. The domain of Nelson predi-

95

BONSANGUE

cate transformers PT y (Y, X) consists of pairs (my,m2) such that

(1) WIEPTT(Y,X),
(ii) m € PTp(Y,X), and
(iii) m(P)=m(Y)Nm(P) for all P C Y.

We show that the Nelson predicate transformers are in a bijective corre-
spondence with the Egli-Milner state transformers. Define the trasformation
n:STe(X,Y)— PTy(Y,X) by

(3.10)(0) = (w(Es(0)), w(En (),
forallo € STg(X, Y). Well-definedness of 7 is proved in the following lemma.

Lemma 3.3.13 For everyo € STg(X,Y), n(oc) € PTy(Y,X).

Proof. Since Es(o) € STs(X,Y), by Theorem 3.3.6, w(Fs(0)) is a total
correctness predicate transformer in PT¢(Y,X). Similarly, w(Ey(0)) is a
partial correctness predicate transformer in PT p(Y, X) because Ey (o) is an
element of STy (X, Y).

It remains to prove (3.9). Forz € X and P C Y,

v € w(Es(0))(P) & Es(o)(

&
N
g

A Nelson predicate transformer (my,m) € PTy(Y, X) determines uniquely
an Egli-Milner state transformer n~!({m, m5)) by putting, for z € X,

™ ((m, m2)) (2) =w ™ (1) (2) U{L [& & m(Y)}

According to the intuition behind the pair (1, m,), we use the predicate trans-
former 7 to determine non-terminating computations, whereas we use the
predicate transformer 7w to calculate their final outcomes.

26

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

Theorem 3.3.14 The function n: STg(X,Y) — PTx(Y,X) is a bijection
with inverse n~*

Proof. Let 0 € STp(X,Y) and z € X. We have

H(w(Bs(0)),w(En(0))))(z) [definition 7]

Eg(o)(z) U{L |z € w(Es(0))(Y)} [definition n 1]
z)U{L | Es(o)(z) =Y.} [Theorem 3.3.10 and definition w|
o(z)\{L}) U{L|Leo(z)} [definition Ey and Es]

~—~

—
& Es(n '({m,m))(z) C P [definition w|
& Lyt ((m,m))(z) & ((7r1,7r2>)(x) C P |definition Eg]
& zem(Y)&w(m)(r) C [definition n~!]
& rem(Y) &z e m(P) [Lemma 3.3.5]
< zem(P). |[Equation (3.9)]
Hence
n(n~ ' ({m, m2)))
= (w(Bs(n™"((m1,m2)))), w (B (7' ((m1,72))))) [definition n]
= (m,w(nt({m,m)) \ {L})) [above calculation and definition Ep]
= (m,w(w (m))) [definition n~!]
= (m,m). |Theorem 3.3.10] O

The set of Nelson predicate transformers PT y(Y, X) can now be turned into
a partial order by the order induced by n=' on PT (Y, X): for (m,m) and
(3, m4) in PT (Y, X), define

(11, m) < (w3, my) if and only if 77’1((7r1,7r2>) < 77’1(<7r3,7r4)).

o7

BONSANGUE

The order on PT y(Y, X) satisfies the following equation.
Lemma 3.3.15 For all (m,m) and (73, m4) in PT (Y, X),

(1, ma) < (w3, my) < VP C Yim(P) C m3(P) & ma(P) D my(P).

Proof. Let us use o as shorthand for n=!((r,m)) and 7 as shorthand for
n ({3, m,)). Assume first 0 < 7in STx(X,Y) and let P C Y.

If z € m(P) then L & o(z). Since 0 < 7, o(z) = 7(z). Because z € m(P) =
w(Fs(0))(P) it follows that = € m3(P) = w(Es(7))(P). Thus 71 (P) C m3(P).

If z € m4(P) we have to consider two cases depending on the presence of L
in o(z). In case L & o(z), 0 < 7 implies o(z) = 7(z). Hence z € my(P) =
w(Eg(7))(P) implies z € w(Eg(0))(P) = m2(P). In the other case L € o(z).
Since 0 < 7 then o(z) \ {L} C 7(z). Thus o(z) \ {L} C 7(z) \ {L}, that is,
FEy(o)(z) C Ex(r)(z). Hence z € my(P) = w(Ex(7))(P) implies that z is an
element of w(Ey(0))(P) = ma(P). Therefore my(P) D m4(P).

For the converse, assume that m(P) C m3(P) and mo(P) D my(P) for all
P C Y. First note that for every z € X,

(311 (m2)(z) C w (my)(2)
because m4(P) C my(P) for all P C Y. Next we distinguish two cases.

