
 Procedia Computer Science 56 (2015) 49 – 58

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2015.07.182

ScienceDirect

The 12th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2015)

An Adaptive User Interface in Healthcare

Elhadi M. Shakshukia*, Malcolm Reida, Tarek R. Sheltamib

aAcadia University, 15 University Ave, Wolfville, NS B4P 2R6, Canada
bKing Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

Abstract

Healthcare is a broad subject with many different challenges, yet it is important and relatable to everyone. The aging Baby
Boomer generation is an important healthcare issue today. In Canada, and many other developed nations, the number of citizens
reaching the age of retirement and seniority is growing faster than the rate of citizens working and providing health related
services. As people age they tend to require more frequent checkups and health services, ultimately putting a bigger resource
drain on healthcare infrastructure. New advancements in Computer Science and Engineering are allowing the development of
next generation applications with the purpose of providing healthcare services in a cost effective and efficient way. This paper
proposes a multi-agent system for tracking and monitoring health data for patients. Furthermore, agents within the system use
reinforcement learning techniques to build an adaptive user interface for each human user. The actions and behaviour of users are
monitored and used to modify their respective user interface over time. To demonstrate the feasibility of the architecture, two
scenarios are provided. We conclude with several possible future directions for this research.

© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Program Chairs.

Keywords: Multi-Agent Systems; Healthcare Technology; Adaptive User Interface; Reinforcement Learning

1. Introduction

Healthcare is a broad subject with many different challenges, yet it is important and relative to everyone. The aging
Baby Boomer generation is an important healthcare issue today. In Canada and many other developed nations the
number of citizens reaching the age of retirement and seniority is growing faster than the rate of citizens working
and providing health related services1, 2. In the first case, when people age they tend to require more frequent

* Corresponding author. Tel.: 1-902-585-1524

E-mail address: elhadi.shakshuki@acadiau.ca

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82067604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.182&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.182&domain=pdf

50 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

checkups and health services, ultimately putting a bigger resource drain on the healthcare system. This is a clear sign
that new ideas and innovations are required to help provide the quality of healthcare demanded by the population.

Multi-Agent Systems coupled with advancements in Engineering, such as miniature low power processors, is
new a technology from the field of Computer Science offering new means of providing healthcare and related
services3, 4.

In the second case, there is an increasing trend in healthcare monitoring with personal technology, a movement
sometimes referred to as eHealth, and mHealth5. People have the desire, and for the first time in history, the
technology required to actively monitor and track their own health metrics. In both cases however, a problem exists
when a user is unable to operate the interface to his or her technological device. There could be any number of
reasons for this, but for the remainder of the paper we will focus on: environmental or physical causes.
Environmental causes are external factors like low or bright light, while physical causes are user relative properties
such as poor vision or Parkinson’s disease. Regardless of which type, these reasons may make the operation of
personal devices, and in turn the healthcare application, difficult or impossible. In this paper, we are tackling the
following question: What if an interface could adapt over time, to meet the needs of a user? This subject is an active
branch of research in the artificial intelligence and multi-agent system communities6, 7. The theory behind such an
interface requires a multi-agent system to use a machine learning technique that helps to build, test, and evaluate a
policy for each user.

The remainder of this paper will focus on building a system to monitor and share the health metrics of specific
users. Gathered data can be accessed either by the patient to whom it belongs or a qualified health professional.
The health metrics tracked may include properties such as pulse, blood oxygenation, or any attribute that is able to
be monitored using digital sensors. Human users, both patient and healthcare professional, access the system
through a mobile interface. Furthermore, the system uses reinforcement learning techniques to build an adaptive
user interface for each user. A hypothetical scenario for a system like this is monitoring patients in a nursing home.

2. Related Work

This section provides a brief description of the fundamental techniques that are utilized to enhance the user
experience.

2.1. Adaptive User Interface and Reinforcement Learning

An adaptive user interface is a user interface, which adapts itself by changing its layout and rearranging the screen
elements based on user needs8, 9. Such an interface is useful in many areas, particularly for mobile applications.
The possible applications of adaptive user interfaces however, are not limited to mobile devices. This concept can be
extended to environments such as aircraft displays and military devices, to name two examples 8, 6.

Constructing an adaptive user interface is made possible by the use of models, which form a standard for creating
the interface 8. Two types of models are used for accommodating individual user requirements: (1) an error model,
and (2) an interface model 8. Ultimately, these models describe the behavior of users, which can be later extended
into the adaptive interfaces. Models are updated by observing the actions of the user within the system.

