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SUMMARY

CTCF-binding locations represent regulatory se-
quences that are highly constrained over the course
of evolution. To gain insight into how these DNA
elements are conserved and spread through the
genome, we defined the full spectrum of CTCF-
binding sites, including a 33/34-mer motif, and iden-
tified over five thousand highly conserved, robust,
and tissue-independent CTCF-binding locations by
comparing ChIP-seq data from six mammals. Our
data indicate that activation of retroelements has
produced species-specific expansions of CTCF
binding in rodents, dogs, and opossum, which often
functionally serve as chromatin and transcriptional
insulators. We discovered fossilized repeat elements
flanking deeply conserved CTCF-binding regions,
indicating that similar retrotransposon expansions
occurred hundreds of millions of years ago. Repeat-
driven dispersal of CTCF binding is a fundamental,
ancient, and still highly active mechanism of genome
evolution in mammalian lineages.

INTRODUCTION

In contrast to exons and structural RNA sequences, genomic

regions bound by proteins such as transcription factors (TFs)

can change rapidly in mammalian genomes. One apparent

exception may be the sequences bound by CCCTC-binding

factor (CTCF), a DNA-binding protein that can divide transcrip-

tional and chromatin domains, help direct the location of cohe-

sin, and orchestrate global enhancer-promoter looping (for

reviews, see Dunn and Davie, 2003; Phillips and Corces, 2009).

CTCF is an essential (Fedoriw et al., 2004; Heath et al., 2008;

Splinter et al., 2006), widely expressed nuclear protein with

an 11 zinc finger DNA-binding domain that is highly conserved
from fly to human (Burcin et al., 1997; Klenova et al., 1993;

Moon et al., 2005). Originally identified as a transcriptional regu-

lator for the c-myc oncogene (Baniahmad et al., 1990; Filippova

et al., 1996; Lobanenkov et al., 1990), CTCF remains the only

identified sequence-specific DNA-binding protein that helps

establish vertebrate insulators (Bell et al., 1999). Additionally,

CTCF has been implicated in transcriptional activation, repres-

sion, silencing, and imprinting of genes (Awad et al., 1999; Burcin

et al., 1997; Filippova et al., 1996; Klenova et al., 1993; Lobanen-

kov et al., 1990).

Despite its importance to mammalian genome function

and regulation, different preferred binding sequences for CTCF

have been reported. A 15 to 20 bp core consensus sequence

represented in nearly all CTCF-binding events was identified

using genome-wide chromatin immunoprecipitation (ChIP) data

(Kim et al., 2007). Subsequent studies have confirmed this result

in different mouse, human, and chicken cells (Chen et al., 2008;

Cuddapah et al., 2009; Heintzman et al., 2009; Jothi et al., 2008;

Schmidt et al., 2010a). Earlier studies suggested that different

combinations of zinc fingersmight target sequenceswith lengths

varying between 20 and 40 bp (Filippova et al., 1996; Ohlsson

et al., 2001). Indeed, the DNase I footprint of CTCF at the amyloid

precursor protein (APP) promoter is 40 bp in length (Quitschke

et al., 2000). The apparent disconnect between in vivo binding

specificity and the observed in vitro binding preferences has

yet to be fully resolved (see Phillips and Corces, 2009).

How do CTCF-binding sequences change and emerge? The

sequences bound by TFs evolve rapidly, most likely the result

of genetic drift (ENCODE Project Consortium, 2007; Borneman

et al., 2007; Dermitzakis and Clark, 2002; Kunarso et al., 2010;

Odom et al., 2007; Schmidt et al., 2010b), whereas large, infor-

mation-rich motifs, such as the one bound by CTCF, are likely

to be selectively conserved. For example, CTCF’s multiple roles,

including division of chromatin and gene expression domains,

have been reported to place strong purifying evolutionary pres-

sure on bound regions (Kim et al., 2007; Xie et al., 2007; Bourque

et al., 2008; Kunarso et al., 2010; Martin et al., 2011; Mikkelsen

et al., 2010). Despite this likely selective pressure, evidence
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Figure 1. CTCF Occupancy in Five Placental Mammalian Genomes Reveals a Large Core Set of Conserved Binding

(A) The total numbers of CTCF-binding events found in orthologous locations between each pair of placental species are shown as row-column intersections. The

right-most numbers for each species represent all alignable CTCF-binding peaks (total peaks are in parentheses). Percentages are percentage-averages

between pairwise species (Experimental Procedures).

