ADVANCES IN APPLIED MATHEMATICS 17, 477-519 (1996)
ARTICLE NO. 0019

Multidimensional Cooley—Tukey
Algorithms Revisited

L. Auslander*

Department of Mathematics, The City University of New York,
New York, New York 10036

J. R. Johnson*"

Department of Mathematics and Computer Science, Drexel University,
Philadelphia, Pennsylvania 19104

and
R. W. Johnson**

Department of Computer Science, St. Cloud State University, St. Cloud,
Minnesota 56301

Received October 3, 1995

The representation theory of Abelian groups is used to obtain an algebraic
divide-and-conquer algorithm for computing the finite Fourier transform. The
algorithm computes the Fourier transform of a finite Abelian group in terms of the
Fourier transforms of an arbitrary subgroup and its quotient. From this algebraic
algorithm a procedure is derived for obtaining concrete factorizations of the
Fourier transform matrix in terms of smaller Fourier transform matrices, diagonal
multiplications, and permutations. For cyclic groups this gives as special cases the
Cooley—Tukey and Good-Thomas algorithms. For groups with several generators,
the procedure gives a variety of multidimensional Cooley—Tukey type algorithms.
This method of designing multidimensional fast Fourier transform algorithms gives
different data flow patterns from the standard ‘“‘row-column” approaches. We
present some experimental evidence that suggests that in hierarchical memory
environments these data flows are more efficient. ~ © 1996 Academic Press, Inc.

*Supported in part by Advanced Research Projects Agency (ARPA) Order 6674, moni-
tored by AFOSR under Contract F49620-89-C-0020.

T Supported in part by NSF Grant CCR-9211016.

j‘Supported in part by Advanced Research Projects Agency (ARPA) Order 7898, moni-
tored by NIST under Contract 60NANB1D1151.

477

0196-8858 /96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

478 AUSLANDER, JOHNSON, AND JOHNSON
1. INTRODUCTION
This study was motivated by two problems:

Problem 1. Design fast Fourier transform algorithms that respect crys-
tallographic group symmetries.

Problem 2. Design multidimensional Fourier transforms that provide
the best match for a hierarchical and/or distributed memory computing
environment.

Problem 1 has been studied in [1, 2]. Problem 2 has such an extensive
literature that we cannot hope to survey it here. Our study of both of these
problems led us to the use of non-standard twiddle factors in the
Cooley—-Tukey algorithm. Our route to these results required an algebraic
reformulation of the Cooley—Tukey algorithm. After completing our pro-
gram, it became clear that the algebraic structure we were using would
provide information about the Fourier transform on non-Abelian groups.
In our examination of the algorithmic non-Abelian Fourier transform
literature, the earliest results seem to be those of Beth [4], but the results
of Clausen [5, 6], Diaconis and Rockmore [7], and Rockmore [11-13] seem
to be the closest to the results in this paper. However, even though we
were led to the same tools, we have used them to study different problems.
Since we are dealing with the Abelian case, we can ask and answer more
refined questions than have yet occurred in the non-Abelian literature.

With these preambles aside we can begin our technical discussion. Let
Z/AZ denote the integers modulo A, which we will denote by A4 as a
group. If we assume A = MN, then MZ/AZ is a subgroup of A which is
isomorphic to Z/HZ and will be denoted by B. Then A4 /B is isomorphic
to Z/MZ and will be denoted by C. We may identify the B-cosets of A4
with C and we will make this explicit by using [c] to denote the B-coset
corresponding to ¢ € C. We will map C into A by &: C — A by requiring
&(c) € [c] and £&(c) to be a coset representative. We will always assume
that £(0) = 0. Then every element a € A may be written uniquely as
a=¢&c)+b ceC, beB And so we have a 1-1 mapping
S § = &(C) X B defined by S,(a) = (&(c), b), where a = £(c) + b. Let
0,1',...,(M — 1) denote the ordered elements of C, and 0, M,...,(N —
1)M the ordered elements of B. This defines an ordering on £(C) and we
order the elements (£(¢), b) in £(C) X B lexicographically. This defines a
new order on the elements of A or a permutation of the elements of A4
which we will denote by P(¢&). The Cooley—Tukey algorithm may now be
stated as follows. Choose the coset representative that assigns to m’

COOLEY—TUKEY ALGORITHMS 479

Z/MZ,0 <m < M, the element m in Z/AZ. Let F(-) denote the Fourier
transform of the group in the bracket. Then

F(A) ' = (F(C) "eI)T(I®F(B))P

where P is the permutation determined by the above coset mapping ¢ and
T is a diagonal matrix called the twiddle factor.

The first main result of this paper is the following: let ¢: C — A be any
coset representatives for 4 /B and let P(&) be the corresponding permu-
tation matrix, then there exists a diagonal matrix 7(¢) such that

F(A)™ = (F(C) " ®I)T(&)(I® F(B) ")P(£).

The Good-Thomas algorithm is a special case of this result which exists
if M and N are relatively prime. Then A is isomorphic to C X B as
groups and if we use this fact to construct our coset representatives ¢ and
the permutation P(¢), then T(&) becomes the identity matrix.

It is natural to ask what happens if we remove the assumptions that A is
a cyclic group, but merely assume that A4 is Abelian and B is a subgroup
of A. The first thing to observe is that the Cooley—Tukey row-column
method for dealing with general Abelian groups involves an implicit
assumption about how A4 and B are related. We will now make this
explicit.

Assume, for instance, that A is a 2-primary group and so we may write

A=2/2M7Z x - xZ/2k 7

which we will call a presentation of A. Of course, A may have distinct
presentations. We will say that a subgroup B C A is coherently presentable
if A has a presentation in which

B =217/2M7 X - x 21tz /2%.7.

It is easy to see that the usual row-column Cooley-Tukey algorithm
requires that B be coherently presentable in 4. However, not all groups
are coherently presentable. For example, if

A=2/2ZXx2/8Z
and

B ={(0,0),(1,2),(0,4),(1,6)},

B is not coherently presentable in A4 and so the classical technique cannot
be applied. However, our general result still holds.

480 AUSLANDER, JOHNSON, AND JOHNSON

THEOREM 1.1. Let A be a finite Abelian group, let B be a subgroup of A,
and let A/B = C. Let &(¢), ¢ € C, be a coset representative of ¢ and let
n(cy, ¢,) = &(cy) + €(c,) — &(cy + ¢,). Then there exists a permutation ma-
trix P(€) and a diagonal matrix T(n) such that

F(A)™ = (F(C) ' ®I)T(n)(I® F(B) ")P(£).

The paper is organized into two parts. In the first part (Sections 2—4) the
basic theoretical foundation for our approach is developed, culminating in
a proof of Theorem 1.1. In the second part, the remainder of the paper, we
develop a practical method for designing multidimensional Fourier trans-
form algorithms based on introducing coordinates in the theoretical dis-
cussion in the first part. More specifically, in Section 5 we restate the
theoretical results of the previous sections in terms of a concrete proce-
dure for factoring the Fourier transform matrix. Then in Section 6 we
apply this procedure to illustrate the theory for several one-dimensional
and two-dimensional examples. In this section we find formulas for a one-
and two-dimensional Cooley—Tukey algorithm. We close in Section 7 by
giving some preliminary results of some computer experiments that suggest
that this approach may have practical value in implementing large multidi-
mensional Fourier transforms on machines with hierarchical or distributed
memory.

2. ALGEBRAIC PRELIMINARIES

Let C denote the complex numbers and C* the multiplicative group
C — {0}. A homomorphism y of a finite Abelian group into C* is called a
character. If L*(A) denotes the vector space of complex-valued functions
on the group A, we may consider y € L?(A). We now define a unitary
representation p of A, the regular representation, on L2(A4) by

(p(a)f)(x) =f(x —a) feL*(A).

Note that if yx is a character of A4 then

(p(a)x)(x) = x(x —a) = x(—a) x(x).

Hence y(x) is an eigenvector of p(a) for all @ € A and the eigenvalue of
pla) on x is x(—a). It is well known that the set of characters forms an
Abelian group, denoted by A, which is isomorphic to 4. Hence the set of
characters forms an orthonormal basis of L?(_A) relative to which p(a) is a
diagonal matrix for each a € A.

COOLEY—TUKEY ALGORITHMS 481

For each a € A define 8, € L?(A4) by

1 x=a
8,(x) = {0 otherwise.

