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We study precompact Fréchet topologies on countable Abelian groups. For every countable
Abelian group G we introduce the notion of a γG -set and show that there is a precompact
Fréchet non-metrizable topology on G if and only if there is an uncountable γG -set that
separates points of G . We show that, assuming the existence of an uncountable γ -set,
there is a non-metrizable precompact Fréchet topology on every countable Abelian group,
and assuming p> ω1, there is a non-metrizable Fréchet topology on every countable group
which admits a non-discrete topology at all. We further study the notion of a γG -set and
show that the minimal size of a subset of the dual group G∗ which is not a γG -set is the
pseudointersection number p for any countable Abelian group G .

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A Hausdorff topological space X is Fréchet–Urysohn (or just Fréchet) if whenever a point x ∈ X is in the closure of a set
A ⊂ X , there is a sequence of elements of A converging to x. The classical metrization theorem of G. Birkhoff and S. Kakutani
states that a T1 topological group is metrizable if and only if it is first countable. There are non-separable Fréchet topological
groups which are not metrizable, e.g., the Σ-product of uncountably many copies of Z2. V.I. Malykhin in 1978 (see [2,7,12])
asked:

Problem 1.1 (Malykhin). Is there a separable Fréchet topological group that is not metrizable?

Since a group with a dense metrizable subgroup is metrizable, the problem can be reformulated as asking for the
existence of a countable Fréchet topological group that is not metrizable.

It is well known that the answer to Malykhin’s problem is consistently positive. For instance, under either of the follow-
ing assumptions: p> ω1, p= b and the existence of an uncountable γ -set, there is a non-metrizable Fréchet group topology
on the Boolean group ([ω]<ω,�) of finite subsets of ω with the symmetric difference as the group operation (see [14]
and [15]). It is well known that the existence of an uncountable γ -set is the weakest of the three previous assumptions
(see [6] and [16]). Another example of a separable non-metrizable Fréchet topological group can be obtained also from
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an uncountable γ -set using results from C p(X) theory. In [6] it is shown that C p(X) is separable Fréchet non-metrizable if
and only if X is an uncountable γ -set.

It is a priori not clear what role the group structure plays in Malykhin’s problem. A.Ju. Ol’šanskiı̌ showed that there is
a countable group G which admits only discrete topology (see [1, (13.4)]). In particular, there is no non-metrizable Fréchet
topology on G . As far as we know non-metrizable Fréchet topologies were considered only on the Boolean group (see [14,
15,18,7,4]) or on additive subgroups of vector spaces, e.g., C p(X) (see [6,15,18]). Recall that a group is topologizable if it
admits a non-discrete Hausdorff group topology. Here we show that, consistently, there is a non-metrizable Fréchet group
topology on every countable topologizable group.

M. Ismail in [8] (see also [13]) proved that every locally compact group of countable tightness is metrizable, and so
every locally compact Fréchet group is metrizable. Recall that a topological group is precompact (or equivalently totally
bounded [22]) if it is a subgroup of some compact group (e.g., if finitely many translates of every neighborhood of the
identity element cover the entire group). The Σ-product of uncountably many copies of Z2 is also an example of a non-
separable precompact Fréchet group that is not metrizable. We consider the following variation on Problem 1.1:

Question 1.2. Is there a separable precompact Fréchet topological group that is not metrizable?

This question can also be reformulated as asking for the existence of a countable precompact Fréchet topological group
that is not metrizable. The study of precompact Fréchet topologies was suggested by Shakhmatov in [20], but as far as we
know, no actual work in the area has been done.

We concentrate on the study of precompact Fréchet topologies on countable Abelian groups. For every countable Abelian
group G we introduce the notion of a γG -set and show that there is a precompact Fréchet non-metrizable topology on G
if and only if there is an uncountable γG -set (subset of the dual group G∗) that separates points of G . There is a close
relationship between the notions of γ -set and γG -set, e.g., we show that, assuming the existence of an uncountable γ -set,
there is an uncountable γG -set that separates points of G for every countable Abelian group G . Thus, the answer to Ques-
tion 1.2 is consistently positive. We further study the notion of a γG -set and show that the minimal size of a subset of the
dual group G∗ which is not a γG -set is the pseudointersection number p for any countable Abelian group G .

