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Abstract NDRG1 is a hypoxia-inducible protein, whose modu-
lated expression is associated with the progression of human can-
cers. Here, we reveal that NDRG1 is markedly upregulated in
the cytoplasm and on the membrane in human hepatocellular
carcinoma (HCC). We demonstrate further that hypoxic stress
increases the cytoplasmic expression of NDRG1 in vitro, but
does not result in its localization on the plasma membrane. How-
ever, grown within an HCC-xenograft in vivo, cells express
NDRG1 in the cytoplasm and on the plasma membrane. In con-
clusion, hypoxia is a potent inducer of NDRG1 in HCCs, albeit
requiring additional stimuli within the tumour microenvironment
for its recruitment to the membrane.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The N-myc downstream-regulated gene-1 (NDRG1) is a no-

vel protein initially described as a stress-responsive protein and

as being involved in cellular differentiation events [1–3]. Cur-

rent studies indicate that its putative biological function may

be as a tumour suppressor protein, and more specifically as

an inhibitor of tumour metastasis [3–8]. Paradoxically, findings

relating to the expression of NDRG1 are not always consistent

with this tenet. NDRG1 is commonly found to be expressed at

a higher level in cancerous than non-cancerous tissue of the

same origin, suggesting that the modulated expression of

NDRG1 may be tissue- or cell-type specific [9].
Abbreviations: NDRG1, N-myc downstream regulated gene-1; HIF-1,
hypoxia-inducible factor-1; HCC, hepatocellular carcinoma; O2, oxy-
gen; siRNA, short-interfering RNA; DMOG, dimethyloxallyl glycine;
GSK3, glycogen synthase kinase 3; SGK-1, serum- and glucocorticoid-
induced kinase 1
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NDRG1 is a physiological substrate for serum- and gluco-

corticoid-induced kinase 1 (SGK1) and glycogen synthase ki-

nase 3 (GSK3) [20]. It is phosphorylated on several residues

within three 10-amino acid tandem repeats located near its

C-terminus. The expression of NDRG1 can be altered by var-

ious physiological conditions and external stimuli, in particu-

lar, hypoxia is a key stimulus for its increased expression

[10,11]. Central to the regulation of hypoxia-inducible genes

is the heterodimeric transcription factor, hypoxia-inducible

factor (HIF)-1 [12]. HIF-1 is negatively-regulated at a normal

oxygen concentrations, whereas under hypoxic conditions, its

alpha-subunit is stabilized and is translocated to the nucleus,

where it binds to its b-subunit and activates the transcription

of its target genes [13–15].

Hypoxia is a common characteristic and a key stimulus in

the pathophysiology of many solid tumours including the

highly-aggressive, chemoresistant hepatocellular carcinomas

(HCCs) [16–18]. In the present study, we investigated the influ-

ence of hypoxia on the expression and subcellular localization

of NDRG1 and phosphorylated-NDRG1 in HCC.
2. Materials and methods

2.1. Tissue samples
Resected tissues were collected from patients at the Inselspital in

Bern, Switzerland in accordance with standard procedures which were
approved by an Institutional Review Board (approval no.:
1.05.01.30.�17) and with the patient’s written consent. HCC samples
were graded 1–3 according to Edmondson and Steiner and according
to the classifications of the World Health Organization (n = 11). Hepa-
tic tissue taken from tumour-free resection margins served as normal
controls (n = 6).
2.2. Antibodies, immuno-histochemistry and -fluorescence
Antibodies were obtained from the following companies: NDRG1

and phosphorylated-NDRG1 (p3xThr 346, 356 and 366 ) (Kinasource
Limited, Scotland, UK), Sp1 and IjBa (both from Santa Cruz, USA),
E-cadherin (BD Biosciences), b-actin (Sigma) and HIF-1a (Novus Bio-
logicals). Formalin fixed tissues sections (5-lm-thick) were pressure
cooked for 15 min in ChemMate� Target Retrieval Solution (Dako-
Cytomation). Endogenous peroxidase was blocked with 3% H2O2 for
10 min and blocked with 1% normal rabbit serum (NRS). Sections
were incubated overnight at 4 �C with the primary antibody and
immunoreactivity was detected using ABC kits (Vectastain) and 3,3 0-
diaminobenzidine as the peroxidase substrate or a FITC-conjugated
secondary antibody was used for fluorescence microscopy. Cells were
grown on glass cover slips, fixed in 4% PBS-buffered formaldehyde,
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82067797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