Once we order the elements, the functions §,, a € 4, are an ordered basis
of L?(A) called a &-basis. Given an isomorphism 4 — A, a — a, the
Fourier transform of A, F(A), is the linear transform of F(A): L2(A) —
L*(A) given by F(A)8, =a. Now let f€ L*(A), then f=Y . a5,
a, € C,and f= X B,a. Since F(A)8, = a, we have

(&%) BO
F(A) ' =]

@1 Br_1

or F(A)™! determines the orthogonal projection of a vector onto the
orthonormal basis a, @ € A.
Now let A = Z/nZ and let §,, 6;,..., § be a &-basis. Then

1 ¥n—-1

(p(a)8,)(y) = 8.(y —a).

Now 8(y —a) =0 unless y —a =x or y =x +a when it is 1. Hence
p(a)s,. = 8., , Thus working with column vectors relative to the above
basis,

aO anfl

a a
o) = "

anfl an72

so that
0 0 1
1 0 - -0
o1 0 - - - 0
p(y=1- - - - - - |=85.

o - - - 0 1 O

One verifies that if a, x € Z/nZ then a — a given by

ZZ\(X) — eZﬂ'iax/n

482 AUSLANDER, JOHNSON, AND JOHNSON

defines an isomorphism of Z /nZ with the group of n characters on Z/nZ.
Then, with respect to a é-basis we find

F(Z/nZ) =F = (ezwmx/n)Oga,x<n-

Noting that
1 1
Sn g2mia/n _ ~teiasn eZm;a/n |
ezma(;t—l)/n ezm‘a(;z—l)/n
we have
e—2mi0/n
SnFn _ Fn e~ 2mil/n
e~ 2mi(n=1)/n

Hence, F, ! is the orthogonal projection onto the eigenvectors of S,.

In our later work the following generalizations of this result will be
essential. For a # 0, let

0o - 0 «
1 0 - -0
o1 0 - - - 0
S(ay=1|- - - - - . .
o - - - 0 1 o0

let 8" = a, and let w = ¢®7/". By an easy computation

(S..(a))n =al,,

where I, is the n X n identity matrix. Hence the eigenvalues of S («) are
Bw*, 0 < k < n. Now if

S(a)| | =B

COOLEY—TUKEY ALGORITHMS 483

we obtain, by recursion,

2
B, B2
xn71=;w ’xn72=7w

 Xg = 1.

youa

By some elementary matrix operations, we have
S.(a)D(a)F, = D(a)F,E(a)

where

D(a)

R |™

and

E(a) =B

n—1

Hence the orthogonal projection onto the eigenvectors of S («) is given by
(D(a)FE,)"' = F 'D(a)™!. Note

1
D(a) =
Bn—l
LEMMA 2.1. Let
0 : 0 o
a, 0 . 0
0 a 0 - - . 0
Sp(ag,...) = | . . e . o [Ie,=a=0.
0 0 o, O

Then S,(ay, ..., a,) is diagonally similar to S,(a).

484 AUSLANDER, JOHNSON, AND JOHNSON

Proof. By direct computation,

1
a;,
S, (ag,...,a,)
and
1
az_l
(0[2 an)71

=S(a, a,,...

a,

,Qy an)

S (a,ay,...,a; - a,)=8,(a). |1

The above discussion may be summarized as follows:

THEOREM 2.2. Let

0 0 o
a, O 0
0 a, 0 0
S.(a,...,a,) = , [la,=a=0.
0 0 a, O
Then there exists a diagonal matrix D(«y, ..., a,) such that
S.(ay,...,a,)D(ey,...,,)F, =D(ay,...,a,)FE(a)
where
e—277i0/n
o 2mil/n
E(a) =B
e—Zﬂ'i(n—l)/n
Now let

C=2/d,ZX " XZ/d,Z.

COOLEY—TUKEY ALGORITHMS 485

Then L*(C) may be identified with
L*(Z2/d,Z) ® - ® L*(Z/d,Z)
and with this identification
p(C) = p(Z2/d;Z) ® - ® p(Z/d,Z)
or
p(C) ={Sh® - ®Sh0<j <d,i=1,...1}.
Then F(C) =F, ® - ® F, and
F(C) " p(C)F(C)
is a tensor product of diagonal matrices.
Now let

J Jt
P (C) = Sdl(agl), . ozf,i)) '® - ® Sdl(af), . af,f)))

Then we have proved the theorem.

THEOREM 2.3. F(C) 'E~p,(C)EF(C) is a tensor product of diagonal
matrices with E a tensor product of diagonal matrices.

3. CHARACTER SUBSPACES

Let G € A, then @ restricted to B, alg, is a homomorphism of B to C*
and so alp € B. Hence the restriction mapping defines a homomorphism
of 4 into B with kernel K. Now k € K maps B to 1 and so k induces a
homomorphism of 4/B = C to C*. Hence K may be identified with a
subgroup of C. But if ¢ € C,

A—A/BSCX

is a character of 4 in K. Hence K may be identified with C and so by a
counting argument the restriction mapping maps 4 onto B and so 4 /K is
isomorphic to B.

DerFINITION 3.1, Let y € B and V,.C L%(A) be defined by

V= {feL(A)p(b)f = x(~b)f.b < B).

V. is called a B character subspace.

486 AUSLANDER, JOHNSON, AND JOHNSON

LeEmMMA 3.1. Fora € A, x € B,

p(a)V, =V,

Proof. Fora e A and b € B,

p(0)((p(a)V,) = p(a)(p(D)V,)
= x(=b)p(a)V,. 1

LEMMA 3.2. Let ay,...,a, I = |I€|, be the elements off,l\ such that
alp=x, a=1,...,1. Then @, ..., a, is an orthonormal basis of V..

Proof. Since’{’l\/l’{\ = B, the elements of A, which when restricted to B
equal y, are a K coset. Orthonormality follows from the fact that unequal
characters are orthogonal. |

Since the K cosets exhaust .4 we have the following result.
THEOREM 3.3.

1. L*A) = @XeBKX;

2. dimV, = order K = order C;

3. Ifae A is a K-coset representative of x, then a + K is an orthonor-
mal basis of V.

In this language the idea of the Cooley—Tukey algorithm is the follow-
ing. We are given a vector X in a é-basis and @ € A in this -basis and we
want to compute efficiently all the dot products { X, a), a € A. We can do
this in two stages.

Stage 1. Compute the projection of X onto V, x € B, and denote it
by X,.

Stage 2. Let a, + K be the characters of A in V.. Compute the dot
product of X with each of these characters.

This may be seen more explicitly as follows. In the Introduction we saw
that the Cooley-Tukey algorithm can be formulated as

F(A) ' = (F(C) 'e)T(I®F(B))P

where P is a permutation matrix and T is a diagonal matrix. Let Q denote
the permutation matrix such that

0 IeF(C) " Q=F(C) el

COOLEY—TUKEY ALGORITHMS 487

Since T is diagonal, Q 'T'Q = T, where T' is diagonal. Hence,
0 Y(I1eF(C) T'Q(I® F(B))P =F(A) "

Then Y= Q(® F(B)"')PX is the computation of Stage 1, (I ®
F(C)"Y)T")Y is the computation of Stage 2, and Q" returns the output in
the appropriate order.

4. AN ALGEBRAIC DIVIDE-AND-CONQUER
ALGORITHM

Let 4 be a finite Abelian group, B a subgroup, and C = A/B. For
¢ € C, let [c¢] denote the corresponding B-coset, and for each ¢ € C, let
&(c) € [c] €A be a coset representative. Then a € A can be uniquely
written as

a=§&()+b ceC,beB.
This determines a mapping S;: A4 — £(C) X B and by abuse of notation a
mapping
Se: LA(A) > L*(£(C)) ® L*(B).
Now p(A) restricted to B induces an action of B on L2(¢(C)) ® LA(B)
which is given by I ® p(B) where p(B) is the regular representation of B
on L*(B). Now for x € B, V, has been defined by
V,= {f € L2(A) p(b)f = x(~b)f.b < B).
Now consider y € L*(B). Then S.(V,) = L*(£(C)) ® x because

(L1®p(b))(y®x)=y®p(b)x=x(b)y®x

and dim L*(£(C)) ® xy = dimV/,.

