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sigma model with higher-derivative terms.
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1. Introduction

Effective field theory is one of the most useful tools available 
to date. Even the standard model, although renormalizable in its 
present formulation, may also be just an effective theory of Nature 
where possible supersymmetric and/or grand unified extensions 
have been integrated out. For particles of accessible energies, we 
can neglect gravity and consider particles on flat space as an (ex-
tremely) good approximation. This is just a consequence of the 
separation of scales between the particle mass and energy versus 
the scale of gravity, i.e. the Planck mass. Light fields do not only 
exist in all of spacetime but are sometimes confined to certain 
subspaces. For solitons hosting moduli, there is again a situation 
where separation of scales can be exploited; namely the mass of 
the soliton versus massless or light moduli. Effective field theo-
ries for moduli have been constructed for many kinds of solitons, 
but very often only in cases where the soliton has a simple, flat 
or straight shape. As examples, the effective actions for monopole 
moduli [1], domain-wall moduli [2–5] and for orientational mod-
uli of non-Abelian strings [6,4,5,7] have been constructed. When 
solitons are particle-like such as monopoles this can describe the 
low-energy dynamics of the solitons in a compact way as geodesics 
of moduli spaces [1], while for solitons being extended objects 
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such as domain walls or vortices, this describes field theories on 
their world-volume, as in the case of D-branes in string theory 
or more general branes. Solitons can, however, generically possess 
much more complicated shapes.

In this Letter we construct a first attempt of effective field the-
ories in principle applicable to solitons of generic shapes and apply 
it to a class of models possessing soliton solutions of flat, spherical, 
cylindrical and toroidal shapes.

2. General considerations

Here we will consider a generalized framework where we ex-
pand a set of fields in eigenmodes as [2]

�a =
∑

n

Mn(eα)ζ a
n (ei), (1)

where ζn are eigenfunctions, Mn are moduli fields, while eα and 
ei are sets of vectors in transverse (world-volume) dimensions 
(α = 0, 1, . . . t) and codimensions (i = t + 1, . . . t + c), respectively, 
of a soliton of a generic shape; see Fig. 1. For simplicity we con-
sider only flat space in this Letter and we have made a decomposi-
tion of directions (locally) as Rd,1 =R

t,1 ×R
c , where the d = c + t

spatial dimensions are split into c codimensions and t transverse 
dimensions.

The kinetic term in the underlying theory will give rise to a 
kinetic term for the moduli as∫

|∇μ�|2 ⊃ |∇eαMn|2
∫

|ζn|2 ∝ 1

Mc
|∇eαMn|2, (2)
ei ei
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Fig. 1. Sketch of a generic soliton profile in direction e3. The moduli b live on the 
manifold spanned by the host soliton. The integration over the codimension is done 
only over a finite range [−�, �], allowing for a generic shape of the host soliton.

where M is a characteristic mass of the soliton system and μ are 
all spacetime indices. For higher-order derivative terms, one simi-
larly obtains e.g.,∫
ei

|∇μ�|2|∇ν�|2 ⊃ |∇eαMn|2
∫
ei

∣∣∇ei ζm
∣∣2 |ζn|2

∝ 1

Mc−2
|∇eαMn|2. (3)

Notice the relative enhancement of this term compared to that 
of (2). The higher-order term induces an enhanced kinetic term 
in the low-energy effective theory living on the soliton.

However, the lower-order term also induces other terms in the 
low-energy effective theory, which will be of higher-order. These 
induced terms are of a different kind as they are higher-order cor-
rections coming from integrating out massive modes propagating 
on the soliton. Let us consider the kinetic term, which would in-
duce something like

1

Mc+2
|∇αMn|2|∇α′Mn′ |2. (4)

This higher-order correction in the effective theory is naturally 
suppressed by (2 powers of) the soliton scale. Whether this term 
will be comparable to the higher-order terms in the theory before 
we take the low-energy limit on the soliton depends on the theory 
and the parameters.

