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A b s t r a c t - - T h i s  paper develops an enhanced algorithm for the arithmetic division problem in the 
Residue Number System. The proposed algorithm is based on Galols Field Theory GF(p). Mapping 
the arithmetic division problem over the Galois Field GF(p) eliminates many of the limitations of 
existing algorithms. The advantage of the proposed algorithm is that it has no restriction on the 
dividend and the divisor, no mixed radix conversion, no quotient estimation before division, no 
reciprocal estimation of the divisor, and no based extension operation. (~) 2000 Elsevier Science Ltd. 
All rights reserved. 
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1. I N T R O D U C T I O N  

The arithmetic division in residue number system RNS is usually classified into three categories: 
Division Remainder Zero (DRZ), scaling, and general division [1]. DRZ and scaling in RNS have 
limited applications. Different algorithms have been developed to speed up scaling [2-4]. The 
general division problem in RNS has at tracted the attention on many researchers to design high- 
speed multimoduli ALU systems. Digital systems that  are built around RNS arithmetic units 
may play an important  role in high-speed real time systems that  support parallel processing 
of integer-valued data  [5]. Addition, subtraction, and multiplication operations, called modular 
operations, can be performed very fast without carry or borrow propagation [1,6]. The nonmod- 
ulax operations division, magnitude comparison, sign detection, and overflow detection are still 
relatively slow [6,7]. Any speed-up algorithm for such slow operations will dramatically improve 
the performance of multimoduli ALU systems. 

Several algorithms for RNS general division have been proposed in the past. These algorithms 
can be classified into two groups: multiplicative and subtractive [6,8]. Most of multiplicative 
algorithms first compute (or estimate) the reciprocal of the divisor, and then the reciprocal is 
multiplied by the dividend. The subtractive algorithms employ subtraction of multiples of the 
divisor from the dividend until the difference becomes less than the divisor. There are several RNS 
division algorithms that  are classified as multiplicative algorithms, among these [9-12]. All these 
division algorithms use Mixed Radix Conversion (MRC) to find (or estimate) the reciprocal of the 
divisor and to compare numbers. These MRC-based algorithms are generally slow and require 
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a lot of arithmetic computations. On the other hand, there are several subtractive algorithms 
presented in literature, among these [13,14]. These algorithms do not require MRC computations, 
but some nonmodular computations are needed [2,3]. The subtractive algorithm presented in [14] 
seems particularly attractive because an efficient parity checking method was used for comparison, 
sign, and overflow detection. Most of the existing division algorithms have drawbacks that  make 
them less suitable as solutions of the RNS division problem. 

In this paper, we present a very fast algorithm for the general division problem in RNS using 
index mapping over GF(p). The enhanced algorithm has the following properties: very fast 
compared to published algorithms, no restriction on the dividend and the divisor (except zero 
divisor), no quotient estimation before the division, no reciprocal estimation of the divisor, and 
no base extension operation. 

In decimal arithmetic, logarithms are frequently used for multiplication and division. In RNS, 
an analogous method is used called index calculus [1]. Using index transformation over the Galois 
Field GF(p), multiplication and division operations can be implemented by addition and subtrac- 
tion, respectively. Multiplication operation is a modular operation, therefore, multiplication can 
be done as addition in RNS. In terms of hardware implementation, addition in RNS is easier than 
multiplication [14]. Division, however, is one of the nonmodular operations in RNS, therefore, 
the proposed index transformation over GF(p) will definitely improve the computational speed 
and hardware cost. 

2. G A L O I S  F I E L D  G F ( p )  

Finite Galois fields are of two types: prime fields GF(R) and polynomial fields GF(pq), where 
p is a prim e number, and q is a positive integer. All Galois fields have the property that  all the 
nonzero elements can be generated by using a primitive root (element) denoted here by g. This 
property can be exploited in doing exact division over the Galois field GF(p). This property is 
defined as follows [15]. 

DEFINITION 1. Let p be any prime number, and let g be any primitive root of p, then to each 
integer a, relatively prime to p, there is a unique integer i, denoted as i = indg a, such that 

a = l g  i] 0 < i < p - 1 .  (1) p, 

Indices over Galois field GF(p) possess the following important properties: 

(1) ind a l = 0 ,  

(2) indg(a • b) = [indg a + indg b[p-1, 
(3) indg a n = In. indg a[v-1, 
(4) indg a = [indg g' + indg a[p-1, where g' is any other primitive root. 

