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1. INTRODUCTION

This study was motivated by two problems:

Problem 1. Design fast Fourier transform algorithms that respect crys-
tallographic group symmetries.

Problem 2. Design multidimensional Fourier transforms that provide
the best match for a hierarchical andror distributed memory computing
environment.

w xProblem 1 has been studied in 1, 2 . Problem 2 has such an extensive
literature that we cannot hope to survey it here. Our study of both of these
problems led us to the use of non-standard twiddle factors in the
Cooley]Tukey algorithm. Our route to these results required an algebraic
reformulation of the Cooley]Tukey algorithm. After completing our pro-
gram, it became clear that the algebraic structure we were using would
provide information about the Fourier transform on non-Abelian groups.
In our examination of the algorithmic non-Abelian Fourier transform

w xliterature, the earliest results seem to be those of Beth 4 , but the results
w x w x w xof Clausen 5, 6 , Diaconis and Rockmore 7 , and Rockmore 11]13 seem

to be the closest to the results in this paper. However, even though we
were led to the same tools, we have used them to study different problems.
Since we are dealing with the Abelian case, we can ask and answer more
refined questions than have yet occurred in the non-Abelian literature.

With these preambles aside we can begin our technical discussion. Let
ZrAZ denote the integers modulo A, which we will denote by A as a
group. If we assume A s MN, then MZrAZ is a subgroup of A which is
isomorphic to ZrHZ and will be denoted by B. Then ArB is isomorphic
to ZrMZ and will be denoted by C. We may identify the B-cosets of A

w xwith C and we will make this explicit by using c to denote the B-coset
corresponding to c g C. We will map C into A by j : C ª A by requiring
Ž . w x Ž .j c g c and j c to be a coset representative. We will always assume

Ž .that j 0 s 0. Then every element a g A may be written uniquely as
Ž .a s j c q b, c g C, b g B. And so we have a 1]1 mapping

Ž . Ž . Ž Ž . . Ž .S : S ª j C = B defined by S a s j c , b , where a s j c q b. Letj j

Ž . Ž0, 19, . . . , M y 1 9 denote the ordered elements of C, and 0, M, . . . , N y
. Ž .1 M the ordered elements of B. This defines an ordering on j C and we

Ž Ž . . Ž .order the elements j c , b in j C = B lexicographically. This defines a
new order on the elements of A or a permutation of the elements of A

Ž .which we will denote by P j . The Cooley]Tukey algorithm may now be
stated as follows. Choose the coset representative that assigns to m9 g
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Ž .ZrMZ, 0 F m - M, the element m in ZrAZ. Let F ? denote the Fourier
transform of the group in the bracket. Then

y1 y1 y1F A s F C m I T I m F B PŽ . Ž . Ž .Ž . Ž .
where P is the permutation determined by the above coset mapping j and
T is a diagonal matrix called the twiddle factor.

The first main result of this paper is the following: let j : C ª A be any
Ž .coset representatives for ArB and let P j be the corresponding permu-

Ž .tation matrix, then there exists a diagonal matrix T j such that

q1 y1 y1F A s F C m I T j I m F B P j .Ž . Ž . Ž . Ž . Ž .Ž . Ž .
The Good-Thomas algorithm is a special case of this result which exists

if M and N are relatively prime. Then A is isomorphic to C = B as
groups and if we use this fact to construct our coset representatives j and

Ž . Ž .the permutation P j , then T j becomes the identity matrix.
It is natural to ask what happens if we remove the assumptions that A is

a cyclic group, but merely assume that A is Abelian and B is a subgroup
of A. The first thing to observe is that the Cooley]Tukey row-column
method for dealing with general Abelian groups involves an implicit
assumption about how A and B are related. We will now make this
explicit.

Assume, for instance, that A is a 2-primary group and so we may write

A s Zr2 k1Z = ??? = Zr2 k LZ

which we will call a presentation of A. Of course, A may have distinct
presentations. We will say that a subgroup B ; A is coherently presentable
if A has a presentation in which

B s 2 l1Zr2 k1Z = ??? = 2 lLZr2 k LZ.

It is easy to see that the usual row]column Cooley]Tukey algorithm
requires that B be coherently presentable in A. However, not all groups
are coherently presentable. For example, if

A s Zr2Z = Zr8Z

and

B s 0, 0 , 1, 2 , 0, 4 , 1, 6 ,� 4Ž . Ž . Ž . Ž .

B is not coherently presentable in A and so the classical technique cannot
be applied. However, our general result still holds.
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THEOREM 1.1. Let A be a finite Abelian group, let B be a subgroup of A,
Ž .and let ArB s C. Let j c , c g C, be a coset representatï e of c and let

Ž . Ž . Ž . Ž .h c , c s j c q j c y j c q c . Then there exists a permutation ma-1 2 1 2 1 2
Ž . Ž .trix P j and a diagonal matrix T h such that

y1 y1 y1F A s F C m I T h I m F B P j .Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž .The paper is organized into two parts. In the first part Sections 2]4 the
basic theoretical foundation for our approach is developed, culminating in
a proof of Theorem 1.1. In the second part, the remainder of the paper, we
develop a practical method for designing multidimensional Fourier trans-
form algorithms based on introducing coordinates in the theoretical dis-
cussion in the first part. More specifically, in Section 5 we restate the
theoretical results of the previous sections in terms of a concrete proce-
dure for factoring the Fourier transform matrix. Then in Section 6 we
apply this procedure to illustrate the theory for several one-dimensional
and two-dimensional examples. In this section we find formulas for a one-
and two-dimensional Cooley]Tukey algorithm. We close in Section 7 by
giving some preliminary results of some computer experiments that suggest
that this approach may have practical value in implementing large multidi-
mensional Fourier transforms on machines with hierarchical or distributed
memory.

2. ALGEBRAIC PRELIMINARIES

Let C denote the complex numbers and C= the multiplicative group
� 4 =C y 0 . A homomorphism x of a finite Abelian group into C is called a

2Ž .character. If L A denotes the vector space of complex-valued functions
2Ž .on the group A, we may consider x g L A . We now define a unitary

2Ž .representation r of A, the regular representation, on L A by

r a f x s f x y a f g L2 A .Ž . Ž . Ž . Ž .Ž .

Note that if x is a character of A then

r a x x s x x y a s x ya x x .Ž . Ž . Ž . Ž . Ž .Ž .

Ž . Ž .Hence x x is an eigenvector of r a for all a g A and the eigenvalue of
Ž . Ž .r a on x is x ya . It is well known that the set of characters forms an

ˆAbelian group, denoted by A, which is isomorphic to A. Hence the set of
2Ž . Ž .characters forms an orthonormal basis of L A relative to which r a is a

diagonal matrix for each a g A.
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2Ž .For each a g A define d g L A bya

1 x s a
d x sŽ .a ½ 0 otherwise.

Once we order the elements, the functions d , a g A, are an ordered basisa
2 ˆŽ .of L A called a d-basis. Given an isomorphism A ª A, a ¬ a, theˆ

Ž . Ž . 2Ž .Fourier transform of A, F A , is the linear transform of F A : L A ª
2Ž . Ž . 2Ž .L A given by F A d s a. Now let f g L A , then f s Ý a d ,ˆa ag A a a

Ž .a g C, and f s Ýb a. Since F A d s a, we haveˆ ˆa a a

ba 00
..y1 ..F A sŽ . ..� 0 � 0a bLy1 Ly1

Ž .y1or F A determines the orthogonal projection of a vector onto the
ˆorthonormal basis a, a g A.ˆ ˆ

Now let A s ZrnZ and let d , d , . . . , d be a d-basis. Then0 1 ny1

r a d y s d y y a .Ž . Ž . Ž .Ž .x x

Ž .Now d y y a s 0 unless y y a s x or y s x q a when it is 1. Hencex
Ž .r a d s d . Thus working with column vectors relative to the abovex xqa

basis,

a a0 ny1

a a1 0
r 1 s ,Ž . . .. .. .� 0 � 0a any1 ny2

so that

0 ? ? ? ? 0 1
1 0 ? ? ? ? 0
0 1 0 ? ? ? 0

r 1 s s S .Ž . ? ? ? ? ? ? ? n

? ? ? ? ? ? ?� 0? ? ? ? ? ? ?
0 ? ? ? 0 1 0

One verifies that if a, x g ZrnZ then a ¬ a given byˆ

a x s e2p i a x r nŽ .ˆ
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defines an isomorphism of ZrnZ with the group of n characters on ZrnZ.
Then, with respect to a d-basis we find