Similar research has been conducted with respect to adaptive interfaces for users of mobile devices in an external
environment, namely outside8. Environmental issues such as fog and low light as well as user issues such as poor
motor skills and the complexity of an interface can affect the ability of a user to interact with a mobile device7, 8.
One strategy presented for overcoming this problem was to use reinforcement learning to build an error model of a
user’s interactions with the interface and adapt accordingly7.

The theory of reinforcement learning provides a normative account, deeply rooted in psychological and
neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment10. To
use reinforcement learning successfully in real-world situations, agents are confronted with the difficult task of
deriving efficient representations of the environment, and use them to generalize past experience to new situations10.

51 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

2.2. Body Area Sensor Network

A Body Area Sensor Network (BASN) is one type of Wireless Sensor Network. BASNs primary goal is gathering
information about a human body using sensors located in and on the target body11. Although the two types of
networks are closely related, BASN have the following distinguishing properties: (1) agents are heterogeneous, (2)
agents are few in number, and (3) wireless signal quality is variable3. The first property results from the requirement
that nodes must be placed in or on the body, and therefore must be built to be as small and unobtrusive as possible.
This limits the functionality of each node to only what is required for the task at hand11. To illustrate this point,
consider two BSAN nodes: one for measuring brainwaves and another for measuring heart rate. Both must be able
to communicate, but it would be redundant in size, cost, and power consumption to have the hardware for sensing
both stimuli built into each.

The second property also follows from the requirement that nodes must be placed in or on the body and made to
be small and unobtrusive. Therefore agents must be few in number because there is no room for multiple nodes of
the same functionality. The argument can be made that this reduces the overall redundancy of the system. However,
using more nodes requires more power to be expended by the system as well as more equipment to be worn by the
user, both of which are ultimately undesirable results12. Finally, the last property is a constraint of the environment
in which BASN operate. The human body is not a conductive medium for wireless signals and can physically block
or interfere with signal transmission between nodes12. This problem is challenging, as the body is a dynamically
moving object. Therefore, to be truly robust and efficient a BSAN system must take this into account when
communication between nodes occurs.

3. Environment

The healthcare environment in this study consists of Doctors, Patients, and Software agents. Patient users (PUs) are
the people being monitored by the proposed system architecture. Each patient is monitored via a wireless body area
sensor network (BASN). Each BASN can be tailored to meet the needs of the patient and monitor desired vital
statistics. The BASN interfaces with a central coordinator device carried by the patient as illustrated in Figure 1.
In this paper, we make the assumption that the coordinator device is a smart phone with a touch-screen interface.

Figure 1: example body area sensor network worn by patient.

The software agents in the environment are: user agent (UA) and resource agent (RA). Each human user is assigned
a UA. There will be many user agents in the system, and one resource agent. The RA is responsible for writing
historical data to a central server repository. This allows for the later retrieval and analysis of important patient data.
An additional role of the Resource Agent is to act as a security authority and validate the credentials of users
requesting patient data.

User agents can be operated by either a doctor or a patient, and must behave accordingly. Patients will be
wearing a BASN for monitoring health data, which will act as sensor input for the user agent representing them. A
patient can use his or her coordinating device to view real-time as well as historical health data that they own.
Doctors will have a UA representing them and their authority as a doctor, which in turn provides access to patient
health data, both historical and real time. Figure 2 shows a visualization of the system architecture.

52 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

Figure 2: System architecture overview.

4. System Architecture

The system architecture consists of two types of agents: user agent (UA) and resource agent (RA). The function of
user agent is to act as the interface for the human user to interact with the system. The function of the resource agent
is to act as an authority for storing data as well as retrieving historical data for both patients and doctors. Our focus
in this paper is on the user agent that has the capability of enhancing the user experience using reinforcement
learning. The User Agent has the following main components: sensor, communication, learning, and user model, as
shown in Figure 3.

Figure 3: internal architecture of the User Agent, consisting of four components.

The agent’s sensor component is responsible for receiving health metrics from the environment via the
coordinating device. Once received and sanitized, health data and any relative agent communications are then
passed on to the communication and learning components for further processing. The agent’s communication
component is responsible for two tasks: (1) transmitting data to the resource agent for historical recordkeeping, and
(2) responding to requests by doctor operated user agents. The user model component contains data relating to the
usage habits of the human user, both their actions as well as errors. This model is initiated to a zero sum default
state and is modified over time by the Learning Component as the agent attempts to learn the behavior patterns of
the user. Lastly, the following section provides a detailed description of the reinforcement-learning component.