In this Letter, we consider the higher-order terms to be numer-
ically significant and work in the limit of very high soliton mass, 
where we safely can neglect the higher-order corrections coming 
from lower-order terms.1

Let us comment on integrating out the host soliton. We as-
sume that the soliton is extended in the directions spanned by 
{ei} which is taken to be orthogonal to {eα}. However, integrat-
ing over all the subspace spanned by {ei} may be problematic; but 
for physical reasons we need only integrate over the major energy 
peak of the soliton solution (say in the range [−�, �]) on which 
the moduli live and thus neglect the long tales that the soliton may 
possess; see Fig. 1. We do this for physically capturing the low-
energy effective theory on the soliton and in a way that we can 
still use the decomposition of the transverse and world-volume co-
ordinates locally.

Finally, we need to assess the quality of the approximation we 
are making, since we are taking into account corrections propor-
tional to powers of the soliton mass coming from higher-order 
terms. The approximation we are making is a separation of scales 
between the mass of the host soliton and the energies of the 
moduli in the effective action living on the world-volume. The 
higher-order terms, if they have non-negligible coefficients, induce 

1 Needless to say, this may not always be the case, but it is a limit we work in 
here for simplicity.
lower-order terms in the low-energy effective theory on the soli-
ton which are enhanced by a factor of (M/m)δd (where δd is the 
difference in dimension between the higher-order term and the 
lower-order term while m is the typical scale of the moduli). On 
the other hand, as mentioned above, the lower-order terms also 
induce higher-order correction terms which come about from in-
tegrating out massive modes propagating along the soliton. These 
terms are, however, suppressed by a factor of (m/M)2 (or higher). 
It has also been assumed all along that the derivatives in the low-
energy effective theory are not too large. As long as the ratio m/M
is sufficiently small, we can use just the leading-order low-energy 
effective theory.

Higher-order corrections coming from the lower-order terms, 
as mentioned above, can however be calculated systematically [7], 
but we will not consider them in this Letter; i.e., here we present 
only the leading-order effective action.

3. Non-linear sigma model

To illustrate our framework more explicitly, we will now spe-
cialize the considerations presented above to an O(4)-sigma model 
with higher-derivative terms in 3 + 1 flat dimensions, which has 
scalar fields, na , of an O(4) vector, with a = 1, . . . , 4 and Lagrangian 
density

L = −m4 V + c2m2L2 + c4L4 + c6

m2
L6 + · · · (5)

where Ln is the Lagrangian density containing the n-th order 
derivative terms

−L2 = 1

2
∂μn · ∂μn, (6)

−L4 = 1

4

(
∂μn · ∂μn

)2 − 1

4

(
∂μn · ∂νn

)2
, (7)

L6 = BμBμ, Bμ = 1

6
εμνρσ εabcd∂νna∂ρnb∂σ ncnd, (8)

and Bμ is the baryon current. Finally, an appropriate potential 
should be chosen for the soliton under study. There still remains 
a choice to be made, i.e. the codimension of the soliton under 
consideration. Since we consider R3,1 here, there are only two 
non-trivial cases: a codimension-one soliton like a domain wall or 
a codimension-two soliton like a vortex. We will study each in turn 
in the following.

3.1. Codimension-one case

We will now consider the soliton of the type which is described 
by a codimension-one field ζ(e3) and two moduli M1,2(e1, e2), 
where the condensate field is a function of the direction spanned 
by the vector e3 only and the moduli are functions of two orthogo-
nal directions e1 and e2. For concreteness we will parametrize the 
non-linear sigma-model field, n, as

n = {b sin f , cos f }, (9)

where b are scalar fields of a unit 3-vector (b · b = 1) describing 
two moduli and is a function only of the orthogonal directions to 
the field f , i.e. b(e1, e2). The domain solution also possesses a po-
sition modulus, which we will not take into account in this Letter. 
Taking the Lagrangian densities (6)–(8) one-by-one, choosing the 
potential

m2 V = −1

2
m2

3n2
3 + 1

2
M2(1 − n2

4), (10)

and integrating over the codimension spanned by e3, we get
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−Leff
2 = aαα′

2,0

M
∂αb · ∂α′b, m2 V eff = −a2,0m2

3

M
b2

3,

−Leff
4 = aαα′

2,2 M ∂αb · ∂α′b

+ aαα′ββ ′
4,0

2M

(
∂αb × ∂βb

) · (∂α′b × ∂β ′b
)
,

−Leff
6 = aαα′ββ ′

4,2 M
(
∂αb × ∂βb

) · (∂α′b × ∂β ′b
)
, (11)

where we have defined the dimensionless constants as follows

aα1α1
′...αnαn

′
k,


≡
M

2

∫
e3

√
det h sink f

(
∂e3 f

M

)


hα1α1
′ · · ·hαnαn

′
, (12)

where hαα′
is the inverse induced metric on the surface of the 

host soliton. Note that to leading order which we consider here, 
the induced metric is diagonal.