F ZrnZ s F s e2p i a x r n .Ž . Ž . 0Fa , x-nn

Noting that

1 1
2p i ar n 2p i ar ne ey2 p i ar n. .S s e ,n . .. .� 0 � 0

2p i aŽny1.r n 2p i aŽny1.r ne e

we have

ey2 p i0r n

y2p i1r ne
.S F s F .n n n . .� 0

y2 p iŽny1.r ne

Hence, Fy1 is the orthogonal projection onto the eigenvectors of S .n n
In our later work the following generalizations of this result will be

essential. For a / 0, let

0 ? ? ? ? 0 a
1 0 ? ? ? ? 0
0 1 0 ? ? ? 0

S a s ,Ž . ? ? ? ? ? ? ?n

? ? ? ? ? ? ?� 0? ? ? ? ? ? ?
0 ? ? ? 0 1 0

let b n s a , and let v s e2p i r n. By an easy computation

n
S a s a I ,Ž .Ž .n n

Ž .where I is the n = n identity matrix. Hence the eigenvalues of S a aren n

bv k, 0 F k - n. Now if

1 1
x x1 1y1S a s bvŽ . . .n . .. .� 0 � 0x xny1 ny1
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we obtain, by recursion,

b b 2
y1 y2x s v , x s v , . . . , x s 1.ny1 ny2 0a a

By some elementary matrix operations, we have

S a D a F s D a F E aŽ . Ž . Ž . Ž .n n n

where

1¡ ¦
ny1b

a
D a s .Ž . . .

b¢ §
a

and

1
v

.E a s b .Ž . . .� 0
ny1v

Ž .Hence the orthogonal projection onto the eigenvectors of S a is given byn
Ž Ž . .y1 y1 Ž .y1D a F s F D a . Noten n

1
b

.D a s .Ž . . .� 0ny1b

LEMMA 2.1. Let

0 ? ? ? ? 0 a¡ ¦1
a 0 ? ? ? ? 02

0 a 0 ? ? ? 03
S a , . . . , a s , a s a / 0.Ž . Łn 1 n i? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ?¢ §0 ? ? ? 0 a 0n

Ž . Ž .Then S a , . . . , a is diagonally similar to S a .n 1 n n
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Proof. By direct computation,

1
a2

S a , . . . , a s S a , a , . . . , a ??? aŽ . Ž ..n 1 n n 2 2 n. .� 0
a ??? a2 n

and

1
y1a2

. S a , a , . . . , a ??? a s S a .Ž . Ž .n 2 2 n n. .� 0y1
a ??? aŽ .2 n

The above discussion may be summarized as follows:

THEOREM 2.2. Let

0 ? ? ? ? 0 a¡ ¦1
a 0 ? ? ? ? 02

0 a 0 ? ? ? 03
S a , . . . , a s , a s a / 0.Ž . Łn 1 n i? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ?¢ §0 ? ? ? 0 a 0n

Ž .Then there exists a diagonal matrix D a , . . . , a such that1 n

S a , . . . , a D a , . . . , a F s D a , . . . , a F E aŽ . Ž . Ž . Ž .n 1 n 1 n n 1 n n

where

ey2 p i0r n

y2p i1r ne
.E a s b .Ž . . .� 0

y2 p iŽny1.r ne

Now let

C s Zrd Z = ??? = Zrd Z.1 t
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2Ž .Then L C may be identified with

L2 Zrd Z m ??? m L2 Zrd ZŽ . Ž .1 t

and with this identification

r C s r Zrd Z m ??? m r Zrd ZŽ . Ž . Ž .i t

or

j1 jt <r C s S m ??? m S 0 F j - d , i s 1, . . . , t .Ž . � 4d d i i1 t

Ž .Then F C s F m ??? m F andd d1 t

y1F C r C F CŽ . Ž . Ž .

is a tensor product of diagonal matrices.
Now let

j j1 tŽ1. Ž1. Ž t . Ž t .r C s S a , . . . , a m ??? m S a , . . . , a .Ž . Ž . Ž .x d 1 d d 1 d1 1 t t

Then we have proved the theorem.

Ž .y1 y1 Ž . Ž .THEOREM 2.3. F C E r C EF C is a tensor product of diagonalx

matrices with E a tensor product of diagonal matrices.

3. CHARACTER SUBSPACES

ˆ =<Let a g A, then a restricted to B, a , is a homomorphism of B to Cˆ ˆ ˆ B
ˆ<and so a g B. Hence the restriction mapping defines a homomorphismˆ B

ˆ ˆ ˆ ˆ ˆ ˆof A into B with kernel K. Now k g K maps B to 1 and so k induces a
= ˆhomomorphism of ArB s C to C . Hence K may be identified with a

ˆ ˆsubgroup of C. But if c g C,ˆ
ĉ =A ª ArB ª C

ˆ ˆ ˆis a character of A in K. Hence K may be identified with C and so by a
ˆ ˆ ˆ ˆcounting argument the restriction mapping maps A onto B and so ArK is

ˆisomorphic to B.

ˆ 2Ž .DEFINITION 3.1. Let x g B and V ; L A be defined by=

2 <V s f g L A r b f s x yb f , b g B .� 4Ž . Ž . Ž .=

V is called a B character subspace.=



AUSLANDER, JOHNSON, AND JOHNSON486

ˆLEMMA 3.1. For a g A, x g B,

r a V s V .Ž . x x

Proof. For a g A and b g B,

r b r a V s r a r b VŽ . Ž . Ž . Ž .Ž . Ž .Ž x x

s x yb r a V .Ž . Ž . x

ˆ ˆ< <LEMMA 3.2. Let a , . . . , a , l s K , be the elements of A such thatˆ ˆ1 l
<a s x , a s 1, . . . , l. Then a , . . . , a is an orthonormal basis of V .ˆ ˆ ˆBa 1 l x

ˆ ˆ ˆ ˆProof. Since ArK s B, the elements of A, which when restricted to B
ˆequal x , are a K coset. Orthonormality follows from the fact that unequal

characters are orthogonal.

ˆ ˆSince the K cosets exhaust A we have the following result.

THEOREM 3.3.
2Ž .1. L A s [ V ;xx g B

ˆ2. dim V s order K s order C;x

ˆ ˆ ˆ3. If a g A is a K-coset representatï e of x , then a q K is an orthonor-ˆ ˆ
mal basis of V .x

In this language the idea of the Cooley]Tukey algorithm is the follow-
ˆing. We are given a vector X in a d-basis and a g A in this d-basis and weˆ

ˆ² :want to compute efficiently all the dot products X, a , a g A. We can doˆ ˆ
this in two stages.

ˆStage 1. Compute the projection of X onto V , x g B, and denote itx

by X .x

ˆStage 2. Let a q K be the characters of A in V . Compute the dotx̂ x

product of X with each of these characters.x

This may be seen more explicitly as follows. In the Introduction we saw
that the Cooley]Tukey algorithm can be formulated as

y1 y1 y1F A s F C m I T I m F B PŽ . Ž . Ž .Ž . Ž .
where P is a permutation matrix and T is a diagonal matrix. Let Q denote
the permutation matrix such that

y1 y1y1Q I m F C Q s F C m I.Ž . Ž .Ž .
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Since T is diagonal, Qy1T 9Q s T , where T 9 is diagonal. Hence,

y1 y1 y1y1Q I m F C T 9Q I m F B P s F A .Ž . Ž . Ž .Ž . Ž .
Ž Ž .y1 . ŽŽThen Y s Q I m F B PX is the computation of Stage 1, I m

Ž .y1 . . y1F C T 9 Y is the computation of Stage 2, and Q returns the output in
the appropriate order.

4. AN ALGEBRAIC DIVIDE-AND-CONQUER
ALGORITHM

Let A be a finite Abelian group, B a subgroup, and C s ArB. For
w xc g C, let c denote the corresponding B-coset, and for each c g C, let

Ž . w xj c g c ; A be a coset representative. Then a g A can be uniquely
written as

a s j c q b c g C , b g B.Ž .

Ž .This determines a mapping S : A ª j C = B and by abuse of notation aj

mapping

S : L2 A ª L2 j C m L2 B .Ž . Ž . Ž .Ž .j

Ž . 2Ž Ž .. 2Ž .Now r A restricted to B induces an action of B on L j C m L B
Ž . Ž .which is given by I m r B where r B is the regular representation of B

2 ˆŽ .on L B . Now for x g B, V has been defined byx

2 <V s f g L A r b f s x yb f , b g B .� 4Ž . Ž . Ž .x

2Ž . Ž . 2Ž Ž ..Now consider x g L B . Then S V s L j C m x becausej x

1 m r b y m x s y m r b x s x b y m xŽ . Ž . Ž . Ž .Ž .
2Ž Ž ..and dim L j C m x s dim V .x

Ž . <We have seen that V is r A invariant and so we may define r s r .Vx X x

Our task is to compute r and its diagonalizing matrix. We can be guidedx

in this task by noting that r is the representation of A obtained byx

inducing the representation x of B to A. This tells us that we can
establish a natural correspondence

D : L2 C ª VŽ .j x

Ž .related to r C , the regular representation of C. This we will now proceed
directly to do, without explicitly using the theory of induced representa-
tions.
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Ž . 2Ž . 2Ž . Ž .For g c g L C define D g s g g L A as follows: Let a s j c q b˜j

and define

g a s x b g c .Ž . Ž . Ž .˜

2Ž .We must verify that g g V and that D : L C ª V is an isomorphism.˜ x j x

Ž .Now for a s j c q b and b g B1

r b g a s x b y b g c s x yb g aŽ . Ž . Ž . Ž . Ž . Ž .˜ ˜1 1 1

Ž . Ž . < Ž . <and so g g V . Assume x b g c s 0. Since x b s 1, this means that˜ x