(B) Five-way comparison of CTCF binding in five placental mammals identified a shared set of 5,178 CTCF-binding events.

(C) The upper track shows CTCF binding after CTCF knockdown (CTCF) in human MCF-7 cells (Figure S1F). The track immediately below shows CTCF binding

with control RNAi (mock). The bottom five tracks show CTCF-binding data in liver of five mammalian species in syntenic regions, demonstrating that highly

conserved CTCF-binding events are less sensitive to perturbation by RNAi knockdown.
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suggests that CTCF binding is also evolving rapidly, most

notably the discovery that mouse embryonic stem cells (ESCs)

have thousands of CTCF-binding events that cannot be

conserved in the human genome, as they are found in rodent-

specific B2 repeat elements (Bourque et al., 2008). This is

consistent with early models (McClintock, 1950) and recent

examples of repetitive elements driving regulatory divergence

in eukaryotic genomes (Bejerano et al., 2006; Bourque et al.,

2008; Britten, 1997; Han et al., 2004; Kunarso et al., 2010; Markl-

jung et al., 2009; Mikkelsen et al., 2010; Wang et al., 2007; Lynch

et al., 2011).

By analyzing the evolution of CTCF binding in six representa-

tive mammals, we found that CTCF binds a 33/34 bp motif with

a two-part profile that is conserved across mammals, providing

an explanation for the observed CTCF target sequence dis-

crepancies. Remarkably, the bound sequences exhibit a hier-

archyconservedacrossmammals,wherein frequently usedmotif

instances underlie CTCF-binding events that are both most con-

served and most resilient to changes in nuclear concentration

of CTCF after RNAi knockdown. Moreover, in most species

examined, we found that CTCF-binding events are associated

with repeat element expansions, revealing the mechanism by

which they are born. Functional studies illustrate that both

newborn and conserved CTCF-binding events act as chromatin

and gene expression barriers with similar frequency. Together,

our results support a repeat-driven mechanism for functional

CTCF-binding expansion, which is currently active in multiple

mammals and was active in our common ancestor, thus creating

the CTCF-binding events shared across mammals.

RESULTS

CTCF-Binding Events Are Markedly More Conserved
among Mammals than Tissue-Specific TF Binding
in Mammalian Genomes
WeusedChIP followed by sequencing (Table S1 available online)

to determine CTCF binding in livers isolated from five eutherian

mammals (human,macaque,mouse, rat, and dog) and themeta-

therian gray short-tailed opossum and confirmed that CTCF

binding is mainly directed by genetic sequence rather than

nuclear environment (Wilson et al., 2008) (Figures S1A and S1B).

We first compared CTCF-binding conservation with matched

genome-wide data available for the TFs HNF4A and CEBPA in

mouse, dog, and human (Schmidt et al., 2010b). Consistent

with prior reports (Kunarso et al., 2010), we observed substan-

tially higher conservation among CTCF-binding events than

among liver-specific TFs, even near direct liver-specific target

genes. For example, HNF4A and CEBPA binding has extensively

diverged around the CEBPA target gene APOA2 (Schmidt et al.,

2010b), yet the CTCF-binding events in the same region are

uniformly conserved in all three mammals (Figure S1C). Globally,

CTCF binding is shared five times as often among human, dog,
(D) The fraction of binding events found only in human (human only) or shared

knockdown of CTCF protein. Very few deeply shared CTCF-binding events were

(E) Relation between motif information content and motif sequence conservation

conservation for the same TFs as in (E).

See also Figure S1 and Table S2.
and mouse, as are CEBPA and HNF4A; conversely, CTCF has

proportionally less lineage-specific binding (Figure S1D).

The inclusion of rat and macaque allowed us to compare

closely related species, which overlapped by up to 60% in

shared CTCF binding. In fact, as might be expected, CTCF-

binding divergence generally corresponded with evolutionary

distance (Figure 1A).