2. Notation and terminology

Our set-theoretic notation is mostly standard and follows [10]. In particular, ω stands for the set of all natural numbers
(finite ordinals) and [ω]ω the set of all infinite subsets of ω. A ⊆∗ B denotes that A is almost contained in B , i.e. A \ B is finite.
Recall also that a family of subsets of ω is centered if any finite subfamily has infinite intersection. The pseudointersection
number p is the minimal size of a centered family of subsets of ω without an infinite pseudointersection (i.e., without
a common lower bound in the ⊆∗ order). For functions f , g ∈ ωω we write f <∗ g to mean that there is m ∈ ω such that
f (n) < g(n) for all n � m. Recall that the bounding number b is the least cardinal of a <∗-unbounded family of functions
in ωω .

Recall that an open cover U of a topological space X is an ω-cover if for every finite F ⊆ X there exists U ∈ U with
F ⊆ U . An open cover U of a topological space X is a γ -cover if U is infinite and every x ∈ X is in all but finitely many
U ∈ U . In particular, every γ -cover is an ω-cover. A space X is a γ -space if every ω-cover of X contains a countable
γ -subcover. A γ -space which is separable metric is called γ -set. It is not difficult to see that every countable space is
a γ -space. The cardinal non(γ -set) is defined as the least cardinality of a set which is not a γ -set. It is well known that
p = non(γ -set) (see [6]) so, in particular, every separable metric space of size < p is a γ -set. The γ -space notion has the
following diagonal sequence property.

Lemma 2.1. ([6]) X is a γ -space if and only if for every sequence 〈Un: n ∈ ω〉 of open ω-covers of X there exists Un ∈ Un such that
{Un: n ∈ ω} forms a γ -subcover of X . �

As every γ -set has strong measure zero [6], there are no uncountable γ -sets in the Laver model for consistency of Borel
conjecture [11], and hence, the existence of an uncountable γ -set is independent of ZFC.

The circle group T is identified with the quotient group R/Z and will be written additively. We denote by Z(p∞) the
quasicyclic p-group, for a prime p. The neutral element of an Abelian group G will be denoted by 0G or simply 0 and in
the case of T by 0. The norm ‖x‖ on T is defined as the length of the shortest arc between 0 and x. The open symmetric
arc Tm = {x ∈ T: ‖x‖ < 1

m } will often be used.
Given an Abelian group G and a prime number p, the p-torsion part or, equivalently, p-primary component of G is

G p = {
g ∈ G: pn g = 0G , for some n ∈ ω

}
.

If G = G p for some prime p, then G is called a torsion p-group. It is well known that every torsion Abelian group G is
isomorphic to the direct sum

⊕
p G p .

A non-empty subset A of an Abelian group G not containing the neutral element is independent if for every finite set
a1, . . . ,an of distinct elements of A and integers m1, . . . ,mn , the equality m1a1 + · · · + mnan = 0G implies that miai = 0G
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for all i = 1, . . . ,n. Kuratowski–Zorn lemma implies that every independent subset of a group G is contained in a maximal
independent subset. The torsion-free rank of an Abelian group G or, in symbols, r0(G) is the cardinality of a maximal inde-
pendent subset of elements of infinite order in G . Similarly, for a prime p, the p-rank rp(G) of the group G is the cardinality
of a maximal independent subset of elements of p-power orders in G . The Prüfer rank, or just the rank of G is defined as:

r(G) = r0(G) +
∑

p

rp(G).