Ž .g c s 0 for all c and D is an isomorphism.j
2Ž .Hence we may view r as a linear transformation of L C which we willx

need to describe in detail. To do this we will need the following definition.
Let c , c g C and define1 2

h : C = C ª B

by

h c , c s j c q j c y j c q c .Ž . Ž . Ž . Ž .1 2 1 2 1 2

ŽIn the language of group cohomology, given B and C, h is the 2-cocycle
. Ž . Ž . Ž . Ž . Ž .that determines A. Since j 0 s 0, h c, yc s j c q j yc or yj c

Ž . Ž .s j yc y h c, yc .
2Ž .THEOREM 4.1. Let r acting on L C also be denoted by r . Letx x

Ž . 2Ž .a s j c q b and x g C. Then if d is the d-basis of L C ,x

r j c q b d s x yh x , c y b d .Ž . Ž .Ž . Ž .x x xqc

Proof. For c g C,1

˜r j c q b d c s r j c q b d j cŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž . ž /x x 1 x x 1

˜s d j c y j c y bŽ . Ž .Ž .x 1

˜s d j c y c x h c , yc y h c, yc y b .Ž . Ž . Ž .Ž . Ž .x 1 1

˜ Ž Ž .. Ž .But d j c y c s d c y c s d . But, then everything is zero unlessx 1 x 1 xqc
c s x q c and so1

r j c q b d s x h x q c, yc y h c, yc y b dŽ . Ž . Ž .Ž . Ž .x x xqc

s x yh x , c y b d .Ž .Ž . xqc
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The crucial thing is that this theorem demonstrates that r relative tox

the d-basis of C is a matrix whose only non-zero entries occur exactly at
Ž .the 1’s of r C . This shows that we have finally arrived at the material

presented in Section 3.
ˆ Ž .Now let C s Zrd Z = ??? = Zrd Z. Then for each x g B, r A is a1 t x

representation of the form

j j1 tŽ1. Ž1. Ž t . Ž t .S a , . . . , a m ??? m S a , . . . , a .Ž . Ž .d 1 d d 1 d1 1 t t

Then we may apply Theorem 2.3 to obtain the diagonalizing matrix of
Ž . Ž .r A to be of the form EF C where E is a tensor product of diagonalx

Ž .y1 y1matrices. Hence, F C E is the projection of V onto the eigenvectorsx

Ž .of r A . Pulling all this together we havex

y1 y1 y1y1F A s S F C m I E* I m F B SŽ . Ž . Ž .Ž . Ž . /j j

where E* is a tensor product of diagonal matrices.

5. COORDINATES AND A CONCRETE PROCEDURE

The preceding material provides the foundation for the uniform deriva-
tion of a wide variety of concrete Cooley]Tukey type algorithms for
computing the finite Fourier transform. The key transition is to introduce
coordinates so that the computational procedures may actually be calcu-
lated. We introduce coordinates in the following way.

By the fundamental theorem of Abelian groups any finite Abelian group
² :A has a basis a , a , . . . , a . That is, there exists elements a g A of1 2 t i

order n such that A is the direct product of the cyclic subgroupsi
generated by the a . In the terminology of Section 1, we say that A has thei
presentation

A s Zrn Z = Zrn Z = ??? = Zrn Z.1 2 t

And so, each element a g A has a coordinate representation

a s a , a , . . . , aŽ .1 2 t

with 0 F a - n , meaning thati i

a s a a .Ý i i
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In this presentation of A we order the coordinates lexicographically and
2Ž .thus order A. Now relative to a compatibly ordered d-basis of L A , we

write

F A s F m F m ??? m FŽ . n n n1 2 t

Ž 2p i r s. Žwhere F s e . Note that this defines an isomorphism A ªn 0 F r , s- n
ˆ.A.

Now given an Abelian group A and a subgroup B consider the exact
sequence

j
¤

0 ª B ª A ª C ª 0,

Ž .where j c , c g C, is a choice of coset representatives of B in A. Choose
presentations of A, B, and C s ArB. The main theorem of the preceding
sections can now be interpreted as a method for finding a matrix factoriza-

Ž . Ž . Ž .tion of F A in terms of F B and F C .
Ž .We state this as a procedure to factor F A by applying the following

2Ž .steps to a d-basis of L A .

1. Permute the input to form the cosets ArB according to the
2Ž .choice of representatives j . This amounts to reordering a d-basis of L A

2Ž . 2Ž Ž .. 2Ž .corresponding to the isomorphism L A s L j C m L B relative to
the orders defined by the chosen presentations. This is the permutation
Ž .P j .

Ž .2. Compute F B on each of these cosets.
ˆ3. Form the character spaces V , x g B, by collecting the vectorsx

Žcomputed in Step 2 corresponding to each character x . These are in fact
.the image of a d-basis of C.

4. Multiply each of the basis vectors by an appropriate scalar. This is
Ž .the diagonal matrix T 9 h , the ‘‘twiddle factors.’’

Ž .5. Compute F C on each of the character spaces.
Ž .6. Permute the output to obtain F A . This is the permutation Q.

The theory developed earlier guarantees that for any choice of presenta-
tions and choice of coset representative j there is a choice of twiddle
factors in Step 4 and permutation in the last step for which this procedure

Ž .produces a factorization of F A . The theory actually provides more.
Theorem 4.1 enables us to calculate the twiddle factors directly from the
2-cocycle h, defined in Section 4, since as we remarked in Step 3 the basis
we find for the character spaces is the image of a d-basis for C.

As we will see in the next section, not only can we apply this procedure
for specific choices to obtain an algorithm, but also in cases where the
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steps of this procedure can be parametrized we can obtain formulas for
whole classes of factorizations. For example, we will obtain formulas for Fn
in terms of F and F where n s rs.r s

We will now summarize the results of the earlier sections using particu-
lar choices of basis elements. The results will be states in a concrete form
that can be used in the calculation of examples and descriptions of
algorithms.

Let A be an Abelian group of order n, B be a subgroup of order m, and
C s ArB be of order nrm s d. Let j : C ª A be a choice of coset
representatives of ArB.

ˆ ˆLet b ª b be an isomorphism from B ª B. The following notation is
Ž .used for the action of F B on a B coset defined by the coset representa-

Ž .tive j c .

ˆ bF B d s b b d s d .Ž . Ž .Ýbqj Žc. bqj Žc. j Žc.
bgB

A simple calculation shows that d b is in the character space V andˆj Žc. b
� b < 4that d c g C is a basis for V .ˆj Žc. b

b ˆr b9 d s r b9 b b dŽ . Ž . Ž .Ýj Žc. bqj Žc.
bgB

ˆs b b dŽ .Ý bqb9qj Žc.
bgB

ˆs b b9 y b9 dŽ .Ý b9qj Žc.
b9gB

ˆ bs b yb9 d .Ž . j Žc.

� b < 4 2Ž .The basis, d c g C , is the image of the d-basis for L C under thej Žc.
2 ˜Ž .map, D , used in Theorem 4.1, which mapped f g L C to f g V .ˆj b

˜Sometimes the image basis will be called a d-basis.
The following lemma shows the effect of a change of coset representa-

˜tives on a d-basis.

LEMMA 5.1. Let j : C ª A and j 9: C ª A be two choices of coset
� b < 4representatï es for ArB. Then the change of basis matrix d c g C ªj Žc.

� b < 4d c g C is a diagonal matrix whose diagonal elements are charactersj 9Žc.
of B.

Ž . Ž . Ž . Ž .Proof. Since j c ' j 9 c mod B, j c s j 9 c q b9, b9 g B, and the
b bˆŽ .previous calculation shows that d s b yb9 d .j Žc. j 9Žc.
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In a similar fashion to the computation that showed that d b was inj Žc.
˜Ž .V , we can compute that action of r a , a g A, on the d-basis. Write a sb

Ž .j c q b9. Then

r a d b s r j c r b9 d bŽ . Ž . Ž .Ž .j Žc . j Žc .i i

ˆ bs b yb9 r j c dŽ . Ž .Ž . j Žc .i

ˆ ˆs b yb9 b b dŽ . Ž .Ý bqj Žc .qj Žc.i
bgB

ˆ ˆs b yb9 b b dŽ . Ž .Ý bqj Ž x qc.qh Žc , c.i i
bgB

ˆ ˆ ˆs b yb9 b yh c , c b b dŽ . Ž . Ž .Ž . Ýi bqj Žc qc.i
bgB

ˆ bs b yh c , c y b d .Ž .Ž .i j Žc qc.i

ˆŽ . Ž .Assume that a ' a9 mod B. Then r a ' r a9 mod b, meaning thatˆ ˆb b
ˆŽ .their action on V is equivalent up to b b9 for some b9 g B. From thisb̂

observation we see that r is equivalent to the regular representation of Cb̂
2Ž .acting on L C . More specifically,

ˆr j c r j c s b yh c , c r j c q c .Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .ˆ ˆ ˆb i b j i j b i j

We now use this equation to construct a matrix representation of r withb̂
˜respect to a d-basis.

First assume that C is cyclic, of order d, with generator c. The matrix
Ž Ž .. � b < 4representing r j c with respect to the basis d 0 F j - d isb̂ j Ž jc.