In some cases, the sum of indices may exceed the highest index value of GF(p). In this case, 
Fermat's theorem may be used. 

THEOREM 1. Fermat theorem. If  p is prime, then 

[aPI~ = [alp, for all integers a. (2) 

LEMMA 1. I f  p is prime and a is an integer, then 

I p-llp=l. 
PROOF. From equation (2), 

f plp = lap-1 ,  alp = lap- l ip ,  falpp = lalp. 

Therefore, laP-lip must be equal to 1, which proves Lemma 1. 

(3) 



LEMMA 2. 

PROOF. 
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H p is a prime number, and n and a are integers, then 

la'~lp = aM.-~ . 
p 

For any integer n, we can write 

n = ( p -  1) + Inlp_l. 
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Consequently, 

(4) 

(5) 

la'~]v = a ["/(p-UJ(p-U • a M'-~ . (6) 
p 

By Lemma 1, the t e r m  la[n/p-lJ(p-1)lp is equal to 1, hence, 

la'~lp = a I=1"-~ • (7) 
p 

3. T H E  D I V I S I O N  P R O B L E M  

In RNS, the arithmetic division problem is classified into three separate categories: 

(1) Division-Remainder-Zero (DRZ), 

(2) scaling, 
(3) general division. 

Categories (1) and (2) are special cases with certain applications. DRZ is obviously of restricted 
use, since it must be known a priori whether the remainder is zero or not. Scaling is division 
with fixed divisors. In our case, the divisor is restricted to a product of some moduli. General 
division, therefore, is used when it is not known a priori that  the dividend is a multiple of the 
divisor or when it is not known that  the divisor is one of the permissible divisors required by 
scaling. 

3.1. D R Z  A l g o r i t h m  o v e r  Ga lo i s  F ie ld  GF(p) 

DRZ refers to the calculation of a quotient [x/yJ when it is known a priori that  the remainder 
is zero. Galois field GF(p) can be used to solve very efficiently the arithmetic DRZ problem, as 
shown in the following theorems. 

THEOREM 2. Let {qn} = { 1 , 2 , . . . , p  - 1} be a DRZ group and {in} = { 0 , 1 , . . . , p  - 2} its 
associative isomorphic subtractive group with the mapping de//ned by q= = Ig i" Ip, where g is a 
primitive element of GF(p). Let qz and qy be two integer numbers such that qy divides qx. Thus, 
the DRZ division Iqx/qylp can be de/ined as 

q~ p : g l i~-q , I ,_~  p = g l i . + ( p - l - % ) [ , . _ l  p . (8) 

PROOF. The proof follows from the Galois mapping and uniqueness of the indices. Since qy di- 
vides qx without remainder, then by (1), 

qx=lg'~lp and qv=lgi~lp,  

9 % p p * 

(9) 
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The indices ix and iy are unique integers, and therefore, 

q~p  = g(~-i~) p" 

By Lemma 2, 

(10) 

I qx I = glG-~,,I~,_1 p" (11) 

Taking the additive inverse of - i y ,  we get 

~yy p = g[ix--iylp_ 1 ___. gli~+(p-l-%)lv_l 
p" 

P 

In RNS systems, numbers axe represented in several residues depending on the set of moduli 
used in the system. This permits the modulo subtractor (or adder) to be split into a number 
of smaller (and so usually faster) subtractors, thereby decreasing the total area, decreasing the 
word length of each channel, and increasing the speed. This approach is based on Theorem 3. | 

THEOREM 3. Let  {qn} = {1 ,2 , . . .  ,p - 1} be a D R Z  division group, and {in} : {0, 1 , . . .  ,p - 2} 
is its associative isomorphic  subtract ive  group over a pr ime  p and pr imi t ive  root g. I f  p - 1 = 

r--1 1-]j=o m j  such that  (mo, m l , . . . , m r - 1 )  are relatively prime,  indg x = ( x o , x x , . . . , x r - 1 )  and 

indg y = (Yo, Yl , . . . ,  Yr-1) and y divides x ,  the ari thmet ic  division [x/y[v can be defined as 

lYl[X[v= g(lZ°-Y°l'"°' x l - y l  ,q ..... Ix,.-1-u,.-~ ,,,,-1) p" (12) 