More importantly, we observed a core set of over 5,000 CTCF-

binding events shared by all five eutherian mammals (Figure 1B)

and found across numerous human tissues (Figure S1E). Con-

served CTCF-binding events are less sensitive than species-

specific binding events to reduced levels of the CTCF protein.

We analyzed CTCF binding before and after RNAi knockdown

in human MCF-7 cells (Schmidt et al., 2010a) (Figures 1C, S1F,

and Extended Experimental Procedures) and found that virtually

all binding events conserved across five species were resistant

to knockdown, compared to only 60% of human-specific bind-

ing events (Figure 1D). Thus, conserved binding events are

highly stable protein-DNA interactions, suggesting that they

play functional roles in many cell types.

Although higher conservation among CTCF-binding events,

relative to tissue-specific TFs, could be due solely to the informa-

tion content or length of the boundmotif, we found that conserva-

tion of CTCF-binding events across mammalian genomes is not

purely the result of a longer targetmotif. We observed an increase

in shared binding events between human, mouse, and dog with

motif lengths from CEBPA (4%), to HNF4A (5%), to CTCF

(24%), but we did not see a significant dependence when looking

at a collection of sequence-specific factors. The median

sequence conservation of a cross-section of motifs (ENCODE

Project Consortium, 2011) revealed some degree of correlation

with the motifs’ length and information content; however this

wasnot statistically significant andwas largelydue to the inclusion

of CTCF and NRSF/REST (see Extended Experimental Proce-

dures and Figures 1E and 1F). After excluding CTCF and NRSF,

the other TFs showed very little to no correlation. Together, these

data show that over 5,000 CTCF-binding events are highly bio-

chemically and evolutionarily stable across mammalian species.

CTCF Binds a DNA Motif Containing a Two-Part Profile
Our genome-wide data for CTCF binding in livers of five euthe-

rian species allowed us to identify de novo DNA sequences

associated with CTCF binding at hundreds of thousands of

locations. In addition to the known 20 bp motif, we further

discovered a second 9 bp motif present at high frequency and

with consistent spacing in each species. Both halves of the motif

are unchanged across 180 million years of evolution, consistent

with the high conservation of CTCF’s DNA-binding domain (Fig-

ure S2), and create together a two-part 33/34 bp binding motif,

which occurs in a quarter to a third of CTCF-binding events

(Figures 2A and 2B). The second motif is downstream by either

21 or 22 bp from the center of the previously identified motif in
among all placental (five-way) were characterized by their sensitivity to RNAi

affected by CTCF knockdown.

for nine TFs in human. (F) Relation between motif length and motif sequence
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Figure 2. CTCF Binding Often Occurs at a Highly Conserved Motif, Consisting of a Two-Part Profile

(A) Motifs (M1 and M2) identified de novo from CTCF-binding events.

(B) Binding event counts and number of binding events with at least one motif (M1 andM1+M2) in all six species. M1+M2 20,21 represents the preferred spacing

patterns of these two submotifs.
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approximately equal proportions in all studied species, except

mouse and rat (Figure 4). Henceforth, we will refer to the canon-

ical 20 base motif as M1 and to the 9 base motif as M2. The M2

motif has previously been found in CTCF DNase footprints, but

the role of this motif is unknown (Boyle et al., 2011). The variable

presence of the shorter and less information-rich M2 agrees with

earlier suggestions that CTCF may have multiple binding modal-

ities (Burcin et al., 1997; Filippova et al., 1996).

To characterize the importance of M2 for CTCF binding, we

first identified binding events conserved in five placental mam-

mals that contain both M1 and M2. Then we searched for

evidence of positional sequence conservation of the M2 submo-

tif. Plotting the frequency of all unchanged bases in the multiple

species alignment revealed that the bases associated with both

M1 and M2 were much less likely to see sequence changes

compared to both the spacer and surrounding sequences

where background levels are observed (Figures 2 and S2). We

used genomic evolutionary rate profiling (GERP), a specific

model of evolutionary constraint at the sequence level, to

confirm this observation of purifying selection on both the previ-

ously known and the newfound motif bases (Cooper et al., 2005)

(Figure 2C).