ˆ ˆR s S b yh d y 1 c, c , . . . , b yh c, c ,Ž . Ž .Ž . Ž .Ž .Ž .d

and with respect to this basis

ˆ jr j jc s r jj c q b9 s b yb9 RŽ . Ž . Ž .Ž . Ž .ˆ ˆb b

for some b9 g B.
By Lemma 2.1 R is diagonally similar to

ˆ ˆS b yh d y 1 c, c ??? b yh c, cŽ . Ž .Ž . Ž .Ž .ž /d

ˆs S b yh d y 1 c, c y ??? yh c, c .Ž . Ž .Ž .Ž .Ž .d
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ˆŽ Ž ..Therefore B is diagonally similar to S b b9 ford

b9 s yh d y 1 c, c y ??? yh c, c .Ž . Ž .Ž .

ˆ d ˆŽ Ž .. Ž .Moreover, S b b9 is diagonally similar to bS , where b s b b9 .d d
Assume that C is a direct sum and that h is compatible with the direct

Ž Ž .. Ž Ž ..sum. Under these assumptions we show that r j C s r j C mˆ ˆb b 1
Ž Ž ..r j C .b̂ 2

Ž .LEMMA 5.2. Assume C s C = C and that h c , c s 0 for all c g C1 2 1 2 1 1
Ž . Ž . Ž .and c g C . Then r C s r C m r C .ˆ ˆ ˆ2 2 b b 1 b 2

Proof. Define d b m d b s d b . Thenj Žc . j Žc . j Žc qc .1 2 1 2

r cX q cX d b s d b
X XŽ .b̂ 1 2 j Žc qc . j Žc qc .qj Žc qc .1 2 1 2 1 2

s d b
X X

j Žc .qj Žc .qj Žc .qj Žc .1 2 1 2

ˆ X ˆ X b
X Xs b h c , c b h c , c dŽ . Ž .Ž . Ž .1 1 2 2 j Žc qc .qj Žc qc .1 1 2 2

X Xb bs r c d m r c d .Ž . Ž .ˆ ˆb 1 j Žc . b 2 j Žc .1 2

Remark. The assumptions of the previous lemma can be satisfied by
Ž . Ž . Ž .choosing j c q c s j c q j c for c g C and c g C .1 2 1 2 1 1 2 2

² :THEOREM 5.3. Let c , . . . , c s Zrd Z = ??? = Zrd Z be a presenta-1 t 1 t
tion for C s ArB. Then

j j1 tŽ1. Ž1. Ž t . Ž t .ˆr A s b b j , . . . , j S a , . . . , a m ??? m S a , . . . , aŽ . Ž .Ž .ˆ Ž . Ž .½ 5b 1 t d 1 d d 1 d1 1 t t

Ž .where b j , . . . , j is the element of B such that1 t

j j c q ??? qj c s j j c q ??? qj j c q b j , . . . , jŽ . Ž . Ž . Ž .1 1 t t 1 1 t 1 t

and

S a Ž i. , . . . , a Ž i. s r j c .Ž .Ž .ˆŽ .d 1 d b ii i

COROLLARY 5.4. There exists a diagonal matrix T such that

ˆ j1 jt y1<r A s T b b j , . . . , j S m ??? m S 0 F j - d , . . . , 0 F j - d TŽ . Ž .Ž .ˆ ½ 5b 1 t d d 1 1 t t1 t
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6. APPLICATIONS

We now apply the concrete procedure in Section 5 to obtain various
factorizations of the Fourier transform.

6.1. One-Dimensional Examples

We will consider three factorizations for F . Let A s Zr6Z s6
� 4 � 40, 1, 2, 3, 4, 5 and choose B s Zr2Z s 0, 3 . Then C s Zr3Z s
� 409, 19, 29 . We calculate factorizations based on three different choices of
the cross section j : C ª A. The first is a ‘‘natural’’ choice which leads to
the standard one-dimensional Cooley]Tukey algorithm, and we pause to
derive a formula in this case. The second choice is the case where j is
actually a group homomorphism, which can be chosen if A is the direct
product of B and C. In the cyclic case this can be done if the order of B
and C are relatively prime. This choice is the basis of the Good]Thomas
algorithm where the twiddle factors are trivial. Finally, we compute a case
where j is arbitrarily chosen.

w xA standard form of the Cooley]Tukey factorization is given in 8 :

THEOREM 6.1.

F s F m I T sr I m F Lsr ,Ž . Ž .r s r s s r s r

where T sr is a diagonal and Lsr is a permutation matrix.s r

2p i r r s r s ry1Ž r s. iMore explicitly, if v s e , T s [ D , the direct sum ofs sis0
r s � sy14powers of the diagonal matrix D s diag 1, v, . . . , v . And we haves

Ž .DEFINITION 6.1 Stride Permutation . Let x be a vector of length m
and y a vector of length n. Then

Lm n x m y s y m x .Ž .n

The notation indicates that elements of a vector of length mn are
Ž .loaded into n segments, each at stride n. If x s x , x , . . . , x then0 1 m ny1

Lm n x s x , x , . . . , x , . . . , x , x , . . . , x .Ž .n 0 n Žmy1.n ny1 2 ny1 m ny1

We remark that Lr stLr st s Lr st, and hence LNLN s I .s t st n Nr n N
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The load-stride permutation is the permutation that commutes the
factors of the tensor product.

THEOREM 6.2. If A is an m = m matrix, and B is an n = n matrix, then

Lm n A m B s B m A Lm n .Ž . Ž .n n

Equï alently,

B m A s Lm n A m B Lm n .Ž .n n

6.1.1. A Natural j . Now a ‘‘natural’’ cross section j : C ª A is given
Ž .by j j9 s j. With these choices let us apply the procedure.

Ž . 2Ž .Step 1. P j . Permuting the d-basis of L A , we obtain the partition

� 4 � 4 � 4 � 4d , . . . , d s d , d k d , d k d , d ,0 5 0 3 1 4 2 5

where k denotes the disjoint union.
We write the corresponding permutation matrix as

� 4 6P s perm 0, 3, 1, 4, 2, 5 s L ,3

� 4where perm n , n , . . . , n denotes the permutation i ¬ n .0 1 t i

Ž . Ž .Step 2. F B s F . Applying F B s F to each of these cosets we2 2
obtain

d 0 s d q d0 0 3

d 3 s d y d0 0 3

d 0 s d q d1 1 4

d 3 s d y d1 1 4

d 0 s d q d2 2 5

d 3 s d y d .2 2 5

Step 3. V . Gathering these vectors at stride 2 we form the twox

character spaces of B.

² 0 0 0:V s d , d , d0 0 1 2

² 3 3 3:V s d , d , d .3 0 1 2

Ž .Step 4. T 9 h . Now to find the appropriate twiddle factors we must
compute the regular representation of A restricted to these character
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spaces. We can do this directly or appeal to Theorem 4.1. In the first
instance we have

r 1 d 0 s r 1 d q dŽ . Ž . Ž .0 0 3

s d q d1 4

s d 0
1

r 1 d 0 s r 1 d q dŽ . Ž . Ž .1 1 4

s d q d2 5

s d 0
2

r 1 d 0 s r 1 d q dŽ . Ž . Ž .2 2 5

s d q d3 0

s d 0
0

r 1 d 3 s r 1 d y dŽ . Ž . Ž .0 0 3

s d y d1 4

s d 3
1

r 1 d 3 s r 1 d y dŽ . Ž . Ž .1 1 4

s d y d2 5

s d 3
2

r 1 d 3 s r 1 d y dŽ . Ž . Ž .2 2 5

s d y d3 0

s yd 3.0

And so

0 0 1
<r 1 s r 1 s s SŽ . Ž . 1 0 0V 0 30 ž /0 1 0

and

0 0 y1
<r 1 s r 1 s s S y1 .Ž . Ž . Ž .1 0 0V 3 33 ž /0 1 0
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Ž .Now we compute r 1 directly using Theorem 4.1. Recall that rj
2Ž .restricted to the character space V can be viewed as acting on L C . Ifx

Ž . X 2Ž .a s j c q b and x g C, then if d is the d-basis of L C ,x

r a d X s x yh x , c y b d X ,Ž . Ž .Ž .j x j xqc

and thus, in the case at hand,

r 1 d X s x yh x , 19 d X .Ž . Ž .Ž .j x j xq19

From the ‘‘natural’’ choice of coset representatives, the 2-cocycle h is
Ž .particularly simple. In fact, h x, 19 is zero except when x s 29 and then

Ž .h 29, 19 s 3. Thus,

0 0 x y3Ž .j

r 1 s ,Ž .j 1 0 0� 00 1 0

which confirms the result already calculated.
Now in order for F to diagonalize these matrices we must multiply by a3

diagonal, the twiddle factors. From the discussion in Section 2 we have

1
1

1
T 9 s ,1

v� 0
2v

where v s e2p i r6.
Ž . 2 2p i r3Step 5. F C . Now, noting that v s e , apply F in each of these3

spaces to obtain

n s d 0 q d 0 q d 0
0 0 1 2

n s d 0 q v 2d 0 q v 4d 0
1 0 1 2

n s d 0 q v 4d 0 q v 4d 0
2 0 1 2

n s d 3 q vd 3 q v 2d 3
3 0 1 2

n s d 3 q v 3d 3 q d 3
4 0 1 2

n s d 3 q v 5d 3 q v 4d 3.5 0 1 2
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Step 6. Q. Now that n ’s are the characters of A in some order. So toj
find the output permutation, all we need to do is to determine which ones

ˆthey are, relative to the initial order of A, or the order carried over by the
mapping a ¬ a and our choice of the order on A. We have chosen theˆ

Ž . 2p i a x r6 a xcharacters of A, a x s e s v for a g A. So, the most straight-ˆ
forward way to determine which character is n is to evaluate it at thej
generator 1 of A. We have from Step 2

1 if j s 1kd 1 sŽ .j ½ 0 otherwise.