PROOF. Both indg x = ix, indg y = iy, are members of the subtractive group {in}. Since 
r--1 p - 1 = ~ j = o  m j  and G C D ( m i ,  mj) = 1 for i ~ j ,  there is a unique RNS representation for each 

number k E {in}. Consequently, 

(ix)RNS = (liXJmo ,lixlml = 

(iy)RNS ([iy[mo ' liy[ml '*''  ' [iylrn,,_,) (Y0,Yl,...,Yr-1), 

(ix -- iy)RNS -'- ([XO --YO[mo,I xI -- Yl[ml , ' ' ' , [ X v - 1  -- Yr- i l rnr_l)  • 

r - 1  
Since p - 1 = 1-Ij=0 m j ,  then lix - iylp_l = ([Xo - Yolmo, [xl - Y l l m l , " ' ,  IXr-1 -- Yr- l[m,_ l )"  
Using Theorem 2, we get 

Iy p = gJi~-, .I._l p = g(IXo-yol.,~o,lXl-y,l.,. ..... rx,--1-y,.-ll.,,,_l) v' 

EXAMPLE 1. Consider a prime number p -- 43 and g -- 3. The DRZ division group {qn} = 
{1, 2 , . . . ,  42}, and its associative subtractive isomorphic group {in} = {0, 1 . . . .  ,41}. Since p -  1 = 
42, the proper moduli are m0 -- 2, ml = 3, and m2 = 7. Each and every integer in can be uniquely 
represented as 3-tuple rn = (lin]2, IinI3, 1i~17)- The set of all 3-tuples form the group {r~}. The 
isomorphic mappings between the {q~} and {rn} groups are illustrated in Table 1. Table 2 shows 
the corresponding inverse mapping over GF(43).  The intermediate index iN is not shown, since it 
is not used in the table look-up implementation. The generation of table entries will be illustrated 
for q~ = 27. The index is first calculated as follows: 

in = ind3 27 -- 3, since 2 7 =  [3i"143 = [33143 . 
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Table  1. Look-up  table  for GF(43) ,  p = 43, g = 3, m o =  2, m l  -- 3, m2 = 7. 

A D D  A D D  A D D  ADD A D D  
r n  r n  r n  r n  

-= qn  = qn  = qn = qn = qn 

1 (0,0,0) 10 (0,1,3) 19 (1,1,6) 28 (1,2,5) 37 

0 O0 000 0 01 011 1 O1 1.10 1 10 101 

2 (1,0,6) 11 (0,0,2) 20 (1,1,2) 29 (1,2,6)  38 

1 00 110 0 O0 010 1 O1 010 1 10 110 

3 (1,1,1) 12 (1,1,5) 21 (0,0,1) 30 (1,2,4) 39 

1 O1 001 1 0 l  101 0 O0 001 1 10 100 

4 (0,0,5) 13 (0,2,4) 22 (1,0,1) 31 (0,1,6) 40 

0 O0 i01 0 10 I00 1 O0 001 00l ii0 

5 (1,1,4) 14 (0,2,6) 23 (0,1,2) 32 (1,0,2) 41 

1 O1 100 0 10 110 0 O1 010 1 O0 010 

6 (0,1,0) 15 (0,2,5) 24 (0,1,5) 33 (1,1,3) 42 

0 O1 000 0 10 101 0 O1 101 1 O1 011 

7 (1,2,0) 16 (0,0,3) 25 (0,2,1) 34 (1,2,2) 

1 10 000 0 O0 011 0 10 001 1 10 010 

8 (1,0,4) 17 (0,2,3) 26 (1,2,3) 35 (0,0,4) 

1 O0 100 0 10 011 1 10 011 0 O0 100 

9 (0,2,2) 18 (1,2,1) 27 (1,0,3) 36 (0,2,0) 

0 10 010 1 I 0  001 I O0 011 0 i0  000 

r n  

(1,1,0) 

1 01 000 

(0,1,4) 

0 O1 100 

(1,0,5) 

1 00 101 

(0,1,1) 

0 01 001 

(0,0,6) 

0 O0 110 

(1,0,0) 

1 00 000 
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Table  2. Inverse m a p p i n g  table  of GF(43) ,  p = 43, g = 3, mo = 2, m l  = 3, me  = 7. 