990 S. Sibold et al. / FEBS Letters 581 (2007) 989–994
permeabilized in methanol for 1 min at �20 �C. Samples were exam-
ined with a Leica DMRB microscope and documented using IM50
Leica imaging software.

2.3. Cells and culture conditions
The human HCC cell line, Hep3B, was purchased from the Euro-

pean Collection of Cell Cultures and cultured according to suggested
guidelines. Cells were incubated under either normoxic conditions
(21% O2), using a standard CO2 incubator, or hypoxic conditions
(1.5% O2), using a hypoxia workstation (Ruskinn Technology Limited,
West Yorkshire, UK). For a non-hypoxic stabilization of HIF-1a, the
cells were incubated in 125 lM dimethyloxallyl glycine [(DMOG),
Alexis Biochemicals] for 24 h at 21% O2. RNA oligonucleotides spe-
cific for HIF cDNA were designed with the aid of an online tool
(www.ambion.com/techlib/misc/silencer_siRNA_template.html). Dou-
ble-stranded short-interfering RNA (siRNA) was transfected into
Hep3B cells using the supplied Transfection Reagent. The efficiency
of RNA interference was determined by real-time PCR.

2.4. Protein isolation and Western blot analysis
For the detection of NDRG1, the total protein content of cells and

tissues was extracted using a RIPA lysis buffer and 1:100 dilution of a
protease inhibitor cocktail (Sigma). For the detection of HIF-1a in
cells and tissues, enriched nuclear–protein extracts were prepared as
previously described [19]. For cell fractionation, the ProteoExtract
Subcellular Proteome Extraction kit (Calbiochem) was used in accor-
dance with the manufacture’s instructions. All proteins were quantified
BA

D E

HIF-1α

Normal
Liver HCC

NDRG

G

Normal Liver

NDRG1 HIF-1α

HCC

Fig. 1. Expression of NDRG1 and HIF-1a in HCCs by immunohistochemi
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membrane localization of NDRG1 in a HCC tumour (mixed trabecular and
trabecular and acinar type, grade 2) for (D) cytoplasmic and membrane stain
control to illustrate the specificity of the reaction (200· magnification). (G
compared to normal liver tissue.
using the BioRad Protein Assay (BioRad). Fifty micrograms of protein
were separated by SDS–PAGE, transferred to a nitrocellulose mem-
brane and analyzed by Western blotting using standard protocols. Sig-
nals were detected by enhanced chemiluminescence (LiteAblot,
Euroclone). For patient sample analysis, the average of three indepen-
dent protein concentration measurements was used for as an accurate
loading control, given that the expression of many housekeeping genes
are modified in cancerous tissues.
2.5. Real-time RT-PCR
Total RNA was isolated with Trizol (Invitrogen) and 1 lg of total

RNA was reverse transcribed (Qiagen). Primers and FAM-labelled
probes were obtained from the Assay-on-Demand for human NDRG1
and HIF-1a and quantitative PCR was performed using an ABI 7700
Sequence Detection System (Applied Biosystems). The Ct values for
each target genes were standardized against ribosomal RNA (18S).
DDCt values were calculated by subtracting the DCt values of cells un-
der normoxia from the DCt value of cells under hypoxia. Fold in-
creases were calculated using the formula 2�DDCt. All reactions were
performed in triplicate, and each experiment was conducted on at least
three independent occasions.
2.6. Analysis of the NDRG1 sequence
The domain structure of NDRG1 (Accession No. NP_006087) was

determined using the Predict Protein database (http://www.predictpro-
tein.org). Subcellular localization of NDRG4 (Accession No.
F
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ing of NDRG1, (E) nuclear localization of HIF-1a, and (F) a negative
) Western blot analysis of HIF-1a and NDRG1 expression in HCC
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AAH11795) was predicted from pTARGET database (http://bioinfor-
matics.albany.edu/~ptarget/). Sequence homology for NDRG1 and
NDRG4 were determined using the SIM alignment tool for proteins
(http://www.expasy.org/tools/sim-prot.html).