We have seen that V is p(A) invariant and so we may define p, = p|VX.
Our task is to compute p, and its diagonalizing matrix. We can be guided
in this task by noting that p is the representation of A obtained by
inducing the representation y of B to A. This tells us that we can
establish a natural correspondence

At LP(C) =V,

related to p(C), the regular representation of C. This we will now proceed
directly to do, without explicitly using the theory of induced representa-
tions.

488 AUSLANDER, JOHNSON, AND JOHNSON

For g(c) € L*(C) define A,g = g € L*(A4) as follows: Let a = &(c) + b
and define

g(a) = x(b)g(c).

We must verify that g€ V, and that A,: L*(C) — V, is an isomorphism.
Now for a = &(¢) + b and b, € B

p(b1)g(a) = x(b = b,)g(c) = x(—b1)g(a)

and so g € V,. Assume x(b)g(c) = 0. Since | x(b)| = 1, this means that
g(c) =0 forall c and A, is an isomorphism.

Hence we may view p, as a linear transformation of L2(C) which we will
need to describe in detail. To do this we will need the following definition.
Let ¢,,c, € C and define

n:CxXC—->B
by
n(cy, ¢) = €(cy) + é(cy) — é(cy +¢y).

(In the language of group cohomology, given B and C, 7 is the 2-cocycle
that determines A4.) Since £(0) =0, n(c, —c) = &(¢) + é(—c) or —é&(c)
= é(=c) — (e, —o).

THEOREM 4.1. Let p, acting on L*(C) also be denoted by p,. Let
a=¢(c)+ bandx € C. Then if 8, is the 8-basis of L*(C),

p)((f(C) + b)Bx = X(—n(x,c) - b)8x+c'
Proof. For ¢, € C,

(py(£(c) +b)8,)(cr) = (p(£(c) +b)E,)(£(cy))
= 35,(&(cy) — €(c) — b)
= 8,(£(cy — ¢))x(m(ey, —¢) — m(c, —¢) = b).

But 5.(&(c; — ¢) = 8,(¢c; — ¢) = &, . But, then everything is zero unless
¢, =x +candso

p(&(c) +b)8, = x(n(x + ¢, —c) —n(c, —c) = b)5,,,
= x(—n(x,c) =b)s,... 1

COOLEY—TUKEY ALGORITHMS 489

The crucial thing is that this theorem demonstrates that p, relative to
the 6&-basis of C is a matrix whose only non-zero entries occur exactly at
the 1's of p(C). This shows that we have finally arrived at the material
presented in Section 3. R

Now let C = Z/d,Z X --- X Z/d,Z. Then for each x € B, p (A4) is a
representation of the form

i@, a) @ ® S, (al, .., a)".

Then we may apply Theorem 2.3 to obtain the diagonalizing matrix of
p,(A) to be of the form EF(C) where E is a tensor product of diagonal
matrlces Hence, F(C) 'E~! is the projection of V, onto the eigenvectors
of p,(A). Pulling all this together we have

F(A) ™ =S;Y(F(C) ' e IEX(I @ F(B)™))s,

where E* is a tensor product of diagonal matrices.

5. COORDINATES AND A CONCRETE PROCEDURE

The preceding material provides the foundation for the uniform deriva-
tion of a wide variety of concrete Cooley—Tukey type algorithms for
computing the finite Fourier transform. The key transition is to introduce
coordinates so that the computational procedures may actually be calcu-
lated. We introduce coordinates in the following way.

By the fundamental theorem of Abelian groups any finite Abelian group
A has a basis {a,,a,,...,a,>. That is, there exists elements a, € A of
order n; such that A is the direct product of the cyclic subgroups
generated by the a;. In the terminology of Section 1, we say that A4 has the
presentation

A=Z/nmZXZ/n,Z X - X2Z/nZ.
And so, each element a € 4 has a coordinate representation
a=(apa,...,)

with 0 < o; < n;, meaning that

a=) wa,.

490 AUSLANDER, JOHNSON, AND JOHNSON

In this presentation of 4 we order the coordinates lexicographically and
thus order 4. Now relative to a compatibly ordered 8-basis of L*(A), we
write

F(A)=F, ® F, ® - ® F,
1 2 t
where F, = (e*""*), _, ;.. (Note that this defines an isomorphism 4 —
A)
Now given an Abelian group A and a subgroup B consider the exact
sequence

3
0->B—-A—-C—-0,

where £(c), ¢ € C, is a choice of coset representatives of B in 4. Choose
presentations of 4, B, and C = A /B. The main theorem of the preceding
sections can now be interpreted as a method for finding a matrix factoriza-
tion of F(A) in terms of F(B) and F(C).

We state this as a procedure to factor F(A) by applying the following
steps to a &-basis of L?(A).

1. Permute the input to form the cosets A/B according to the
choice of representatives &. This amounts to reordering a 8-basis of L2(.A4)
corresponding to the isomorphism L?(A) = L*(£(C)) ® L?(B) relative to
the orders defined by the chosen presentations. This is the permutation
P(&).

2. Compute F(B) on each of these cosets.

3. Form the character spaces V, x € B, by collecting the vectors
computed in Step 2 corresponding to each character y. (These are in fact
the image of a &-basis of C.)

4. Multiply each of the basis vectors by an appropriate scalar. This is
the diagonal matrix T'(n), the “twiddle factors.”

5. Compute F(C) on each of the character spaces.
6. Permute the output to obtain F(A). This is the permutation Q.

The theory developed earlier guarantees that for any choice of presenta-
tions and choice of coset representative ¢ there is a choice of twiddle
factors in Step 4 and permutation in the last step for which this procedure
produces a factorization of F(A). The theory actually provides more.
Theorem 4.1 enables us to calculate the twiddle factors directly from the
2-cocycle n, defined in Section 4, since as we remarked in Step 3 the basis
we find for the character spaces is the image of a é-basis for C.

As we will see in the next section, not only can we apply this procedure
for specific choices to obtain an algorithm, but also in cases where the

COOLEY—TUKEY ALGORITHMS 491

steps of this procedure can be parametrized we can obtain formulas for
whole classes of factorizations. For example, we will obtain formulas for F,
in terms of F, and F, where n = rs.

We will now summarize the results of the earlier sections using particu-
lar choices of basis elements. The results will be states in a concrete form
that can be used in the calculation of examples and descriptions of
algorithms.

Let A be an Abelian group of order n, B be a subgroup of order m, and
C=A/B be of order n/m =d. Let & C — A be a choice of coset
representatives of 4/B.

Let b — b be an isomorphism from B — B. The following notation is
used for the action of F(B) on a B coset defined by the coset representa-

tive £(c).

F(B)6b+§(c) = Z b(ﬁ) B+£(c) §(6)
BEB

A simple calculation shows that § ,f(c) is in the character space V; and
that {8/,lc € C} is a basis for V3.

P(b,)ng(c) P(b) Z b(.B) B+ £(c)

BEB

Z b(B) B+b'+ £(c)

BEB

Z b(B _b) B+ £(c)

B'€B

=b(=b") 8%,

The ba5|s {5 (L)|C € C}, is the image of the &-basis for L*(C) under the
map, A,, used in Theorem 4.1, which mapped f & L*(C) to fev.
Sometimes the image basis will be called a é-basis.

The following lemma shows the effect of a change of coset representa-
tives on a 6-basis.

LEmMMA 5.1. Let &2 C—> A and &': C — A be two choices of coset
representatives for A/B. Then the change of basis matrix {6§(L)|c eC}—

{8§ (L)Ic € C} is a diagonal matrix whose diagonal elements are characters
of B.

Proof. Since &(¢) = ¢'(¢) mod B, £(c) = &' (c) +b', b' € B, and the
previous calculation shows that 8/, = = b(—b")8} FOR |

492 AUSLANDER, JOHNSON, AND JOHNSON

In a similar fashion to the computation that showed_that b‘é”(c) was in
V,, we can compute that action of p(a), a € A, on the &-basis. Write a =
&(c) +b'. Then

p(a)8fi, = p(£(c))p(b") 8k,
= ’b\(—b,)P(§(c)) 5{.:“17(ci)

=b(=b") X b (B)8ss eyt ecor
BEB

=b(=b") X b(B) s ervers nieno
BEB

= E(_b,)g(_n(ci' C)) Z B(B)5ﬁ+§(c,+c)

BEB

=b(=mn(c;ic) - b)afb(ci-%—c)'
Assume that a = a’ mod B. Then pz(a) = py(a’) mod b, meaning that
their action on Vj; is equivalent up to b(b') for some b' € B. From this

observation we see that p; is equivalent to the regular representation of C
acting on L(C). More specifically,

PE(f(ci))PB(f(C/)) = b(—n(ci, Cj))PB(f(Ci + Cj))'
We now use this equation to construct a matrix representation of p; with
respect to a é&-basis.