4.1. Reinforcement Learning Component

The reinforcement learning component (RLC) is responsible for learning the behaviour of a user by tracking his or
her historical actions as well as errors in interface use. The RLC can be broken down into three sub-components: (1)

53 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

learning, (2) evaluating, (3) adapting. See Figure 4 for an illustration of how the sub-components relate and
interact with each other and the system environment around them.

Figure 4 shows the steps as information flows through the RLC. The first step consists of data entering the RLC
from the agent’s sensor component. This data may consist of user action choices, such as viewing a health metric, as
well as information about how the user interacted with the system interface. The data is processed by the learning
component (LC). This component parses the information received into two categories: action, and behaviour. The
action group consists of user choices and preferences, while the behavior group consists of statistical interactions
with the interface, such as coordinates of touch-screen clicks or ambient light levels. In some cases a user action
might not be included with the usage data, an example of this would be a patient with poor motor skills being unable
to tap a button. In the later example, the learning component needs to learn and recognize different types of
behavior. Once actions and behaviours are identified they are passed to the Evaluating Component (EC).

The evaluating component is responsible for pulling relative information, with respect to the received usage data,
from the agent’s perceived concept of the user, which is stored in the user model component. Next, the EC
compares the new usage actions with the existing policy for those actions. If there is no data about that action in the
policy already, then nothing happens and the data is passed on to the next component. However, if there is
information in the agent’s user model then the EC must compare it with the new usage data and determine the
differences. Next, data is passed to the Adapting Component (AC).

The adapting component receives the new usage data as well as the related data from the user model for that
action. The AC must determine what actions need to be taken and update the user model accordingly. We provide
an example scenario in the next section, in which a user has trouble tapping an interface button. The RLC observes
the users’ difficulty interacting with the button and updates the screen accordingly.

4.1.1. Example of Learning
Lets assume that the user model contains a vector representation of the users previous actions, such as:
UserActions(a1 … an). Where there are n actions in the user model. Furthermore, the user model also contains a
vector representation of the users erroneous interactions with the user interface: UserErrors(e1 … en). Where n is the
number of erroneous actions observed so far.

Hypothetically, a user unable to tap a button on screen may be capable of tapping near the button. Every touch
interaction with the interface is observed by the RLC. Therefore, if a touch interaction is within a predefined
threshold distance of a known button, or any selectable screen object, the action is identified as erroneous with
respect to that action and recorded in the UserErrors list. Lets assume that the user in question suffers from hand
tremors and is still unable to tap the button described earlier after five attempts.

Each interaction is observed by the RLC and unsuccessful attempts are stored in the UserError list. The
Evaluating Component within the RLC is able to determine if the new action being observed has a history of being
difficult for the user, by examining the actions in the UserError list. A threshold value for erroneous interactions
with screen objects can be defined, at which point the interface is modified by the Adapting Component to meet the
need of the user.

As a hypothetical course of action in this case, the adaptive component expands the size of the button by a factor
of 10%.

54 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

Figure 4: Reinforcement Learning Component.

To visualize how the system works two scenarios are provided. In the first scenario we consider a patient who would
like to view his or her pulse data. In the second scenario we consider a doctor who requests the pulse data for the
past 24 hours from four of his patients.

4.1.2. Scenario I
The situation describing this scenario is described first followed by the sequences of occurring events between

the user and the system. A patient, say Bob, spent the past 40 minutes walking around the building. He would like to
view his pulse data for the past hour.

Let’s assume we provide the user with a smart device as shown in Figure 5. First, Bob must interface with a
coordinating device, specifically the smart device provided to him. Interaction requires launching an application
interface to the system. One open, Bob taps the view health data button to view health information. A dialog box
will pop up and requiring Bob to select the type of health information he would like to view, in this case heart rate.
An additional dialog box will pop up and prompt Bob for an optional time range to view, in this case the range is the
previous hour. Figure 5 contains a mock up interface for the view health information screen.

When Bob presses the view health data button, the user agent (UA) representing Bob receives this request and
simultaneously passes on the request to the resource agent (RA) and to its own internal learning component.
Assuming Bob submitted the request for data at 11:04am, the learning component (LC) receives a user action of
request(pulseData, 10:04, 11:04). The LC further receives data from the coordinating device about the users
erroneous interaction with the interface. The learning component quantifies observations into two categories of
actions and behavior and forwards the data on to the evaluating component.

The evaluating component (EC) reads data from the agent’s user model and determines if the received actions
and behaviors are new data for the model, or already known. New data, or data requiring modification in the model
are passed on to the adapting component.

