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Implementations of abstract data types are defined via enrichments of a target type. We 
propose to use an extended typed I-calculus for enrichments in order to meet the conceptual 
requirement that an implementation has to bring us closer to a (functional) program. Com- 
posability of implementations is investigated, the main result being that composition of 
correct implementations is correct if terminating programs are implemented by terminating 
programs. Moreover, we provide syntactical criteria to guarantee correctness of composition. 
The proof is based on strong normalization and Church-Rosser results of the extended 
I-calculus which seem to be of interest in their own right. q” 1987 Academic Press, Inc. 

The theory of abstract data types (ADTs) has driven forward the investigation of 
a systematic and formal approach to software design. A lot of work has been spent 
on algebraic specifications of ADTs and their relationship to program,ming 
languages (e.g., [ 1, 8, 9, 5, 153). On the one hand, the theory is involved in struc- 
turing large ADTs (resp. specifications) using parameterization techniques (as in 
[9, 111); on the other hand, stepwise refinement via implementation is investigated 
(as in [8,24]). 

This paper is about implementation. There are two ways to approach the subject: 
semantically as in the comprehensive work of Lipeck [14], or by syntax-oriented 
reasoning on specifications, especially algebraic ones with initial algebra semantics 
in mind. The latter approach is, for instance, taken by Ehrig et al. in [9]. We follow 
the syntactic approach, but consider yet another notion of implementation of 

* A short version of the paper appeared in the “Proceedings, CAAP’85, Berlin.” 
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algebraic specifications. There are two conceptual requirements we believe to be 
important: 

1. An implementation should bring us closer to an (executable) program. 
2. Implementations should naturally compose on a syntactic level so that 

correctness criteria are preserved. 

Ganziger [ 1 l] has introduced the word “program” for certain enrichments used 
for implementations. Such “programs” are characterized by some semantic con- 
ditions but do not resemble programs. We somewhat follow his approach in that 
we specify enrichments using an abstract programming language over the target 
data type. The intuition is that sorts are implemented by recursive data structures 
over standard constructions such as products and sums and that operators are 
implemented by recursive procedures defined over the operators of the target type 
and the structure maps of products and sums. 

An investigation of this kind presumes a concept of programming language which 
is defined relative to a basic data type. Several authors (such as [S, 151) consider 
programming languages as a specific kind of abstract data types. We believe that 
such a view is inadequate, at least for our purposes. We are convinced that a 
programming language intends to denote entities of a certain mathematical universe 
by using a few orthogonal concepts such as products, sums, function spaces, and 
recursive domains to build data structures, and by using iteration, recursion, and 
the operators induced by the structure to define operations (these goals may often 
be obscured by pragmatic reasons like readability, efficiency, and implementability 
and by tradition). More specifically uniformity of the structure enhances reasoning 
in that only a few, but powerful, concepts with a rather clear intuitive meaning are 
used. In order to take advantage of the structural properties of a programming 
language we favor the idea that the specification of a programming language should 
distinguish between the specification of the basic data type(s) and the specification 
of the (universal) programming language constructs. We have chosen an extended 
typed A-calculus defined relative to a basic data type as our concept of a program- 
ming language. 

To anticipate objections we admit the operational character of the language, and 
we shall use operational arguments extensively. However, one should notice that 
the I-calculus is the canonical initial model with regard to a suitable higher order 
specification of Cartesian closed categories with structure (compare [17]). Hence it 
is as abstract as quotient term algebras, as used in initial algebra semantics. 
Moreover, as higher order specifications are generalized algebraic [6], one can 
prove with little effort that our notion of implementation corresponds to the 
algebraic one [lS]. Nevertheless, we prefer the functional to the equivalent 
algebraic or combinatory style because we depend on the substantial existing body 
of knowledge about the reduction properties of functional languages like typed 
l-calculi (even if a reduction theory of algebraic categorical languages begins to 
develop [ 71). 
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Given a specification SPEC over the basic data type we will use /1 SPEC to 
denote the programming language over SPEC. An implementation 

SPEC 0 = /I SPEC 1 

then maps sorts to (recursive) data structures and operators to (recursive) 
procedures. We adopt the correctness criteria of [S] (RI-correctness and OP-com- 
pleteness) in that no data are identified by an implementation and that data are 
implemented by “terminating” programs. We consider two closely related questions: 

~ Does a correct implementation SPEC 0 a/i SPEC 1 extend to a correct 
implementation LI SPEC 0 *A SPEC l? 

- Given a second implementation SPEC 1 =z. n SPEC 2, is the composition 
SPEC 0 =z. ,4 SPEC 1 * .4 SPEC 2 a correct implementation? 

According to our experience the behavior of programs should be independent of 
the implementation of the base type. Unfortunately our choice of implementation 
fails to satisfy this property, roughly because the operational character of equations 
is not preserved. In fact this phenomenon is well known to programmers: Assume 
that the boolean operator “,v or q” is evaluated from left to right and that “p or q” 
is evaluated to “true” if p is evaluated io “true.” This strategy is partly expressed by 
the equation “true or q = q.” If we implement the or-operator by “p or q” satisfying 
the equations “true or true = true” and true or false = true,” the implementation is 
correct with regard to the boolean constants “true” and “false.” However “true or 
q” will terminate but not “true or q” if q is a non-terminating program. Hence the 
correctness criterion of preservation of termination is not preserved. The problems 
are caused by operational properties of equations which are not preserved by 
implementations. 

Our main theorem states that correctness extends to programs of ground type if 
the extended implementation preserves termination (ground types in contrast to 
higher types, the definition of which includes “function spaces”). The termination 
condition may be natural from a programmers point of view, and the result could 
be expected. Surprisingly, at least to the authors, the proof is rather complex 
involving some machinery of the &calculus. This casts some light on the difficulty 
in finding sufficient but not overly restrictive conditions to ensure correctness of 
composition for the more general notion of implementation used for abstract data 
types. 

The paper is organized as follows: In Section 1 we introduce and motivate the 
extended I-calculus, properties of which are discussed in Section 2. The results 
provide a basis for the proof of our main theorem about composability of 
implementations given in Section 3, but are of interest in their own right. 

We assume familiarity with [ 1, S] from which we borrow some of our notation: 

Specijkations SPEC = (S, Z‘, E) consist of a set S of sorts, and S* x S- (S- ) 
indexed sets C and E of operators and equations. The underlying signature (S, Z) of 
SPEC is denoted by C SPEC. We use (r : w -+ s to specify arity and coarity of 
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an operator. T s&X) denotes the free SPEC-algebra with generators being the 
S-sorted set 3’. We abbreviate TspEC = TSPEC(@). 

M[x/N] is used to state that “N is substituted for free occurences of x in M.” 

1. PROGRAMS OVER A SPECIFICATION 

1.1. Motioation 
Enrichments of specifications are used to construct complex specifications out of 

smaller ones: SPEC = (S, Z, E) is extended to SPEC’ = SPEC + (S’, C’, E’), where 
(S’, C’, E’) are additional sorts, operators, and equations. The partition is used to 
structure the specification. Thus SPEC and SPEC’ should depend on each other in 
an easy way. There are different notions to capture this semantically: 

1. Consistency. No identification of old constants, i.e., 

t=E+E’t’*t=Et’ for t, t’ E T,. 

2. Completeness. No new constants are added to old sorts, i.e., 

tE Tz+r.s, sES*WET,:t=.+.~t’. 

Consistency and completeness together guarantee the protection of the SPEC-part 
in the enrichment. To check whether one of the conditions holds is difficult, in 
general undecidable. 

One observes that over and over again the same constructions are used for 
enrichments. The new sorts represent lists, trees, etc.; the added equations are (often 
primitive) recursive schemes to deftne the new operators. The restriction to these 
standard constructs yields a syntactic notion of enrichment which is transparent 
but, of course, not exactly equivalent to the semantic ones above. The constructs we 
are going to consider are both expressable in higher order programming languages 
and definable by algebraic specifications. One may discuss a definite choice of such 
constructs: What is typical for programming languages or for algebraic 
specifications, or what constructs are essential? Therefore the following choice is 
somewhat arbitrary but, as we hope, reasonable. At least some nice properties to be 
proved below may justify our choice. 

1. Products. In higher programming languages products appear as records or 
classes. In algebraic specifications we write 

spec PROD is 
SPEC with 
sorts prod-a-b 
ops p: prod-a-b + a 

q: prod-a-b + b 
pair: a b --+ prod-a-b 
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eqns p(pair(x, y)) = x 
dpairb, Y)) = Y 
pair(p(z), 4(z)) = z 

2. Sums. Variant records in PASCAL and subclasses in SIMULA correspond 
to sums. In a specification we write 

spec SUM is 
SPEC with 
sorts sum-a-b 
ops U: a --+ sum-a-b 

v: b -+ sum-a-b 

Besides the injections we need a means to define functions on the sum by case 
distinction. In PASCAL we have the case statement. For specifications we use 

spec SUM gh is 
SUM with 
ops f: sum-a-b -+ c 
eons .04x)) = g(x) 

f(V(Y)) = MY) 

where we assume that a, b, c are sorts in SPEC and that g: a + c, h: b + c are 
operators in SPEC. 