First assume that C is cyclic, of order d, with generator c¢. The matrix
representing p(£(c)) with respect to the basis {8/,,.)|0 <j < d} is

R=S,(b(—n((d—1)c,c)),....b(—n(c,0))).
and with respect to this basis
pi(£(je)) = pi(jé(c) +b') =b(~b")R!

for some b’ € B.
By Lemma 2.1 R is diagonally similar to

Sq(B(=n((d = 1)e,c) = b(—n(c,c))))
= S4(B(=n((d = De,c) == =m(c,c))).

COOLEY—TUKEY ALGORITHMS 493

Therefore B is diagonally similar to Sd(i;(b’)) for

b= —n((d - 1)c,c) — = —(c.c).
Moreover, Sd(E(b’)) is diagonally similar to 8S,, where g = b(b").
Assume that C is a direct sum and that n is compatible with the direct

sum. Under these assumptions we show that pz(£(C)) = pp(£(C))) ®
pr(£(C,)).

LEMMA 5.2. Assume C = C; X C, and that n(c,,c,) = 0 forall ¢, € C,
and ¢, € C,. Then p3(C) = pp(C,) ® pp(C,).

7 b b — sb
Proof. Define 8y,) ® 8,y = 8, +c, Then

~ b _ sb
pb(cél + C/2)8§(01+cz) - 3§(c1+c2)+§(c’1+c’2)
= &t
E(cp)+ E(cp)+ E(cD)+ E(ch)
-7 N b
= b(n(cy,c1))b(n(c2,€5)) Bctc v cyr eerten

= pp(ch) 5§b(c1) ® pp(cy) 8§b(c2)- |

Remark. The assumptions of the previous lemma can be satisfied by
choosing &(c; + ¢,) = &(cy) + €&(c,) for ¢; € C; and ¢, € C,.

THEOREM 5.3. Let {c,,...,¢,) = Z/d,Z X -+ X Z/d,Z be a presenta-
tion for C = A/B. Then

pp(A) = {B(b(jl, ey jt))Sd1(a, ..., oz‘(&))j1 ® - ® Sd,(..., a‘(li))jl}
where b(j,, ..., J,) is the element of B such that
E(Jaey + - Hje,) =j1é(ey) + - 4 6(e) +b(jus-- 0 J0)
and
Sdl-(af’,.., aa(li)) = pi(&(ci)).
COROLLARY 5.4. There exists a diagonal matrix T such that

pi(A) = T{b(b(jy, -, j))Sh ® = @ S§0 <jy <dy,...,0 <j, <d T

494 AUSLANDER, JOHNSON, AND JOHNSON
6. APPLICATIONS

We now apply the concrete procedure in Section 5 to obtain various
factorizations of the Fourier transform.

6.1. One-Dimensional Examples

We will consider three factorizations for F,. Let A =2/6Z =
{0,1,2,3,4,5) and choose B =2Z/2Z =1{0,3}). Then C =2Z/3Z =
{0’,1’,2'}. We calculate factorizations based on three different choices of
the cross section &: C — A. The first is a “natural” choice which leads to
the standard one-dimensional Cooley—Tukey algorithm, and we pause to
derive a formula in this case. The second choice is the case where ¢ is
actually a group homomorphism, which can be chosen if A4 is the direct
product of B and C. In the cyclic case this can be done if the order of B
and C are relatively prime. This choice is the basis of the Good—-Thomas
algorithm where the twiddle factors are trivial. Finally, we compute a case
where ¢ is arbitrarily chosen.

A standard form of the Cooley—Tukey factorization is given in [8]:

THEOREM 6.1.
Frs = (FI’ ® IS)Y-;‘sr(Ir ® FS)Lir’

where T,”" is a diagonal and LY is a permutation matrix.

More explicitly, if o =e?™"/" T/ = &/ l(D“)’ the direct sum of
powers of the diagonal matrix D/* = diag{1, o, o’ 1}. And we have

DEeFINITION 6.1 (Stride Permutation). Let x be a vector of length m
and y a vector of length n. Then

L""(x®y) =y ®x.

The notation indicates that elements of a vector of length mn are
loaded into n segments, each at stride n. If x = (x4, x4, ..., x,,,_,) then

mn.,. _
Ln x = (‘XO“xn""’x(mfl)n""7xn71'x2n717'"'xmnfl)'

We remark that L7 'L = L7}, and hence L)LY ,, = Iy.

st

COOLEY—TUKEY ALGORITHMS 495

The load-stride permutation is the permutation that commutes the
factors of the tensor product.

THEOREM 6.2. If A is an m X m matrix, and B is an n X n matrix, then
L"(A®B)=(B®A)L™.
Equivalently,
B®A=L!"(A®B)L)".

6.1.1. A Natural ¢&. Now a “natural” cross section &: C — A is given
by £(j") = j. With these choices let us apply the procedure.

Step 1. P(&). Permuting the 8-basis of L?(.4), we obtain the partition
{8¢,.., 85} = {8, 63} v {8;,8,} v {8, 8},

where V denotes the disjoint union.
We write the corresponding permutation matrix as

P = perm{0,3,1,4,2,5} = L§,

where perm{n,, n,, ..., n,} denotes the permutation i — n,.
Step 2. F(B) = F,. Applying F(B) = F, to each of these cosets we
obtain

82 =58, + 8,
83 =5, — 8,
8)=268,+§,
83=15,-9,
80 =6, + &
83 =8, — &s.

Step 3. V. Gathering these vectors at stride 2 we form the two
character spaces of B.

V, =8¢, 83, 83).

Step 4. T'(n). Now to find the appropriate twiddle factors we must
compute the regular representation of A restricted to these character

496 AUSLANDER, JOHNSON, AND JOHNSON

spaces. We can do this directly or appeal to Theorem 4.1. In the first
instance we have

p(1) 85 = p(1)(8, + 8;)
=6, + 6,
= 310

p(1)87 = p(1)(8, + &,)
=6, + 0
= 520

p(1)8; = p(1)(8, + &)
= 85 + 0,
= 55’

p(1)85 = p(1)(8, — 8;)
=0, —§
= 513

p(1)87 = p(1)(8, — &,)
=0, — &
= 523

p(1)8; = p(1)(8, — &)
=03 — &

S

And so

0 0 1
plr(1) =po(1) =11 0 0Of=3S;
0 1 0

and

0O 0 -1
pli(1) = ps(1) = (1 0 o) = 55(-1).
0

o
-

COOLEY—TUKEY ALGORITHMS 497

Now we compute p;(1) directly using Theorem 4.1. Recall that p
restricted to the character space V, can be viewed as acting on L2(C). If
a=¢(c)+band x € C, then if 8 is the &-basis of L*(C),

pi(a)d; = x;(—n(x,c) —b)d,,
and thus, in the case at hand,
pi(1) 8 = x;(=m(x,1)) 80,1

From the “natural” choice of coset representatives, the 2-cocycle n is
particularly simple. In fact, n(x,1’) is zero except when x = 2’ and then
n(2',1") = 3. Thus,

0 0 Xj(_3)
p(1) =11 o o |
0 1 0

which confirms the result already calculated.
Now in order for F, to diagonalize these matrices we must multiply by a
diagonal, the twiddle factors. From the discussion in Section 2 we have

where w = €27/,

Step 5. F(C). Now, noting that w? = ¢*"'/3, apply F, in each of these
spaces to obtain

vy =8) + 8) + 87

v, =8 + 0B + w8
v, =80 + w8 + 0’8
v, = 88 + wd + w3}
v, = 803 + 0%+ 83

Vg = 83 + a)5813 + a)4823.