If L & o(z) then by definition of n™' z € m(Y') and o(z) = w™!(my)(z). Since
m(Y) Cm3(Y),z €m3(Y). Thus L & 7(z) and 7(z) = w (m4)(z). By (3.11)
it follows o(z) C 7(z). We still need to prove the reverse inclusion. Because
(71, m2) is a Nelson predicate transformer, z € 71 (Y') and, by Lemma 3.3.5, z is
an element of Ty (w ™" (m2)(z)), it follows that z € 7, (w™"'(my)(z)). Hence z is in
m3(w™ () (z)). Because (m3,m,) is a Nelson predicate transformer too, z is in
m4(w™ (m2)(z)). Thus, by Lemma 3.3.5, w™(m4)(z) = q(z,m4) C w™(m) ().
Therefore 7(z) C o(z).

If | €o(x)then o(z)\{L} =w ! (m)(z) by definition of n~!. Thus, by equa-

tion (3.11), o(z) \ {L} € w™(my)(z). Since w™(m4)(z) C 7(z) by definition
of n7!, we obtain that o(z)\ {1} C 7(z). O

The above characterization of the order between Nelson predicate transformers
is used in [167| to give an early treatment of recursion in the original weakest

28

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

precondition calculus of Dijkstra [56], based on continuity of the weakest pre-
conditions. A more detailed treatment of the recursion is given in [91] and [20].

We conclude this section by showing that the Egli-Milner state transformer
semantics of Ly corresponds to the pair of weakest precondition and weakest
liberal precondition semantics. For (d, S) € Ly we have

n(Sts[(d, 5)])

= (w(Bs(Stel{d,), w(En(Sts[(d, 5)])))

= (w(Sts[(d,S)])),w(Sty[(d,S)]))) [Theorem 3.2.14]

= (Wpy[(d, S)], Wip,[(d, S)]). [Theorems 3.3.8 and 3.3.11]

As a consequence of the above, we obtain that the weakest precondition seman-
tics Wpy[(d, S)] and the weakest liberal precondition semantics Wip,[{d,)]
of a program (d, S) € L satisfy the pairing condition (3.9).

3.4 Can a backtrack operator be added to L£,?

In this section we study the incorporation of a backtrack operator into our
language Ly. The backtrack operator is a binary operator ‘X’ which backtracks
to the second component if the first component deadlocks. We define it in the
domain of Egli-Milner state transformers to derive its weakest precondition
semantics. Maybe surprisingly, the backtrack operator is not monotone with
respect to the order of the total correctness predicate transformers. To repair
the problem a new order can be defined which refines the ordinary order on
predicate transformers and such that the backtrack operator becomes mono-
tone. However, sequential composition is not monotone with respect to this
new order. In order to justify the well-definedness of a weakest precondition
semantics for £y extended with a backtrack operator we prove that under
certain conditions the least fixed point of a non-monotone function exists.

Our extension of Ly is a variation of the language studied in [154]. In this
article a weakest precondition semantics together with a weakest liberal pre-
condition semantics for a language with a backtrack operator is given. Below
we will concentrate only on a weakest precondition semantics.

Definition 3.4.1 (i) The set (S €) Statp of statements is given by
Se=v = e|b>|z|S5;5|5O5|SRS.

(ii) The set (d €) Declg of declarations is defined by PVar — Statp.

29

BONSANGUE

(iii) The language Lp is given by Declg x Statp.

To guide the intuition about the backtrack operator ‘®’ we define the corre-
sponding semantical operator in the domain of the Egli-Milner state trans-
formers. For 01,09 € ST (X, Y) define 0y X 09 by

oa(z) if oy(z) =10

o1(z) otherwise,

(01 B og)(2) =

for x € X. A similar definition can be given for the Smyth state transformers
and for the Hoare state transformers. It is a straightforward verification to see
that

STe(X,Y) x STp(X,Y) = STx(X,Y)

is a monotone function. However this is not true with respect to the order of
the Smyth state transformers ST s(X, V). Indeed if y;,y2 € Y then

Az y} < Az
in ST¢(X, Y), but,

Ax Ay} R Az} = e {y}

LAz A{y2}
=Az.0 ® Az.{y2}

The above monotonicity problem is caused by the fact that the function Az.0) is
the top element of STs(X, V). In ST (X, Y) this is not the case, and indeed
the backtrack operator is monotone. We can try to define a new domain of
state transformers between STs(X, V) and STg(X, Y) by introducing a new
order on the Smyth state transformers which preserves deadlock. The idea is
that a state transformer which does not deadlock cannot be substituted by
another which does, even if more can be guaranteed for it.

