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1. Introduction

In this paper we study some statistical approximation properties of a certain family of linear operators which do not
need to be positive. Recall that, for such operators, the classical Korovkin theorem does not work due to non-positivity.
However, we show that it is possible to approximate (both in the ordinary sense and the statistical sense) to functions by
these operators. Readers will find some related studies for the ordinary approximation in the papers [1-9] and the references
cited therein. We also give an example of why we need statistical approximation instead of ordinary approximation. In the
literature there are many papers about statistical approximation (see, e.g., [10-17]).

First of all, we give some basic definitions and notations used in the present paper.

LetA := [ajy], j,n = 1,2, ..., be aninfinite summability matrix and assume that, for a given sequence X = (X;)nen, the
series Z;’; ajnX, converges for every j € N. Then, by the A-transform of x, we mean the sequence Ax = ((Ax);)jen such that,
foreveryj € N,

o0
(Ax)j == Z AjnXp.
n=1

A summability matrix A is said to be regular (see [18]) if, for every x = (Xp)nen for which lim, .o x = L, we get
lim;_, o (Ax); = L. Now, fix a non-negative regular summability matrix A. In [19], Freedman and Sember introduced a
convergence method, the so-called A-statistical convergence, as in the following way. A given sequence X = (Xp)nen iS
said to be A-statistically convergent to L if, for every ¢ > 0,

lim Z apj = 0.

]J—00
n:|xp—L|>¢

This limit is denoted by sty — lim,, x, = L.
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Observe that, if A = C; = [cju], the Cesaro matrix of order one defined to be ¢;; = 1/jif1 < n < jandc, = 0
otherwise, then C-statistical convergence coincides with the concept of statistical convergence, which was first introduced
by Fast [20]. In this case, we use the notation st — lim instead of stc, — lim (see Section 5 for this situation). Notice that every
convergent sequence is A-statistically convergent to the same value for any non-negative regular matrix A; however, the
converse is not always true. Not all properties of convergent sequences hold true for A-statistical convergence (or statistical
convergence). For instance, although it is well known that a subsequence of a convergent sequence is convergent, this is not
always true for A-statistical convergence. Another example is that every convergent sequence must be bounded; however,
it does not need to be bounded of an A-statistically convergent sequence. Of course, with these properties, the use of A-
statistical convergence in the approximation theory provides us many advantages.

2. Construction of the operators

Consider the set D given by
D= {(s,t) e R* : > + t* < 7°}.
As usual, by L, (D) we denote the space of all functions f defined on D for which

// fx,yPdxdy < oo, 1<p < oo.
D

In this case, the L,-norm of a function f in L,(ID), denoted by ||f||,, is given by

1/p
11, = ( / / |f<x,y)|dedy) .
D

Throughout the paper, forr € Nand m € Ny := N U {0}, we use

<—1>T—f'(r.)r’" ifj=1,2,...,r,
J

ml _ . 2.1
N fr .
B EED (e ( .)f’" ifj=0
= J
and
.
s = oM k=12 meN (2.2)
j=1

We observe that

r r (T r
2y =t 2 ]<,->:(—” (o) (23)

Assume now that (&;)cy is a sequence of positive real numbers. Setting

1 1
g m ————————— <An - —, as&, — 0) , (2.4)
7 (1 _ efnz/s,%) m
we introduce the following double smooth Gauss-Weierstrass singular integral operators:
[m] RN [m] ; N L —(s2+t2) /g7
Wiy = 5 > oy f+siy+te rdsd ) , (255)
noj=0 D

where (x,y) e D,n,re Nme Ngandf € [,(D), 1 <p < o0.

Remarks. e The operators W}j’,}l are not in general positive. For example, consider the non-negative function ¢(u, v) =
u> +v?andalsotaker =2, m=3,x=0andy = 0in (2.5).
e Itis not hard to see that the operators W™ preserve the constant functions in two variables.
e We observe, for any « > 0, that '

// e~/ dsdr — o (1 — e’”z/“> ) (2.6)
D
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e Let k € Ny. Then, it holds, foreach ¢ = 0, 1, ..., k and for every n € N, that
Y 0 if k is odd
k—€ 10 \—(s2+t2) /&2 — k—¢+1 £+1
//DS te dsdt 2yn kB (% %) if k is even, (27)

where B(a, b) denotes the Beta function, and
T k+2 k k T 2
Vo = / pk+1e—p2/€3dp — Snf r <1 + ,> 14— < ) (2.8)
0 2 2 gn
where I'(«, z) = fzoo t*~le~tdt is the incomplete gamma function and I' is the gamma function.