A D D  = rn  

(o,o,o) 
0 O0 000 = 0 

(0,0,1) 

0 O0 001 = 1 

(0,0,2) 

0 00 010 = 2 

(0,0,3) 

0 00 011 = 3 

(0,0,4) 

0 O0 100 = 4 

(0,0,5) 

0 00 101 = 5 

(0,0,6) 

0 00 110 = 6 

(0,1,0) 

0 01 000 ~ 8 

(0,1,1) 

0 01 001 = 9 

qn A D D  = r n  qn A D D  = r n  qn A D D  ---- r n  qn A D D  = r n  

1 (0,1,2) 23 (0,2,4) 13 (1,0,6) 2 (1,2,1) 

0 0 1  010---- 10 0 10 100---- 20 1 0 0  110 = 38 1 10001  = 49 

21 (0,1,3) 10 (0,2,5) 15 (1,1,0) 37 (1,2,2) 

0 0 1 0 1 1  = 11 0 10 101 = 21 101  0 0 0 =  40 1 10 010---- 50 

11 (0,1,4) 38 (0,2,6) 14 (1,1,1) 3 (1,2,3) 

0 0 1  1 0 0 =  12 0 10 110 = 22 1 O1 0 0 1 = 4 1  1 10 011 ---- 51 

16 (0,1,5) 24 (1,0,0) 42 (1,1,2) 20 (1,2,4) 

0 01 101 ---- 13 1 O0 000 ---- 32 1 01 010 ----- 42 1 10 100 ---- 52 

35 (0,1,6) 31 (1,0,1) 22 (1,1,3) 33 (1,2,5) 

0 0 1  1 1 0 =  14 1 00001  = 3 3  1 01 0 1 1 = 4 3  1 10 101 = 5 3  

4 (0,2,0) 36 (1,0,2) 32 (1,1,4) 5 (1,2,6). 

0 1 0 0 0 0 =  16 1 00010---- 34 1 O1 100---- 44 1 10 110 = 54 

41 (0,2,1) 25 (1,0,3) 27 (i ,1,5) 12 

0 10 001---- 17 i 0 0 0 1 1 =  35 101  101 = 45 

6 (0,2,2) 9 (1,0,4) 8 (1,1,6) 19 

0 10 010 = 18 1 O0 1 0 0 =  36 101  110 = 46 

40 (0,2,3) 17 (1,0,5) 39 (1,2,0) 7 

0 10011  = 19 1 00 101 = 37 1 10000  = 48 

qn 

18 

34 

26 

30 

28 

29 
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The 3-tuples is then obtained from in, 

r~ = (lin12, Iin13,1i~17) = (1312, [313,1317) = (1,0, 3). 

That  is, at ROM address ADD= qn = 27, the entry is (1, 0, 3) -- (1 00011)2. The result is stored 
as binary word consisting of 1-bit, 2-bit, and 3-bit corresponding to mod 2, mod 3, and mod 7 
residue, respectively. 

From Theorem 3, it follows that  subtraction modulo p can be done as a set of concurrent 
subtraction (or addition) operations on a number of smaller relatively prime moduli, such that  

r - 1  

p - l = H m  j. 
j=0 

A number of choices exist for the selection of the set of moduli for the RNS systems. To increase 
speed and efficiency of DRZ division, the moduli should be selected based on the following criteria. 

r--1 
(a) p - 1 =/-I j=0 mj. 
(b) They must be relatively prime, GCD(mi, mj) = 1 if i ~ j .  
(c) They must kept small. 

EXAMPLE 2. For p = 43, g = 3, m o =  2, rnl = 3, and m2 = 7, determine the quotient of (36/2). 
This is a DRZ problem. 

ind3(36) -- (0, 2, 0), 

ind3(2) = (1, 0, 6), 

ind3(36/2) = (0, 2, 0) - (1, 0, 6) = (1, 2, 1), 

using Table 1 in ROM1 at ADD = 36, 

using Table 1 in ROM2 at ADD = 2, 

using mod2, mod3, and mod7 subtractors. 

The results of the three moduli subtractors are converted to address for ROM3 as follows: 

ADD(I,2,1) = (1 10 001)2 = 49, 

using 1-bit, 2-bit, and 3-bit to represent mod2, mod3, and mod7 results. Tha t  is, at address ADD 
= 49 of ROM3, one obtains 18 in Table 2. The implementation of the DRZ process is illustrated 
in Figure 1. The size of each ROM is 26 × 6. 