2.7. Hep3B liver-xenograft model
Experiments were performed according to the National Institute of

Health’s Guidelines for the Care and Use of Laboratory Animals and
with the approval of the local Animal Ethics Committee. Liver-tumour
xenografts were grown in 4-week-old, male nude mice [Hsd:Athymic
Nude-Foxn1nu (Harlan Netherlands)] by injecting one million Hep3B
into the subcapsular space of the left lateral liver lobe. After 7 weeks,
the animals were sacrificed and the tumours were excised for analysis.
Fo
ld

in
cr

ea
se

of
N

D
R

G
1

m
R

N
A

A

NDRG1

β-actin

N H

D
M

O
G

12
5

M

HIF-1α

Sp1

C

N 1 3 6 12 24

5

10
15

20

25

30
35

hours at 1.5% O2

50

50

37

37

B

D

Fig. 2. Hypoxia upregulates the expression of NDRG1 in a HIF-1 dependen
cells in response to hypoxia (1.5% O2). (B) Western blot analysis of NDRG1
total NDRG1 protein and lower panel: antibody against phospho-NDRG1.
control. (C) Western blot analysis for NDRG1 and HIF-1a of cells exposed
(42 kDa) and Sp1 (97 kDa) were used as loading controls. (D) Effect of HIF-
mRNA expression. Hep3B cells were transfected with specific HIF-1a siRNA
exposure to 1.5% O2 for 16 h.
3. Results

3.1. Expression and cellular localization of NDRG1 and HIF-1a
in human HCC

In normal liver tissue, NDRG1 protein was found to be

weakly expressed in the biliary epithelial cells, whereas the

hepatocytes were negative (Fig. 1A). In contrast, the cells of

HCCs were highly immunoreactive (Fig. 1B and C). Within

a single tumour, 50–90% of the tumour cells stained positive

for NDRG1 and various expression patterns were observed.

NDRG1 expression was found both in the cytoplasm
2

4

6

8

10

12

14

N H
control +siRNA

30nM 50nM

Fo
ld

In
cr

ea
se

of
N

D
R

G
1

m
R

N
A

30nM 50nM
control +siRNA

N H

0.5

0.75

0.25

1

Fo
ld

In
cr

ea
se

of
H

IF
-1

m
R

N
A

α

N 1 3 6 12 24

total NDRG1

phospho-NDRG1

β-actin

β-actin

hours at 1.5% O2
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in Hep3B cells in response to hypoxia. Upper panel: antibody against

Arrows indicate upper and lower bands. b-actin was used as a loading
either to N: 21% O2, H: 1.5% O2 or 125 lM DMOG for 24 h. b-Actin
1a gene silencing on HIF-1a (upper panel) and NDRG1 (lower panel)
(30 nM and 50 nM) and a control siRNA (50 nM) for 24 h followed by
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(Fig. 1B) and on the membrane (Fig. 1C). Hypoxic stress is a

known inducer of NDRG1. By using HIF-1a as a marker for

tumour hypoxia, we demonstrated in serial sections of a HCC

tumour the concomitant expression of NDRG1 (Fig. 1D) and

HIF-1a (Fig. 1E). Furthermore, both HIF-1a and NDRG1

protein levels were substantially higher in HCCs than in nor-

mal hepatic tissue (Fig. 1G). These data reveal NDRG1 to

be markedly over-expressed in HCCs and to be located within

both the cytoplasm and the plasma membrane, and that its

expression is co-localized with the stabilization of HIF-1a.