It is clear that r(G) = r0(G) if the group G is torsion-free, and r(G) = rp(G) if G is a torsion p-group (see [19, Section 4.2]).
The topological groups G considered here will be Abelian and Hausdorff. The symbol Gd will denote the group G en-

dowed with the discrete topology.
We will need some facts from the literature concerning the Pontryagin–van Kampen duality. Recall that given an Abelian

topological group G its (dual) group of characters is

G∗ = {x : G → T: x is a continuous homomorphism}
with the compact-open topology. The evaluation mapping e : G → T

G∗
is defined by the formula e(g)(x) = x(g) for all g ∈ G

and x ∈ G∗ .
The next theorem summarizes certain known facts from the literature.

Theorem 2.2. ([17] and [9]) Let G be an Abelian locally compact group. Then:

(i) G∗ is Abelian locally compact.
(ii) G∗∗ is naturally isomorphic to G, via the evaluation mapping e.

(iii) G∗ is compact if and only if G is discrete.
(iv) A compact Abelian group G is metrizable if and only if G∗ is countable. �

Note that |(Gd)
∗| � c whenever G is infinite.

3. Precompact Fréchet topologies

Recall that X ⊆ (Gd)
∗ separates points of G if for every g ∈ G with g �= 0G there is an x ∈ X such that x(g) �= 0.

Definition 3.1. Given G an Abelian group and X ⊆ (Gd)
∗ that separates points of G let τX be the weakest topology on G

which makes all x ∈ X continuous. The symbol G X will denote the group G endowed with the topology τX .

For X ⊆ (Gd)
∗ , the diagonal product of the family X , denoted by rX , is the mapping from G into T

X defined by rX (g)(x) =
x(g) for all g ∈ G and x ∈ X . Note that if X separates points of G , then rX is an embedding of G to the product group T

X .
It is easily seen that the topology τX is just the subspace topology induced by rX .

Proposition 3.2. ([5]) Let G be an Abelian group and let X ⊆ (Gd)
∗ separate points of G. Then G X is a precompact Hausdorff group.

Moreover, every precompact Hausdorff group topology on G is of the form τX . �
Given an Abelian group G , g ∈ G and m > 0 let

Um
g = {

x ∈ (Gd)
∗: x(g) ∈ Tm

}
and given A ⊆ G let

Um
A = {

Um
a : a ∈ A

}
.

Note that the sets of the form Um
g are open neighborhoods of the identity element in the (compact separable metric)

topology on (Gd)
∗ .

Lemma 3.3. Let G be an Abelian group, let X ⊆ (Gd)
∗ separate points of G and let A be an infinite subset of G. Then:

(i) Um
A is an ω-cover of X for every m > 0 if and only if 0G belongs to the τX -closure of A in G;

(ii) Um
A is a γ -cover of X for every m > 0 if and only if A τX -converges to 0G in G (i.e., every neighborhood of 0G contains all but

finitely many elements of A).
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Proof. Using the diagonal product rX , we can identify G X with rX [G] in T
X .

(i) Um
A is an ω-cover of X for every m > 0 if and only if for every m > 0 and for all F ∈ [X]<ω there is a ∈ A such

that x(a) ∈ Tm for each x ∈ F (F ⊆ Um
a ). This is equivalent to the fact that 0G belongs to τX -closure of A in G , because

U (F ,m) = {g ∈ G: x(g) ∈ Tm for every x ∈ F } is a basic neighborhood of 0G in T
X .

(ii) Suppose that Um
A is a γ -cover of X for every m > 0, and let U (F ,m) be a basic neighborhood of 0G in T

X . Then
x ∈ Um

a for every x ∈ F and for all but finitely many a ∈ A, or equivalently, A ⊆∗ U ({x},m) for every x ∈ F . By the finiteness
of F , it follows that A ⊆∗ U (F ,m).

Conversely, suppose that A τX -converges to 0G in G . Fix m > 0 and x ∈ X . By convergence, it follows that A ⊆∗ U ({x},m),
or equivalently, x ∈ Um

a for all but finitely many a ∈ A. �
The following definition will play an important role in this paper.