3. Estimates for the operators (2.5)

For f € L,(D) and 27 -periodic per coordinate, the rth (double) L,-modulus of smoothness of f is given by (see, e.g., [21])

or(fih)y == sup HA[,’U(f)”p <00, h>0,1<p< o0, (3.1)
u2+v2<h
where
r » r ) )
A, Fy) =) (=17 (J.)f(x +ju,y +jv). (32)
=0
Throughout this paper we use the notation
_ a"f(x,)
M (x,y) = ———22 forf=0,1,...,m.
f&x,y) o Txty
We assume that
fec™m, (3.3)

the space of functions 27 -periodic per coordinate, having m times continuous partial derivatives with respect to the
variables x and y, m € Ny.

3.1. Estimates in the case of m € N

In this subsection, we only consider the case of m € N.
Forr € N and f satisfying (3.3), let

m gim kK k 2,22
HIY(x,y) = WENE %, 0) = fxy) = 5 / / (Z m Z(k_ e)sk*@rﬁa"*‘ivﬁfu,y) e /S dsdt.
k=1 e=0

By (2.7), since, for every r, n,m € N,

m 5[117] k k Y oy
// ]v <1 g) sk—zteak—z,zf(& ) e~ " +/E dsdt
= k! = \k—

[m/2]6[m] 2i . .

2i,r Vn2i 2i Iy 2i—L+1 £+1
=2 o fx,y) B| —, — | ¢,
2 2i)! {Z(Zi—£> fx 2 2

i=1 =0

where [-] is the integral part, we have

2An (2 85 v 2
n P (2i)!

20020\ i 2i— 41 €41
X{;(Zi—£>a f(x,y)3<#,7> : (34)

where y, i is given by (2.8). Now we get the next result.

HN G y) = W xy) —f(x.y) —
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Lemma 3.1. Foreveryr,n, m € N and for all f satisfying (3.3), we have

[m](x y) = gZ(m o fo (f A — w)™ IA;w - (am—l«‘f(x, y)) dw) (m’i g) sm‘ztle‘(52+‘2)/§3d5df~

Proof. Let (x, y) € D be fixed. By Taylor’s formula, one can obtain that

Ik
E <I > sk—ltlak—l,ff(x7 y)
K —

1 m—1_[m] .
+m/0 1—-w) (pxy(w’ s, Hdw,

m [m

o (Fx s,y +it) —f(x.¥) =
j=0

where

n m

£=0

m
—oiy (mni e) ST (x, y)
m m B
= Z(m_z) " AL g (7 9)).

Then, by (3.4), we get

[m]

[m/2] 2i . .
2A 85 + Vn.2i 2i . 2i—4+1 £4+1
[ml [m] “Mn 2i,r 821—@,6 B
n(%Y) =W xy) —fxy) — E 20! {;_0(21._£> fx.y) <72 Ty >}

m— m— m m— (52442 /2
Ez(m—wZ// (/ (=) Ag, 0, (0 Llf("’””’”) (m—ﬂ)s e st

which completes the proof. O

Theorem 3.2. Let m,r € Nand p, q > 1such that % + % =1landf € ngm) (D). Then the following inequality

|H [m|||p_CE(ZC() (9™, &))

1
(1_6 nz/sn)” =0

holds for some positive constant C depending onm, p, q, 1.

Proof. By Lemma 3.1, we first obtain that

|H[m](x Y)|P - 1)')p {Z// (/ (1 — w)m! |Asw o (E)m’g'zf(x,y))| dw)
x <m'ig> Is|™ ¢ el e @ +tzwndsdt}
g (1) {fo ([ = 8 " ) aw)
5 1—e 7"/

p
m 2 2 2
x ( >|s|m—‘|r|‘e—<5 +t Wndsdr} ,
m—4~
1

P ((m — DHP

where

C] =
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Hence, we get

C p
f f H &,y dedy < —————— f / ( / / e t)e—(sz“zwfdsdr) dxdy,
D g)_-nl’ (1 —_e T /Sn) D D

where

Uyy (5, 0) = Z( ) Is™ = |t (/ (1= w)"™ AL, W (3™ F )| dw). (3.5)