3. Recursive types. In PASCAL we can describe recursive data structures 
using recursive schemes of records, variant records, and pointers. In other program- 
ming languages a controlled use of pointers may do. As a means for the description 
of recursive types we introduce domain equations, for example, 

tree = 1 + (tree x entry x tree) 

expr = term x operator x term 

term = identifier + expr. 

Again entry, operator and identifier are supposed to be given sorts. In an algebraic 
framework one would, for instance, specify 

spec TREE is 
ENTRY with 
sorts tree 
ops empty: + tree 

combine: tree entry tree --t tree 
+ “projections to the components of combine (t, e, t’) and 

definitions by cases” 

4. Recursion. This is the essential construct which, in combination with the 
case distinction, allows non-trivial programs to be written, but brings along the 



IMPLEMENTATIONOFABSTRACTDATA TYPES 345 

problems of non-termination. In specifications recursive schemes are those 
definition schemes which for each new operator symbol r~ have one equation with 
&w., x,, - I) on the left-hand side and an arbitrary right-hand side. In our 
language we will use a fixpoint operator to denote recursive definitions. 

Recursion makes little sense without a conditional. The sum structure offers a 
conditional via the boolean structure of 1 + 1 and the case statement where 1 
denotes the “one-point set.” A conditional may as well be introduced explicitly 
using a boolean base sort. The very problem of both (and all other) approaches is 
to connect the boolean type with the boolean eventually occuring in the base 
specification. A fair solution would be to understand the booleans as a shared sub- 
type but a theory of sharing subtypes is hardly developed and out of the scope of 
this paper. For reasons of tradition we prefer an explicit conditional. 

1.2. The Type Structure 

For the set S of a given specification (S, C, E) we construct products, sums, and 
recursive types as congruence classes of type terms over S. 

Let TT n(S) denote type terms with type variables aO,..., a,- 1 constructed as the 
smallest set such that 

(a) SETT o(S), 1 ETT o(S) 
(b) TTrn(s)~TTn(s) for rnsn 
(c) ai E TT i(S) for in N, 
(d) r, r’oTTn(S)*r+r’, rx~‘eTTn(S). 

Now take the recursive-type scheme 

go = 70(ao,..., a, - I 1 

ct n-1 = 7, - 1 (ho,..., % ~ I ) 

with n variables and n equations. We introduce names for the n solutions of this 
scheme by D37, ,..., 7,_ 1), iE n := (0 ,..., n - 1 }. We get arbitrarily nested schemes 
if we regard these solutions as new constants. Thus the definition of TT n(S) is 
completed by the line 

(e) z. ,..., t,- 1 E TT n(S) * D37, ,..., 7, ~ ,) E TT o(S). 

EXAMPLE. The definition of expr and term is translated to 

to(cto, al) = a, x operator x a, 

t,(cr,, a,) = identifier + a0 

expr is represented by @(to, t,), term by D:(t,, t,). 
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The property to be a solution of the recursive-type scheme is satisfied if we identify 

@(t,, t,) and Dl(t,, t,) x operator x o:(t,, t,) 

(resp. oi(t,, t,) and identifier +Di(t,, t,)). 
To obtain D;(r,,..., ~~~ ,) as solution of the respective recursive scheme the type 
terms are to be factorized by the least equivalence relation - containing 

In fact, we state that - is a congruence. Hence the operators - + ~ _ x - and 
DfJ ... ) are well defined on equivalence classes. 

DEFINITION. The set of ground or data types over S is given by DType(S) := 
TT o(S)/ - . The set of (higher) types is defined as the smallest set Type(S) with 

1. DType(S) c Type(S) 
2. r, r’~Type(S), r&DType(S) or r’$DType(S)*r+r’, rxr’~Type(S) 
3. z, z’ E Type(S) * r + 7’ E Type(S). 

We refer to types of the form z + T’ as functional types. 

Remark. Our results do not hold for recursive types involving function spaces 
as we depend on normalization properties. 

1.3. The Programming Language A 

As our language is an extension of typed A-calculus the standard conventions 
apply. The terms are typed by the set Type(S) with SIG = (S, Z) being a signature. 
X is an enumerable set of variable names, typically x, y, z,.... Variables are of the 
form x : r with x being a variable name and r being a type. For convenience we 
often omit the type index if the typing can be recovered from the context. 

DEFINITION. Let SIG = (S, Z) be a signature. The language /1 SIG (for short, A) 
is the smallest Type(S)-sorted set such that 

(a) x:t~/1, ifxEXand rEType(S) variables 

(b) GE/~, if o:+.sEC; base operators 
MieAsl, iEn~a(M,,...,M,_,)E/i, if o:.so~~~s,~, +sEZ 

Cc) MEA,,,,, NE/I, *(MN)En.; application 
MEA,,*(;1X:T’M)EA,,,. abstraction 
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(d) 0 EAI 
P*,*, E AT X 7’ - T 9 4T,Y E A r X 1’ - 7’ 
MEA,, NE&*(M,N)EA,.,, 

(e) MEA, =s-u,,, *MEA,+,. 
NE A,. *v,,;< * NE A,,,. 

null tuple 
projections 
pairing 
injections 

CE Ar+r,, MEA,,,,,, NE A,,,,,. 
=P case C, M, N esac E A,.. cases 

(0 B ~&ml, M, NEA, =z-ifBthenMelseNli EA, conditional 
MEA,,, a Y(M) E A, fixpoint operator. 

For convenience we often omit the subscripts of projections and injections. Free 
and bound variables are defined as usual. We use FV(M) to denote the set of 
variables occuring free in M. Substitution is also defined in the usual way preserv- 
ing the structure. We use M[x/N] as notation for “N is substituted for free 
occurences of x in M.” As in [2] we assume that substitution does not affect the 
binding structure, i.e., we consider terms modulo cr-conversion (justified by an 
obvious extension of Barendregt’s argument). The set of closed terms of type z is 
denoted by A SIG:. 

We define reduction on SIG-terms by 
(B) (Ax:T.M)N-*M[x:T/N] 
(q) Ix:r.(Mx)+Mifx:z#FV(M) 
(7) M-+ 0 for MeASIGl 

(~1 p(M,N)+M, q<M,N)+N 
(6) (PL, 4L) +L 
(P) case u * L, M, N esac --, ML; case v * L, M, N esac + NL 
([) if true then M else N li + M; if false then M else N li -+ N 

(Y) J’(M) -+ WY(W). 
Reduction is compatible with the structure in that computations may proceed in 
subterms (captured by a lengthy list of obvious axioms and rules). 

We use M -H N as notation for the reflexive and transitive closure of reduction. 
We refer to conversion if, additionally, symmetry of reduction is assumed. We use 

M = N as notation for conversion. 
Let SPEC = (S, C, E) be a specification of a rewrite system in that equations in E 

are understood as rewrite rules from left to right. We assume the following fairly 
standard restrictions to hold: 

(El) FV(t’)sFV(t) for (t, t’)EE 
(E2) E is Church-Rosser 
(E3) E is left-linear, i.e., variables occur only once in t for (t, t’) E E 
(E4) t is not a variable for (t, t’) E E 
(E5) E is strongly normalizing, 
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where E denotes the smallest relation such that 
(i) EGJ!? 

(ii) (t,t’)~E, (t,,t:)~E (i~n)~(t[xo/to ,..., x,. Jt,~,], t’[xo/tb ,..., tL,])EE. 

The rewrite rules are added to the SIG-calculus by 
(E) t[.F/ii;i] -+ t’[.f/li;i] if (t, t’) E E; 

X (resp. A) denotes a tuple of variables (resp. terms) the ith component of which 
are xi (resp. Mi). Substitution is simultaneous. 

We use A SPEC to denote the language based on the specification SPEC. 
Throughout the paper we use the 

GENERAL ASSUMPTION. Specifications SPEC only have non-trivial sorts, i.e., 
T L SPECJ # @ for all sorts s, and they are BOOL-constrained, i.e., TSPEC,boo, = 
([true], [false]}. 

Notation. We index reductions to state which axioms are allowed in a com- 
putation. A “- ” indicates that rules are not used: For instance, M -Ham N stand 
for “A4 -++ hr’ but only the B- and q-rule are used for reduction, A4 + -~ N states 
that all rules except for the q-rule are used. A sequence (MO,..., M,) such that 
Mi -+M;+,, i E n, is called a computation sequence. 

To recall the definitions we say that a binary relation X< Y is strongly 
Church-Rosser if A’< Y and X< Z implies existence of a W such that Y < W and 
Z< W. The relation is Church-Rosser if its reflexive and transitive closure is 
strongly Church-Rosser. If a relation is strongly Church-Rosser it is 
Church-Rosser [2]. 

A computation sequence X,, < X, < ... < X, is finitary if X, is in normal form, 
i.e., X,, k X for all X. We say that <strongly normalizes if no infinitary com- 
putation X, < X, < ... < X, < .. exists. 