Definition 3.4. An infinite set X ⊆ (Gd)
∗ is a γG -space, if for every infinite A ⊆ G if Um

A is an ω-cover of X for every m > 0,
then there is a countable B ⊆ A such that Um

B is a γ -cover of X for every m > 0. In the special case when G is a countable
group, we will say that X is a γG -set if it is a γG -space.

Combining the previous definition and Lemma 3.3, we obtain the first main result of this paper.

Theorem 3.5. Let G be an Abelian group and let X ⊆ (Gd)
∗ separate points of G. Then G X is Fréchet if and only if X is a γG -space. �

The following result is well known [5].

Theorem 3.6. ([5]) Let G be an Abelian group and let X ⊆ (Gd)
∗ separate points of G. Then G X is metrizable if and only if X is

countable. �
Combining the last two theorems, we obtain the following conclusion.

Corollary 3.7. The existence of a non-metrizable precompact Fréchet group topology on a countable Abelian group G is equivalent to
the existence of an uncountable γG -set that separates points of G. �

There is a close relationship between the notions of γ -space and γG -space.

Proposition 3.8. If X ⊆ (Gd)
∗ is a γ -space, then X is a γG -space.

Proof. Suppose that A is an infinite subset of G such that Um
A is an ω-cover of X for every m > 0. Since X is a γ -space,

we can apply Lemma 2.1 to find Un+1
an

∈ Un+1
A such that U = {Un+1

an
: n ∈ ω} forms a γ -subcover of X . Let B = {an: n ∈ ω}.

Then Um
B is a γ -cover of X for every m > 0. Indeed, let m > 0 and x ∈ X , since U is a γ -subcover of X , there is a k ∈ ω

with k � m such that x ∈ U i+1
ai

⊆ Um
ai

for every i � k. �
As every countable set is a γ -set, by the previous proposition every countable set X ⊆ (Gd)

∗ is a γG -set.
With the help of Proposition 3.8, we obtain another interesting conclusion.

Corollary 3.9. Assuming the existence of an uncountable γ -set, every countable Abelian group admits a non-metrizable precompact
Fréchet group topology.

Proof. Let X be an uncountable γ -set and let G be a countable Abelian group. Since γ -sets are zero-dimensional and (Gd)
∗

is a perfect Polish space we can assume without loss of generality that X ⊆ (Gd)
∗ .

On the other hand, since G is countable, there is a countable Y ⊂ (Gd)
∗ that separates points of G (see e.g. [3, (1.1.8)]).

Let Z = X ∪ Y . Using Lemma 2.1, it is easy to see that Z is also a γ -set. Then Z is a γG -set by Proposition 3.8. Therefore,
by Corollary 3.7, τZ is a non-metrizable precompact Fréchet group topology on G . �
4. γG -Sets

In this section we further study the notion of a γG -set.

Lemma 4.1 (Preservation lemma). Let f : H → G be a homomorphism and let f ∗ : (Gd)
∗ → (Hd)

∗ be the induced homomorphism
given by x → x ◦ f for every x ∈ (Gd)

∗ . If X ⊆ (Gd)
∗ is a γG -space then f ∗[X] is a γH -space.
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Proof. Let X ⊆ (Gd)
∗ be a γG -space and let Y = f ∗[X]. Suppose that C ⊆ H is an infinite set such that Vm

C is an ω-cover of
Y for every m > 0, where Vm

C = {V m
c : c ∈ C} and V m

c = {y ∈ (Hd)
∗: y(c) ∈ Tm}. We may also assume that Vm

C is infinite for
every m > 0. Put A = f [C].

Claim 4.2. A is an infinite set such that Um
A is an ω-cover of X for every m > 0, where Um

A = {Um
a : a ∈ A} and Um

a = {x ∈ (Gd)
∗: x(a) ∈

Tm}.