£=0

Then, using the Holder’s inequality for double integrals and also considering (2.6), we may write that

/f ’H[m](x y)} dxdy < // (// (S t)e™ (s> +t2) /82 det) dxdy <// e —(s>+t2) /82 det)
D £2 (1 - e—nz/sn

gl (1- e*”Z/Eg i
=G { zn E - p} // (// b (s, t)e’(szﬂz)/szdsdt) dxdy
&7 (1- e,,,z/gn o \JJp
= - /[ (// (s, 0e ¢ Rl dsdt) dxdy,
g2 (1-esih)

where

1
7 ((m— DY

4:\'t1

G =Cm

We now estimate uf,y (s, t). Observe that

1

m % 1 :
Uy (s, t) < Z(mm £>|s|f"—“ [ (f | AL e (8”‘“"f(x,y))|pdw> (/ (1—w)q<m—1>dw>
=0 - 0

= C3Z (m ) Is|™ ¢ el (f |Asw tw amfe,zf(x’y))f dw) '
=0

where
1

@m—1)+1)7

Hence, we have

C3 =

1\ P

m m B . P
0= (") ([ an e mrwnan))

=0

which gives

m m e e m m i , %
im0 26 52,7 oot ([ )| (£2(,7, o)
= (sl +1t)T {;(m )|s|’" el (/ | AL, 8m€=‘f<x,y>)|”dw)]-

Letting

1/ ((m = D)
T@@m—1)+ 1)

Cy =G0 =
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and combining the above results, we get

J[ P ey < - (1_e o /f{ff { 1+ 1e)¥ f(m"je)w-w‘

1
< / AL, 0 (M F ) [ dw) e<52+f2>/53] dsdt}dxdy

C4 mp il m
- —// sl + 16D ¥ Z( )|s|m*f I
gnZ 1—e-7%) JJo g \m—{

[ f ( / | A ( 8m“’ff<x,y>)|”dxdy> dw] e-<52+f2>/f%}dsdt,
which implies that

C mp m
HM(x, y)|" dxdy < 4 ff{(m +th e ( ) Is|™ ¢ ]
//‘ I £2 (1 _efnz/s%) D ; m—¢

1 p
x [/ w; (3m7[’£f, wv/s2 + t2) dw] e~ (P& ]dsdt.
0 p

n

Then, we have

4C mp
// ‘H[m](x y)] dxdy < ” (1 _e4n2/s,%) //}D]{(s—{—t) a ; (mri£>sm%te

1 p
X [/ wr (Bm’é'(f, wv/s? + t2) dw] e~ PH/E ]dsdt,
0 p

where

Dl:={(s,t)eR2:055§nand05r§M}. (3.6)
Now, using the fact that

o (f,Ah), <1+ 1) (f,h), foranyh,A >0andp>1, (3.7)
we get

4Cy

H[m] dd I ( m ) . amfﬁ,ﬁ’ np// _I_t% m—_

1 ~———=\ P
X / 1+ w dw e—(52+t2)/53 dsdt,
0 én
and hence

// |HIM (x, y)|” dxdy < < m >w, (™=t En)z // {(S-i-t)"‘llpsm_lt‘Z
(1 e 2/ssn) n D,

) o= (P +2)/ER
X (1 + ) -1 dsdt,

NgE

Il
<)

Ma

Il
<)

én \/Sz-{—tz
where
C— 4Cy _< 4 ) 1/ ((m = DHP
Tl w1 gm-n 4D
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Therefore, we obtain that

p+1
// |H™ (%, Y)\p dxdy < —(1 i ) {[ o™ ((1 + éo) - 1) e"z/f'%d,o]
— T n 0 n

n

/2 -
x ( m wp (™01, En) (/ (cosO +sin) T cos™ ¢ g sin’ 9d9)
— \m—¢ 0

p+1
< &6 / o™ (1 + ﬁ) e fEidp
&n (] — e—ﬂz/énz) 0 &n
m /2 mp
x Z < ) wp (™51, Sn) </ (cos8 + sin®) ¢ cos™ ¢ 0 sin’ 0d0) )
0