Remark. Our extension of the standard typed A-calculus is a higher type 
specification in the sense of [ 171. There (structured) parameter lists 

2 (x0 :zo ,...) X,-I :z,-,).A4 

are used. Then projections can be replaced by terms A (x : r, y : r’ ) . x and 1 (x : r, 
y : r’) . y. One can prove the equivalence of the calculi. For better readability we 
will use parameter lists as well as manifold products and sums in our examples. 
Nevertheless the calculus introduced is more convenient for proofs. 

EXAMPLES. We define some functions on non-empty lists and trees over a data- 
type entry. The recursive types are represented by type equations: 

list = entry + (entry x list) 

tree = entry + (entry x tree) + (tree x entry) + (tree x entry x tree) 

latt-1 (e:entry,l:list).v* (e,l). 
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To attach an entry to the right-hand side of a list we write a recursive program 

ratt = Y(Af : entry x list -+ list. 

A (e : entry, I : list) . case 1, Lee : entry. v * (ee, u * e), 

1 (ee : entry, 11 : list ) . v * (ee, f (e, II) ) 

esac) 

Concatenation of lists is given by 

cone z Y(Af : list x list + list 

I (11 : list, 12 : list ) . case 12, Ile : entry . ratt(e, I1 ), 

1 (e : entry, I: list) .f (ratt(e, Zl), 1) 

esac) 

and the inorder representation of a tree is given by 

inorder = Y(Af : tree + list 

At : tree case t, Le : entry . u * e, 

I (e : entry, t2 : tree) .v * (e, f tl), 

A (tl : tree,e :entry).ratt (e,ftl), 

I (tl : tree, e : entry, t2 : tree). 

conc(ftl,v*(e,ft2)) 

esac) 

Simultaneous recursion is possible. For expr and term we define operations which 
count the occurences of operators and identifiers 

count E Y(A (f : expr + nat, g : term + nat ). 

(A(tl:term,op:operator,t2:term).(g tl)+(g t2)+1, 

Ix : term * case x, ,Ii : identifier. 1, f esac 

The following is an example for reduction: 
For the constant of type tree 

TE u2 * (el, u4 * (ul * e3, e2, ul + e4)) 

where el, e2, e3, and e4 are given constants of type entry, and ui *- is used for the 
ith injection in the sum. 
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We reduce the term 

inorder( T) + (Af : tree + list. XJ : tree. case.. . esac(b)) inorder T 

-+ lb : tree. case b, Le : entry. u * e, 
ie : entry, b : tree. u * (e, inorder b ), 
J-b : tree, e : entry . ratt (inorder 6, e ), 
3.61 : tree, e : entry, b2 : tree *cone (inorder bl, u * (e, inor- 

der b2)) 
esac T 

4 case 242 * (el, u4 * (~1 * e3, e2, ul * e4)) ,... esac 
-F+ v * (el, inorder ~4 * (ul * e3, e2, ul * e4)) 
+ v * (el, cone (inorder ul * e3, v * (e2, inorder ul * e4))) 
+ v * (el, cone (24 * e3, v * (e2, u * e4))) 
--t* v * (el, v * (e3, v * (e2, u * e4))) 

If we add some syntactical sugar-for instance, replacing lixpoint operators by 
recursive procedures and using type declarations-we would get a more or less 
standard functional language. We prefer the more clumsy A-notation for proof- 
theoretic reasons. 

We complete the section with a few remarks: 

- One should observe that the extension of a specification SPEC to the 
language A SPEC is not complete as the fixpoint operator adds data to the base 
sorts. In general, the extension is not even consistent as terms of the base 
specification may be identified. If we, for instance, have a specification of booleans 
using the standard axioms of Boolean algebras and the lixpoint property of Y (not), 
we can compute 

true=(Ynot)ornot(Ynot)=(Ynot)or(Ynot)= Ynot 

false = (Y not) and not ( Y not) = (Y not) and (Y not) = Y not. 

Hence true = false in A BOOL but true #false in BOOL. 

- The essential use of the rewrite rules of the specification is as “stop- 
equations.” Besides b-reduction E-reductions are able to eliminate Y’s and thereby 
stop a recursive calculation. 

It is not realistic to require (El)-(E4) to hold for all specifications. But we can 
take the following point of view: The use of stop-equations is a kind of error 
recovery mechanism. Like other authors we may distinguish a certain subset of E to 
be chosen for this purpose. Only these special equations may be used in the calculus 
in that arbitrary terms (especially those containing Y’s) are substituted for variables 
while others are restricted in that only terms of T,,,,(X) are substituted. Formally 
then a subsort technique as in [ 161 may be used. 
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The assumption of strong normalization (E5) is not essential for our main result 
(compare [19,23], where different proof techniques are used). But viewing 
equations as an operational device, it seems to be a fair assumption that infinitary 
computations are only caused by recursive programs. At least, this is a common 
assumption for programming languages. 

- The “extensionality” axioms (v]), (z), and (6) are, in general, not con- 
sidered in reduction systems for typed I-calculi. Whatever the reasons may be, cer- 
tainly proofs of the Church-Rosser property are more complicated in the presence 
of extensionality axioms. Nevertheless we believe that exclusion of extensionality 
axioms from the very beginning is unnatural as then terms are not convertible, 
which intuitively should be so, e.g., Ax : s. (TX and cr, Y(nx : 1 x 1 . x) and ( 0, 0 ) 
(moreover, the equivalence to Cartesian closure would no longer hold). 

1.4. Properties of the Calculus 

Unfortunately the calculus is not even weakly Church-Rosser (i.e., if M -+ P and 
M + Q, then there exists a R such that P + R and Q + R). There are several 
conflicting reductions because of the extensionality axiom for the “one-point” 
type 1: 

<PXY 4x) 

;/ \ 
<0,4x) X 

where x is a variable of type 1 x 7 (one may consider Y(lx : 1 x 7. x) as well); 

Ax : 7. (jk) 

;/ kf 
Ix:z.O 

where f is a variable of type 7 --, 1. If we replace f by Y(if : 7 + 1 . f) the example 
shows that the normal order or leftmost-outermost reduction is not correct in that 
a normal form is not necessarily computed if a normal form exists. 

The conflicts can be resolved by adding suitable reductions which are-somewhat 
unexpectedly-quite complex. 

We define l-types and terms (37 of l-type 7 inductively by 

(i) 1 is a l-type, @l = 0 
(ii) z + 7’ is a l-type if 2’ is a l-type, @z + 7’ = Ix : 7 * @7 

(iii) 7 x 7’ is a l-type if 7 and 7’ are l-types, @7 x 7’= (~$37, @7’). 
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We then add the reduction rules 

(r) M+ @t if M is of l-type z. 
(6) (@r, qM) -+ M, (PM, @r’) + M if M is of type t x 6 with either r or 7' 

being a l-type. 

Remark. The rules do not cause new identifications of terms with regard to 
conversion. 

We state some results for which the proofs are given in Section 2. 

PROPOSITION. M+ ~ .N is strongly normalizing. 

PROPOSITION. M -+ N is Church-Rosser. 

COROLLARY. M = N iff M + L and N -H L for some L. 

We say that SPEC is consistent if t = t’ (in SPEC) implies that t = Et’ for 
t, t’ E T,,,, . 

PROPOSITION. SPEC is consistent. 

Proof: Use the Church-Rosser property and 

t +EM if t-+MfortETSPEC(X). 

Remark. The reduction properties depend on the specific way the additional 
operators are introduced. If, for instance, the fixpoint operator is introduced as a 
constant, e.g., 

YEA (T’r)-T 

additional conflicts are caused 

Y nf :r-+t.f(Yf) 

which can be resolved by the additional reduction rule 

Y+Af :7+7.f(Yf) if Y is of type (t -+ t) + 7. 

2. PROPERTIES OF PROGRAMS 

We discuss several properties of reduction and conversion which will be used in 
the proofs on composition of implementations. We believe that some of the results 
are of interest in their own right. We first check 
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2.1. Strong Normalization 

Strong normalization of a variant of the calculus is introduced for purposes 
which are motivated by the arguments in the next section. 

We extend SPEC by a constant I for each type. For base types I, = c,, where 
cs E TSPEC (such a constant exists due to our general assumption). 

Additional reduction rules are 

(I) IM-PI,~~.+I, ql-+I, case I, M, Nesac+L 

2.1. PROPOSITION. M -++ ~ ,, N is strongly normalizing. 

We use an extension of Tait’s proof technique [22] following the proofs given in 
[21, lo]. The key idea is to replace “basic types” by “non-functional types” to 
which we refer as structured types. A similar proof for a standard typed I-calculus 
(i.e., without recursive data structure and without the fixpoint operator, conditional 
and rewriting on the base specification) seems to be given in [20, 121 (we have no 
access to these papers; we have found a reference in [7]). 

The proof is split into a definition and several lemmas. We define the notion of 
stability for terms and prove that each stable term is strongly normalizable (SN) 
and that each term is stable. 

DEFINITION OF STABILITY. (1) If M is of type r with r being a structured type, 
then M is stable provided that it4 is SN and that 

(a) M’ and M” are stable if M reduces to (M’, AI”), or 
(b) M’ is stable if M reduces to u*M’ or to u*M’. 