(Table1) (0 10 000 I - 12 1 
Mod2 Sub 

~ 0  I-13 2 Mod3 Sub 

2 ROM2 ] (1,0,6) 
(Table1) J(1 00110)2 Mod7 Sub 

(1 10001)2 ROM3 
(Table2) 

Figure  1. DRZ divis ion in mu l t imodu l i  RNS over GF(p). 

18 Ix/yl 

3.2.  Sca l ing  o v e r  Galo i s  F ie ld  GF(p) 

If the remainder is not zero, but it is known that  the divisor is a product of some moduli, the 
division problem becomes a scaling problem. Division in any integer number system is defined 
by 

X = [yJ y + Ix]~t, (13) 

where [x/yJ is the quotient, and [X[y is the remainder. 
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The  quotient of scaling problem can be obtained as shown in the following theorem. 

k THEOREM 4. In the s c a l i n g  d i v i s i o n  p r o b l e m ,  the d i v i s o r  y = Hi=0 m,  is a p r o d u c t  some m o d u l i .  

The q u o t i e n t  L x / y  J can be  c o m p u t e d  as a sequence o f  D R Z  p r o b l e m s  with respect t o  each m o d u l u s  

in the p r o d u c t  terms of y, 

qo = -- , 
/ i t  o 

q _l [ x j 
qk = ~ = = 

L m k  J m o m l - . . m k  

%-1 - I q k - l l m k  

m k  

w h e r e  mo < ml  < . . .  < m k .  

PROOF. Start ing with modulus m0, x can be expressed in term of m0, 

x = m o  -~-IX[mo = qomo + Ixlmo. 

Solving for q0, 

q0 ---- 
m o  

Tha t  is, qo is a DRZ problem. Dividing equation (16) by mo, 

x ]Xlr~o 
- -  = q 0 +  - -  
?-r~ 0 7i2 0 

Dividing equation (18) by ml ,  

x 

(14) 

(15) 

(16) 

(17) 

m o m l  m l  m o m l  

since the second te rm is less than 1, q0 can be expressed in term of ml ,  

qo = rnl + [qolml = q l m l  + Iqolml • 

Solving for ql and substi tuting equation (19), 

ql ---- ml  

Again, this is a DRZ problem. Continuing in similar fashion q k - 1  can be expressed in t e rm of ink, 

I q k - 1  
q k - 1  = - -  m k  + I q k - l l m k  = q k m k  + I q k - l l m ~  • 

[ m k J  

Solving for qk, 

q = q k  = --•-k J rnk =- m o m l  . . . m k  " 

Tha t  is, the last quotient of the DRZ sequence is the desired quotient of the scaling division 
problem. The remainder, rem, can be computed from the last quotient q, 

rem = x - qy.  



234 S. TALAHMEH AND P. SIY 

The general representation of y in terms of the r system moduli can be achieved by introducing 

the code CD defined as follows: 

where 
( 1, 

CD(i) = 
L O, 

If  CD(j )  = 0 and CD( j  - 1) = 1, then 

r - 1  

y = l ]  °'(i)' 
i=O 

if mi, is a product term of y, 

otherwise. 

= q j -  1 
q j - 1  L(-~joj (mj° +lqj-ll(mno=(qj)(1)+O=q~. 

Tha t  is, the quotient with CD(j )  = 0 is the same as the last quotient with CD(k) = 1 (k < j ) ,  

qj  = qk. The hardware implementation for three moduli system is shown in Figure 2. 

- q0 

: 00, 
C D ( O )  ' ' T m , ~  

! CO(l) 

Figure  2. Scaling division prob lem over Galois  field GF(p). 

NOTE. In the derivation of the Theorem 4, the order of DRZ sequence is not relevant, it is only 
required tha t  the entire sequence be taken to obtain the final quotient q. For implementat ion 

purposes, we select the increasing order of moduli. 

EXAMPLE 3. For p = 43, g = 3, m0 = 2, ml  = 3, and m2 = 7, determine integer quotient value 

of (37/6). This is a scaling division problem, since 

2 

Y = H (mi)CD(i) = rnornl  = (2)(3) = 6, 
i=0  

where CD(0) = 1, CD(1) = 1, and CD(2) = 0, 

bo] x ,x, o qo = -- -- 
m o  

q = q 2 = q l  = 6 .  