Thus, from Step 5,

n 1 s 1 s x 1Ž . Ž .0 0

n 1 s v 2 s x 1Ž . Ž .1 2

n 1 s v 4 s x 1Ž . Ž .2 4

n 1 s v1 s x 1Ž . Ž .3 1

n 1 s v 3 s x 1Ž . Ž .4 3

n 1 s v 5 s x 1 .Ž . Ž .5 5

And so, the required permutation is a gather at stride 3:

� 4 6Q s perm 0, 3, 1, 4, 2, 5 s L .3

To summarize, by this procedure we have obtained the factorization

F s L6 I m F T 9L6 I m F L6 .Ž . Ž .6 3 2 3 2 3 2 3

This can be brought to our standard form,

F s F m I T I m F L6 ,Ž . Ž .6 3 2 3 2 3

� 24 Ž 6 .y1 6where T s diag 1, 1, 1, v, 1, v , by observing the following: L s L ,2 3

T s L6 T 9L6
3 2

and

F m I s L6 I m F L6 .Ž .3 2 3 2 3 2

6.1.2. 1-D Cooley]Tukey. Let A ( ZrmnZ, and let B - A s
� Ž . 40, m, . . . , n y 1 m . B ( ZrnZ and C s ArB ( ZrmZ. Choose
� 40, 1, . . . , m y 1 as coset representatives for ArB.
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ˆ ˆLEMMA 6.3. Let b g B and let r be the regular representation of A. Then,
for 0 F j - m,

j
ˆ0 0 ??? 0 b ymŽ .

1 0 0 0
ˆr j s S b m s ,Ž . Ž . 0 1Ž .m . .. .. .� 0

0 0 ??? 1 0

� b b 4with respect to the basis d , . . . , d .0 my1

Lemma 6.3 implies the following lemma.

ˆ ˆ<LEMMA 6.4. Let x g A be a character such that x s b. ThenB

0 0 ??? 0 x mŽ .
1 0 0 0
0 1diag x 0 , x 1 , . . . , x m y 1� 4Ž . Ž . Ž .

. .. .. .� 0
0 0 ??? 1 0

=diag x 0 , x y1 , . . . , x y m y 1� 4Ž . Ž . Ž .Ž .

0 0 ??? 0 1
1 0 0 0
0 1s x y1 .Ž . . .. .. .� 0
0 0 ??? 1 0

LEMMA 6.5. Let x , . . . , x be characters in A that restrict to the charac-1 n
Ž Ž .. my 1 2Ž .ters in B, D s D x 1 , and T s [ D . Then by Theorem 3.3 L A si i iis0

[ny1V andxis0 i

my1 my1
y1r 1 s S x m s T x 1 S T .Ž . Ž . Ž .Ž .[ [m i i mž /is1 is0

THEOREM 6.6. Using this decomposition we obser̈ e that the Fourier
transform matrix for ZrmnZ can be factored,

F s Q x I m F T F m I ,Ž . Ž . Ž .m n m n m n

ˆŽ .where Q x is a permutation determined by the choice of characters in A that
ˆrestrict to the characters in B.
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Ž .The permutation Q x can be determined by comparing the order of
Ž . Ž .the eigenvalues of r 1 obtained by F A to those obtained by this

Ž .factorization. Diagonalizing S by F C results in a matrix whose diagonalm
ˆ ˆŽ . Želements are k 1 for the characters in K see Section 3 for the definition

ˆ ˆ ˆ.of K . Since the x are a set of coset representatives for ArK, thei
resulting diagonal elements obtained from the factorization in the theo-

ˆŽ . Ž .rem, x 1 k 1 , are the characters of A evaluated at 1.i
2p i jr m n Ž .If x is chosen to be e , then Q x is a stride permutation andj

the resulting formula is the standard decimation in frequency algorithm
w x8 .

6.1.3. A Splitting j . Returning to our example of F , there is another6
choice of j for which h is even simpler. In fact, since 2 and 3 are relatively
prime we can choose j to be a homomorphisms j : C ª A. Under these
circumstances we say that j is a splitting of the sequence:

j
¤

0 ª B ª A ª C ª 0.

If j is homomorphism, h ' 0 and, in Step 4, all the twiddle factors will be
1. So, let

j 09 s 0Ž .
j 19 s 4Ž .
j 29 s 2.Ž .

It is easy to see that with this set of choices j is a homomorphism.

Ž .Step 1. P j .

� 4 � 4 � 4 � 4d , . . . , d s d , d k d , d k d , d .0 5 0 3 4 1 2 5

� 4Write P s perm 0, 3, 4, 1, 2, 5 .
Ž .Step 2. F B s F . Let2

d 0 s d q d0 0 3

d 3 s d y d0 0 3

d 0 s d q d1 4 1

d 3 s d y d1 4 1

d 0 s d q d2 2 5

d 3 s d y d .2 2 5
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Step 3. V .x

² 0 0 0:V s d , d , d0 0 1 2

² 3 3 3:V s d , d , d .3 0 1 2

Ž .Step 4. T 9 h .

r 1 d 0 s r 1 d q dŽ . Ž . Ž .0 0 3

s d q d1 4

s d 0
1

r 1 d 0 s r 1 d q dŽ . Ž . Ž .1 4 1

s d q d5 2

s d 0
2

r 1 d 0 s r 1 d q dŽ . Ž . Ž .2 2 5

s d q d3 0

s d 0
0

r 1 s r 1 d y dŽ . Ž . Ž .0 3

s d y d1 4

s yd 3
1

r 1 d 3 s r 1 d y dŽ . Ž . Ž .1 4 1

s d y d5 2

s yd 3
2

r 1 d 3 s r 1 d y dŽ . Ž . Ž .2 2 5

s d y d3 0

s yd 3.0

And so,

0 0 1
r 1 s s SŽ . 1 0 00 3ž /0 1 0
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and

0 0 y1
r 1 s s yS .Ž . y1 0 03 3ž /0 y1 0

Ž . Ž .Now we compute r 1 directly using Theorem 4.1. Here 1 s j 19 q 3j
and h ' 0 so

r 1 d X s x y3 d X .Ž . Ž .j x j xq19

Thus,

r 1 s x y3 S ,Ž . Ž .j j 3

Ž .which confirms the result already calculated. Since F diagonalizes r 1 ,3 j
all the twiddle factors T 9 are ones.

Ž .Step 5. F C . Now apply F in each of these spaces to obtain3

n s d 0 q d 0 q d 0
0 0 1 2

n s d 0 q v1d 0 q v 4d 0
1 0 1 2

n s d 0 q v 4d 0 q v 4d 0
2 0 1 2

n s d 3 q d 3 q d 3
3 0 1 2

n s d 3 q v 2d 3 q v 4d 3
4 0 1 2

n s d 3 q v 4d 3 q v 2d 3.5 0 1 2

Step 6. Q. Now again, the n ’s are characters of A in some order. Wej
have

1 if j s 1 and k s 0¡
k ~d 1 sŽ . y1 if j s 1 and k s 3j ¢

0 otherwise.

Thus,

n 1 s 1 s x 1Ž . Ž .0 0

n 1 s v 2 s x 1Ž . Ž .1 2

n 1 s v 4 s x 1Ž . Ž .2 4

n 1 s v 3 s x 1Ž . Ž .3 3

n 1 s v 5 s x 1Ž . Ž .4 5

n 1 s v1 s x 1 .Ž . Ž .5 1
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� 4Writing Q s perm 0, 2, 4, 3, 5, 1 , we obtain the factorization

F s Q I m F L6 I m F P .Ž . Ž .6 2 3 2 3 2

To obtain our standard form we write Q s Q9L6 and3

F s Q9 F m I I m F P ,Ž . Ž .6 3 2 3 2

� 4where Q9 s perm 0, 3, 2, 5, 4, 1 .

6.1.4. An Arbitrary j . Finally, we compute a factorization for one more
choice of coset representatives:

j 09 s 0Ž .
j 19 s 4Ž .
j 29 s 5.Ž .

Ž .Step 1. P j .

� 4 � 4 � 4 � 4d , . . . , d s d , d k d , d k d , d .0 5 0 3 4 1 5 2

� 4And P s perm 0, 3, 4, 1, 5, 2 .
Ž .Step 2. F B s F . All we need for this computation are the values of2

d k at 1 g A:j

1 if j s 1 and k s 0¡
k ~d 1 sŽ . y1 if j s 1 and k s 3j ¢

0 otherwise.