(2) A term M of type r + t’ is stable if MN is stable of type z’ for all stable N 
of type r. 

Remark. To avoid additional case distinctions we assume without restriction of 
generality that the terms we consider in this section are not of l-type. Terms of 
l-type are trivially stable and SN. 

2.2. LEMMA. (i) Every stable term M of type t is SN. 

(ii) A term xM, . . . M, of type t is stable whenever the Mis are SN (x being a 
variable). 

Proof: By induction on r (the proof is essentially given in the above references 
but is included for sake of completeness). 

(a) 7 is a structured type: 

l Each stable term of type T is SN by definition. 
. xM, ... M, is SN as the computation can only proceed in the M,‘s. 

Clearly, 
l xMI ... M,, cannot reduce to a term of the form (M’, M”), u*M’, or o*M’. 
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(b) Let M be a stable term of type T -+ r’, and let x be a variable of type r. By 
inductive assumption (n = 0) x is stable, so Mx is stable (by (2)) and by inductive 
assumption Mx and thus M is SN. 

Let xM, .. M,, be a term of type t -+ r’ with all the Mi SN, and let N be a stable 
term of type r. It follows from the inductive assumption that N is SN as well. Then 
XMI . *. M, N is SN as the computations can only occur in the components. Again 
applying the induction hypothesis xM, . . . M, N is stable, and so is xM, . . ’ M,, as 
the term cannot be reduced to a term of the form (M’, M”), u*M’, or u*M’. 

In the proofs to come we refer to the 

2.3. FACT. If M is stable and reduces to N, then N is stable. 

Proof: Obvious for terms of structured type. If M is of function type consider 
suitable stable terms M, ,..., M, such that MM, . . M, is of structured type. 

2.4. LEMMA. (i) The constants 0 and I are stable 

(ii) Y(M) is stable if M is stable. 

Proof: (i) 0 is in normal form and not of the form (M’, M”), u*M’, or v*M’: 
If I is of structured type the same argument applies. Otherwise one uses that IM 
reduces to 1. 

(ii) Let M, ,..., M, be stable terms of suitable type such that Y(M)M, ... M,, 
is of structured type. 

As lixpoint reduction is excluded the computations must proceed within the 
terms M, M, ,..., M,. By 2.2 these terms are SN and hence so is Y(M)M, . . . M,. 
Since the term cannot be reduced to a term of the form (M’, M”), u*M’, or o*M’, 
we conclude that Y(M)M, . . . M, is stable. By definition of stability then Y(M) is 
stable. 

The arguments are typical in that they always apply if the term of interest does 
not interact with its context. Hence, in proofs to come, we focus our interest on 
such interactions. 

2.5. LEMMA. a(M, ,..., M, ~ , ) is stable if the terms M, ,..., M, ~ , are stable. 

Proof: For notational convenience we use li;l for a tuple of (argument) terms 
and X for a tuple of variables. 
If the computation only proceeds within I@, then o(A) is SN if A is so. Due to typ- 
ing SN implies stability for base sorts. Thus an infinite computation must start with 
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where a0 ++ _ YE i,,[x,/R,] and iO is a list of terms of TsPEC( {X,}), X, being the 
only variables occuring in iO and tI . Because condition (El) for the rewriting 
system stability ( = SN) of M,, implies that of li;i,. We cannot iterate the argument 
as the ith component of Mr may occur more than once in tl[Zl/li;i,], and as 
further computations may differently proceed in the different components. To cope 
with the problem we index all but one occurence of the components of X, in t, , 
with the resulting term being t’,, and obtain a new list of (indexed) variables, each 
of them occuring only once in t;. Then 

where R, is obtained by substituting the ith component of ii;r, for the (indexed) ith 
component of Xl in 2; (X1 is a sublist of xi). 

Then the infinitary computation must continue as follows 

We apply the same indexing procedure as above, and iterate the argument. 
The computation defines terms of the form 

(to = a(&,)) such that 

t;[x;/i;] . . . [gJ&] E t:+,[x:+l/i:+,]..‘[xl/~~]. 

The terms i:, are generated from MO, 

hence the creation of terms is bounded, say by n, as A?,, is SN. We obtain a 
sequence 

a&J[x,/i,-J[x;/t’;] ... [X#J 

---p t;[x;/t,] ... [xyg] --y-+ t;[x;/i*] ... [$Jig 

in contradiction to the strong normalization of rewriting. 

2.6. LEMMA. The projections p : z x T’ + 7, q : z x t’ --+ t’ are stable. The terms 
case L, ikl, N esac, (M, N), u*M, v*N and if B then A4 else N if are stable if B, L, 
M, and N are stable. 

571/34/2-3-14 
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Proof (a) We check that pM is stable for stable arguments M. An interaction 
with the environment takes place if M reduces to I or to (M’, IV“). In the first 
case a reduction of pMM, . . . M, with the Mis being stable such that pMM, . . . M, 
is of structured type yields I (by a straightforward argument). Otherwise, if an 
infinite reduction is caused, it must be of the form 

pMM, “‘M, 7 p(M’,M”) M;-.M:,- M’M;...M:,. 

Stability of M implies that of M’ and M” by definition. We conclude that 
MM; . . . M:, is stable (using 2.3), hence SN (in contradiction to the assumption), 
and if M’M; ... M:, reduces to a term of the form (L’, L”), u*L’, or u*L’ then the 
terms L’ and L” are stable. 

(b) We consider case L, M, N esac, and assume that L reduces to u*L’ or to 
1. The argument is basically the same as in (a), using that L’ is stable by definition 
of stability. 

(c) One problematic case is that (M, N) reduces to (pL, qL) and to L. But 
stability of M implies that pL is stable, hence SN. Thus L must be SN. If L reduces 
to (L’, L”) then M reduces to L’ which proves stability of L’. L cannot reduce to 
u*L’ or to u*L’ because of typing. 

The other interesting case is that (M, N) reduces to ( 0, qL) + L. L is SN as 
qL is stable. If L reduces to (L’, L”) L” is stable as qL is so. Moreover, L’ reduces 
to 0. 

(d) The other terms are handled in what is now the obvious way. 

2.7. LEMMA. If M[x/N] is stable, then (Ax : 5. M)N is stable, provided that N is 
stable if x does not occur free in M. 

Proof We sketch the proof given in [21]. Again we provide enough Mis 
to obtain a term M[x/N] M, . . . M, of structured type. Clearly, 
(Ix:t.M)NM, ’ ‘. M, has the same properties as M[x/N] M, . . ’ M, which is SN 
except that an infinite reduction may be caused by application of the p-rule. Either 
the infinite reduction is caused by reduction of M, but then M[x/N] has an infinite 
reduction in contradiction to M[x/N] M, . . . M, being SN, or ix : t. M reduces to 
Lx : r. M’x and to M’ (with x not free in M’) causing the infinite reduction. But 
then M[x/N] reduces to M’N starting an infinite reduction. 

The proof of 2.1 is completed by 

2.8. LEMMA. Every instance M’ of a term M is stable, where M’ is an instance of 
M if M’ is obtained by correct simultaneous substitution of stable expressions for free 
variables in M. 

Proof By induction on the structure of terms. If M= x is a free variable the 
statement is immediate. 
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If M= y is a non-free occurence of a variable or if M is a constant, stability 
follows from the previous lemmata. 

For all terms, except for M = Ix : t. N, the obvious inductive argument is to be 
applied. 

If M = Ix : r * N, let N’ be an instance of N. Then N’[x/L] is also an instance of 
N, and stable by the induction hypothesis. Since (Ax : r. N’)L reduces to N’[x/L] 
stability of M follows from 2.7. 

2.2. The Church-Rosser Property 

A proof of the Church-Rosser property cannot be obtained by the standard 
technique of “simultaneous computation of independent redexes” [2] as the b-rule 
may need some adjustment steps 

(PM? 4M) 

Instead we make a profit of the strong normalization property which, combined 
with the weak C,hruch-Rosser property yields the Church-Rosser property. 

We now check that the calculus is weakly Church-Rosser. 

2.9. LEMMA. M[x/N] -H M’[x/N’] if M -+ M’ and N + N’. 

Proof: We use a case distinction along the lines of Lemma 3.2.4 in [2]. 

G-4 (1~ : 7-f’) Q -, sPC~/Ql: 

(ly : 7 *P) Q[x/N] E (ly : 7. P[x/N]) Q[x/N] 

-++ (rly : 7. P[x/N’]) Q[x/N’] by induction hypothesis 

7 f’Cx/N’I CY/Q[X/N’I 1 

= f’Cy/Ql CxIN’l. 

The last identity is that of the substitution lemma of [2, 2.1.161, which canonically 
extends to cope with the additional operators. 

(b) ly:7.(Py)+,P: 

ly:t~(Py)[x/N]=ly:t.(P[x/N] y) 

-++ ly : 7. (P[x/N’] y) by induction hypothesis 

- P[x/N’] v 
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P(P, Q> [x/W = P(PC~NI, QCxINl> 
- ~(f’Cx/N’l, QCxlN’l> by induction hypothesis 

7 P[x/N’]. 

The same scheme of argumentation applies to the other reduction rules except for 

(d) t[Z/IP] + E t’[%//p]: 
As X is the list of variables occuring in t and t’ we have 

t[Z/p][x/N] = t[Z/p[x/N]] T t’[f/P[x/N]] 

A simple induction on the structure of terms proves that 

t[i/PJ - t[,f/Q] if P-+Q 
Hence 

t’[x/P[x/N]] + t’[Z/IP[x/N’]] by induction hypothesis 

= t’[i/IP][x/N’]. 