Proof of Claim 4.2. Fix m > 0. Note that, if x ∈ (Gd)
∗ and c ∈ C , then x( f (c)) = f ∗(x)(c) and, hence, f ∗−1[V m

c ] = Um
f (c) . Since

Vm
C is infinite, it follows that A is an infinite set. Assume now that E ⊂ X is a finite set. Put F = f ∗[E]. Then, there is c ∈ C

with F ⊆ V m
c . It follows that E ⊆ f ∗−1[F ] ⊆ f ∗−1[V m

c ] = Um
f (c) . Thus, Um

A is an ω-cover of X . �
Now, since X is γG -space, there is a countable B ⊆ A such that Um

B is a γ -cover of X for every m > 0. Let ϕ : B →⋃
b∈B f −1[b] be a choice function, and put D = ϕ[B]. Then, D is a countable subset of C such that Vm

D is a γ -cover of Y for
every m > 0. �

Now, note that f ∗ is a surjection if and only if f is an injection and f ∗ is an injection if and only if f is a surjection.
Therefore, we obtain the following conclusion.

Theorem 4.3. The existence of an uncountable γG -set for some countable Abelian group G, implies the existence of an uncountable
γZω -set, where Zω = ⊕

ω Z is the free Abelian group on countably many generators.

Proof. It is well known from the theory of free Abelian groups that there is a surjective homomorphism f : Zω → G for
any countable Abelian group G . So f ∗ is an injection and therefore the theorem follows directly from Lemma 4.1. �

We let, non(γG -set) = min{|X |: X ⊆ (Gd)
∗ is not a γG -set} and establish the second main result of the paper.

Theorem 4.4. Let G be a countable Abelian group. Then non(γG -set) = p.

Proof. The inequality non(γG -set)� p follows directly from Proposition 3.8 and the fact that p= non(γ -set).
To establish the other inequality, we need the next lemma.

Lemma 4.5. Let H be a subgroup of G, then non(γG -set)� non(γH -set).

Proof. Let f : H → G be a monomorphism, and suppose that Y ⊆ (Hd)
∗ is not a γH -set. Since f is an injection, f ∗ is

a surjection and hence there is an X ⊆ (Gd)
∗ such that |X | = |Y | and Y = f ∗[X]. By Lemma 4.1 it follows that X is not

a γG -set. �
Thus, to show that non(γG -set) � p, it is enough to verify that non(γH -set) = p, for some subgroup H of G .
We need a fact concerning structural theory of Abelian groups.

Fact 4.6. Any countable Abelian group G contains an isomorphic copy of one of the following: Z, K , Z(p∞) for a prime p, where K is
a group generated by an infinite independent set.

Proof. Suppose that G does not contain an isomorphic copy of Z or K . Then r(G) must be finite and r0(G) = 0. Therefore,
there is a prime p such that G p is infinite with r(G p) finite. By 4.3.13 in [19], it follows that G p is a direct sum of finitely
many cyclic and quasicyclic groups. The fact now follows. �
Claim 4.7. non(γK -set) = p.

Proof of Claim 4.7. Let A = {an: n ∈ ω} be an independent set of non-zero elements of K such that K = 〈A〉. So K =⊕
n∈ω〈an〉. Let F ⊆ [ω]ω be a centered family without an infinite pseudointersection. Note that for every n ∈ ω, we can find

bn ∈ T with bn /∈ T4 such that 〈bn〉 is isomorphic to a subgroup of 〈an〉. Now, for every F ∈ F and for each n ∈ ω consider
the function xF ,n : 〈an〉 → T defined by

xF ,n(man) =
{

0, if n ∈ F ;
mbn, otherwise.