4

=0
Using the fact that 0 < sinf + cosd < 2 for 6 € [0, Z], we get

p CG T 0 p+1 2
/f |H (%, p)|" dxdy < ————— / " <1 + —) e " ffdp
D £, (1 efnz/é,?) 0 &n

n

m /2
x Z( ) (am4f, gn) (/ cos'"*‘fesin‘ede),
= 0
where

C6 — 2%6‘5 = 2n}1p+2> 1/ ((m B 1)')17
1) 7 qm =1+ 15

/

If we take u = p/&,, then we see that

p Cobn" m/kn
ff [Hy (. )| dxdys—(f u™ (14 u)? e du)
DI 2(1_e7ﬂ2/53) 0
n m m—E€+1 £+1
B ———— —— ) or (" &), 1 -
X{;(m%) ( 2 2 )“)r( o),
Cﬁf

: fOO (] +u)(m+r)p+l —u du)
2 — e /Sn 0

(
X{ <m€>3< —e+1’z42r1> (am‘fffgn)}

GET i m m—e0+1 £+1 m_t,
N Z(m ) ( 2 2 )wr(a ),

( e Z/En) =
where

m _ p oo
. <2q 1/ (m =Dy (/ (1 4 ymrp+ efuzdu>_
P+1) 7 @m-1+17 \Jo

Therefore the last inequality yields that

(Zw (™, sn))l,

£=0

which implies that

IA

/ |H™ (x, y)|” dxdy
D

|, < ————
(1 e n2/§n>

(ST
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where

C:=C(@m,p,q,r1)

1
i1\ P 00 1
_ 1/(m—1)! 27 b (/ (1 + u)m+Dp+1 e_”zdu>p
77 (qm—1) + 17 \"P+1) \Jo

{ ( m ) (m—z+1 z+1)}é
X max Bl —, ——
¢=0,1,..m\m— ¢ 2 2

The theorem is proved. O

We also get the next result.
Theorem 3.3. Let m,r € Nand p, q > 1such that % + % =1landf e ngm) (D). Then the following inequality
cem ’ (m/2]
Wi - fl, = ———— Zw (0" “F &) ) + By Zéz‘
(1 _e7”2/52)p =0

holds for some positive constants B, C depending on m, p, q, r; B also depends on f.

Proof. By (3.4) and the subadditivity of the L,-norm, we get

20 A S i [ (0 2i . 2i—t+1 £+1
wrih ) =11, = A7, + ézn Z @i ;(21'_5) [o* LZf"pB(f’ T)
[m/2] lm]ég—Zz 2i i 2041 0+1
[m] 2i,r 21 £,0
= [l 400 ) s (21){[2_;( sl p (2 )

Now, by putting

siml 2 2i . 2i—0+1 £41
B := max # Z . 1 ||a21—l,lf|| B ;’ L ,
1=istmi2) | (i 4+ 1) - - - (2i) 2i— ¢ P 2 2

=0
we get

[m/2]

Wi =7l = 115, +BMZ$

by Theorem 3.2; the claim is now proved. O

The following result gives an estimation in the cases of p = 1and m € N.

Theorem 3.4. Let m,r € Nand f € CI™ (D). Then, we have

Zwr am lef Sn)

m,

for some positive constant D depending on m, r.

[E L =

Proof. By Lemma 3.1, we observe that

HMx, y)| < 52 1), f f < / (1—w)™ " AL, 0, (8’”“"f<xvy>)ldw>

m 2442y /82
x Is|™ ¢ [£]¢ e+ S dsdt.
m—£{
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Then, we get

20, = g [ [ (f 0o s s o)

m
X ( E) Is|™ = |¢]¢ e_(szﬁz)/ggdsdt}dxdy
m —

sZ(m—l)' {// [/ (1 —w)™ 1(/ | At 8'""”f(x,y))|dxdy)ciw]

m 24 42y /62
X |s|™ = J¢]¢ e~ CTH S dsdr ¢,
m—4
[m]
(L2 =

1
m—1 m—£,4
< Fm //DUO (1w (8 f’wvsz+f2>1dw]

s (™ ) gsim et e PO/ ggdt
m—4~

m 1
= _ ap)m—1 m—¢,¢
Sz(m— 1)! 2 //m [/0 (1= w)™ e (3 f w\/m)ldw]