3 7 -  13712 36 

2 2 
- 18 by DRZ GF(43),  

18 - 1 1 8 1 3  18 

3 3 
- 6 by DRZ GF(43),  

NOTE. With CD = 110, the first two stages in Figure 2 perform the DRZ computat ion by 
selecting input 1 of each MUX, and the last stage simply pass the previous quotient by selecting 
input 0 of its MUX. 

The remainder rem is computed as follows: 

rem = x -  q y  = 3 7 -  6(6) = 1. 
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3.3. General Arithmetic Division over Galois Field GF(p) 

General division is used when it is not known a priori that the dividend is a multiple of the 

divisor (DRZ) or when the divisor is a product of some moduli (scaling problem). 

The general division problem z/y is first converted to scaling problem X/Y’, where y’ satisfies 

the following conditions: 

(1) Y’ > Y> 
(2) y’ is a product of some moduli. 

Table 3 shows that for moduli {2,3,7} there are only 2” - 1 = 23 - 1 = 7 possible values of y’, 

where r is the number of moduli. With a small number of entries, searching for y’ for a given y 

is relatively simple and fast operation. For example, for divisor y = 5, Table 3 is searched for the 

first occurrence of y’ > y. This occurs in ROM entry 2, where y’ = 6 = morn1 = (2)(3) with code 

CD = 110. The word size of the code ROM = size(y’) + 3, where 3 is the S-bit needed to store 

the code CD. In our example, the word size is 6 + 3 = 9, and address size is S-bit to represent 

seven entries. That is, the ROM size used to implement Table 3 is 23 x 9. 

Table 3. Look-up table for CDs for moduli {2,3,7}. 

THEOREM 5. The maximum ratio between two consecutive y’ is 

PROOF. There are three cases to consider, from examining Table 3. 

CASE 1. m0 : 0 + 1 is allowed, if ml and m2 maintain their respective value. 

Y’(i) (mo)1(ml)"'(m2) 
x2 

y'(i - 1) = (mo)O (ml)21 (m2)22 = m”’ 

CASE 2. ml : 0 + 1 is allowed, if m0 : 1 3 0 and m2 maintains its value. 

( y,6”1)) = (m0)O(md1(m2) 

(mo)l(ml)'(m2) 
“,: = 2. 

CASE 3. m2 : 0 =S 1 is allowed, if m0 : 1 

( y,6”1,) = 

Therefore, 

+ 0 and ml : 1 + 0. 

m2 =- 
mom. 

(y,~~~'l,),,=m~{mO,~,~}=mo, 

(I!Y!$),,,, = (f),, 5 (y,~~~‘l,),,., = m0, since y’(i - 1) < Y. 
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Using the modified divisor y', the problem becomes a scaling problem. This procedure is 
repeated until at iteration k, the remainder, rem, is zero or quotient q is zero. The final quotient Q 
is the accumulation of each quotient q at each iteration plus the correction given in Theorem 6. | 

THEOREM 6. If the algorithm stops and rem > y, the correction of Q is given by 

Q = Q + ( k -  1), 

where k is the smallest integer in the range 1 < k <<_ mo that satisfy rem < ky. 

PROOF. Correction is needed when q = 0 and rem > y. That  is, 

r e m  

q = LTJ = 0,  
implies rein < y~, 

since rem > y, then y < rem < y~. Dividing by y yields 

1 < - -  
rem y~ 

<k<_- -  =mo. 
Y Y 

If k is the smallest integer that  satisfy the inequality, then the quotient need to be corrected by 
adding mj 

~ = k - 1 .  

That  is, Q = Q + (k - 1). | 

LEMMA 3. In the ease of m o =  2, when the iteration stops, the final quotient Q is corrected as 
follows: 

S Q' if rem < y, 
Q / Q + 1, otherwise. 

3 . 4 .  G e n e r a l  D i v i s i o n  A l g o r i t h m  S t a t e m e n t  

The proposed division algorithm takes two unsigned integers x and y as inputs and returns the 
quotient Q = Ix~y], and the remainder R = x mod y. The algorithm GENDIV is outlined below. 

A l g o r i t h m  G E N D I V  

Input: (x, y) 
Output: (Q, R) 
Begin 
A: Convert to Scaling Problem: find yt from Table 3 
B: Initialization: x l  = x; Q = 0, R = 0 
C: SCALE (xl,  y, CD, rem, q) 

Q = Q + q  

While (q ¢ 0) AND (rem ¢ 0) Do 
Begin 

rem = xl  - qy 
SCALE (xl,  y, CD, rem, q) 
Q = Q + q  

End 
CORRECT(Q, y, rem) 
R = x - Q y  

D: 

End. 
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EXAMPLE 4. For the moduli set {m0, ml ,  m2} = {2, 3, 7}, [37/5143 can be computed as follows. 