2.10. PROPOSITION. A4 + N is weakly Church-Rosser. 

Proof: Assume that M + P and M + Q. We use induction on M --) P: We 
assume without restriction of generality that M is not of a l-type r as then 
M-, @T. 

(a) (J.x : r. K)L + PK[x/L]: 
The second computation may take place either on K or on L 

(Ax: z.K)L A (Ix:z.K’)L (AX: T.K)L - (AX : T ’ K)L’ 
B 
I 

B 
I 

B 
I 

P 
I 

KCxIL 1 2.9 K’CdLI KCxILI 2.9 KCxIL’l 

(b) lx : T ’ (M’x) --+ ,M’: 
The second computation may take place within M’, say 

,iX : T ’ (M'X) --+ AX : T ’ (MUX) ------+ kf”, fl 
or is a b-reduction where 44’ E Ly : T. M”. Then 

I~:T~((A~:T~M")X);-, ~X:T'M"[J'/X]=hf 

(we consider terms modulo a-conversion). M’x cannot be of a l-type as then 
Ax : T * (M’x) is of a l-type. 
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’ then(c) P<M’> N ) --t ,M’: If the second computation proceeds within M’ or N’, 

p(M’, N’) +p(M”, N’) +M” 

p<M’,N’)~p(M’,N”)+M’ 

Otherwise 
PC@? 4w -y-+ PM 7 @t. 

The other cases are similarly straightforward except for 

(d) (PM’, qA4’ ) + M’: We only consider the interesting cases. 

(PM’, qM’ ) --, ( pM”, qM’ ) + (PM”, qM” > 

s 

I 

s 

I 
A4 P A4” 

The context (p- q-) interacts with M’ only if M s (N’, Iv”) 

or if pA4 -+ @r or qM + @T’. Then the newly added &rules are applied. The other 
b-rules are handled similarly. 

The proof of the Church-Rosser properties requires some preparation. We define 
another calculus with the same terms and reductions except for the lixpoints; 
fixpoint operators are indexed by natural numbers, Y’ with ie N,,, and lixpoint 
reduction is defined by 

Y’+‘(M) -L M( Yi( 44)). (y*) 

(We use the superscript * to refer to this calculus.) The index indicates the number 
of “recursive calls” to be evaluated. The same technique has been used in [3] and 
seems to originate in [ 131. As to be expected 

2.11 LEMMA. M+ * N is SN and WCR. 

ProoJ: We just extend the proofs of 2.1 and 2.10. For stability assume that M in 
Y’+‘(M) is stable. An infinite computation starting in Y’+‘(M) may have the form 

yi+yllcq 4-b Y’+‘(M’)+ M’(Y’(M’))-r,-.. 
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But M’ is stable and, using induction on i, we can assume that Y’ is stable. Then 
M’( Y’(M)) is stable by the definition of stability, hence it is SN by 2.2. It is a 
straightforward exercise to establish the WCR-property of the calculus. 

2.12. FACT. Zf M-+ *N then IA.41 -+ INI, where 1 MI is obtained from M by 
stripping off the indices. 

2.13. LEMMA. For any computation MO -+ M, --, .. + M,_ 1 there exists an 
indexed computation A, + * ii?f, + * . . . + *A, ~, such that 1 li;i, 1 G Mj for i E n. 

Proof. Index all Y’s in M0 by n. 

2.14. PROPOSITION. M -+ N is Church-Rosser (CR). 

Proof Let 
MrP,-,P,+... +P,=P and MzQe,+Ql + ..* -+Q,EQ. 

By 2.13 there exist indexed computations 

such that ( Pi I = Pi and I Qj I = Qj. 
We can assume that P, = QO, otherwise increase the indexes suitably. As -+* is 

CR there are computations P, + * R and Qn + * R. Then 2.12 yields the result. 

Remark. We conjecture that the calculus is Church-Rosser if the strong nor- 
malization condition on the SPEC (E5) has been dropped. But different proof 
techniques are to be used then. The counter example of Klop [2, 15.33 does not 
apply due to typing. 

2.3. Normal Forms 

We explore the structure of normal forms. Unfortunately, the normal forms have 
an unpleasant structure in the general case as only the fi-, q-, and Y-reduction do 
not depend on a specific form of the arguments. The situation is somewhat better 
for closed terms of a ground type. 

2.15. LEMMA. (t ) -++ true or (t ) + false if t E TSPE,-boo,. 

Proof: By our general assumption t = .true or t = .false. The Church-Rosser 
property then yields the statement. 

2.16. Let M be a closed A SPEC-term of ground type in normal form. Then M has 
the form 0, u*M, v*N, (M, N) with M, N being in normal form or M- (t > for 
some t E T,,,,. 

Proof: We use induction over terms. The inductive assumption is that the 
statement holds for all terms of length smaller than that of M. The critical cases are 
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the conditional and the application. For M = if B then M’ else M” fi B must be in 
normal form, hence by the inductive assumption, typing, and 2.15 either B = true or 
B = false. We conclude that the term is not reduced. 

If ME M’N we use induction over M’: 

(a) M’ = p. By the inductive assumption N= (N,, N, ). Hence M is not 
reduced. The other cases are handled similarly. 

3. IMPLEMENTATION OF ABSTRACT DATA TYPES 

3.1. Motivation and Definition 

The notion of implementation states the idea of stepwise refinement more 
precisely. Program development consists of a hierarchy of specification levels with 
decreasing abstractness. An implementation builds a bridge between two 
neighbouring levels with the aim of approaching executable programs. If we have 
two specifications SPEC 0 and SPEC 1, an implementation of SPEC 0 by SPEC 1 
should preserve correctness of SPEC O-programs. We might call this idea 
“relativised programming”; the program is developed on the SPEC 0 level but runs 
on the SPEC 1 level. SPEC 0 sorts and operators are implemented by SPEC 1 data 
structures and programs. The proceeding captures the task of a programmer 
implementing a data type by a programming language. The most important 
property expected to hold for implementations is the composability of the single 
steps to one large implementation which at last yields a computable program for 
the very first specification level. 

DEFINITION. An implementation of SPEC 0 = (SO, CO, EO) by SPEC 1 = 
(Sl, Cl, El) is given by a pair of maps IMPL = (IMPL,, IMPL,) such that 

IMPL, : SO + D Type(S1) 

IMPL : CO + /I SPEC 1 

such that IMPL,(a) E /1 IMPLJs,) x . .. x IMPL,(s,_ ,) -+ IMPL,(s) if 
o:sg”‘snp, + s E C. The notation is ambiguously used for the representation map- 
pings 

IMPL, : So -+ TT o(Sl), IMPL, : CO + /1 SIG 1 

which choose elements of the respective equivalence classes. 
We extend IMPL to all terms in T,(X): 

IMPL(x : s) = x : IMPL,(s) 

IMPL(o( to,..., t,pl))=IMPL,(a) (IMPL(t,) ,..., IMPL(t,-,)). 
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Notation. We use the scheme 

SPEC 1 imp1 SPEC 0 by 
defdom ... 

ops ... “auxiliary (recursive) definitions” 
sortimpl . . “implementation of sorts” 
opimpl ... “implementation of operators” 

Sorts and operators of SPEC 0 which occur as well in SPEC 1 are only listed if they 
are redefined. 

EXAMPLES. (i) We implement a (obvious) specification of natural numbers by 
booleans. 

BOOL imp1 NAT by 

def dom nat = l+nat 
sortimpl nat = nat 

opimpl 0 = u*c 

sue = Ax : nat . v*x 

pred = Ix : nat . case x, Ix : 1. 0, ly : nat . y esac 

iszero = ;Ix : nat . case x, Ix : 1 . true, ly : nat . false esac 

(ii) We implement stacks by arrays with a pointer. 

ARRAY imp1 STACK by 

sortimpl stack = array x nat 

opimpl push = i (S : array x nat, d : data) . (update@ s, q s, d), suc(q s) ) 

pop = IS : array x nat . ( p s, pred( q s) ) 

top = h:arrayxnat.get (ps,qs) 

empty = (new, 0) 

We allow manifold representation of data; an element of type stack, for instance, 
may be represented by different elements of type array x nat, especially by arrays 
which differ in components above the pointer. Moreover, not all the elements of the 
implementing data structure are used for representation; arrays with non-trivial 
entries under 0 are not used to represent stacks. 

Similarly to [S] we impose semantic constraints on implementations: correct 
implementations preserve distinctness of data and implement data by finitary struc- 
tures. Distinctness of data is preserved if terms of T,, the implementations of which 
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are equal in /i SPEC 1 are already equivalent in SPEC 0. We call this property 
consistency. 