3.2. Hypoxia upregulates the expression of NDRG1

in a HIF-1-dependent manner

To assess the effect of hypoxia on the expression of NDRG1

in HCC cells in vitro, we used as a model the human HCC cell

line, Hep3B. Hypoxia (1.5% O2) induced an increase in the

mRNA level of NDRG1 after 1–3 h which increased to 30-fold

by 24 h (Fig. 2A). NDRG1 protein was detected as a doublet

when analyzed by Western blot using an antibody against

its total protein. The more rapidly migrating lower band in-

creased after 3 h of hypoxia, and continued to rise for up to

24 h (Fig. 2B, upper panel). The slower migrating upper band

also increased albeit only after 12 h at 1.5% O2. The decrease in

the electrophoretic mobility of the upper band possibly reflects

a C-terminal phosphorylation of NDRG1 by GSK3, as re-

cently shown for the cervical cancer cell line-HeLa [20]. To

determine the phosphorylation state of NDRG1, the same ex-

tracts where tested with an antibody raised against phosphor-

ylated NDRG1 at Thr 346, Thr 356 and Thr 366, which is

targeted by serum- and glucocorticoid-induced kinase 1 [20].

Phosphorylated NDRG1 was present in normoxic cells and

was detected at a similar molecular weight to that of the upper

band of the total protein. Both the upper and lower band in-

creased after 12–24 h at 1.5% O2 thus demonstrating a hypox-

ia-induced increase of phosphorylated NDRG1 protein by

SGK and GSK3 (Fig. 2B, lower panel).

Hypoxia can upregulate genes in a manner that is either

dependent upon or independent of HIF-1 [21]. To ascertain

whether the upregulation of NDRG1 in liver cells is a conse-

quence of HIF-1 activation, cells were treated with the non-
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Fig. 3. Domain composition of NDRG1 gene. (A) Schematic representation
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selective prolyl hydroxylase inhibitor, DMOG. Under nor-

moxia (21% O2), DMOG stabilized HIF-1a and resulted in

the simultaneous upregulation of NDRG1 (Fig. 2C). Further-

more, selective silencing of the HIF-1a gene with specific siR-

NA abolished the hypoxia-induced expression of NDRG1

mRNA in a dose-dependent manner (Fig. 2D). Taken

together, this shows that hypoxia and HIF-1 are strong tran-

scriptional inducers of NDRG1 in HCC cells.

3.3. Domain composition of NDRG1

We next analyzed the sequence of NDRG1 for domains

which would implicate it as a membrane-associated protein

(Fig. 1C). Within its sequence, we identified a highly hydro-

phobic 20-amino-acid sequence which represents either a po-

tential transmembrane domain or an anchor to the cytosolic

face of the lipid bi-layer (Fig. 3A). Its family member, NDRG4

is classified as a type II membrane protein (pTARGET analy-

sis gives 87.6% confidence of plasma membrane localization).

A comparative sequence analysis of NDRG1 with NDRG4

revealed a 61% homology in the transmembrane domain iden-

tified in NDRG4 (Fig. 3B).

3.4. Subcellular localization of NDRG1 in response

to hypoxia in vitro and in vivo

NDRG1 expression has been described to be translocated

within the cell in response to exogenous stimuli [4]. We next

examined whether hypoxia induces a relocation of NDRG1,

in particular to its predominant localization site in HCC, the

plasma membrane. NDRG1 was ubiquitously expressed at a

low level in the cytoplasm of Hep3B cells under normoxic con-

ditions (Fig. 4A). After 24 h of hypoxic stress, the cytoplasmic

level of the NDRG1 increased, but did not translocate to the

plasma membrane (Fig. 4B). These results were confirmed by

cell fractionation, NDRG1 was not detected in the membrane

fraction of either normoxic or hypoxic Hep3B cells (Fig. 4C).

An increased expression of both total and phosphorylated pro-

tein was detected in the cytoplasm of hypoxic cells.

