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Abstract 

Some nonlinear wave equations are more difficult to investigate mathematically, as no general analytical 
method for their solutions exists.The Exponential Time Differencing (ETD) technique requires minimum 
stages to obtain the requiredaccurateness, which suggests an efficient technique relatingto computational 
duration thatensures remarkable stability characteristicsupon resolving nonlinear wave equations. This article 
solves the diagonal example of Kawahara equation via the ETD Runge-Kutta 4 technique. Implementation of 
this technique is proposed by short Matlab programs. 
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1. Introduction 

A number of time-dependent partial differential equations (PDEs) are found to merge nonlinear and linear 
expressions of low and higher orders respectively. The spatial and temporal high order approximations can be 
applied suitably to find accurate numerical solutions of such problem.A lucid development of the Exact 
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Linear Part (ELP)techniques of any order was given by Cox and Matthews [1]. This refers much to the 
Exponential Time Differencing (ETD) methods [2-3]. Since then Tokman [4] expressed these formulas which 
direct to thegroup relating to exponential propagation methods called Exponential Propagation Iterative (EPI) 
techniques. In order to make better the ETD schemes, Wright [5] deliberated on these schemes and thus 
reforming the solution in integral form of a nonlinear autonomous system of ODEs to an extension in terms of 
matrix and vectorfunctions products. 

The basic procedure of ETD schemes is to integrate linear terms of the differential equation (DE)exactly, 
whilesestimating the nonlinear parts via a polynomial to be accurately integrated. Exceptionally a comparable 
technique is implemented by Lawson [6] and is now applied to the Integrating Factor (IF) techniques. 
Following in manner of IF techniques [7-9] the two ODEparts are multiplied via a suitable IF, upon which we 
acquired a DE with, modified variables as such the linear term isexactly resolved. 

The ETD schemes are used widespread to unravel stiff systems.Furthermore in [10-11], they contrasted 
numerous fourth-order techniques which include ETD techniques and relatedconsequences.They found 
preeminent option with regards to ETD Runge-Kutta 4 (ETDRK4) technique inresolving a range of one-
dimensional diffusion-type problems. A wide-ranging utilization of the ETD methods was carried out in 
accordance with connected work in simulations of stiff problems [12]. In Aziz et al. [13-14]the ETDRK4 
method was used to solve the diagonal case of Korteweg-de Vries (KdV) equation with Fourier 
transformation and to implement by the integration factor method.Other papers on this subject include [15-
22]. 

The present article is arranged as ensued: In part 1, we introduce theissue. In part 2, we demonstrate the 
background of the study which is related to a diagonal example. In part 3, we accomplish animplementation 
correlated todiagonal case of Kawahara equation, alongside Fast Fourier Transform (FFT). For part 4, a brief 
conclusion is given. 

2. Background of the study 

2.1. A diagonal example:Burgers' equation 

In this section, we intend to show a diagonal example, which is solved via spectral method [17]. The 
Burgers' equation is given as 

     ,     (1) 
with the initial and Dirichlet boundary conditions imposed by means of  

       (2) 
where  ,  (in lieu of viscous Burgers’ equation) and  (in place ofinviscid Burgers’ 

equation), . 
 To solve the equations (1) and (2), wecompose 

 .    (3) 
 The use of Fast Fourier Transform (FFT) in (3) gives 

      (4) 
where . Multiplying (4)by , then 

  .   (5) 
 Choosing the following substitution 

       (6) 
with   ,   (7) 

andreplacing  (7) in (5), we have 
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     .    (8) 
 Performingin Fourier space (using FFT), the numerical discretizing algorithm is achieved via 

    .     (9) 
where  is the Fourier transformed operator . The Matlab program is proposed in [17]. 

 

 

Fig.1. Time development ofinviscid Burgersequation ( Left) and viscous   Burgers’ equation (  ; Right). Axes are from x = -3 
to x = 3, and from t = 0 to t = 150. 

3. A diagonal example: Kawahara equation 

Let us consider a diagonal example on the Kawahara equation, 
     (10) 

with a nonlinear hyperbolic term  and two linear dispersive term   and   . Furthermore,   
subscript represents partial differentiation and the initial condition is given as 

   .    (11) 
The equation (10) can be written as  

   .    (12) 
The equation is then being discretized and the Fourier spectral technique is applied to the spatial part. The 

Fourier transform is given by  
 ,    (13) 

where  and k is the wave number. In the standard form,we have 
  ,     (14) 

where 
 

  ,     (15) 
  ,    (16) 

and  is the discrete Fourier transform. 
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 Working in Fourier space, we consider the ETDRK4 time stepping for solving to ,with the 
ETDRK4 which is given as follows 
 

  ,     (17) 
      (18) 
    (19) 

      (20) 

 , 

where 
   ,     (21) 

  ,     (22) 
     (23) 

 

Fig.2. Time development for Kawaharaequation.  Axes are from x=0 to andt=0 to t=150. 

4. Conclusion 

We have presented the solution of Kawahara equation with the initial condition  , 
 , and applying  N = 128 grid points in Fourier spatial discretization. For integrating the system 

(13), we have used the ETDRK4 method.  Figure 2 shows that waves propagating and travelling periodically 
in time and persisting without change of shape. In spite of the remarkable sensitivity of the equation to 
perturbations in initial data, we obtained computational time of less than 1 second. The results are created by 
Matlab code (Appendix A). 
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Appendix A.  

Matlab codes to solve Kawahara equation and yielding Figure 2. 
clear 
clc 
% Spatial grid and initial condition: 
N = 128; 
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