DEFINITION. An implementation IMPL : SPEC 0 =z- A SPEC 1 is consistent if 

IMPL( t) = IMPL( t’) implies t = E. t’ for all t, t’ E T,, 

(observe that [t] = [t’] in TsPECO if t = mt’). 

Elements of TspECO should be considered ‘as linitary data. These data are 
implemented by (recursive) data structures (i.e., terms of ground type) which are 
potentially inlinitary in that lixpoint operators can be used for the representation of 
operators. We claim that finitary data (structures) should be implemented by 
finitary data structures. As inhnitary data structures correspond to non-terminating 
programs in our setting, we state the 

DEFINITION. A SIG-term 1M of ground type is called terminating if it has a nor- 
mal form. IMPL preseroes terrrzination if IMPL(t) is terminating for all t E T,,. 

At last, the 

DEFINITION. IMPL preserves boofeans if IMPL(true) = true and IMPL(false) = 
false. 

Is used to guarantee the correct interaction with the programming language. We 
combine these concepts in the 

DEFINITION. An implementation IMPL : SPEC 0 * ,4 SPEC 1 is correct if 
IMPL is consistent and preserves termination and booleans. 

There is a close connection to the notion of correctness in [S]. Consistency 
corresponds to RI-correctness, and the termination condition to OP-completeness. 
For the latter one should observe that OP-completeness states that data are 
implemented by terms which consist only of operators of SPEC 1 and of the sort 
implementing operators which exactly correspond to our recursive data structures. 
Recursive definitions of the SPEC O-operators thus must unfold finitely. 

The rationale of both these notions of implementations is that the implemented 
operators should operate on implemented data exactly as specified. Hence the 
equational structure is only preserved as far as closed equations (i.e., equations 
without variables) are concerned. It will turn out that the implicit assumption that 
the other equations can be neglected is somewhat fictitious: the operational charac- 
ter of equations is denied which cause problems when composition of implemen- 
tations are considered. The point will be substantited below. 

The implementations given so far are correct. In the case of the stack implemen- 
tation the termination condition is trivially satisfied. For consistency one checks by 
induction that a stack contains the same data as the array up to the pointer. 
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3.2. Composition of Implementations 

We want to compose implementations TMPL 1 : SPEC 03 A SPEC 1 and 
IMPL 2 : SPEC 1 + A SPEC 2. Syntactically we intend the following: A SPEC O- 
operator 0 : w + s has the SPEC l-implementation IMPL l(o). Now replace all 
SPEC l-operators cr’ : w’ + s’ in IMPL l(a) by their implementations IMPL 2((r’) 
over SPEC 2. We obtain a SPEC 2-program which is the implementation of CJ over 
SPEC 2. For this purpose we have to extend the implementation 
IMPL 2 : SPEC 1 *A SPEC 2 to programs, PIMPL 2 : /1 SPEC 1 * /1 SPEC 2. 
The composition of the implementation is then given by PIMPL 2 * IMPL 1. 

DEFINITION. Given an implementation IMPL : SPEC 0 a/i SPEC 1 an exten- 
ded implementation 

PIMPL : /i SPEC 0 a/i SPEC 1 

consists of a sort implementation PIMPL s : TYPE(S0) -+ TYPE(U) given by 

PIMPL,(s) = IMPL,(s) for seS0 

PIMPL,(t 0 r’) = PIMPL,(r) 0 PIMPL,(r’) for OE(~, +,+} 

PIMPL,( 1) = 1 

PIMPL,(D;(rO,..., z,- ,)) = D;(PIMPL,(r&.., PIMPL,(r,- r)) 

(for convenience we identify equivalence classes and typical elements), and a term 
implementation PIMPL : n SIG 0 + /1 SIG 1 given by 

PIMPL(x : r) =x : PIMPL,(r) 

PIMPL(o(r, ,..., z,,_ 1)) = IMPL,((r)(PIMPL(zO) ,..., PIMPL(z,- 1)) 
for c:w+s~C 

PIMPL(MN) = PIMPL(M) PIMPL(N) 

PIMPL(lx : 7. M) = Ix : PIMPL,(r) . PIMPL(M) 

PIMPL( 0 ) = 0 

PIMPUP,,,,) = PIMPLS(r),IMPLs(r,)PIMPL(q,,,,) = ~IMPLS(r),IMPL~(r’) 

PIMPL( (A& N)) = (PIMPL(M), PIMPL(N)) 

and so along the structure. 
The composition IMPL 2 * IMPL 1 : SPEC 0 * SPEC 2 of two implementations 

IMPL 1 : SPEC 0 * SPEC 1 and IMPL 2 : SPEC la SPEC 2 is defined by 

IMPL 2 * IMPL 1, = IMPL 2,~ IMPL 1, 

IMPL 2 * IMPL 1 = PIMPL 2 0 IMPL 1. 
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Remark. Our notion of composition is different to that of [S] as the inter- 
mediate specification SPEC 1 is not added to the composed implementation. This is 
due to the uniformity of the language used for implementation which does not 
require intermediate specification. Our definition models the notion of composition 
used for implementations of programming languages. 

Now two questions are closely related: 

- Is the composition of correct implementations correct again? 
- Do consistency and termination conditions still hold for extended 

implementations? 

DEFINITION. An extended implementation PIMPL : n SPEC 0 =z. n SPEC 1 

(i) is consistent if for all terminating terms M, N of closed ,4 SPEC O-terms 
of the same ground type M = M’ if PIMPL(M) = PIMPL(N) 

(ii) preserves termination if for each closed SPEC-term M of ground type 
PIMPL(M) terminates if M terminates. 

(iii) is correct if PIMPL is consistent and preserves termination and 
booleans. 

Remark. The restriction to terms of ground types is necessary as for other types 
consistency is not guaranteed. If we consider the specification 

spec NAT is 
BOOL with 
sorts nat 
ops0: -+nat 

sue : nat + nat 
add : nat nat + nat 
pred : nat + nat 
iszero : nat + boo1 

eqns add (x, 0) = x 
add(x, sue(y)) = suc(add(x, y)) 
pred(0) = 0 
pred(suc(x)) = x 
iszero(0) = true 
iszero(suc(x)) = false 

and define 

radd = Y(Af : nat x nat + nat . Ax : nat x nat . 

if iszero(q x) thenp x else suc(f (p x, pred(q x))) ti) 

and implement NAT by NAT such that IMPL(add) = radd (a correct implemen- 
tation) then we obtain PIMPL(radd) = PIMPL(add) but radd #add in NAT. 
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We shall consider some examples which demonstrate that correctness of 
implementations does not extend to the programming language. 

3.1. EXAMPLE. We consider enriched versions of the most simple booleans 

spec BOOL is 
sorts boo1 
ops true: --) boo1 

false: + boo1 

spec BOOL 0 is 
BOOL with 
ops ~ and -: boo1 boo1 -+ boo1 

~ or _ : boo1 boo1 -+ boo1 

eqns true and true = true 
false and true = false 
true and false = false 
false and false = false 

true or true = true 
false or true = true 
true or false = true 
false or false = false 

and 

spec BOOL 1 is 
BOOL 0 with 
eqns true or b = true 

b or true = true 

spec BOOL 2 is 
BOOL 0 with 
eqns false and b = false 

b and false = false 

Trivially T,,,, ,, = Taoor i = r,,,, *. 

We use the obvious implementation IMPL : BOOL 1 *BOOL 2, which is 
correct: 

(i) PIMPL is not consistent: Consider the BOOL l-programs 

PO = Y(Af : boo1 + booI. lb : booI. (false and (f 6))) 

Pl~Y(~f:bool-+bool~~b:bool~((fb)andfalse)) 

PO # Pl as the only terms equivalent to PO are of the form 

Ab : boo1 . (false and . . . (false and(P0)) . . . ) 

and similarly for Pl. Then 

PIMPL(P0 true) = false = PIMPL(P1 true) but (PO true) # (Pl true). 

(ii) PIMPL does not preserve termination: Consider the program 

Y(Af : booi+ boo]. 16 : booI. (true or (f 6))). 
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Even if the counterexample may look somewhat artificial it is quite well known if 
implementation of programming languages are considered: A standard strategy is 
to evaluate the first argument of a logical operator, and to evaluate a second 
argument only if further evidence is needed. Such a strategy is encoded in our set of 
equations with variables in the case of BOOL 1 and another strategy in BOOL 2. 
The strategy does not cause any harm as long as linitary programs are considered. 
But it is quite well known that a change of evaluation strategy may give different 
results in the case of infinitary programs. As our definition of correctness of an 
implementation only refers to terminating programs the counterexample above 
should not be too surprising. 

EXAMPLE. Consider the implementation of stacks by means of arrays indexed 
with natural numbers. We take the STACK program 

P E Y(lf : stack -+ stack. Is : stack. pop(push (empty, top(fs)))) empty 

which denotes a constant of type stack, and which is equivalent to empty. But the 
implementation PIMPL( P) is not terminating, 

PIMPL(P) = Y(Af : array x nat -+ array x nat . is : array x nat. 

(p update (.. .), pred(q update (. . .))) 