(A) Convert  to Scaling Problem 

x = 3 7 ,  y = 5 ~ y ' = 6 ,  C D = ( 1 , 1 , 0 )  from Table 3. 

(B) Initialization: x l  = 37, Q = 0, R = 0. 
(C) I t e r a t i o n  1. Scaling problem 37/6 

x l  = x = 37, 

CD(0) = 1, m0 = 2, q0 = 3 7 -  13712 = 36, q0 = 36/2 = 18, 

CD(1) = 1, m l  = 3, ql = 1 8 -  11813 = 18, ql = 18/3 = 6, 

C D ( 2 ) = 0 ,  m 2 = 7 ,  q = q 2 = q l = 6 ,  

Q = Q + q = O + 6 = 6 ,  

rem = x l  - q y  = 37 - (6)(5) = 7. 

I t e r a t i o n  2. Scaling problem 7/6 

xl  = rem = 7, 

CD(0) = 1, q0 = 7 -1712 = 6, q0 = 6/2 = 3, 

CD(1) = I, ql = 3 -1313 = 3, ql = 3/3 = i, 

CD(2) =0 ,  q = q 2 = q l = l ,  

Q = Q + q = 6 + I  = 7 ,  

rem = x l  - q y  = 7 -  (1)(5) = 2. 

I t e r a t i o n  3. Scaling problem 2/6 

x l  = rem = 2, 

C D ( 0 ) = I ,  q 0 = 2 - 1 2 1 2 = 2 ,  q 0 = 2 / 2 = 1 ,  

C D ( 1 ) = I ,  ql = 1 - 1 1 1 3 = 0 ,  ql = 0 / 3 = 0 ,  

C D ( 2 ) = 0 ,  q = q 2 - - q l = 0 ,  

Q = Q + q = 7 + O = 7 .  

I t e r a t i o n  s t o p  since q = 0. 

(D) Quotient Correction 

using DRZ over GF(43) ,  

using DRZ over GF(43) ,  

accumulated quotient, 

using DRZ over GF(43) ,  

using DRZ over GF(43) ,  

using DRZ over GF(43) ,  

using DRZ over GF(43) ,  

Q = Q ,  since r e m = 2 < y = 5 ,  

R = x - Q y  = 37  - ( 7 ) ( 5 )  = 2. 

4.  H A R D W A R E  I M P L E M E N T A T I O N  

OF G E N E R A L  DIVISION OVER GF(p) 
The hardware implementat ion of the general division is shown in Figure 3. I ts  operat ion is 

described next. The  hardware is started be sending the Start  signal, a high going pulse, the 
dividend x is selected at input 1 of the MUX to the input x l  of the Scaling GF and the accu- 

mulator  Q is cleared. The scaling computat ion proceeds until the remainder rem and quotient q 
are obtained. The  Done signal is raised if rem = 0 or q = 0. If  Done = 1, the process stops, oth- 
erwise it continues to the next iteration. In the next iteration, the remainder rem is feedback to 
input 0 of MUX and to the input x l  of Scaling GF, since in subsequent iteration the Start  signal 
is zero. When the process stop (Done = 1), the value of accumulated quotient Q is corrected 
(Q is incremented by one if rem > y) and the final remainder ( R  = x - Q y )  calculated. Finally, 
Q and R are latched. 
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. •  Scaling 
Y GF I 

10 ~ xl rem I 1 CD(O) I _ F--'I 

CD(1) ql'~1 II 
CD(2) I i ~ 

y25 

r co cy 
Figure 3. General division implementation for moduli {2,3,7}. 

v Done 

- " " ~  R 

- - - -~  Q 

5. C O N C L U S I O N  

The  proposed a lgor i thm over Galois field GF(p)  provides an efficient a lgor i thm for the general  

division problem. Efficient procedures were proposed to convert  general division problem to 

scaling problem. The  proposed algori thm and  conversion procedure can be implemented  by' look- 

up tables,  which means  t ha t  division in RNS can be computed  very fast. The  results of this  

research work can be used to design a general  purpose mul t imodul i  ALU. 
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