498 AUSLANDER, JOHNSON, AND JOHNSON

Step 6. Q. Now that »;’s are the characters of A in some order. So to
find the output permutation, all we need to do is to determine which ones
they are, relative to the initial order of A, or the order carried over by the
mapping a — & and our choice of the order on 4. We have chosen the
characters of A4, a(x) = e?™'*/% = v for a € A. So, the most straight-
forward way to determine which character is »; is to evaluate it at the
generator 1 of 4. We have from Step 2

o) = {é Icft{]ejwlise.
Thus, from Step 5,
vo(1) =1 = xo(1)
vi(1) = w? = X2(1)
v(1) = o = x,(1)
v3(1) = o' = xy(2)
vy(1) = 0® = x5(1)
vs(1) = w® = xs(1).
And so, the required permutation is a gather at stride 3:
QO = perm{0,3,1,4,2,5} = L§.
To summarize, by this procedure we have obtained the factorization
Fy = L63(12 ® F3)T’L62(13 ® Fz)L%-
This can be brought to our standard form,
Fy = (Fy ® L,)T(I; ® F,) L5,
where T = diag{1, 1,1, , 1, w?}, by observing the following: (L5)~! = L§,
T=1L5T'LS
and
Fyol,=L151,®F,)LS.
6.1.2. 1-D Cooley—Tukey. Let A = Z/mnZ, and let B < A4 =

{0,m,...,.(n —Dm}. B=2Z/nZ and C = A/B = Z/mZ. Choose
{0,1,..., m — 1} as coset representatives for A /B.

COOLEY—TUKEY ALGORITHMS 499

LEMMA 6.3. Let b € B and let p be the regular representation of A. Then,
for 0 <j<m,

0 0 0 B(—m)
R 1 0 0 0
p(J) = $,(B(m) = [0 1 ,
00 - 1 0

with respect to the basis {8¢,..., 8" _.}.
Lemma 6.3 implies the following lemma.

LEMMA 6.4. Let x € A be a character such that xlp = b. Then

0 O 0 x(m)
1 0 0 0
diag{ x(0), x(1),.... x(m = 1)}|0 1
00 - 1 0
xdiag{ x(0), x(~1)..... x(~(m — 1))}
o 0o - 0 1
1 0 0 O
=x(-1|0 1
0 O 1 0
LEMMA 6.5. Let xy,..., x, be characters in A that restrict to the charac-

ters in B, D; = D(x,(1)), and T = ®",'D,. Then by Theorem 3.3 L*(A) =
"'V, and

p(1) = me__al Su(X;(m)) = Tl(n%‘% Xi(l)Sm)T-

THEOREM 6.6. Using this decomposition we observe that the Fourier
transform matrix for Z /mnZ can be factored,

E=0(x)(, ® F)T(F, ®1,),

where Q(x) is a permutation determined by the choice of characters in A that
restrict to the characters in B.

500 AUSLANDER, JOHNSON, AND JOHNSON

The permutation Q(x) can be determined by comparing the order of
the eigenvalues of p(1) obtained by F(A) to those obtained by this
factorization. Diagonalizing S,, by F(C) results in a matrix whose diagonal
elements are k(1) for the characters in K (see Section 3 for the definition
of K). Since the X; are a set of coset representatives for A/K the
resulting diagonal elements obtained from the factorization in the theo-
rem, x,(1)k(1), are the characters of A evaluated at 1.

If x; is chosen to be e?mii/mn then Q(x) is a stride permutation and
the resulting formula is the standard decimation in frequency algorithm

(8].

6.1.3. A4 Splitting ¢. Returning to our example of Fg, there is another
choice of ¢ for which 7 is even simpler. In fact, since 2 and 3 are relatively
prime we can choose ¢ to be a homomorphisms &¢: C — A. Under these
circumstances we say that ¢ is a splitting of the sequence:

3
0->B—->A—-C—-0.

If ¢ is homomorphism, n = 0 and, in Step 4, all the twiddle factors will be
1. So, let

£(0) =0
£(1) =4
£2) =2,

It is easy to see that with this set of choices & is a homomorphism.
Step 1. P(&).
{80,185} ={8¢, 85} V{8, 8,} V{8, 8}

Write P = perm{0, 3,4,1,2,5}.
Step 2. F(B) = F,. Let

80 = 8, + O,
53 =18, 8,
50 =5, + &,
83=15,— 9,
80 =5, + &

83 =15, 6,

COOLEY—TUKEY ALGORITHMS

Step 3.V,
V, =8¢, 83, 83).
Step 4. T'(n).

p(1)85 = p(1)(8, + &)
=6, + 9,
= 310

p(1)8 = p(1)(8, + &)
=68; + 6,
= 520

p(1)85 = p(1)(8, + &)
= 85 + 0,
= 5(?

p(1) = p(1)(8, — 05)

=6, — 6,
= _513

p(1)87 = p(1)(8, — 8,)
=0 — 9,
= _523

p(1)8; = p(1)(8, — 85)
= 83 — &
s

And so,

0 0 1
Po(1)=(1 0 0)=Ss

501

502 AUSLANDER, JOHNSON, AND JOHNSON

and
0 0o -1
ps(l)y =1 -1 0 0] =—3S;.
0o -1 0

Now we compute p;(1) directly using Theorem 4.1. Here 1 = §(1') + 3
and n =0 so

pi(1)8, = x(~3) ...
Thus,
Pj(l) = Xj(_3)S3v

which confirms the result already calculated. Since F, diagonalizes pj(l),
all the twiddle factors T' are ones.

Step 5. F(C). Now apply F, in each of these spaces to obtain
vy=280+8)+8;
v, =80 + 08! + ')
v, =80 + 08 + 0%
v, =8 + 8 + 83
v, =8+ 0% + 0%}
vs = 83 + 08 + 0%

Step 6. Q. Now again, the »,’s are characters of 4 in some order. We
have

1 ifj=land k=0
§(1)={-1 ifj=1landk =3
0 otherwise.

Thus,
vo(1) =1 = xo(1)
vi(1) = 0 = x,(1)
v2(1) = 0* = x,(1)
vy(1) = ®® = x3(1)
vy(1) = 0° = xs5(1)
vs(1) = " = Xi(1).

COOLEY—TUKEY ALGORITHMS 503

Writing Q = perm{0, 2,4, 3,5, 1}, we obtain the factorization
Fy = Q(1, ® F;) L5(I; ® F,) P.

To obtain our standard form we write Q = Q'L$ and
Fs=0Q'(F;0L)(I;®F,)P,

where Q' = perm{0, 3,2, 5, 4, 1}.

6.1.4. An Arbitrary ¢. Finally, we compute a factorization for one more
choice of coset representatives:

£(0) =0
§(1) =4
£(2') = 5.

Step 1. P(§).
{80,..., 8} = {80, 83} Vv {8,,81} V{8 8,}.
And P = perm{0, 3,4,1,5,2}.
Step 2. F(B) = F,. All we need for this computation are the values of
8 at1 € A:
1 ifj=land k=0

§(1)=(-1 ifj=landk =3
0 otherwise.

Step 3. V,.

V, = (89, 610, 62°>
Vs = <5037 5131 523>-

504 AUSLANDER, JOHNSON, AND JOHNSON

Step 4. T'(n). We compute this directly from Theorem 4.1. Since
Xo =1 we always have py(1) = S,. Since 1 = £(1') + 3, for the other
character space V; we have

0 0 xs(—m(2',1'))
p3(1) = x3(—3) xs(—n(0",1")) 0 0
0 xs(—n(1',1")) 0
0 0 -1
= —(1 0 0)
0 -1 0

or
ps(1) = S5(L, ~1,1).

We know that S,(1, —1,1) is diagonally similar to S,(—1), with similar-
ity transform diag{1, —1, —1}. Thus,

T’ = diag{1,1,1,1, — o, —wz} = diag{1,1,1,1, w?, ws}.
Step 5. F(O).

vy =280+ 8+ 87

v, =80 + 0B + 0§

v, =8 + w8} + 08

vy =88 + 0w} + 063

v, =83+ 8+ w8

vs = 68 + 082 + w3,

Step 6. Q. To find the required output permutation we evaluate the
v/’s at 1. Thus,

vo(1) = 1= xo(1)
vi(1) = @® = x,(1)
v(1) = o' = x(1)
vy(1) = —o* = o' = x (1)
(1) = —1=0° = x5(1)
vs(1) = —o? = 0° = x5(1).
And so, the required permutation in Step 6 is a gather at stride 3, Q = LS.