Definition 3.4.2 Define ST p(X,Y) to be the set of all functions from X
to P(Y)U{Y.} ordered as follows. For o,7 € STp(X,Y),

o <7 if and only if Vo € X : (1(z) #0 & o(z) D 7(x)) or
(r(2) =0 & (o(s) =

60

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

As for STs(X, V), the above domain ST (X, V) is a partial order with the
function Az.{Y,} as bottom element. However ST p(X, Y) need not to be

a cpo. For example let N be the set of natural numbers, and consider in
ST p(X,N) the following directed set

Az.N < Az.N\ {0} < Xz.N\{0,1} < ...

It has no upper bound in ST p(X,N) (in STs(X,N) it would have the function
Az.() as a least upper bound).

It is now easy to see that the backtrack operator ‘®’ is monotonic with respect
to the new domain ST (X, Y). However the composition function ‘;’; defined
exactly as for STs(X, Y), is not monotone anymore. For y, 2 € Y,

A Ay, y2} < Ar{y}

in STp(X,Y). If we compose them with the function o € ST s(Y, Z) which
maps ¥ to {z} C Z and every other y € Y to () we obtain

Ay, e} o= z.{z}
Z\z.0)

=Xz {un} ;o

Next we turn to a weakest precondition semantics for Lg. First we use the iso-
morphism of Theorem 3.3.6 to derive the semantical backtrack operator in the
domain of total correctness predicate transformers. For 01,09 € STg(X,Y)
let

T = w(al) and Trg = (U(O'Z).
Then oy = w () and 0y = w(m,). For P C Y,

w(oy ®oy)(P)

= {zeX[(0nRa)(z) C P}

= {zeX|o(x)=0& oy(x) C P}U

{z e X |oi(z)#0 & oi(z) C P}

{z e X |o(z)C0}n{z e X |ox(z) C P}HU
(X\{z e X |oi(z) CO}n{z € X |o1(z) C P})

61

BONSANGUE

= ()((V)

where P = (@) is a shorthand for (PN Q) U (X \ P). The above justifies the
following definition.

Definition 3.4.3 For m,m € PT¢(Y,X) define my Rmy € PT (Y, X) by

(m B 7o) (P) =mi(P) N (m(0) = m(P)),
forallP C Y.

Since w is an order-preserving isomorphism ‘X’ is not monotone with respect
to the order in PT 7(Y, X). Nevertheless we want to define the weakest pre-
condition semantics of Lp in the same way as we did in Lemma 3.3.3 for the
weakest precondition semantics of Ly: as the least fixed point of a higher order
transformation.

Definition 3.4.4 Let F € Semp = Ly — PT 1(St,St) and define the func-
tion Vg : Semp — Semp inductively by

Up(F)({d,v:=¢)) = Wp[{d,v:=¢)],

Vp(F)((d; b=)) = Wpy[(d, b=)],

Vp(F)((d,z)) F((d, d(2))),

Up(F)((d, 13 8) = Vp(F)({d,S1) o Up(F)((d, 5)),
Up(F)((d, 5 08)) =V¥s(F)({d,) A¥s(F)((d,S2)),
Vp(F)((d, 51 8 55))(P) = Wp(F)((d, 1)) B Wp(F)((d, 52))-

Well-definedness of g is straightforwardly checked, since it is based on the
well-definedness of the corresponding semantical operators in PT 5 (St, St).
Since the semantical operator ‘X’ is not monotone, also ¥ is not monotone.
At first sight it seems that we cannot define a weakest precondition semantics
for Lp as the least fixed point of ¥ because the ordinary fix-point methods
require U to be at least monotone.

However, we show that, under certain conditions, the least fixed point of a

62

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

non-monotonic function on a poset (which need not to be complete) exists
and that it can be calculated by iteration.

Proposition 3.4.5 Let P be a cpo and let () be a poset such that there there
is an onto and continuous function h : P — Q. Assume also that, for every
y € Q there is a top element in h™'(y), that is, there exists z € h™'(y) such
that © < z for all x € h™"(y). If f : P — P is a monotone function then every
function g : Q — Q making the following diagram commute

s

s

has a least fized point. Moreover, for every ordinal o, ¢'® exists and equals

h(f')).

Proof. By Proposition 2.2.3 f has as least fixed point fV, for some ordinal
A. We have:

W(FN) = h(FXD) = h(F(FN) = g(h(F™)).