£=0

X M) gt pte=PHO/E dsdr
m—4{

where the set Dy is given by (3.6). Now, using (3.7), we deduce that

m 4hn . m m—
1, = g 2 (g ) or 07750,

8 // (/ (1—w)™! (1 + w«/s;ﬁ) dw) s plem CHO/E godt
m m .
- éz(m 1! ; (m - e) or (0"1f &),
T~
§

+1 2,42y /62
D’ n J2 2 —(2+t%)/
m S +t e n
SN wr (0"F, &), // P UL A —; Y [ O
Sn( — e~ /e g( D, &n N

4
T+ 1Dm-1
Hence, we conclude that

which gives that

NMS

where

m m /2 .
x Y (m o )er (0™, &), (/0 cos™* 6 sin* 9d9>

_ m—£+1 £+1
or (" 5), B (i T) .
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Now, taking

o0 - 1 1
D:=D / (14 w™ 1 yme ™ dy )  max mop(mott! . el ,
0 ¢=0,1,..m |\ m—¢ 2 2

we get
Dg" u

Zwr am—l,lff’ Sn)l s

<eM>H

which completes the proof. O

[E L =

Furthermore, we get the next result.

Theorem 3.5. Let m,r € Nand f € C{™ (D). Then

[m/2]

|wimpy — f||1_< ﬂz/s)Zwr (0™, &) | + Ehg Zgzl

holds for some positive constants D, E depending on m, r; E also depends on f.

Proof. By (3.4) and the subadditivity of the L;-norm, we get

R Slvna [ G [ 2i - 2i— 041 £+1
o —s1, = il + 22 3 SGE L (o7 ) o (B )

n

mp2] - glmlgai 21 2i , 2i—0+1 £+1
[m] _ T2irSn 2i—¢,¢ e
HH ”1 Z(i+1)~--(2i) !;(Zi—ﬁ)”a f||13< 3 B ) .

i=1

Now, by setting

stml 21 2i . 2i—04+1 041
E:= max #Z A |o%-f |, B ;’L .
1<istmy2) | i+ 1) -+ 20) & \2i — ¢ 2 2

we get

[m/2]
[west ) =1, < B + Era Z

by Theorem 3.4; the claim is now proved. O

3.2. Estimates in the case of m = 0
We now focus on the estimation in the case of m = 0. We first get the following result.

Theorem 3.6. Let r € Nand p,q > 1 such that % + % = 1. Then, for every f € L,(D) and 27 -periodic per coordinate, the
following inequality
Kwr (fv Sn)
WS —f], = ———~.
(1 _ efnz/s,%) p
holds for some positive constant K depending on p, .
Proof. By (2.1),(2.3) and (2.5), we may write that

WEONFs %, y) = Fley) = 2—2 f / :Z(—l)’f (;) (f (x+ i,y + ) —f(x,y»} e~ H/E dsdr
n D | j=1

B 27 // [Z <(_])r_j C)f et gyt tj)) ad ((r))f(X, y)} e~ ¢H/E dsdr
n D j=1

B g // :Z(_l)r_j (;)f (x+5j,y+ tj)} e~ ¢HH/E dsdt.
n D | j=0

3
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Also, by (3.2), we get
W[O](f X, y) (X y) %_2 // (X,y)) e—(52+[2)/5r%d5dt,

which implies that

(WSOl x,y) — fxy)| < & // AL, (F (x, )| e+ 8 dsdr.

Hence, we get

p p
f / WS %, 9) = p) [ dxdy < ;21, / / ( / / |A§,f(f(x,y»!e*“z“z”ffdsdt) dxdy.
D n D D

Now, we obtain from Hélder’s inequality for double integrals that

Ab (202 /82
[ Wiixp = rx P anay < 21,//[(// A, x| e Vfﬂdsdt)
D &, D D
p/q
X (// e’“z“z)/ff%dsdt> }dxdy.
D

Then, using (2.6), we may write that

1995

f f WS x,y) — Fee )| dudy < ;"(nez (1-er))* f / ( f / AL Fx e +‘2”5"dsdt) dxdy

A
= 5—2 / / ( / / Al o)) e<sz+f2>/¥n2dsdr> dxdy.
n D D
Thus, by (3.7), we have

p
// (WOl x.y) — f(x, y)f dxdy < 52 // w; (f, V' s? +t2) e /& qsdt
D p
p
w; (f, Vs + t2) e~ HA/E dsdt
; p