To verify that the absence of NDRG1 on the plasma mem-

brane is not attributable to a defect in the trafficking machin-

ery in Hep3B cells, these cells were grown in vivo using an
AL
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HCC-xenograft model in nude mice. Hep3B cells grown within

an HCC-tumour environment showed increases in both the

cytoplasmic and the membrane levels of NDRG1 (Fig. 4E).

The pattern of expression in the murine xenografts was similar

to that in human HCCs and the surrounding murine hepatic

tissue displayed no immunoreactivity (data not shown). Fur-

thermore using a phospho-specific antibody, we observed

staining of phosphorylated NDRG1 predominately in the

cytoplasm of the tumour cells in vivo (Fig. 4F). These findings

demonstrate that NDRG1 can be translocated to the plasma

membrane of Hep3B cells in vivo, but not under the tested sig-

nalling conditions in vitro. Furthermore, hypoxia-induced

phosphorylation does not result in a membrane-associated

phosphorylated protein in vivo or in vitro, thereby suggesting

that tumour microenvironment harbours unidentified signals

that are required for translocation of NDRG1 to the plasma

membrane.
4. Discussion

Either transiently or chronically, hypoxic stress is a common

characteristic of HCC tumours [22,23], therefore, we specu-

lated that the upregulation of NDRG1 in HCC could be med-

iated via the hypoxic activation of the HIF signalling pathway.

Here, we show in human HCC cells HIF-1a to be co-expressed

with NDRG1 in vivo and under conditions that are known to

activate HIF-1 in vitro (hypoxia or the presence of the prolyl

hydroxylase inhibitor (DMOG)). Taken together, this suggests

that one mechanism by which NDRG1 is overexpressed in

HCC is the activation of the HIF-1 signalling pathway. This

is in agreement with previous work, which proposed HIF-1

as a regulator of NDRG1 in human cancers [24].

In samples of human HCC which were analyzed by immuno-

histochemistry, NDRG1 expression was found in various sub-

cellular compartments. Its expression was located both in the
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cytoplasm and on the plasma membrane. A comparative

sequence analysis yielded evidence for a putative membrane

association of NDRG1 protein. The factors that contribute

to the specificity of NDRG1 localization, and particularly to

its membrane targeting, are currently unknown, thus leading

us to examine the role of hypoxic stress. Our in vitro data con-

firms that hypoxia are a strong transcriptional upregulator of

NDRG1 expression. The hypoxia-induced expression of total

NDRG1 protein is followed by a subsequent increase of phor-

phorylated-NDRG1 on residues targeted by SGK1 [20]. Fur-

thermore, after prolonged hypoxia (�12 h) there is also an

increase in GSK activity, evident by the increased expression

of the slower migrating phosphorylated band (Fig. 2B). This

is consistent with the work of Mottet et al., who reported that

prolonged hypoxia results in activation of GSK3 [25]. How-

ever, our data suggests that the hypoxia-induced increase of

NDRG1 and phosphorylated NDRG1 is not sufficient for its

membrane localization (Fig. 4C).

On the other hand, when cells were grown within an HCC-

tumour environment in vivo, a strong membrane localization

of total NDRG1 protein was observed. The membrane locali-

zation of total NDRG1 was not concomitant with its phos-

phorylated form. Phosphorylated NDRG1 was detected in

the cytoplasm of Hep3B cells grown in vivo as well as in the

cytoplasmic fraction of Hep3B cells cultured under hypoxic

stress in vitro (Fig. 4C). A similar expression pattern of phos-

phorylated NDRG1 was observed from patient samples of

HCC (data not shown). Although hypoxia is a key component

of the tumour microenvironment and can lead to the increase

of phosphorylated NDRG1, factors other than hypoxia are

critically involved in the re-distribution of NDRG1. Its expres-

sion on the plasma membrane within a neoplastic milieu

implies that NDRG1 may be involved in cell adhesion or cell

mobility or it may have a role in signal transduction, acting

as a signalling molecule regulated by phosphorylation. Further

insight into the relationship between NDRG1 and the tumour

stroma should improve our understanding of this protein’s role

in tumourigenesis.
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