Then xF ,n is a group homomorphism. By universal property of the direct sum, there exists a unique homomorphism xF :
K → T making the following diagrams commute (xF ,n = xF ◦ ιn):
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〈an〉 ιn

xF ,n

�

K

xF

T

where ιn is the inclusion. Let X = {xF : F ∈F} and we show that X is not a γK -set. Clearly |X | = |F |.
Fix m > 0. Let {Fi: i < k} be a finite subset of F . Since F is a centered family, there is n ∈ ⋂

i<k Fi . Then, xFi (an) = 0 for
every i < k, and this implies that {xFi : i < k} ⊆ Um

an
. Therefore, Um

A is an ω-cover of X for every m > 0. Assume now that B

is an infinite subset of A and verify that U4
B is not a γ -cover of X . Suppose to the contrary that for every F ∈ F we have

xF ∈ U 4
b (or equivalently, xF (b) = 0) for all but finitely many b ∈ B . Put E = {n ∈ ω: an ∈ B}. Notice that, for every F ∈ F ,

xF (an) = 0 is equivalent to n ∈ F . Therefore, E is an infinite pseudointersection of F , which contradicts our assumption
about F . �
Claim 4.8. non(γZ(p∞)-set) = p.

Proof of Claim 4.8. Consider Z(p∞) as a subgroup of T, i.e. Z(p∞) = 〈an: n � 1〉, where an = 1
pn +Z for n � 1.

To prove the claim, we need the next technical lemma.

Lemma 4.9. Let N = {2n: n � 1}. Then, for each F ⊆ N there is xF ∈ (Z(p∞)d)
∗ with the following properties:

(i) xF (an) ∈ T4 if and only if n ∈ F ; and
(ii) xF (an) ∈ Tn if n ∈ F .

Proof. Let F be a subset of N . Put

k =
{

1, if p = 2;
p−1

2 , when p > 2,

and A = {an: n � 1}. Define a mapping xF : A → T in the following way:

(1) xF (a1) = 0.

(2) xF (a2n ) =
⎧⎨
⎩

xF (a2n−1 )

p2n−1 , if 2n ∈ F ;
xF (a2n−1 )

p2n−1 + ( k
p +Z), otherwise,

when n � 1.

(3) xF (am) = p2n−mxF (a2n ), when 2n−1 � m � 2n .

It is easy to check that pxF (a1) = 0 and pxF (an+1) = xF (an) for n � 1. This guarantees that xF can be extended to a homo-
morphism xF : Z(p∞) → T.

It remains to verify that xF satisfies (i) and (ii). For this, we have to distinguish two cases.
Case 1. p = 2. First, note that ‖ 1

m (r + Z)‖ = 1
m ‖r + Z‖, for all m > 0 and 0 � r � 1

2 . So, by items (1) and (2), it follows
that

∥∥xF (a2n)
∥∥ =

⎧⎨
⎩

‖xF (a2n−1 )‖
22n−1 , if 2n ∈ F ;

1
2 − ‖xF (a2n−1 )‖

22n−1 , otherwise,
(	)

when n � 1. Clearly
‖xF (a2n−1 )‖

22n−1 < min{ 1
2n , 1

4 }, for every n � 1. Therefore, it follows from (	) that xF satisfies (i) and (ii).

Case 2. p > 2. Similarly to the previous case, it is easy to see that

∥∥xF (a2n)
∥∥ =

⎧⎨
⎩

‖xF (a2n−1 )‖
p2n−1 , if 2n ∈ F ;

k
p + ‖xF (a2n−1 )‖

p2n−1 , otherwise,
(		)

when n � 1. Also
‖xF (a2n−1 )‖

p2n−1 < min{ 1
2n , 1

4 }, for every n � 1. Therefore, it follows from (		) that also xF satisfies (i) and (ii)

for this case. �
Let N be as in Lemma 4.9 and let F ⊆ [N]ω be a centered family without an infinite pseudointersection. Then,

by Lemma 4.9, for every F ∈F there is xF ∈ (Z(p∞)d)
∗ such that xF satisfies (i) and (ii) of this lemma. Let X = {xF : F ∈F}

and we show that X is not γZ(p∞)-set. Clearly |X | = |F |.
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Fix m > 0. Let {Fi: i < k} be a finite subset of F . Since F is a centered family, there is n ∈ ⋂
i<k Fi such that n > m. By

Lemma 4.9(ii), it follows that ‖xFi (an)‖ < 1
n < 1

m for every i < k, and thus {xFi : i < k} ⊆ Um
an

. Therefore, Um
AN

is an ω-cover

of X for every m > 0, where AN = {an: n ∈ N}. Assume now that B is an infinite subset of AN and verify that U4
B is

not a γ -cover of X . Aiming at a contradiction, suppose that for every F ∈ F , xF ∈ U 4
b for all but finitely many b ∈ B .