The least surprising result is the kinetic term giving back the 
kinetic term for the moduli with the normalization constant of the 
effective Lagrangian being 1/M . The Skyrme term gives also back 
a Skyrme term for the moduli, but in addition it induces again a 
kinetic term for the moduli, however enhanced by a factor of M2. 
Finally and perhaps most interestingly, the sixth-order derivative 
term induces only the (baby-)Skyrme term for the moduli and 
nothing else.

Putting the pieces together, we have

−Leff =
(

c2aαα′
2,0 m

M
+ c4aαα′

2,2 M

m

)
m ∂αb · ∂α′b

+
⎛
⎝ c4aαα′ββ ′

4,0 m

2M
+ c6aαα′ββ ′

4,2 M

m

⎞
⎠

× 1

m

(
∂αb × ∂βb

) · (∂α′b × ∂β ′b
) − a2,0m2

3m2

M
b2

3. (13)

There are now three mass scales in the game: the domain wall 
mass M , the length scale of the sector that has generated the 
kinetic terms, m, and finally the mass term for the moduli m3. 
Symmetry breaking requires that m3 	 M; this is also needed 
in order for the scales of the moduli to be much smaller than 
that of the host soliton. The total energy of the domain wall is 
EDW = 2

√
c2Mm2 A, where A is the area of the domain wall and 

the thickness of the domain wall is LDW = 1/M . Hence in order 
for the moduli to be really localized, we need M larger than the 
other scales in the problem, in particular M 
 m (or more pre-
cisely 

√
c6M 
 √

c4m). In this limit, we can neglect the first term 
in each parenthesis of (13).

Let us comment on the higher-order corrections from the 
lower-order terms due to integration out of massive modes. The ki-
netic term will induce higher-order corrections of order (m2/M3), 
which in our regime of parameters will be small compared to the 
leading-order terms that we have given here, which are of orders 
1/M and M/m2, respectively. As long as the ratio m/M is suffi-
ciently small, our leading-order low-energy effective theory on the 
soliton is a good approximation.

Let us further comment on leaving out the position moduli 
from the low-energy effective action. The position moduli are first 
of all not as interesting as the orientational moduli, in the phys-
ical context we have in mind here. Second, once the host soliton 
is curved, the position moduli acquire a mass of the order of the 
curvature scale and are thus subleading with respect to the ori-
entational part. Let us however remark that the higher-order cor-
rections coming from the kinetic term generically induce a mixing 
term between the position and orientation moduli at the fourth 
order in derivatives. These higher-order corrections can, however, 
be systematically calculated using the approach of Ref. [7].

The domain wall can host a so-called baby-Skyrmion [8], which 
can be identified with a Skyrmion [9] in the bulk [10,11] (lower 
dimensional analogues of this correspondence can be found in 
Ref. [12]).

Using a scaling argument [13], we can estimate the size of the 
baby-Skyrmion on the flat domain wall as 1/L ∼ √

m3/Mm, and as 
M 
 m3 it is always relatively large in units of 1/m (this estimate 
holds also for vanishing c4).

If c6 is very small or vanishes, the size estimate of the baby-
Skyrmion on the flat domain wall in the large-M limit becomes 
1/L ∼ √

m3m, and so is independent of the thickness of the host 
domain wall.

3.1.1. Example 1: flat domain wall
The sine-Gordon kink is an exact solution to the equations of 

motion derived from the Lagrangian density (5) with the field 
parametrization (9)

f = 2 arctan exp(±Mx/
√

c2). (14)

This solution is exact when the moduli, b are (any) constants. Due 
to separation of scales, we can still use this soliton shape as a 
good approximation even when the moduli do possess dynamics. 
The full solutions have been obtained in Ref. [11].