 The adapting component (AC) combines the data in the user model with the current usage data and updates the
model. In this scenario, the user model would contain an entry that user Bob has a preference for viewing heart rate
data, specifically in the previous 60 minutes. Furthermore, the AC must adapt the interface as needed if the agent
perceived difficulty interacting. While this is happening, the Resource agent prepares and delivers the requested data
to the user agent for display to the end user Bob.

55 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

Figure 5: mock interface for requesting health data on the coordinating device.

Figure 6 shows a formal use case diagram for the scenario described above. The two actors are a patient and user
agent, which are Bob and his respective user agent in this case. Furthermore, the resource agent is present, but only
interacts with the user agent to provide historic data.

Figure 6: use case diagram of a patient requesting health data.

4.1.3. Scenario II
The situation describing this scenario is described first, followed by the sequences of occurring events between the
user and the system. A doctor, Alice, cares for several patients suffering from heart complications. She would like
to view the pulse rates of four of her patients, for the past 24 hours.

Lets assume Alice is provided with a smart device, like the one in Figure 5. First, Alice interfaces with the
system via the provided coordinating device. This interaction requires launching an application on the device. Next,
before performing any operations with other users, Alice must prove her identity by authenticating with credentials
known only to her. The Resource Agent evaluates the credentials. Once successfully authenticated, Alice requests
to view health data by tapping on the view health data button. A dialog box appears asking Alice the type of health
information to view, she will specify heart rate. Another dialog box appears prompting Alice to input the names of
patients for whom to the data should be gathered. Finally, the last dialog box appears asking for a time range for the
requested data.

Lets assume the four patients are: Bill, Jeb, Bob, and Vail. Furthermore, lets assume that Alice is making this
request at 2:30, on January 4, 2015. The request generated by Alice will be RequestData(Credentials, <Bill, Bob,
Jeb, Vail>, <Pulse Rate>, <January 3, 2015, January 4, 2015>). Alice’s credentials are encrypted and passed
along with the request in an attempt to minimize system attack vectors, due to the nature of such personal data. The
Resource Agent authenticates the credentials, before any data is actually retrieved.

56 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

The second parameter is a list of patient identifiers, while the third is a list of the requested health metrics. Lastly,
the fourth and optional parameter is the time range for the request. In the event no time range is specified, the
system returns the current known values.

The User agent receives the request and begins a parallel process of: (1) passing this request on to either the
related user agents (in the case of real-time data monitoring) or the resource agent (in the case of historical data
monitoring), and (2) observing and learning the behaviour of the doctor’s actions and interactions with the system.

The reinforcement learning component of the user agent works the same for doctors as it does for patients. That
is, the Learning component receives the action request as well as information about erroneous interactions with the
interface. In this case, the UserActions model would be updated to reflect the new RequestData action and its
associated preferences. The associated preferences are the patient names, requested health metric, and specified time
range in the request. The most frequently associated preferences may be used to streamline the user interface for
doctors in a hurry. A formal use case diagram of this scenario describe above is shown in Figure 7. The actors are
Alice the doctor, the user agent representing her, and the resource agent.

Figure 7: use case diagram of doctor requesting patient information.

5. Implementation

A formal code implementation has not yet been completed for this system; however, some suggestions and
recommendations for a starting platform are suggested.

5.1. System Container

The system container is a platform in which agents exist and operate. Management tasks such as the creation and
deletion of agents must be achieved with a central control or management resource. Our suggested software
package for this task is the Java Agent Development (JADE) Framework. The JADE framework provides the
critical agent communication and management features required by our proposed system architecture. JADE is an
advantageous choice as an agent platform because it is well maintained and documented. Current academic research
is being conducted into the impact and feasibility of developing MAS applications using JADE13. An example of
our proposed system container running on JADE is shown in Figure 8.

57 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

Figure 8: proposed system agents running on the JADE platform.

5.2. Historical Services

Historical services in the context of the proposed system mean the storage of patient health statistics in an easily
retrievable manner. While requests to read and write data are handled by the resource agent, the data must still be
stored somewhere. The obvious choice for this is a database, of which there are many choices available. Our
recommendation for a starting platform Oracle’s free and open source MySQL database. This is because of the
open source licensing, easy integration with java, and a large number of thoroughly documented examples. There
are a number of healthcare applications already using MySQL to manage data14.