Step 3. V .x

² 0 0 0:V s d , d , d0 0 1 2

² 3 3 3:V s d , d , d .3 0 1 2
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Ž .Step 4. T 9 h . We compute this directly from Theorem 4.1. Since
Ž . Ž .x ' 1 we always have r 1 s S . Since 1 s j 19 q 3, for the other0 0 3

character space V we have3

0 0 x yh 29, 19Ž .Ž .3

x yh 09, 19 0 0Ž .Ž .r 1 s x y3Ž . Ž . 33 3 � 00 x yh 19, 19 0Ž .Ž .3

0 0 y1
s y 1 0 0ž /0 y1 0

or
r 1 s S 1, y1, 1 .Ž . Ž .3 3

Ž . Ž .We know that S 1, y1, 1 is diagonally similar to S y1 , with similar-3 3
� 4ity transform diag 1, y1, y1 . Thus,

� 2 4 � 4 54T 9 s diag 1, 1, 1, 1, yv , yv s diag 1, 1, 1, 1, v , v .

Ž .Step 5. F C .

n s d 0 q d 0 q d 0
0 0 1 2

n s d 0 q v 2d 0 q v 4d 0
1 0 1 2

n s d 0 q v 4d 0 q v 4d 0
2 0 1 2

n s d 3 q v 4d 3 q v 5d 3
3 0 1 2

n s d 3 q d 3 q vd 3
4 0 1 2

n s d 3 q v 2d 3 q vd 3.5 0 1 2

Step 6. Q. To find the required output permutation we evaluate the
n ’s at 1. Thus,j

n 1 s 1 s x 1Ž . Ž .0 0

n 1 s v 2 s x 1Ž . Ž .1 2

n 1 s v 4 s x 1Ž . Ž .2 4

n 1 s yv 4 s v1 s x 1Ž . Ž .3 1

n 1 s y1 s v 3 s x 1Ž . Ž .4 3

n 1 s yv 2 s v 5 s x 1 .Ž . Ž .5 5

And so, the required permutation in Step 6 is a gather at stride 3, Q s L6 .3
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6.2. Two-Dimensional Examples

Ž .We now compute two two-dimensional 2-D examples. The first is a
coherent presentation with a natural choice of j . Just as in the one-dimen-

Ž .sional 1-D case, this leads to a general formula for a 2-D factorization.
Then we look at the example given in the Introduction of a presentation
that is not coherently presentable. This case is not only potentially inter-

w xesting for algorithm design, but, as in crystallographic FFT’s 1, 2 , it arises
naturally when the subgroup B is determined by other features of the
problem.

6.2.1. A Coherent Case. Let A s Ar4Z = Zr4Z:

A s 0, 0 , 0, 1 , . . . , 0, 3 , 1, 0 , 1, 1 , . . . , 3, 2 , 3, 3 .� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Let B - A,

B s Zr2Z = Zr2Z s 0, 0 , 0, 2 , 2, 0 , 2, 2 .� 4Ž . Ž . Ž . Ž .

Then C can be presented as Zr2Z = Zr2Z,

C s 09, 09 , 09, 19 , 19, 09 , 19, 19 .� 4Ž . Ž . Ž . Ž .

We can choose natural orbit representatives so that j simply removes the
Ž . Ž .primes, j j9, k9 s j, k .

Since our presentations are coherent, everything from the one-dimen-
sional case carried over by using the tensor product in each step. We write

2Ž . 2Ž . 2Ž .L Zr4Z = Zr4Z s L Zr4Z m L Zr4Z with d-basis d s d m d fori j i j
0 F i, j - 4. And the regular representation of A is the tensor product of
the regular representations of Zr4Z,

r k , l s r k m r lŽ . Ž . Ž .
or

r k , l d s d .Ž . i j iqk , jql

We obtain the four characters of B by restriction of the characters of A to
B, x s x ? x , x s x ? x , x s x ? x , and x s x ? x .00 0 0 02 0 2 20 2 0 22 2 2

Ž .Step 1. P j . The choice of the natural j partitions the d-basis:

� 4 � 4d , . . . , d s d , d , d , d00 33 00 02 20 22

� 4k d , d , d , d01 03 21 23

� 4k d , d , d , d10 12 30 32

� 4k d , d , d , d .11 13 31 33
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With lexicographic order on the indices we have

� 4P s perm 00, 02, 20, 22, 01, 03, 21, 23, 10, 12, 30, 32, 11, 13, 31, 33 .

Ž .Step 2. F B s F m F . Apply F m F to each of these cosets. For2 2 2 2
example, for the first coset we have

d 00 s d q d q d q d00 00 02 20 22

d 02 s d y d q d y d00 00 02 20 22

d 20 s d q d y d y d00 00 02 20 22

d 22 s d y d y d q d .00 00 02 20 23

To obtain the general case, first compute the 1-D case

d 0 s d q d0 0 2

d 2 s d y d0 0 2

d 0 s d q d1 1 3

d 2 s d y d .1 1 3

It can be readily verified that the image of F m F is given by2 2

d i j s d i m d j,k l k l

Ž .ordered by lexicographic order on the multiindex k, l, i, j . In order to
find the output permutation in Step 6 we will need to know the values of
the d i j on the generators of A. Since, from the 1-D case case,k l

1 if k s 0id 0 sŽ .k ½ 0 otherwise

and

1 if k s 1id 1 sŽ .k ½ 0 otherwise,

we have

d i j 0, 1 s d i 0 m d j 1Ž . Ž . Ž .k l k l

1 if k s 0 and l s 1s ½ 0 otherwise
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and

d i j 1, 0 s d i 1 m d j 0Ž . Ž . Ž .k l k i

1 if k s 1 and l s 0s ½ 0 otherwise.

Step 3. Form V . Bases for the character spaces can be found byx

gathering the d i j at stride 4.k l

² 00 00 00 0 :V s d , d , d , d00 00 01 10 11

² 02 02 0 02:V s d , d , d , d02 00 01 210 11

² 20 20 20 20:V s d , d , d , d20 00 01 10 11

² 22 22 22 22:V s d , d , d , d .22 00 01 10 11

Or

V s V m V .i j i j

Ž .Step 4. T 9 h . Since

< <r V s r V m Vi j i j

or

r s r m ri j i j

we can readily compute r and the required twiddle factors from the 1-Di j
case. Indeed,

r 0, 1 s I m SŽ .00 2 2

r 1, 0 s S m IŽ .00 2 2

r 0, 1 s I m S y1Ž . Ž .02 2 2

r 1, 0 s S m IŽ .02 2 2

r 0, 1 s I m SŽ .20 2 2

r 1, 0 s S y1 m IŽ . Ž .20 2 2

r 0, 1 s I m S y1Ž . Ž .22 2 2

r 1, 0 s S y1 m I ,Ž . Ž .22 2 2
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and therefore the required twiddle factors are

T 9 s I m I [ I m W [ W m I [ W m W ,Ž . Ž . Ž . Ž .2 2 2 2 2 2 2 2

where

� 4W s diag 1, i .2

Ž . Ž .Step 5. F C s F m F . Apply F C .2 2

n 00 s d 00 q d 00 q d 00 q d 00
00 00 01 10 11

n 01 s d 00 y d 00 q d 00 y d 00
00 00 01 10 11

n 10 s d 00 q d 00 y d 00 y d 00
00 00 01 10 11

n 11 s d 00 y d 00 y d 00 q d 00
00 00 01 10 11

n 00 s d 02 q id 02 q d 02 q id 02
02 00 01 10 11

n 01 s d 02 y id 02 q d 02 y id 02
02 00 01 10 11

n 10 s d 02 q id 02 y d 02 y id 02
02 00 01 10 11

n 11 s d 02 y id 02 y d 02 q id 02
02 00 01 10 11

n 00 s d 20 q d 20 q id 20 q id 20
20 00 01 10 11

n 01 s d 20 y d 20 q id 20 y id 20
20 00 01 10 11

n 10 s d 20 q d 20 y id 20 y id 20
20 00 01 10 11

n 11 s d 20 y d 20 y id 20 q id 20
20 00 01 10 11

n 00 s d 22 q id 22 q id 22 y d 22
22 00 01 10 11

n 01 s d 22 y id 22 q id 22 q d 22
22 00 01 10 11

n 10 s d 22 q id 22 y id 22 q d 22
22 00 01 10 11

n 11 s d 22 y id 22 y id 22 y d 22 .22 00 01 10 11

Step 6. Q. Now the n i j’s are characters of A in some order. To findk l
the output permutation we need to determine which ones they are. We can
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Ž . Ž .do this by evaluating them on the generators 0, 1 and 1, 0 of A. Now$ $ˆA s Zr4Z = Zr4Z and A s Zr4Z = Zr4Z. So the characters of A in
the chosen order are

x x , y s x x ? x y s i k xql yŽ . Ž . Ž .k l k l

for 0 F k, l, x, y - 4.
Thus, referring to Steps 2 and 5, we have

n 00 0, 1 s 1Ž .00

00 00n 1, 0 s 1 « n s xŽ .00 00 00

01n 0, 1 s y1Ž .00

01 01n 1, 0 s 1 « n s xŽ .00 00 02

10n 0, 1 s 1Ž .00

10 10n 1, 0 s y1 « n s xŽ .00 00 20

11n 0, 1 s y1Ž .00

11 11n 1, 0 s y1 « n s xŽ .00 00 22

n 00 0, 1 s iŽ .02

00 00n 1, 0 s 1 « n s xŽ .02 02 01

01n 0, 1 s yiŽ .02

01 01n 1, 0 s 1 « n s xŽ .02 02 03

10n 0, 1 s iŽ .02

10 10n 1, 0 s y1 « n s xŽ .02 02 21

11n 0, 1 s yiŽ .02

11 11n 1, 0 s y1 « n s xŽ .02 02 23

n 00 0, 1 s 1Ž .20

00 00n 1, 0 s i « n s xŽ .20 20 10

01n 0, 1 s y1Ž .20

01 01n 1, 0 s i « n s xŽ .20 20 12

10n 0, 1 s 1Ž .20

10 10n 1, 0 s yi « n s xŽ .20 20 30

11n 0, 1 s y1Ž .20

11 11n 1, 0 s yi « n s xŽ .20 20 32
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n 00 0, 1 s iŽ .22