- P’ E Y( ;If : . . . Is : . . . (update <new, suco, get (PUS), dfs)), 0)) 

- (update (new, suc0, get(p P’, q P’), 0) 

- . . . 

We never get rid of P’ and the Y’s in it. 

Obviously, all counterexamples follow the same pattern: Given an equation of 
the form 

~CXO,..., x,- 1, YOY, y,- 11 = fCXO,.-, x,- ,I, 

where all the variables occuring in a term are listed, a recursive program P is writ- 
ten which contains a subterm 

~Cxol~o,..., xn- I/M,- ,r ~olNo,-., Y,- 1/N,,- ,I 

such that P is recursively called in some Ni. If the equation holds, the program ter- 
minates; otherwise it does not. As implementations do not preserve the 
“operational” properties of such equations, extended implementations may fail to 
be correct. Hence one may ask what happens if terminating programs are 
implemented by terminating programs, avoiding the problems caused by non-ter- 
mination. 

3.2. PROPOSITION. Let IMPL : SPEC 0 * ,4 SPEC 1 be a correct implementation, 
and let M, N be closed A SPEC O-terms of the same ground type such that M, N, 
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PIMPL(M), and PIMPL(N) are terminating. Then M= N if PIMPL(M)= 
PIMPL(N). 

As a consequence we obtain our main 

THEOREM. (1) Let IMPL : SPEC 0 *A SPEC 1 be a correct implementation. If 
PIMPL : A SPEC 0 3 A SPEC 1 preserves termination then PIMPL is correct. 

(2) Let IMPL 1: SPEC 0 => n SPEC 1 and IMPL 2 : SPEC 13 n SPEC 2 be 
correct implementations. If the composition IMPL 2 * IMPL 1 preserves termination, 
then IMPL 2 * IMPL 1 is correct. 

(3) For implementations such that the extended implementation preserves 
termination, composition of correct implementations is correct and associative 

The next section will essentially consist of the proof of 3.2. 
The termination condition for extended implementations appears to be natural. It 

states independency of the operational properties encoded in the equations of a 
specification, and thus provides a kind of additional condition for correctness of 
implementations which unfortunately is language dependent. 

3.3. The Proof of the Main Theorem 

We assume that IMPL : SPEC 0 =- n SPEC 1 is a correct implementation. The 
main difficulty in the proof of 3.2 is that E-reductions are not preserved by 
implementations, i.e., M -+ EN does not imply that PIMPL(M) = PIMPL(N). 
However, we are able to encompass the problem in specific situations. In order to 
sketch the proof idea we look at the rather simple example where n BOOL 2 
implements BOOL 1 (compare Example 3.1). Then 

M = (true or ( Y(lx : boo1 . false and x))) and false 

7 true and false 7 false 

in /i BOOL 1 but 

(true or ( Y( Ax : boo1 . false and x))) and false 7 false 

in ,4 BOOL 2. The recursive procedure Y(1x : boo1 . false and x) can be replaced by 
an arbitrary term of type book for instance true, without affecting the computations: 

M’ = (true or true) and false 7 true and false E false (in n BOOL 1) 

and 

(true or true) and false 7 false (in ,4 BOOL 2). 

We conclude that M = M’ and PIMPL(M) = PIMPL(M’). 
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Let us assume that there exists another n BOOL l-term N such that N -We L, L 
being in normal form, such that PIMPL(M) = PIMPL(N). Assume that we again 
replace subterms of N, which do not contribute to the computation of normal 
forms, by boolean constants, obtaining a term N’. As above, N = N’ and 
PIMPL(N) = PIMPL(N’) should hold. But then PIMPL(M’) = IMPL(M’) and 
PIMPL(N’) = IMPL(N’) as M’ and N’ only contain boolean operators. 
Consistency of the implementation guarantees M’ = N’, hence M = M’ = N’ = N. 

The hope is that the idea carries over to a more general case in that the com- 
putation of a normal form can be rearranged delaying E-reductions (i.e., the normal 
form can be obtained by computations of the form L ++ _ E L’ dE L”). Then we 
could reduce the general case to the one discussed above as implementations 
preserve -E-redexes. 

Unfortunately, the example is too simple minded: 

(A) (true or (Y(1x : boo1 .false and x))) and true + .true and true -+ .true 
in n BOOL 1 but 

(true or ( Y(nx : boo1 . false and x))) and true 

Y- (true or ((1x : boo1 . false and x)( Y( . . ))) and true 

P (true or (false and (Y( . . . )))) and true 

E- (true or false) and true 

E- true and true 

E true in n BOOL 2. 

Here -E-reductions have to take place on the program structure inherited from M 
to obtain the normal form on the implementation level. Hence there is some dif- 
ficulty to determine subterms which do not contribute to the computation of the 
normal form. 

(B) In general, E-reductions cannot be delayed: 
if true or ( Y(1x : ho01 1 false and x)) then true else false fi 

+ E if true then true else false li -+ [true. 

To cope with (A) the remedy is at hand: If we compute 
(true or (Y(nx : booi. false and x))) and true 

y (true or ((Ax : boo1 . false and x)( Y( . . . )))) and true 

,s (true or (false and ( Y( . . . )))) and true z M (in n BOOL 1) 
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we have the computations 

M’ E true and true 7 true (in n BOOL 1) 

but we do not refer to the recursive program Y( . . . ) in 

M’ E. (true or false) and true 7 true and true 7 true (in n BOOL 2). 

This observation suggests the following procedure: If no further recursive calls 
are necessary to compute the normal forms we replace the Y’s by I’s of suitable 
type, obtaining a term [[Ml] from which the same normal forms can be computed 
(Y does not occur in a normal form by 2.16). Therefore [[Ml] = A4 in n i SPEC 0. 
If we then compute the -E-normal form, e.g., 

(true or (1(1x : boo1 * false and x))) and true 7 (true or true) and true 

(assuming that I,, = true) we obtain a term which is sufJicientfy normal in that all 
its subterms are of the form 0, u*M, u*N, (M, N) or t with f E TsPECO. But 

3.3. LEMMA. M = N if PIMPL(M) = PIMPL(N) for sufficiently normal terms 
M, N. 

Proof. By induction over the structure of M. If M= t then NE t’ because of 
typing. As IMPL(t) = PIMPL(t) = PIMPL(t’) E IMPL(t’) consistency of IMPL 
yields t = t’. Because of PIMPL( 0) = 0, PIMPL(u*M) = u*PIMPL(M) etc., the 
inductive assumption can be used straightforwardly. 

In order to ensure that all the necessary recursive calls are executed we take 
advantage of the indexed lixpoint operators. Because of 2.12 and 2.13 any com- 
putation in n SPEC 0 can be viewed as a computation in n SPEC O*. We index all 
Y’s in a /i SPEC O-term A4 by the number of recursive calls needed to compute the 
normal forms of M and PIMPL(M). Then we replace the Y”s by terms Ri, 
inductively defined by 

RO :=I 

Ri+ I :=Af :r-z.f(Rif) 

of suitable type, the resulting term being denoted by [[Ml] 

3.4. LEMMA. Let A4 be a A SPEC*-term such that nofixpoint operator occurs in 
its normal form N. Then [ [M] ] -H ~ Y N H-- * M. 
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Proof. We first check that [[Ml] + _ y [[N]] if M+*N: We have to 
simulate Y-reductions, 

Ri+IMT M(Ri Ml if Y’+‘M + M( Y’M) 

Let M ++* N be a computation such that N is in normal form. Then 
[[Ml] --H [[N]], but [[N]] = N as no r’ occurs in N. 

The results obtained so far almost prove 3.2 except for the difficulties caused by the 
conditional (compare (B) bove). Even if we apply the outlined strategy and 
compute 

[[if (true or ( Y’(lx : booI. false and x)) then true else false Ii]] 

= if (true or( (1x : boo1 + ho01 . f( If))(nx : boo1 . false and x))) 
then true else false li 

p if (true or ((Ax : booI. false and x)( I(lx : boo1 . false and x)))) 
then true else false li 

p if (true or (false and (1(2x : boo1 . false and x)))) 
then true else false Ii 

7 if (true or (false and true)) then true else false ti 

equational rewriting is necessary to create the [-redex. A reassuring observation is 
the 

3.5. LEMMA. PIMPL( (t)) -++ true/false if (t) -++ true/false for t E TSPEC,+,,,,. 

Proof: PIMPL( (t)) = IMPL( (t)) -++ true/false implies that (t) + true/false 
because of consistency of IMPL: IMPL( (t)) reduces to true or false as 
IMPL( (t)) is a closed terminating term of ground type (the implementation 
preserves termination, then we use the normal form lemmas 2.16 and 2.15). Assume 
that ( t ) ++ true. If IMPL( (t ) ) reduces to false, (t ) must reduce to false as well. 
Hence true = false in SPEC 0 in contradiction to the consistency result in 
Section 1.4 and the general assumption. 

The result suggests defining a restricted reduction system replacing E-reductions 
by 

(e) Cl>-+ e true/false if (t ) + E true/false for t E TSPEC,boo,. 