Put E = {n: an ∈ B}. By Lemma 4.9(i), it follows that E ⊆∗ F for every F ∈F , which contradicts our assumption about F . �
Claim 4.10. non(γZ-set) = p.

Proof of Claim 4.10. It is well known that the dual group (Zd)
∗ is isomorphic to T. Thus, each x ∈ T can be identified with

the homomorphism of Z to T defined by x(n) := nx for every n ∈ Z.
To establish the claim, we prove the following lemma.

Lemma 4.11. Let A = {24n
: n ∈ ω}. Then, for every F ⊆ A there is xF ∈ T with the following properties:

(i) nxF ∈ T4 if and only if n ∈ F ; and
(ii) nxF ∈ Tn if n ∈ F .

Proof. Let F be a subset of A and put E = {n: 24n ∈ F }. For each n ∈ ω consider the interval Jn = [− 1
24n , 1

24n ], and for every
s ∈ 2<ω put

Is = 1

2
+

∑
i<|s|

1 − s(i)

24i+1
+ J |s|.

These intervals satisfy the following properties:

(a) if s ⊆ t , then It ⊆ Is;
(b) Is +Z ⊆ U 4

24i if and only if s(i) = 1;

(c) if s(i) = 1, then Is +Z ⊆ U 24i

24i .

Indeed, to see (a), first note that

It = 1

2
+

∑
i<|s|

1 − s(i)

24i+1
+

(	)︷ ︸︸ ︷∑
|s|�i<|t|

1 − t(i)

24i+1
+ J |t|,

and to verify that (	) ⊆ J |s| , it suffices to show that

1

24|t| +
∑

|s|�i<|t|

1 − t(i)

24i+1
� 1

24|s| .

Without loss of generality we can assume that |s| < |t|. Thus |t|� |s|+ 1 and since 4|s|+i − 1 � 4|s| + i for all i � 1, it follows
that

1

24|t| +
∑

|s|�i<|t|

1 − t(i)

24i+1
� 1

24|s|+1 + 1

24|s|+1
+ 1

22

∑
i�1

1

24|s|+i−1

� 1

22
· 1

24|s| + 1

2
· 1

24|s| + 1

22
· 1

24|s|
∑
i�1

1

2i
= 1

24|s| .

To prove (b) and (c), note that

Um
n = {x ∈ T: nx ∈ Tm} =

∑
k∈n

(
k

n
+ In,m

)
+Z,

where In,m = (− 1
nm , 1

nm ). Suppose that s(i) = 1. Then

Is�i+1 = 1

2
+

∑ 1 − s( j)

24 j+1
+ J i+1.
j<i
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Clearly, 1
2 + ∑

j<i
1−s( j)

24 j+1
= k

24i , for some k ∈ 24i
. Since 1

24i+1 < min{ 1
4 · 1

24i ,
1

24i · 1
24i }, it follows that Is + Z ⊆ Is�i+1 + Z ⊆

U 4
24i ∩ U 24i

24i . This prove (c) and the first part of (b).

For the second part of (b), suppose that s(i) = 0. Let k ∈ 24i
such that k

24i = 1
2 + ∑

j<i
1−s( j)

24 j+1
. Then

Is�i+1 = k

24i
+ 1

2
· 1

24i
+ J i+1.

Since 1
24i+1 < 1

4 · 1
24i , it follows that 1

2 · 1
24i + J i+1 ⊆ [ 1

4 · 1
24i ,

3
4 · 1

24i ]. Then (Is�i+1 + Z) ∩ U 4
24i = ∅, and hence also

(Is +Z) ∩ U 4
24i = ∅.