COOLEY—TUKEY ALGORITHMS 505

6.2. Two-Dimensional Examples

We now compute two two-dimensional (2-D) examples. The first is a
coherent presentation with a natural choice of £. Just as in the one-dimen-
sional (1-D) case, this leads to a general formula for a 2-D factorization.
Then we look at the example given in the Introduction of a presentation
that is not coherently presentable. This case is not only potentially inter-
esting for algorithm design, but, as in crystallographic FFT’s [1, 2], it arises
naturally when the subgroup B is determined by other features of the
problem.

6.2.1. A Coherent Case. Let A = A/AZ X Z/4Z:
A ={(0,0),(0,1),...,(0,3),(1,0),(1,1),...,(3,2),(3,3)}.
Let B <A,
B=2/2Zx2/2Z ={(0,0),(0,2),(2,0),(2,2)}.
Then C can be presented as Z/2Z X Z/2Z,
C = {(0,0'),(0",1'), (1',0'), (1, 1)}

We can choose natural orbit representatives so that & simply removes the
primesv g(j’l k,) = (]1 k)

Since our presentations are coherent, everything from the one-dimen-
sional case carried over by using the tensor product in each step. We write
LA(Z/4Z x Z/4Z) = LX(Z/42Z) ® L*(Z/4Z) with §-basis 8; =8 ® ¢ for
0 < i, j < 4. And the regular representation of A is the tensor product of
the regular representations of Z /47,

p(k,l) = p(k) ® p(l)
or
p(k,1)8;; = 8iip jur-
We obtain the four characters of B by restriction of the characters of A4 to
B, Xoo = X0 Xo» Xo2 = Xo* Xz2» X20 = X2 Xo» ad X2 = X2 X2-
Step 1. P(€&). The choice of the natural ¢ partitions the 8-basis:
{300: R 333} = {5007 602, 820, 622}
V{501' 803’ 821’ 823}
\/{810, 612' 830’ 632}
\/{811, 813' 831! 633}'

506 AUSLANDER, JOHNSON, AND JOHNSON

With lexicographic order on the indices we have

P = perm{00, 02, 20, 22,01, 03, 21, 23, 10, 12, 30, 32, 11, 13, 31, 33} .

Step 2. F(B) =F, ® F,. Apply F, ® F, to each of these cosets. For
example, for the first coset we have

6(%) = Ogp T By + 8y + Oy,
866 = B — 8oz + 8p0 — 822
850 = So0 + 802 — 820 — 2
60202 = 8oo = Bpy — Bz T By

To obtain the general case, first compute the 1-D case

50 =15, + &,
82 =125, — 9,
80 =15, + &,
82 =5, — &,

It can be readily verified that the image of F, ® F, is given by

ordered by lexicographic order on the multiindex (k,/, i, j). In order to
find the output permutation in Step 6 we will need to know the values of
the ;) on the generators of A. Since, from the 1-D case case,

i _J1 ifk=0
8:(0) = {0 otherwise
and
i _ 1 ifk=1
%i(1) = {0 otherwise,
we have

8¢(0,1) = 8:(0) ® §/(1)

_J1 ifk=0and/=1
0 otherwise

COOLEY—TUKEY ALGORITHMS 507

and
84/(1,0) = §{(1) ® 5/(0)
_ {1 ifk=1and /=0

0 otherwise.

Step 3. Form V. Bases for the character spaces can be found by
gathering the 8 at stride 4.

Voo = <5(%)' 5810v 810(?, 5101>
Voz = <58021 5812- 32010, 51012
Voo = {80 801 819 » 817
Vi = {85, 861, 815 87

Or

Step 4. T'(n). Since

or
pij = P ® p;

we can readily compute p;; and the required twiddle factors from the 1-D
case. Indeed,

pn(0,1) =1, ® S,
Pw(1,0) =5, 1,
p0r(0,1) =1, ® S,(—1)
P2(1,0) =S, ® I
pn(0,1) =1, ® S,
Px(1,0) = S,(-1) ® I
pr(0,1) = I, ® S,(1)
pr(1,0) = S,(~1) ® I,

508 AUSLANDER, JOHNSON, AND JOHNSON

and therefore the required twiddle factors are
'=(LeL)e (LeW,) e (W,el,)e (WeW),

where

W, = diag{1, i}.

Step 5. F(C) = F, ® F,. Apply F(C).

v = 5% + 580 + 5% + o
VBh = ofF — 88 + 5% - o
5 - o+ o8 = 5% - ofF
00 00 00 00

Voo 800 — Op1 — 019 + &1y
vos = 802 +id%F + 6 +id%
vo = g0 — idg; + 815 — idf
vos = 8gp +idg; — di5 — i8F
vop = 8y — idgr — dig + 87
v =88 + 82 +idX +id%
vao = 8o — 87 + i85 —i877
vy = 8y + 83 — i85 — i87
11 _ g20 _ §20 _ :20 4 :520
vy = Ogg — Ogp — i8g + 104y
vy = 845 + i85 + 8% — 877
vy = 8i5 — i85 + 8% + 877
10 _ 822 4 1822 _ :Q22 22
vy = 89 + 185y — i8{ + O3

11 _ 822 _ :822 _ :822 _ o22
vy = 869 — i85y — i8{5 — Of1 -

Step 6. Q. Now the v}}’s are characters of A4 in some order. To find
the output permutation we need to determine which ones they are. We can

COOLEY—TUKEY ALGORITHMS 509

do this by evaluating them on the generators (0,1) and (1,0) of A. Now
A=272/4Z X Z/4Z and A= Z/4Z X Z/4Z So the characters of A in
the chosen order are

X (%, y) = xi(x) - xi(y) = i
for0 <k, [, x,y <4
Thus, referring to Steps 2 and 5, we have
vp(0,1) =1
vo(1,0) =1 = vy = xoo
ve(0,1) = -1
v(1,0) =1 = vg = xo,

VOO(O 1) =1

Voo(l 0)=-1= Voo X20
1

Voo(011) = =

Véé'(l,O) = 1= 5 =xn

v (0,1) =i
v§§(1,0) =1= v} =xn

(0.1) = -
v52(1,0) =1 = w5y = xog
ve(0,1) =i
v2(1,0) = =1 = v = xp
O, - -

21(1 0)=-1= Voz X23
v59(0,1) =1
Vgg(l,O) =i= v = X
Vgol(O,l) = -1

01(1 0)=i= v = X1
VZO(O 1) =1
Vzo(l 0)=—-i= Vzo X30
Vzé(o’l) =
V%&(LO) = —i= vy =Xz

510 AUSLANDER, JOHNSON, AND JOHNSON

v (0,1) =i

v (1,0) =i = v = xp,
v%(0,1) = —i

v2(1,0) =1 = v35 = X1

13(0 1) =i

v22(1,0) = —i = vy} = x3
v33(0,1) = —i
v22(1,0) = —i = v3; = xas.

Hence, the output permutation is
Q = perm{00, 02, 20, 22,01, 03, 21, 23, 10, 12, 30, 32, 11, 13, 31, 33} .
In fact, Q = P. So we have found the factorization
F,®F,=P(1,® (F,® F,))T'LY¥(I, ® (F, ® F,))P.
Or, writing P = Q'L and T = L*T'LY,
F,®F, = Q’((Fz ® F,) ®I4)T(I4 ® (F, ®F2))P'

6.2.2. 2-D Cooley—Tukey. Let A =2Z/mnZ X Z/m,n,Z, and let

B =B; X B, = {(im;, jm,)I0 <i <n,;,0 <j<n,}. Then B=Z/nZ X

Z/n,Z, and C=A/B=C, XC,=2Z/mZ X Z/m,Z. We can choose
{(,)0 <i <my, 0 <j<m,} as coset representatives of 4 /B.

LEMMA 6.7. Letbh € B. Then b = ?)\1 ® Ez for ?)\1 S El and ?)\2 e Ez- Let
P3,05, be p restricted to V. Then, for 0 <k <mj and 0 <1 < m,,
~ k ~ !
p51®52(k’) = Sml(bl(_ml)) ® sz(bz(_mz)) ,

with respect to the lexicographically ordered basis {8(';' pO<i<m;,0<j<
m,}.