D

where D is given by (3.6). After some calculations, we deduce that

4)\% /2 pw p
—or (f, &)5/ / <1+£> e /5 pdpde
gn 0 0 gn

2w , p 7 /&n
= M / (1 + u)rp efuzudu
0

IA

/ / WEL(F: x, y) — Fx,)|? dxdy
D

1 — e—m2/&8
p 0
< 20 (f, En)p A + uy?*! e du)
1—e7%& \Jo

Therefore, we have
Ko (f, &n)p
—
(1 _ efnz/s,%) /,,
1

K:=K(p,r) = (2/ (1+u)™*! e_”zdu>p
0

The theorem is proved. O

Wi =11, <

where

Finally, we give an estimation in the case of p = 1and m = 0.

2
n
p
4 /2 + t2
< o (L&) / / 1+ Y50 et geqy,
5n Dq é:ﬂ
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Theorem 3.7. Forevery f € L1(D) and 2 -periodic per coordinate, we have

Lwr (. %—n)l

[0]

for some positive constant L depending onr.

Proof. By (3.8), we easily observe that

w11, = [[ 1Wix x| axey

: // (// AL, Fx,y))| e © +f2>/€ndsdt) dxdy
_ AT (F(x, y))| dxdy ) e~/ dsdt
A% (F )
n D D

A
2n // wr (f’ /s2 + tz)] e~ HAV/ER dedt
D

=5

I\)

v
[}

IA

4\
= é—; // o (f, Vs + tz)1 e~ H/E dsdt,
n Dy

where D is given by (3.6). Now, using (3.7), we get

4hpwr (f 5n)1 // <.1 + $* + 12 ) e~ 2412y /g2 dsdt
4)\nwr(f gn)] /2 22
= / / (1 + ) e P /4 pdpdo

_ 2wy (fv Eﬂ)l /ﬂ/& (1 + u)r —u2 du
0

1 — e-72/&2

2 s o
< lwf(fij"/)él (/ (14w e“zdu> )
—e /& \Jo

Then, the last inequality yields that

Lwr (f &
2/&-2

WS -, =

WS¢ - £, <
where
*° 2
L:=L) = 2[ 1+w e du.
0
The proof is completed. O
4. Statistical L,-approximation by the operators (2.5)

By the right continuity of w; (f; -), at zero, we first get the next result.

Lemma 4.1. Let A = [aj,] be a non-negative regular summability matrix, and let (§,)qen be a sequence of positive real numbers
for which

sty — lim&, =0 (4.1)
n

holds. Then, for every f € C{™ (D), m € Ny, we have

sta —limo;, (f; &), =0, 1=<p <oo. (4.2)
n
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4.1. Statistical L,-approximation in the case of m € N
The following result is a direct consequence of Theorems 3.3 and 3.5.

Corollary 4.2. Let 1 < p < co and m € N. Then, for every f € C\™ (D), we have

m (m/2]

”W[m] H Mlé,;“); {Z (wr (8"’7”f, gn)p)p} + My, Z g

(] — e*ﬂz/fr% £=0
for some positive constants My, M, depending on m, p, q, r, where

M, e D (asin Theorem3.5) ifp=1
~ |C (asin Theorem 3.3) if 1 <p < oowith (1/p) + (1/q) = 1

and

M = |E (asinTheorem3.5) ifp=1
~ |B(asinTheorem 3.3) if 1 <p < ocowith (1/p) + (1/q) = 1.

Now we can give our first statistical L,-approximation result.

1997

Theorem 4.3. Let m,r € Nand A = [aj,] be a non-negative regular summability matrix, and let (§,)ncy be a sequence of

positive real numbers for which (4.1) holds. Then, for any f € Cf,"") (D), we have
sty — lim [WI() £, =
Proof. From (4.1) and Lemma 4.1, we may write that

m
sty — lim n

" (1 _ e—nl/s%)

p
sty — lim (a)r (am=ttf, gn)p) =0 foreach=0,1,...,m
n

=0,

=

and
. 2i . m
sta —lim&' =0 foreachi=1,2,..., [5] .
n
The above results clearly imply that

gm m ;

stA—lirr'n1:Z( (am=t4f, gn)) ] =0
(1_e—n2/sn)” =0

and

[m/2]