00 00n 1, 0 s i « n s xŽ .22 22 11

01n 0, 1 s yiŽ .22

01 01n 1, 0 s I « n s xŽ .22 23 13

10n 0, 1 s iŽ .22

10 10n 1, 0 s yi « n s xŽ .22 22 31

11n 0, 1 s yiŽ .22

11 11n 1, 0 s yi « n s x .Ž .22 22 33

Hence, the output permutation is

� 4Q s perm 00, 02, 20, 22, 01, 03, 21, 23, 10, 12, 30, 32, 11, 13, 31, 33 .

In fact, Q s P. So we have found the factorization

F m F s P I m F m F T 9L16 I m F m F P .Ž . Ž .Ž . Ž .4 4 4 2 2 4 4 2 2

Or, writing P s Q9L16 and T s L16T 9L16,4 4 4

F m F s Q9 F m F m I T I m F m F P .Ž . Ž .Ž . Ž .4 4 2 2 4 4 2 2

6.2.2. 2-D Cooley]Tukey. Let A s Zrm n Z = Zrm n Z, and let1 1 2 2
�Ž . < 4B s B = B s im , jm 0 F i - n , 0 F j - n . Then B ( Zrn Z =1 2 1 2 1 2 1

Zrn Z, and C s ArB s C = C ( Zrm Z = Zrm Z. We can choose2 1 2 1 2
�Ž . < 4i, j 0 F i - m , 0 F j - m as coset representatives of ArB.1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆLEMMA 6.7. Let b g B. Then b s b m b for b g B and b g B . Let1 2 1 1 2 2
r be r restricted to V . Then, for 0 F k - m and 0 F l - m ,ˆ ˆ ˆb mb b 1 21 2

k lˆ ˆr k , l s S b ym m S b ym ,Ž . Ž . Ž .Ž . Ž .ˆ ˆb mb m 1 1 m 2 21 2 1 2

� b <with respect to the lexicographically ordered basis d 0 F i - m , 0 F j -Ž i, j. 1
4m .2

ˆSince B is a coherently presentable subgroup we can find x m c g A
ˆ ˆ< <such that x s b and c s b .B B1 21 2

ˆ ˆ ˆ< <LEMMA 6.8. Let x m c g A with x s b and c s b , and letB B1 21 2

Ž Ž .. Ž Ž Ž ..D s D x 1 and D D c 1 . Then1 2

k ly1 ˆ ˆD m D S b ym m S b ym D m DŽ . Ž . Ž . Ž .Ž . Ž .1 2 m 1 1 m 2 2 1 2ž /1 2

s x k x l Sk m Sl .Ž . Ž . Ž .1 2 m m1 2
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ˆLEMMA 6.9. Let x m c , 0 F i - n , 0 F j - n be characters in A thati j 1 2
ˆrestrict to the characters in B. Then

T s D x 1 m D c 1 .Ž . Ž .Ž . Ž .[ Ž .i j
i , j

Then

lk y1T S x ym m S c ym TŽ . Ž .Ž . Ž .[ m i 1 m j 2ž /1 2ž /
i , j

s x k c l Sk m SlŽ . Ž .[ Ž .ž /i j m m1 2
i , j

Therefore we obtain the following factorization of the multidimensional
Fourier transform F m F .m n m n1 1 2 2

THEOREM 6.10.

F m F s Q I m F m F T F m F m I P ,Ž . Ž .Ž . .m n m n n n m m n n m m1 1 2 2 1 2 1 2 1 2 1 2

where Q and P are permutation matrices.

6.2.3. A Non-coherent Case. We now consider a case when the presen-
tation of B - A is not coherent. From the Introduction, let

A s Zr2Z = Zr8Z s 0, 0 , 0, 1 , . . . , 0, 7 , 1, 0 , . . . , 1, 7� 4Ž . Ž . Ž . Ž . Ž .
and

B s Zr4Z s 0, 0 , 1, 2 , 0, 4 , 1, 6 .� 4Ž . Ž . Ž . Ž .
Then B is not coherently presented in A. In fact, there is no presentation

² :in which B is coherently presented. Indeed, there is no basis a, a9 of A,
² :such that there is an r with ra a basis of B.

Now compute a presentation of C s ArB. To do this in general, we
would have to compute something like the Smith normal form, but here it

Ž .is easy to see that 0, 1 is of order 4 in ArB and hence C s Zr4Z.

� 4C s 09, 19, 29, 39

Ž . Ž .and choose j j9 s 0, j .

Ž .Step 1. P j . With these choices we have

� 4 � 4d , d , . . . , d s d , d , d , d00 01 77 00 12 04 16

� 4k d , d , d , d01 13 05 17

� 4k d , d , d , d02 14 06 10

� 4k d , d , d , d .03 15 07 11
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With lexicographic order on the indices we have

� 4P s perm 00, 12, 04, 16, 01, 13, 05, 17, 02, 14, 06, 10, 03, 15, 07, 11 .

Ž . Ž .Step 2. F B s F . Computing F B we have4

d 00 s d q d q d q d00 00 12 04 16

d 12 s d q id y d y id00 00 12 04 16

d 04 s d y d q d y d00 00 12 04 16

d 16 s d y id y d q id00 00 12 04 16

d 00 s d q d q d q d01 01 13 05 17

d 12 s d q id y d y id01 01 13 05 17

d 04 s d y d q d y d01 01 13 05 17

d 16 s d y id y d q id01 01 13 05 17

d 01 s d q d q d q d02 02 14 06 10

d 12 s d q id y d y id02 02 14 06 10

d 04 s d y d q d y d02 02 14 06 10

d 16 s d y id y d q id02 02 14 06 10

d 00 s d q d q d q d03 03 15 07 11

d 12 s d q id y d y id03 03 15 07 11

d 04 s d y d q d y d03 03 15 07 11

d 16 s d y id y d q id03 03 15 07 11

i Ž .For Step 6 we need to note the values of the d ’s at the generators, 0, 1 ,j
Ž .and 1, 0 , of A. All are zero except

d 00 0, 1 s 1Ž .01

d 12 0, 1 s 1Ž .01

d 04 0, 1 s 1Ž .01

d 16 0, 1 s 1Ž .01
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and

d 00 1, 0 s 1Ž .02

d 12 1, 0 s yiŽ .02

d 04 1, 0 s y1Ž .02

d 16 1, 0 s i .Ž .02

Step 3. V . Collect as indicated by the superscripts at stride 4.x

² 00 00 00 00:V s d , d , d , d00 00 01 02 03

² 12 12 12 12:V s d , d , d , d12 00 01 02 03

² 04 04 04 04:V s d , d , d , d04 00 01 02 03

² 16 16 16 16:V s d , d , d , d .16 00 01 02 03

Ž .Step 4. T 9 h . We have

r 0, 1 s S ,Ž .00 4

r 0, 1 s S y1 ,Ž . Ž .12 4

r 0, 1 s S ,Ž .04 4

r 0, 1 s S y1 .Ž . Ž .16 4

Ž . Ž .Since j 19 s 0, 1 there is no need to look at the other generator of A.
Ž . Ž .But it is interesting to observe that 1, 0 ' 2 1, 0 mod B, or more explic-

Ž . Ž . Ž .itly, 1, 0 s 2 0, 1 q 1, 6 and we have
2 2r 1, 0 s x y 1, 6 r 0, 1 s S s S m I ,Ž . Ž . Ž .Ž . Ž .00 00 00 4 2 2

2 2
r 1, 0 s x y 1, 6 r 0, 1 s iS y1 s iS y1 m I ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .12 12 12 4 2 2

2 2r 1, 0 s x y 1, 6 r 0, 1 s yS s yS m I ,Ž . Ž . Ž .Ž . Ž .04 04 04 4 2 2

2 2
r 1, 0 s x y 1, 6 r 0, 1 s yiS y1 s yiS y1 m I .Ž . Ž . Ž . Ž . Ž .Ž . Ž .16 16 16 4 2 2