A vast simplification in this example is that the induced metric 
is just the flat metric, so the effective Lagrangian coefficients, a, 
do not depend on the Greek indices. We can thus evaluate the 
coefficients in the effective Lagrangian

ak,
 = 1

2
c(1−
)/2

2

�M/
√

c2∫
−�M/

√
c2

dy sechk+
 y. (15)

If we define, ak+
 ≡ ak,
 c(
−1)/2
2 , we have

ak+
 = 1

2
sinh y 2 F1

(
1

2
,

1 + k + 


2
,

3

2
,− sinh2 y

)∣∣∣∣
�M√

c2

− �M√
c2

,

where 2 F1 is a hypergeometric function. If we take the limit of 
�M → ∞, the constants are a2 = 1, a4 = 2/3, and a6 = 8/15. 
a2n = √

π �(n)/�(n + 1/2), with n ∈ Z>0 a positive integer, takes 
value in (0, 1] and is monotonically decreasing with n. For the 
flat domain wall case, we can finally write down the effective La-
grangian density

−Leff =
⎛
⎝ c

3
2
2 a2m

M
+ c4a4M√

c2m

⎞
⎠m

(
∂αb

)2

+
(√

c2c4a4m

2M
+ c6a6M√

c2m

)
1

m

(
∂αb × ∂βb

)2

−
√

c2a2m2m2
3

M
b2

3, (16)

where the world-volume directions are {eα} = {y, z}.

3.1.2. Example 2: spherical domain wall
This is the first non-flat example. Let us begin with a word 

of caution. Our construction focuses on the effective description 
of the moduli on a soliton of a given shape. It does not guar-
anty stability or even existence of the host soliton. These questions 
are a separate issue and should be addressed carefully and in-
dependently. A further issue is that not all topological sectors of 
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the moduli are available in the effective theory. In this case of a 
spherical domain wall; the moduli have to live in the topological 
charge-one sector. Full solutions have been constructed in the lit-
erature [14].

Here we will simply assume the form of the spherical domain 
wall with size R and construct the effective theory that would live 
on such an object. R will however be a function of the param-
eters in the theory as it is actually determined dynamically. The 
induced inverse metric is {hrr, hθθ , hφφ} = {1, R2/r2, R2/r2 sin2 θ}, 
and 

√
det h = (r/R)2 sin θ , where we have rescaled the induced 

metric so that it is dimensionless. The constants of the effective 
Lagrangian can be determined from (12). Finally, we can write the 
effective Lagrangian in this case

− Leff = m sin θ
[

c2mRã2,0,0 + c4

mR
ã2,2,0

]

×
(

(∂θ b)2 + 1

sin2 θ
(∂φb)2

)

+ m

sin θ

[
c4

mR
ã4,0,−2 + 2c6

(mR)3
ã4,2,−2

]

× (
∂θ b × ∂φb

)2 − (mR)2 Rm2
3 sin θ ã2,0,2b2

3, (17)

where the integration measure now is simply dθdφ and the fol-
lowing dimensionless constants have been defined

ãk,
,n ≡ 1

2

∫
dy yn sink f (y)(∂y f )
, y ≡ r

R
. (18)

In this example we will not contemplate taking any limits, as the 
system is somewhat complicated. The size of the sphere, R , is dy-
namically determined and is a function of the other parameters in 
the theory, e.g. c2, c4, c6, m, M and so on.

3.2. Codimension-two case

The final type of soliton we will consider is of codimension two 
and is described by two fields, f (e2, e3), g(e2, e3) and a single 
modulus M(e1), where the modulus lives in a single dimension 
only (plus time). We will parametrize the non-linear sigma-model 
field, n, as

n = {sin f cos g, sin f sin g,b cos f }, (19)

where b are scalar fields of a unit 2-vector (b · b = 1) describing 
an S1 modulus and is a function orthogonal to both the fields of 
the host soliton f , g , i.e. b(e1). We take again the Lagrangian den-
sities (6)–(8), choose the potential

m2 V = −1

2
m2

3np3
3 + m2 V vortex, (20)

where p3 = 1, 2 and integrate over the codimensions e2 and e3 to 
obtain

−Leff
2 = aαα′

2,0,0

M2
∂αb · ∂α′b, (21)