Since B is a coherently presentable subgroup we can find x ® ¢ =
such that x|z, = b and ¢lp, = b

LEMMA 6.8. Let x ® ¢r€ A with X!s, =El and |, =Bz, and let
D, = D(x(1) and D,(D((1)). Then

(D, ® D;) (S, (B ~my)) @ S,(Bo(~m2))) (D @ D,)

= Xl(k)XZ(l)(Sr];zl ® S;lnz)-

COOLEY—TUKEY ALGORITHMS 511

LEMMA 6.9. Let x; ® ¢, 0 <i <n,, 0 <j <n, be characters in A that
restrict to the characters in B. Then

r= le? (D(x:(1) ® D(#(1))).
Then
7 @ (,(x(-m))" &5, (n(-m))) |7

L]

= ® (x(Hy(D(sk, ®55))

i

Therefore we obtain the following factorization of the multidimensional
Fourier transform F,, , ® F,

many*

THEOREM 6.10.

Fpo®F, = Q(Im ® (F,, ® sz))T(Fnl ®F,)® Imlmz)P,

where Q and P are permutation matrices.

6.2.3. A Non-coherent Case. \We now consider a case when the presen-
tation of B < A4 is not coherent. From the Introduction, let

A=2/22x2/8Z={(0,0),(0,1),...,(0,7),(1,0),...,(1,7)}
and
B =2/4Z ={(0,0),(1,2),(0,4),(1,6)}.

Then B is not coherently presented in A. In fact, there is no presentation
in which B is coherently presented. Indeed, there is no basis {a, a’) of A,
such that there is an r with {ra) a basis of B.

Now compute a presentation of C = A/B. To do this in general, we
would have to compute something like the Smith normal form, but here it
is easy to see that (0, 1) is of order 4 in 4/B and hence C = Z/4Z.

Cc={0,1,2,3)
and choose £(j") = (0, j).
Step 1. P(£). With these choices we have
{800’ 801’ e 577} = {600’ 312' 804’ 616}
V{801, 813+ Bos, 817}
V{802' 814' 806’ 610}
V{803’ 515’ 507' 811} .

512 AUSLANDER, JOHNSON, AND JOHNSON
With lexicographic order on the indices we have

P = perm{00, 12,04, 16,01, 13,05, 17, 02, 14, 06, 10, 03, 15,07, 11} .
Step 2. F(B) = F,. Computing F(B) we have

8% = 840 + O1p + Sgy + 84
852 = 8y + 081, — 8py — 1815
850 = So0 — 12 + S04 — B1
8(}8 = 8gp — 18y — gy t 18y
5(?10 = &gy t 813 + g5 + 67
6(}12 = 0py T 1813 — 85 — idy;
861 = 81 — 813 + o5 — 8y
859 = 8y, — i85 — By + 18,
8oz = Bop + 814 * 805 + B3
8(}22 = By + 18y, — 85 — 18y
5(?24 = 8py = B4 + s — Oy
5(}26 = 8py — 181y — 8ps T iy
8% = 845 + 815 + So7 + iy
852 = 8y3 + 08,5 — 87 — I8y,
8gs = 803 — 815 + 8oy — By
8(}3? = 83 — 1835 — g7 + 18y,
For Step 6 we need to note the values of the §;’s at the generators, (0, 1),
and (1,0), of A. All are zero except

8or(0,1) =1

81 (0,1) =1

8or(0,1) =1

582(0,1) = 1

COOLEY—TUKEY ALGORITHMS 513

and
8g5(1,0) = 1
82(1,0) = —i
807 (1,0) = —1
855(1,0) =1i.
Step 3. V,. Collect as indicated by the superscripts at stride 4.
Voo = (85 81+ 807+ 855)
Vip = (855, 807 853 803
Vos = (8gq 861+ 8¢z + B3
Vig = (845 801, 803+ B3)-

Step 4. T'(n). We have

Poo(ofl) =S,
p12(0, 1) = S4(—-1),
P04(Ov 1) =5,

pis(0.1) = Su(~1).

Since £(1') = (0,1) there is no need to look at the other generator of A.
But it is interesting to observe that (1,0) = 2(1,0) mod B, or more explic-
itly, (1,0) = 2(0,1) + (1,6) and we have

Po(1,0) = Xoo(_(l16))(Poo(0, 1))2 = Sf =501,
p(1,0) = XlZ(_(1'6))(p12(0’1))2 iS4(_1)2 =iS,(—1) ® I,,
Pos(1,0) = X04(_(1,6))(P04(0!1))2

2 . .
p15(1,0) = X16(= (1,6)) (p16(0.1))" = —iSu(—1)" = —iSy(—1) ® I,.
Now we compute the twiddle factors. Let o = ¢?7/8 and

-Si=-5,91,,

Then,
T'"=LoW el oW,

514 AUSLANDER, JOHNSON, AND JOHNSON
Step 5. F(C) = F,. We have, with i = »® and —1 = w*,
0 _ 00 00 00 00
vg = 8y + 8o1 + 8p; + Op3

1 _ 00 25 00 4500 65 00
vy = Ogg + w0y + w0y + Wy,

W= 8% + Wb + 8% + W'Y
b= 8% + wBY + B + Wby
v) =82 + w8 + 08 + wB:
vh= 88 + 0B + 0%BE + wb
V2= 62 4 B + 0B + 0l
vE = 82 + Wbl + wBE + WD
vy = 8go + 8gi + 86, + O3

vh = 5% + W% + Wb + wBY
V2= 8% 4 W% + 6% + Wi
v =80 + 0% + 0’6 + 0¥
vy =858 + 085 + 0’8 + w¥BS
vh = 535 + 0B + B + Wbl
V§ = ég + wsﬁéf + w283§ + w7833§

3 _ <16 7516 6516 5016
vy = 8y + w6y + w3y, + Wby

~ Step 6. Q. To compute the output permutation, we must evaluate the
v;'s at the generators of A. Indeed, the characters of A are, in lexico-
graphic order x;; € A, for 0 </ < 2,0 <j < 8 where

Xy (k1) = (=1%o’
Thus, referring to Steps 2 and 5,

v§(0,1) =1

1/8(1,0) =1= Vg = Xoo
Vé(O,l) = @?

5(1,0) = =1 = vg = xy
v2(0,1) = w*
v(1,0) = 1= 12 = xq
v3(0,1) = ©°

Vg(l,O) = —1=vd=yx;,

COOLEY—TUKEY ALGORITHMS

v2(0,1) = @

P(LO) = 1= 10 = X
v1(0,1) = ®

v1(1,0) = —1= vl = x5
1/12(0,1) = @°

v{(1,0) =1 = vf = xes
v3(0,1) = o'

v3(1,0) = —1= v} = x,y
»9(0,1) = 1

v3(1,0) = =1 = v) = xy9
v3(0,1) = ?

v2(1,0) =1 = v; = xq
V22(0,1) = "

v2(1,0) = =1 = vi=xy,
V23(0,1) = °

v23(1,0) =1l= st = Xos
v3(0,1) = w

v3(1,0) = —1=v) = xy,
v3(0,1) = ®

v3(1,0) =1 = v5 = xq
v2(0,1) = 0°

v3(1,0) = =1 = v} = x5
v33(0,1) =@’

v3(1,0) =1 = v] = xq;.
Hence, the output permutation is
Q = perm{00, 12, 04, 16, 01, 13, 05, 17, 10, 02, 14, 06, 11, 03, 15, 07} .
And we have found the interesting factorization

F,® Fy = Q(1, ® F,)T'L(1, ® F,) P.

515

516 AUSLANDER, JOHNSON, AND JOHNSON
Or, writing Q = Q'L and L¥T'LY,

F,®F, = Q'(F, ® I,)T(I, ® F,) P.

7. PROGRAMMING CONSIDERATIONS

Our goal as implementers is to construct a program to efficiently
evaluate the linear computation

y = Fx,

where F is generally a 1-D, 2-D, or 3-D Fourier transform. In these cases,
if the data is linearly ordered, F = F,, F, ® F, ,or F, ® F, ® F, . The
approach we have suggested is to apply repeatedly the concrete procedure
to factor F into small Fourier transforms that we may assume are
efficiently implemented. Along the way we will pick up tensor products,
diagonal multiplications (twiddle factors), and, most importantly, permuta-
tions. The code for each of the resulting factors can be combined to give a
program for the computation. The resulting formula can also be alge-
braically manipulated to produce many different algorithms with different
performance characteristics. For a detailed discussion of how this code can
be generated see [9].