By item (a), take an xF ∈ ⋂
n∈ω IχE�n + Z, where χE is the characteristic function of E . Therefore, it follows from (b)

and (c) that xF satisfies (i) and (ii). �
Let A be as in Lemma 4.11 and let F ⊆ [A]ω be a centered family without an infinite pseudointersection. Then,

by Lemma 4.11, for every F ∈ F there is xF ∈ T such that xF satisfies (i) and (ii) of this lemma. Let X = {xF : F ∈ F}
and we show that X is not γZ-set. Clearly |X | = |F |.

Fix m > 0. Let {Fi: i < k} be a finite subset of F . Since F is a centered family, there is n ∈ ⋂
i<k Fi such that n > m.

By Lemma 4.11(ii), it follows that ‖nxFi ‖ < 1
n < 1

m for every i < k, and thus {xFi : i < k} ⊆ Um
n . Therefore, Um

A is an ω-cover
of X for every m > 0. Assume now that B is an infinite subset of A and verify that U4

B is not a γ -cover of X . Aiming at a
contradiction, suppose that for every F ∈F , xF ∈ U 4

b for all but finitely many b ∈ B . By Lemma 4.11(i), it follows that B ⊆∗ F
for every F ∈F , which contradicts our assumption about F . �

The theorem is proved. �
5. Final remarks and questions

It has been suggested to us by the anonymous referee to consider also the question of existence of non-metrizable
Fréchet group topologies on non-Abelian groups.

Definition 5.1. ([23]) For every countable topologizable group G , let pG denote the minimum character of a non-discrete
Hausdorff group topology on G which cannot be refined to a non-discrete metrizable group topology.

Theorem 5.2. ([23]) For every countable topologizable group G, pG = p. �
In particular, every countable group admitting a non-discrete Hausdorff group topology admits a non-metrizable one.

Theorem 5.3 (p> ω1). Every countable topologizable group admits a non-metrizable group topology which is Fréchet.

Proof. It is a theorem of ZFC that every countable group which admits a group topology which is not metrizable (of un-
countable weight) also admits a group topology of weight ω1. To see this fix an arbitrary group topology τ on a countable
group G of uncountable weight. Recursively choose countably generated filters Fα , α < ω1 contained in the filter of
τ -neighborhoods of eG so that

(i) each Fα satisfies the axioms of a neighborhood filter of eG in a Hausdorff group topology on G , and
(ii) for α < β the filter Fα is properly contained in the filter Fβ .

Then F = ⋃
α<ω1

Fα is a filter of neighborhoods of eG in a Hausdorff group topology by (i) and the topology has weight ω1
by (ii). On the other hand, it is well known that every countable space of weight less than p is Fréchet [15]. �

Note that if the original group topology is precompact then so is the resulting Fréchet group topology. In particular,
assuming p > ω1 every countable group which admits a non-metrizable precompact group topology also admits a non-
metrizable precompact Fréchet group topology. Thus, the results of Ol’šanskiı̌ and his school [21] are the only hindrance to
a possible existence of non-metrizable Fréchet group topologies.

Question 5.4. Is it consistent with ZFC that every γZω -set is countable, or equivalently, is it consistent with ZFC that every
countable Abelian precompact Fréchet group is metrizable?3

3 The authors have recently answered the question in the affirmative.
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We believe that methods developed in [4] could be of use here.

Question 5.5. Is there an uncountable γZω -set in the Laver model?

It seems unlikely, but at the moment we do not know whether the existence of a countable non-metrizable Fréchet
topological group implies the existence of an uncountable γ -set.

Question 5.6. Is it consistent with ZFC that every γ -set is countable but there is a countable non-metrizable Fréchet topo-
logical group?

We do not even know, whether the existence of an uncountable γG -set implies the existence of an uncountable γ -set.

Question 5.7. Is it consistent with ZFC that every γ -set is countable but there is an uncountable γG -set for some group G?
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