−Leff
4 = aαα′

2,1,0 ∂αb · ∂α′ b, (22)

−Leff
6 = 2aαα′

2,0,2M2 ∂αb · ∂α′ b, (23)

m2 V eff = −ap3,0,0m2
3

M2
bp3

1 , (24)

which are all Lagrangians for a free (massive) theory for the mod-
ulus. The non-trivial part however is the content of the coefficients
aα1α1
′...αnαn

′
p,k,


≡ M2−2k−2


2

×
∫

e2,e3

√
det h cosp f

[
(∇ei f )2 + sin2 f (∇ei g)2

]k

×
[

sin f ε i j∇ei f ∇e j g
]


hα1α1
′ · · ·hαnαn

′
. (25)

Let us first put together the pieces of the effective Lagrangian den-
sity

−Leff =
(

c2aαα′
2,0,0m2

M2
+ c4aαα′

2,1,0 + 2c6aαα′
2,0,2M2

m2

)

× ∂αb · ∂α′ b − ap3,0,0m2m2
3

M2
bp3

1 . (26)

The first term (21) gives just a kinetic term for the modulus with 
a standard prefactor, while the second term (22) gives the kinetic 
term but with a relative enhancement by a factor proportional to 
the kinetic energy of the host soliton. Finally, and perhaps most 
interestingly, the last term (23) gives again a kinetic term for the 
modulus, but with a prefactor proportional to the baby-Skyrmion 
charge of the orthogonal S2 to the S1 where the modulus lives. 
For some host solitons, this charge may vanish of course.

Let us again comment on the higher-order corrections from the 
lower-order terms due to integration out of massive modes. The 
first correction will be a fourth-order term and thus it will not 
compete with any terms given here.

3.2.1. Example 3: straight vortex
In the straight vortex case, we consider a non-trivial soliton in 

the fields f , g and the S1 modulus extending in the z direction. 
For this we can choose the potential

m2 V vortex = 1

2
M2(n2

1 + n2
2)(n

2
3 + n2

4), (27)

and the coefficients can easily be evaluated. For the straight vor-
tex the only metric-component entering the coefficient is hzz = 1
which is trivial and the integrals can be carried out numerically 
in cylindrical coordinates using det h = ρ2 and the polar deriva-
tives, i.e. (∇ f )2 = f 2

ρ + f 2
θ /ρ2. The effective Lagrangian density 

thus reads

−Leff =
(

c2a2,0,0m2

M2
+ c4a2,1,0 + 2c6a2,0,2M2

m2

)
(∂zb)2

− ap3,0,0m2m2
3

M2
bp3

1 . (28)

This effective theory possesses sine-Gordon kinks. For instance, for 
p3 = 1 a baby-Skyrmion string extended in the z direction can bear 
sine-Gordon kinks in terms of its twisted S1 modulus and each of 
these kinks can be interpreted in the full 3-dimensional theory as 
Skyrmions. Setting p3 = 2 results in half-kinks which correspond 
in the full 3-dimensional theory to half-Skyrmions (possessing half 
the baryon charge of that of a Skyrmion).

The final example is to compactify the vortex on a circle to 
obtain a vorton [15,16]. In this case, the effective Lagrangian is 
basically the same as the above one, with the kinetic term replaced 
by (∂θ b)2 and of course different, but straightforward to compute, 
coefficients a. In this case, the twisting of the modulus implies that 
only full Skyrmions exist (and thus no half-Skyrmions).
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4. Discussion

We have developed a basic framework for calculating effective 
actions on, in principle, generic solitons. The advantage of this ap-
proach is the simplified theories for the types of objects a host 
soliton can host. The disadvantage is that stability and existence 
should be carefully examined separately. In this work we did not 
consider the translational type of moduli, which is related with the 
shape itself of the soliton as this is a somewhat more complicated 
problem; we thus leave this part for future developments. Need-
less to say, one can calculate higher-order classical corrections to 
these effective actions and finally one may consider also quantum 
corrections etc. A different generalization that would be interest-
ing to consider for GUT-scale solitons is to take the curvature of 
spacetime into account; this can be seen as the next-level geomet-
ric backreaction.
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