5.3. Body Area Sensor Network

Developing or obtaining the hardware and software required for a functioning body area sensor network is a
challenging and expensive task. Alternatively, a simulation of a BASN may be used in the development of our
proposed system architecture. The simulation of a patient worn BASN could be accomplished with the JADE
platform mentioned previously. Setting up a new system container to represent the BASN worn by the patient.
There, the various sensors and coordinating device can be simulated using agents, as shown in Figure 9. This is
only intended to be a proof of concept simulation, as eventually a real BASN will be required to evaluate the
usefulness of the proposed system.

Figure 9: simulated BASN and coordinating device, in JADE.

6. Conclusion

This paper presented architecture for a multi-agent system with the purpose of tracking and reporting human health
information, such as heartbeat or blood oxygen levels, to both patients and doctors. The feasibility of the proposed
system architecture is demonstrated with two hypothetical scenarios. Furthermore, several software packages are
presented as a starting platform for an implementation of this system. The future work for this research includes
examining the possibility of using other machine learning techniques such as supervised and unsupervised learning
to build more accurate user models. Furthermore, implementing a real world functioning example of this system is
the next step in evaluating the feasibility of the proposed system architecture.

58 Elhadi M. Shakshuki et al. / Procedia Computer Science 56 (2015) 49 – 58

Acknowledgements

The authors would like to thank the research and graduate office at Acadia University for their support. The authors
also like to thank King Fahd University of Petroleum and Minerals for supporting this research.

References

1. CBC News. (2012, May) CBC News. [Online]. HYPERLINK "http://www.cbc.ca/news/canada/canada-has-higher-proportion-of-seniors-
than-ever-before-1.1151526" http://www.cbc.ca/news/canada/canada-has-higher-proportion-of-seniors-than-ever-before-1.1151526

2. CBC News. (2015, January) Why doc? Solution to doctor shortage may be more than money. [Online]. HYPERLINK
"http://www.cbc.ca/news/canada/newfoundland-labrador/why-doc-solution-to-doctor-shortage-may-be-more-than-money-1.2929966"
http://www.cbc.ca/news/canada/newfoundland-labrador/why-doc-solution-to-doctor-shortage-may-be-more-than-money-1.2929966

3. Ashraf Darwish and Aboul Ella Hassanien, "Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,"
Sensors, vol. 11, no. 6, pp. 5561-5595, May 2011.

4. B. H. Calhoun et al., "Body Sensor Networks: A Holistic Approach From Silicon to Users," Proceedings of the IEEE, vol. 100, no. 1, pp. 91-
106, August 2011.

5. Prasan Kumar Sahoo, "Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks," Sensors, vol. 12,
pp. 12606-12633, September 2012.

6. Siddharth S Rautaray and Anupam Agrawal, "Version based hand gesture recognition for human computer interaction: a survey," Artificial
Intelligence Review, vol. 43, no. 1, pp. 1-54, Jan. 2015.

8. Karthik Narayanan Ramalingam, Modeling error-based Adaptive User Interfaces. Aimes, USA: Iowa State University, 2011.
7. Wiard Jorritsma, Fokie Cnossen, and Peter van Ooijen, "Adaptive support for user interface customization: a study in radiology,"

International Journal of Human-Computer Studies, vol. 77, no. 1, pp. 1-9, May 2015.
9. Ana L. C. Bazzan, "Beyond Reinforcemnet Learning and Local View in Multiagent Systems," Künstliche Intelligenz, vol. 28, no. 3, pp. 179-

189, August 2014.
10. Volodymyr Mnih et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, Feburary 2015.
11. M. A. Hanson et al., "Body Area Sensor Networks: Challenges and Opportunities," Computer, vol. 42, no. 1, pp. 58-65, January 2009.
12. Cho Namjun, Bae Joonsung, and Yoo Hoi-Jun, "A 10.8 mW Body Channel Communications/MICS Dual-Band Transceiver for a Unified

Body Sensor Network Controller," IEEE Journal of Solid-State Circuts, vol. 44, no. 12, pp. 3459-3468, December 2009.
13. Jörg P. Müller and Klaus Fischer, "Application Impact of Multiagent Systems and Technologys: A survey," in Agent-Oriented Software

Engineering, Onn Shehory and Arnon Sturm, Eds. Berlin, Heidelberg, Germany: Springer-Verlag, 2014, pp. 27-53.
14. MySQL Corporation. (2015, January) MySQL in Healthcare. [Online]. HYPERLINK "https://www.mysql.com/why-mysql/isv-oem-

corner/healthcare/" https://www.mysql.com/why-mysql/isv-oem-corner/healthcare/