So h(f™) is a fixed point of g. Next we prove h(f*) is also the least one.

Let y € @ be such that g(y) = y and let z be the top element in h~!(y). We
prove by induction on ordinals that f(* < z for every ordinal «. In the proof
below we need the fact that f(z) < z which can justified by the following

If « = 0 then f(® = f(1) < f(2) < z. Assume now that /¥ < z for all
ordinals 3 < a. We have

(V8 <afP <z) = VP | f<a} <2
= f(\/{fw> | B<a}l) <f(z) |[fis monotone]
= fl* < 2. |definition of f(* and f(z) < 7|

63

BONSANGUE

It follows that f¥ < z. Hence, by monotonicity of A,

h(f™) < h(z) =y,

from which we can conclude that h(f) is the least fixed point of g.

It remains to prove that g‘* = h(f(®) for every ordinal . Since A is onto and
monotone, it is also strict. Hence, for a = 0,

{n(f®) | B<a}) [nis continuous]
{¢¥ | B <a}) [induction hypothesis]|
(@ by definition]

In order to apply the above proposition consider the complete partial order
Semp = Lo — ST (St, St), and define the transformation ® : Semyp — Semp
by

O(F)({(d,5)) = w(Es(F({(d,5))))-

Since Eg : STg(St,St) — STp(St,St) is strict, onto and continuous, and
w:STp(St,8t) — PT 7(St,St) is an order isomorphism, & is onto and con-
tinuous. Moreover, if o € ST p(St, St) then o is also a function in ST (St, St)
and Es(0) = o. Clearly o is the top element of E5'(c). Hence also ®~!(F)
has a top element for every F' € Sempg.

Theorem 3.4.6 The function Vg : Semp — Semp has a least fixed point
which can be calculated by iteration from the bottom element of Semp.

64

CHAPTER 3. THE WEAKEST PRECONDITION CALCULUS

Proof. Define ¥V : Semp — Semp inductively by

Ve(F)({(d,v:=¢)) = Stg[(d, v:=e)],

Vp(F)({d, b=)) = Stp[(d, b=)],

Ve (F)((d, r)) = F((d, d(2))),

Up(F)((d, 515 %) =Ye(F)(d,5)); Ye(F)(d,S52)),

Vep(F)((d,$ 05)) = Ve(F)({d,5)) O Ve(F)(d,S52)),
Vg(F)((d, S & 52))(P) = Ve (F)({(d, 51)) ® Ug(F)((d, 52))-

Well-definedness and monotonicity of Wy can be straightforwardly checked.
It is ultimately based on the monotonicity of the corresponding state trans-
former constructors. Moreover, by induction on the structure of S, and using
Theorem 3.2.14, Theorem 3.3.8, and the definition of ‘X’ we have that

O(Vp(F))((d, S)) = Vp(2(F))((d, S))

for all (d,S) € Lp. Therefore by Proposition 3.4.5 Up has a least fixed point
which can be calculated by iteration from the bottom element of Semp. O

The least fixed point of ¥y defines the weakest precondition semantics for Lp.

3.5 Concluding notes

The predicate transformer semantics we presented in this chapter is formulated
using higher-order transformations. Hence predicate transformers are regarded
as basic objects in contrast to the more traditional view which regards predi-
cates on states as basic objects. Accordingly, we treated recursion at the level
of predicate transformers whereas for example Dijkstra and Scholten [58] treat
recursion at the level of predicates.

Several semantic domains we introduced in this chapter are general enough
to support both recursion and unbounded non-determinism. For example our
Egli-Milner state transformer domain ST (X, Y) is more general than the
similar domain for countable non-determinism of Apt and Plotkin [10], while
our predicate transformers domain PT (Y, X) is equivalent to the domain of
predicate transformers for unbounded non-determinism treated in [57,96].

65

BONSANGUE

We have not used the capability of the domains to express unbounded non-
determinism. In this chapter we only treated a language without specification
constructs. An extension of the language Ly with this kind of constructs is
treated in Chapter 4.

The results of this chapter can be extended to capture the semantics of more
general programs than the sequential ones. In Chapter 7 we treat an example of
a program which interacts with its environment by extending £, with a parallel
operator. The key step towards this goal is a refinement of our definition of
predicates. In Chapter 5 affirmative predicates are introduced as open sets of
a topological space, and in Chapter 6 we introduce two kinds of topological
predicate transformers which generalize the total and the partial correctness
predicate transformers. Dualities between state transformers and topological
predicate transformers are also studied in Chapter 6.

66