. 2i
Sty — llgn)\n Z £'=0

i=1

Now, for a given ¢ > 0, define the following sets:

S = !neN: ||W,[,",}](f)—f||p38}’

Sm - m—
Si = neN:(lenz/sn);{;(wra (Zf";:n))> EZLM] ,

[m/2]
S =1neN: A,
2 Z E" - 2M2

(4.3)

(4.5)
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Then, it follows from Corollary 4.2 that
SCSUS,,

which implies, for every j € N, that

Za]—n < Zajn + Zajm

nes nesy nesy

Now, taking the limit as j — oo in both sides of the last inequality and also using (4.4), (4.5), we conclude that

li}n Z ajp =0,

nes

which gives (4.3). Hence, the proof is completed. O

4.2. Statistical L,-approximation in the case of m = 0

In this subsection, we first combine Theorems 3.6 and 3.7 as follows.

Corollary 4.4. Let 1 < p < ooandr € N. Then, for every f € L,(ID) and 2m -periodic per coordinate, we have

Noy (f, &)
Wi —fl, = ———=
(1 _ efnz/s%) ’
for some positive constant N depending on p, r, where

N — L (asinTheorem3.7) ifp=1
" ]K (asin Theorem 3.6) if 1 <p < ocowith (1/p) + (1/q) = 1.

Now we can state our second statistical L,-approximation result.

Theorem 4.5. Let r € Nand A = [a;,] be a non-negative regular summability matrix, and let (§,)nen be a sequence of positive
real numbers for which (4.1) holds. Then, for any f € L,(ID) and 25 -periodic per coordinate, we have

sta — lim [W/SI(F) — £, = 0. (4.6)
Proof. Letting
T, = {neN: |Wr[f)n](f)—f||p ZE}

and

Wr (f’ éﬂ)p

1
(1 _ efnz/s,%) p

it follows from Corollary 4.4 that, for every ¢ > 0,
T; C Ts.

T, : neN:

>
- B

)
N

Hence, for eachj € N, we have
E jin < E Qjn.
neTq nel,

Now, letting j — oo in the last inequality and considering Lemma 4.1, and also using the fact that

Wr (f7 Eﬂ)p

(] — e—ﬂz/ér%)

we obtain that

lijm Z ap =0,

neTq

which proves (4.6). O

sty — lim =0,
n

=
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5. Concluding remarks

In this section, we give some special cases of our approximation results obtained in the previous section.
In particular, we first consider the case of A = Cy, the Cesaro matrix of order one. In this case, from Theorems 4.3 and 4.5
we have the following result immediately.

Corollary 5.1. Let m € Ny, r € N, and let (&,)nen be a sequence of positive real numbers for which

st —1lim&, =0
n

holds. Then, for all f € C{™ (D), we have
_ 1 [m] _ —
st —lim [WTH(F) — £, = 0.

The second result is the case of A = I, the identity matrix. Then, the next approximation theorem is a direct consequence
of Theorems 4.3 and 4.5.

Corollary 5.2. Let m € Ny, r € N, and let (&,)nen be a sequence of positive real numbers for which

limé&, = 0
n

holds. Then, for all f € C{™ (D), the sequence {W"(f)} ey is uniformly convergent to f with respect to the Ly-norm.

Finally, define a sequence (&), as follows:

1, ifn=K, k=1,2,...

———, otherwise.
1+n

Then, observe that st —lim,, &, = 0. So, if we use this sequence (&,) ¢y in the definition of the operator Wr[?;], then we obtain

from Corollary 5.1 (or, Theorems 4.3 and 4.5) that st — lim, [W[}(f) — f||, = 0 holds for all f € C/”(D),1 < p < oo.
However, since the sequence (£,)nen given by (5.1) is non-convergent, the classical L,-approximation to a function f by the
operators Wr[f“n] (f) is impossible; i.e., Corollary 5.2 fails for these operators. We should remark that Theorems 4.3 and 4.5,
and Corollary 5.1 are also valid when lim &, = 0 because every convergent sequence is A-statistically convergent, and so
statistically convergent. But, as in the above example, our theorems still work although (&) ,cx is non-convergent. Therefore,
this non-trivial example clearly shows that our statistical L,-approximation results in Theorems 4.3 and 4.5, and also in
Corollary 5.1, are stronger than Corollary 5.2.
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