One of the main features of this paper is to show how, possibly at the
cost of non-standard twiddle factors, the class of resulting permutations
may be enlarged from the standard approach. The performance bottleneck
for implementations of the FFT for large data sets on modern computer
architectures is the data flow [3]. These new permutations may enable us
to find better implementations of the Fourier transform. This is especially
true in the multidimensional case. To see why this is true, consider the
choices the programmer has in applying the factorization procedure. In
1-D, the presentation of B < A4, and hence A/B is essentially unique.
This is because of the general fact that a cyclic group has a unique
subgroup of a given order. So in 1-D, the only free choice is the cross
section ¢£. In 2-D, the situation is considerably more complex and fruitful.
Given A there are many non-isomorphic B’s to choose of a given size.
Furthermore, even if we choose isomorphic B’s it can happen that the
resulting quotients C’s are not isomorphic. This, together with the choice
of cross sections, gives the algorithm designer considerable flexibility in
matching an algorithm to a specific machine to obtain a high performance
implementation.

We report the results of an experiment we conducted which suggest that
these ideas may have a practical value in implementing multidimensional

COOLEY—TUKEY ALGORITHMS 517

Fourier transforms. Consider the problem of implementing a square 2-D
Fourier transform F, ® F,, with N = 2". A standard modification of the
row—column method uses the factorization

y= LIR’/Z(IN ® FN)L%Z(IN ® Fy)x

where the load-stride at stride N, Lﬁ,z, is transposition. In words, this says:
apply Fy to the N rows of the data, transpose the columns into rows,
repeat, and transpose back. Presuming that an efficient implementation of
F, is available, this reduces the problem to finding an efficient implemen-
tation of transposition.

On machines with a hierarchical or distributed memory the behavior of
load-stride permutations for large data sizes varies with the stride. Our test
machine was a Sun Sparc 10 model 41 running under Solaris 1.0 with the
following memory hierarchy:

16 — KB on-chip cache

1—- MB on-board cache
64 — MB main memory

400 — MB swapfile

For complex data (8 bytes per point) we obtained wall-clock timings for a
straightforward implementation of y « L?f"x. These are shown in Table I.
Thus, or row—column evaluation of F,. ® F,. takes more than 72,000
seconds!

One approach to handling the situation is to use a multipass algorithm
to do the transposition [10]. In fact, a simple one would be to do Li24 SiX
times based on the factorization L7} = L'*'L"*'. However, the following
observations suggest a faster implementation might be obtained by the
methods we have developed in this paper.

TABLE |
Wall Clock Timings of Load-Stride

Stride s Time (s)
1 (copy) 173
2 197
4 259
16 774
64 2819

4096 (transposition) > 72000

518 AUSLANDER, JOHNSON, AND JOHNSON

TABLE 11
Wall Clock Timings of 2-D Cooley-Tukey

Factor Time (secs)
0 178
122 259
I, ® (an ® qu) 198
12T 259
L2 ® (F, ®F,) 185
P 399

Applying one of the 2-D Cooley—Tukey factorizations found in Section
6.2.2 to this case we have

y= QL%2/4(14 ® (Fy,, ® FN/Z))LIIZT(IN/4 ® (F, ® Fz))Pv

where P and Q are permutations not too different from LQ’Z. Now for
N = 2% we have

y = QL% (1, ® (Fpu ® Fu))L3'T(Lz» ® (F, ® F,))P.

For this case we have obtained timings shown in Table Il. Reference to the
table shows that a 2-D Cooley—Tukey costs at worst about 1500 s which is
much less than a straightforward row—column evaluation at more than
72,000 s.

This experiment was only a test of a quick and dirty code, but we believe
it strongly suggests that the methods developed in this paper warrant
further practical study. The wide variety of new data flows introduced by
the factorization procedure we have developed in this paper may have an
implementation advantage over those of traditional multidimensional FFT’s
on modern computer architectures.

REFERENCES

1. L. Auslander, J. R. Johnson, and R. W. Johnson, Computing finite Fourier transforms
exploiting group symmetries. I. The Role of inner products, preprint, 1993.

2. L. Auslander, J. R. Johnson, and R. W. Johnson, Computing finite Fourier transforms
exploiting group symmetries. Il. Orbital Evaluation, preprint, 1993.

3. D. H. Bailey, FFT’s in external or hierarchical memory, J. Supercomp. 4 (1990), 23-35.

. T. Beth, “Vehrfahren der Schneller Fourier Transform,” Teubner, Stuttgart, 1984.

5. M. Clausen, Fast Fourier transforms for metabelian groups, SIAM J. Comput. 18 No. 3
(1989), 584-593.

6. M. Clausen and U. Baum, “Fast Fourier Transforms,” Wissshaftsverlag, Manheim, 1993.

~

10.

11.

12.

13.

COOLEY—TUKEY ALGORITHMS 519

P. Diaconis and D. Rockmore. Efficient computation of the Fourier transform on finite
groups. J. Amer. Math. Soc., 3(2):297-332, April 1990.

. J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri. A methodology for

designing, modifying, and implementing Fourier Transform algorithms on various archi-
tectures. Circuits Systems Signal Process., 9(4):449-500, 1990.

. R. W. Johnson, C.-H. Huang, and J. R. Johnson. Multilinear algebra and parallel

programming. J. Supercomput. 5:189-217, 1991.

S. D. Kaushik, C.-H. Huang, J. R. Johnson, R. W. Johnson, and P. Sadayappan, Efficient
transposition algorithms for large matrices, In ‘“‘Proceedings of Supercomputing '93,
Portland, OR, Nov. 21-23, 1993,” p. 656—665.

D. Masler and D. Rockmore. Adapted diameters and the efficient computation of
Fourier transforms on finite groups, preprint, 1994.

D. Rockmore. Efficient computation of Fourier inversion for finite groups. J. Assoc.
Comput. Mach. 41(1):31-66, January 1994.

D. Rockmore, Fast Fourier analysis for abelian group extensions. Adv. Appl. Math.,
11:164-204, 1990.

Statement of ownership, management, and circulation required by the Act of October 23, 1962, Section 4369, Title 39,
United States Code: of

ADVANCES IN APPLIED MATHEMATICS

Published quarterly by Academic Press, Inc., 6277 Sea Harbor Drive, Orlando, FL 32887-4900. Number of issues
published annually: 4. Editor: Dr. Gian-Carlo Rota, Department of Mathematics, Room 2-351, Massachusetts Institute
of Technology, Cambridge, MA 02139
Owned by Academic Press, Inc., 525 B Street, Suite 1900, San Diego, CA 92101-4495. Known bondholders,
mortgagees, and other security hoiders owning or holding 1 percent or more of total amount of bonds, mortgages, and
other securities: None.
Paragraphs 2 and 3 include, in cases where the stockholder or security holder appears upon the books of the company
as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trustee is acting, also
the statements in the two paragraphs show the affiant's full knowledge and belief as to the circumstances and
conditions under which stockholders and security holders who do not appear upon the books of the company as
trustees, hold stock and securities in a capacity other than that of a bona fide owner. Names and addresses of
dividuals who are stockholders of a corporation which itself'is a stockholder or holder of bonds, mortgages, or other
securities of the publishing corporation have been included in paragraphs 2 and 3 when the interests of such individuals
are equivalent to 1 percent or more of the total amount of the stock or securities of the publishing corporation.
Total no. copies printed: average no. copies each issue during preceding 12 months: 791; single issue nearest to filing
date: 782. Paid circulation (a) to term subscribers by mail, carrier delivery, or by other means: average no. copies each
issue during preceding 12 months: 200; single issue nearest to filing date: 211. (b) Sales through agents, news dealers,
or otherwise: average no. copies each issue during preceding 12 months: 179; single issue nearest to filing date: 182.
Free distribution (a) by mail: average no. copies each issue during preceding 12 months: 54; single issue nearest to
filing date: 54. (b) Outside the mail: average no. copies each issue during preceding 12 months: 13; single issue nearest
to filing date: 13. Total no. of copies distributed: average no. copies each issue during preceding 12 months: 446;
single issue nearest to filing date: 460. Percent paid and/or requested circulation: average percent each issue during
preceding 12 months: 85%; single issue nearest to filing date: 85%.

(Signed) Janice M. Peterson, Director, Fulfillment and Special Projects