We use M + e N to denote this notion of reduction, 

3.6. LEMMA. M + e N is Church-Rosser; M -H N if A4 -+ ‘N. 

Proof. Observe that the rewrite system satisfies (El)-(E5). The Church-Rosser 

571/34/z-3.15 
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property of the rewriting system follows from the consistency result and the general 
assumption. 

3.7. PROPOSITION. Let M be a closed A SPEC O-term of ground type such that M 
and PIMPL(M) are terminating. Then there exists a closed A, SPEC O-term M’ of 
ground type such that M= M’ and PIMPL(M) = PIMPL(M’) and such that no 
fixpoint operator occurs in M’. 

Proof. We extend the calculus /1 SPEC 1* with indexed fixpoint operators by 
adding (unindexed) lixpoint operators Y with the standard Y-reductions, and 
denote the resulting calculus by n SPEC 1 (*). Clearly, statements 2.12, 2.13, and 3.4 
hold analoguously. 

Let n be the number of recursive call at least needed to compute the normal 
forms of M and PIMPL(M). We index all Y’s occuring in M with n, obtaining M’. 
Then M’ and PIMPL(M’) have the same normal forms (in /1 SPEC 0* and 
/1 SPEC l”‘, where PIMPL( Y’) = Y’) as M and PIMPL(M) (in ,4 SPEC 0 and 
/i SPEC l), because no lixpoint operator occurs in both the normal forms (due to 
the normal form lemma 2.16. Observe that PIMPL(M) is a closed term of ground 
type as base types are implemented by ground types). We apply 3.4. Forgetting the 
indexes yields the result. 

3.8. LEMMA. Let M be a closed A, SPEC-term of ground type such that no 
fixpoint operator occurs in M. Then the normal form of M with regard to 
-+ e-reductions is sufficiently normal. 

Proof Along the lines of 2.16, terms of the form “if B then M’ else M” li” can- 
not occur as B= (t) with t E TSPEC,-, by inductive assumption. But then 
B + e true/false. 

We put all these statements together to prove 

3.2. PROPOSITION. Let IMPL : SPEC 0 * A SPEC 1 be a correct implementation, 
and let M, N be closed SPEC O-terms of the same ground type such that M, N, 
PIMPL(M), and PIMPL(N) are terminating. Then M= N if PIMPL(M)= 
PIMPL( N). 

Proof By 3.6, 3.7, and 3.8 there exist sufficiently normal terms M’ and N’ such 
that M = M’, N= N’, PIMPL(M) = PIMPL(M’), and PIMPL(N) = PIMPL(N’). 
3.3 ensures that M’ = N’ if PIMPL(M’) = PIMPL(M) = PIMPL(N) = PIMPL(N’). 
Hence M= M’ = N’ = N (observe that this statement essentially depends on the 
Church-Rosser property of the calculus). 

3.4. Sufficient Conditions for the Correctness of Compositions 

The above results are not completely satisfactory. We would rather have a 
criterion which guarantees the correctness of extended implementation, but which is 
easily checked. The analyis of examples which fail to preserve termination give 
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some hints: It is sufficient to require that the implementation of a term 
tET sPEC 0(X) does not depend on a variable x E X if the term itself does not depend 
on x. 

DEFINITION. Let IMPL : SPEC 0 + n SPEC 1 be an implementation. 

(i) /1 SPEC l-term N is called IMPL-representative of a ,4 SPEC O-term M if 
there exists a term L such that M= L and N = PIMPL(L). 

(ii) IMPL is called a strong implementation if for all t E T,,,,, 0 and for all 
IMPL-representatives N of t there exists a ,4 SPEC l-term L such that FV(L) = @. 

3.9. THEOREM. Let IMPL : SPEC 0 a/i SPEC 1 be a strong and correct 
implementation. Then the extended implementation PIMPL : A SPEC 0 = A SPEC 1 
is a correct implementation. 

The proof is given by the following lemmas which analyze the use of equations. 
We assume that IMPL : SPEC 0 =z. /i SPEC 1 is a strong correct implementation. 

3.10. LEMMA. Let M --H E N be of ground type with N being in normal form. Then 
PIMPL(M) terminates. PIMPL(M) -++ true/false if A4 -Hi true/false. 

Proof: We determine a prefix of M by 

#aM#=#oM# 

#(M,N)#=(#M#,#N#) 

#u*M#=u*#M# 

#v*N#=v”#N# 
otherwise 

#M#=x where x is a “new” variable of suitable type. 

Then M = M[Z/lj;i] for some tuple ii;i of terms, where X is the list of variables 
occuring in M. Due to typing, any Mi must be of the form PQ with P # C. E-reduc- 
tions do not change the structure of PQ, hence E-reductions either take place 
within # A4 # or within &?. Thus computation sequences are of the form 

As N is in normal form no subterms PQ with P$ ,Z occur in N, thus 44, 5 N. We 
conclude that 

Assume that M is of base type. Strongness of the implementation implies that there 
exists a term L such that PIMPL( # M # ) = L and FV(L) = a. Then 
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PIMPL(M) = PIMPL( # M # [x/A]) = PIMPL( # M # )[x/PIMPL(M)] = 2,9 
L[Z/PIMPL(M)] = L. 

If M is of type bool, the normal form of PIMPL(M) is true or false (by the nor- 
mal form lemma 2.16 as L is of type boo1 and closed). Then the argument of 3.5 is 
to be applied. 

For terms of ground type structural induction works in an obvious way. 

3.11. LEMMA. Let M be a terminating term of ground type. Then PIMPL(h4) 
terminates. 

Proof We reduce h4 to obtain the -E-normal form L (which exists as the 
empty set of rewrite rules satisfies (El t(E5)). Implementations preserve 
-E-redexes, thus PIMPL(M) -+ -,PIMPL(L). The Church-Rosser property 
ensures that the normal form N of M (with regard to + ) can be computed from L. 

The computations must start with a sequence of E-reductions L wE P --H N. If 
PS N, PIMPL(M) terminates because of 3.10. Otherwise the reduction must have 
the form L -Hi P ei Q ++ N as E-reductions create -E-redexes only if some 
boolean subterm B reduces to true or false where B occurs in a subterm “if B then 
L’ else L” li” of L. We reduce such a B to true (resp. false) obtaining a computation 
L -Hi P’ +; Q’ -++ N. By 3.10, PIMPL(L) --H PIMPL(P’) --++( PIMPL(Q’). The 
procedure is iterated. The iteration terminates because of strong normalization of 
the indexed calculus n SPEC O*. 

An easy criterion for strongness is 

3.12. OBSERVATION. Let (t, t’) E Eo such that FV( t) 3 FV( t’). Such an equation is 
culled critical. Z’ PIMPL(t) = PIMPL(t’) f or all critical equations, then IMPL is 
strong. 

Remark. Strongness is not equivalent to preservation of termination as preser- 
vation is only assumed for closed terms. If termination is preserved for all terms of 
ground type, strongness is an equivalent condition. 

EXAMPLE. The implementation of STACK by ARRAY is not strong: 

t = pop (push (empty, n) ) = empty 

does not depend on n, but 

IMPL(t) -++ (update (new, sue 0, n), 0) 

depends on n. If we modify the definition of the pop by 

pop = Is : array x nat . (update ( ps, qs, 0 ), pred(qs) ) 

the last entry is erased and the pointer decreased by one, yielding a strong 
implementation (we assume that the array is initialized by 0, i.e., get(new, i) = 0). 
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4. CONCLUDING REMARKSAND OUTLOOK 

1. An implementation step makes a part of a specification more executable. 
Typically SPEC 1 is an enrichment of SPEC 0, and the enrichment is to be 
implemented by programs. Parameterized data types may support an analysis of 
such a situation. 

2. We have pointed out that our notion of composition of implementations is 
different from that of [S] which adds the equations of the intermediate specification 
to the implementation. Such an approach appears to be somewhat counter intuitive 
as then the identical implementation of a specification by itself is in general not a 
unit. Computational experience suggests that we sacrifice preservation of 
termination (OP-completeness). 

3. At first glance there seems to be little connection to the work of Lipeck [14]. 
But the extension of a data type by recursive data structures is “conservative” in 
terms of [ 14, 4.121 which guarantees composability. The termination condition 
allows reduction of any terminating term to a normal form or, in other words, we 
prove “conservativeness.” 

4. The observation of 3 indicates a more methodological aspect: The syntax of a 
specification should be flexible to enable formalizations closely related to given 
problems. As a consequence, correctness proofs (“conservativeness”) are more 
complicated. This phenomenon is well known from programming languages. 

5. Our approach seems to be closely related to that of [4], where recursive 
schemes are used as programs. The conditions for correctness of composition given 
there seem to be a semantic counterpart to our notion of strongness. 

6. Several problems remain to be discussed: 

- The correctness criteria should be extended to higher types. Quite clearly, 
the semantics of conversion must then be replaced by full abstraction. 

- We can relax our notion of language and implementation in that we 

. introduce more general recursive type equations, polymorphism etc., 
l implement base sorts by arbitrary types 
. extend the implementation to arbitrary types and higher type operators 

adjusting the correctness criteria. Most of the extensions appear to be non-trivial. 

- A characterization of specifications (resp. data types) which can be 
implemented correctly. 
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