Now we compute the twiddle factors. Let v s e2p i r8 and

1
v

W s .4 2v� 03v

Then,
T 9 s I [ W [ I [ W .4 4 4 4
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Ž . 2 4Step 5. F C s F . We have, with i s v and y1 s v ,4

n 0 s d 00 q d 00 q d 00 q d 00
0 00 01 02 03

n 1 s d 00 q v 2d 00 q v 4d 00 q v 6d 00
0 00 01 02 03

n 2 s d 00 q v 4d 00 q d 00 q v 4d 00
0 00 01 02 03

n 3 s d 00 q v 6d 00 q v 4d 00 q v 2d 00
0 00 01 02 03

n 0 s d 12 q vd 12 q v 2d 12 q v 3d 12
1 00 01 02 03

n 1 s d 12 q v 3d 12 q v 6d 12 q vd 12
1 00 01 02 03

n 2 s d 12 q v 5d 12 q v 2d 12 q v7d 12
1 00 01 02 03

n 3 s d 12 q v7d 12 q v 6d 12 q v 5d 12
1 00 01 02 03

n 0 s d 04 q d 04 q d 04 q d 04
2 00 01 02 03

n 1 s d 04 q v 2d 04 q v 4d 04 q v 6d 04
2 00 01 02 03

n 2 s d 04 q v 4d 04 q d 04 q v 4d 04
2 00 01 02 03

n 3 s d 04 q v 6d 04 q v 4d 04 q v 2d 04
2 00 01 02 03

n 0 s d 16 q vd 16 q v 2d 16 q v 3d 16
3 00 01 02 03

n 1 s d 16 q v 3d 16 q v 6d 16 q vd 16
3 00 01 01 03

n 2 s d 16 q v 5d 16 q v 2d 16 q v7d 16
3 00 01 02 03

n 3 s d 16 q v7d 16 q v 6d 16 q v 5d 16
3 00 01 02 03

Step 6. Q. To compute the output permutation, we must evaluate the
n i’s at the generators of A. Indeed, the characters of A are, in lexico-j

ˆgraphic order x g A, for 0 F i - 2, 0 F j - 8 wherei j

i k jlx k , l s y1 v .Ž . Ž .i j

Thus, referring to Steps 2 and 5,

n 0 0, 1 s 1Ž .0

0 0n 1, 0 s 1 « n s xŽ .0 0 00

1 2n 0, 1 s vŽ .0

1 1n 1, 0 s y1 « n s xŽ .0 0 12

2 4n 0, 1 s vŽ .0

2 2n 1, 0 s 1 « n s xŽ .0 0 04

3 6n 0, 1 s vŽ .0

3 3n 1, 0 s y1 « n s xŽ .0 0 16
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n 0 0, 1 s vŽ .1

0 0n 1, 0 s 1 « n s xŽ .1 1 01

1 3n 0, 1 s vŽ .1

1 1n 1, 0 s y1 « n s xŽ .1 1 13

2 5n 0, 1 s vŽ .1

2 2n 1, 0 s 1 « n s xŽ .1 1 05

3 7n 0, 1 s vŽ .1

3 3n 1, 0 s y1 « n s xŽ .1 1 17

n 0 0, 1 s 1Ž .2

0 0n 1, 0 s y1 « n s xŽ .2 2 10

1 2n 0, 1 s vŽ .2

1 1n 1, 0 s 1 « n s xŽ .2 2 02

2 4n 0, 1 s vŽ .2

2 2n 1, 0 s y1 « n s xŽ .2 2 14

3 6n 0, 1 s vŽ .2

3 3n 1, 0 s 1 « n s xŽ .2 2 06

n 0 0, 1 s vŽ .3

0 0n 1, 0 s y1 « n s xŽ .3 3 11

1 3n 0, 1 s vŽ .3

1 1n 1, 0 s 1 « n s xŽ .3 3 03

2 5n 0, 1 s vŽ .3

2 2n 1, 0 s y1 « n s xŽ .3 3 15

3 7n 0, 1 s vŽ .3

3 3n 1, 0 s 1 « n s x .Ž .3 3 07

Hence, the output permutation is

� 4Q s perm 00, 12, 04, 16, 01, 13, 05, 17, 10, 02, 14, 06, 11, 03, 15, 07 .

And we have found the interesting factorization

F m F s Q I m F T 9L16 I m F P .Ž . Ž .2 8 4 4 4 4 4
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Or, writing Q s Q9L16 and L16T 9L16,4 4 4

F m F s Q9 F m I T I m F P .Ž . Ž .2 8 4 4 4 4

7. PROGRAMMING CONSIDERATIONS

Our goal as implementers is to construct a program to efficiently
evaluate the linear computation

y s Fx ,

where F is generally a 1-D, 2-D, or 3-D Fourier transform. In these cases,
if the data is linearly ordered, F s F , F m F , or F m F m F . Then n n n n n1 2 1 2 3

approach we have suggested is to apply repeatedly the concrete procedure
to factor F into small Fourier transforms that we may assume are
efficiently implemented. Along the way we will pick up tensor products,

Ž .diagonal multiplications twiddle factors , and, most importantly, permuta-
tions. The code for each of the resulting factors can be combined to give a
program for the computation. The resulting formula can also be alge-
braically manipulated to produce many different algorithms with different
performance characteristics. For a detailed discussion of how this code can

w xbe generated see 9 .
One of the main features of this paper is to show how, possibly at the

cost of non-standard twiddle factors, the class of resulting permutations
may be enlarged from the standard approach. The performance bottleneck
for implementations of the FFT for large data sets on modern computer

w xarchitectures is the data flow 3 . These new permutations may enable us
to find better implementations of the Fourier transform. This is especially
true in the multidimensional case. To see why this is true, consider the
choices the programmer has in applying the factorization procedure. In
1-D, the presentation of B - A, and hence ArB is essentially unique.
This is because of the general fact that a cyclic group has a unique
subgroup of a given order. So in 1-D, the only free choice is the cross
section j . In 2-D, the situation is considerably more complex and fruitful.
Given A there are many non-isomorphic B’s to choose of a given size.
Furthermore, even if we choose isomorphic B’s it can happen that the
resulting quotients C’s are not isomorphic. This, together with the choice
of cross sections, gives the algorithm designer considerable flexibility in
matching an algorithm to a specific machine to obtain a high performance
implementation.

We report the results of an experiment we conducted which suggest that
these ideas may have a practical value in implementing multidimensional
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Fourier transforms. Consider the problem of implementing a square 2-D
Fourier transform F m F with N s 2 n. A standard modification of theN N
row]column method uses the factorization

y s LN 2
I m F LN 2

I m F xŽ . Ž .N N N N N N

where the load-stride at stride N, LL2
, is transposition. In words, this says:N

apply F to the N rows of the data, transpose the columns into rows,N
repeat, and transpose back. Presuming that an efficient implementation of
F is available, this reduces the problem to finding an efficient implemen-N
tation of transposition.

On machines with a hierarchical or distributed memory the behavior of
load-stride permutations for large data sizes varies with the stride. Our test
machine was a Sun Sparc 10 model 41 running under Solaris 1.0 with the
following memory hierarchy:

16 y KB on-chip cache

1 y MB on-board cache
64 y MB main memory

400 y MB swapfile

Ž .For complex data 8 bytes per point we obtained wall-clock timings for a
straightforward implementation of y ¤ L2 24

x. These are shown in Table I.s
Thus, or row]column evaluation of F 12 m F 12 takes more than 72,0002 2
seconds!

One approach to handling the situation is to use a multipass algorithm
w x 2 24

to do the transposition 10 . In fact, a simple one would be to do L six4
times based on the factorization Lr st s Lr stLr st. However, the followingst s t
observations suggest a faster implementation might be obtained by the
methods we have developed in this paper.

TABLE I
Wall Clock Timings of Load]Stride

Ž .Stride s Time s

Ž .1 copy 173
2 197
4 259
16 774
64 2819

Ž .4096 transposition ) 72000
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TABLE II
Wall Clock Timings of 2-D Cooley]Tukey

Ž .Factor Time secs

Q 178
242
22L 2592

Ž .11 11I m F m F 1984 2 2242L T 2594
Ž .22I m F m F 1852 2 2

P 399

Applying one of the 2-D Cooley]Tukey factorizations found in Section
6.2.2 to this case we have

y s QLN 2
I m F m F LN 2

T I m F m F P ,Ž .Ž . Ž .Ž .Nr4 4 Nr2 Nr2 4 Nr4 2 2

where P and Q are permutations not too different from LN 2
. Now for4

N s 224 we have

y s QL2 24
22 I m F 11 m F 11 L2 24

T I 22 m F m F P .Ž . Ž .Ž . Ž .2 4 2 2 4 2 2 2

For this case we have obtained timings shown in Table II. Reference to the
table shows that a 2-D Cooley]Tukey costs at worst about 1500 s which is
much less than a straightforward row]column evaluation at more than
72,000 s.

This experiment was only a test of a quick and dirty code, but we believe
it strongly suggests that the methods developed in this paper warrant
further practical study. The wide variety of new data flows introduced by
the factorization procedure we have developed in this paper may have an
implementation advantage over those of traditional multidimensional FFT’s
on modern computer architectures.
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