We found that binding events containing the full 33/34 bpmotif

show stronger ChIP enrichment, are more conserved, and

remain less sensitive to CTCF knockdown compared to binding

events containing only the M1 motif (Figure 2D). Moreover, the

CTCF-binding peak is offset from the center of the M1 motif,

consistent with CTCF binding to a larger, directional 33/34 bp

motif. In cases where the M2 motif is present, this effect is

slightly stronger (Figure S2C). These results indicate that

CTCF directly binds M1+M2 in a highly conserved manner

(Figure S2D).

Hierarchical Motif-Word Usage of CTCF Is Conserved
among Mammals
The position weight matrix of CTCF’s binding motif is composed

of thousands of specific sequences, or motif-words. We tested

whether CTCF has a preferred set of motif-words by analyzing

their frequency of occurrence. We clustered highly similar

motif-words using the 14most informative bases of theM1motif,

which together capture over 95% of the motif’s information

content. A set of 33,994 different 14-mer motif-words (out of

a possible 69,865) are used by CTCF at least once in the five

placental mammals. We found that a small subset of these

tens of thousands of motif-words are disproportionately often

bound by CTCF within and between different species (Figure 3).

For example, the top 200 bound motif-words are responsible for

4,006 binding events in the human genome; in fact, just 2,492
(C) The DNA sequence constraint around the CTCF motif in human was plotted

(Cooper et al., 2005). The frequencies of unchanged bases in five-way shared CTC

profile.

(D) Peaks containing the M2 motif in preferred spacing are stronger in ChIP en

mammals, and are resistant to RNAi-mediated knockdown.

(E) A multiple mammalian sequence alignment of a CTCF peak at the APP gene i

a complete 34 bp M1 and M2 CTCF motif.

(F) DNA sequence of the human c-myc promoter (Human c-myc Fragment A) boun

canonical M1 CTCF motif (red) and the M2 motif (blue). A 3 bp mutation in the M

See also Figure S2.
words (3.6% of the possible words) account for over half of the

binding events in the human genome. CTCF motif-word usage

is strikingly conserved between the species (Spearman rank

correlation > 0.76) and recapitulates both the evolutionary

distances of the species as well as key characteristics of the

CTCF-binding events (Figure 3). In particular, we observed that

the frequency of a word’s usage positively correlates with both

the likelihood of a binding event being shared among all five

species and the strength of the ChIP enrichment (Figure 3).

A similar analysis for a typical tissue-specific TF (HNF4A)

showed considerably lower correlation of motif-word usage

(Figure S3A) and no correlation between word frequency and

either conservation or ChIP enrichment (Figure S3B). Collec-

tively, these results reveal a functional hierarchy of CTCF-bound

motif-words maintained during evolution.

Lineage-Specific Repeats Drive Divergence of CTCF
Binding in Many Mammalian Lineages
The existence of a motif-word usage hierarchy as well as thou-

sands of highly conserved CTCF-binding events is inconsistent

with prior models proposing rapid TF birth by neutral mutation

and natural selection (MacArthur and Brookfield, 2004).

We therefore searched for an alternative mechanism for the de

novo creation in a common mammalian ancestor of the thou-

sands of CTCF-binding events now found throughout mammals.

Despite the generally high conservation of CTCF motif-word

usage, we noted that specific sets of motif-words were overrep-

resented in rodents (mouse and rat), dog, and opossum (Fig-

ure 4A). We found that the vastmajority of these overrepresented

motif-words are embedded within SINE transposons (Figures 4B

and S4).

In mouse, this observation is consistent with previous reports

showing that the CTCF motif was carried to over 10,000 loca-

tions in the mouse genome by the B2 SINE family (Bourque

et al., 2008), which has expanded significantly in rodents (Kass

et al., 1997). We further discovered that CTCF binding has

been spread to thousands of locations in the rat genome, also

via muridae-specific B2 SINEs (Figure 4B). About 2,000 binding

events found within B2 elements are shared by mouse and rat,

whereas approximately 5,300 B2-associated binding events

are found uniquely within mouse and over 1,200 solely in rat

(Figures 4C and S4). Thus, the B2 expansion was active before

the speciation of rats and mice and remained active in both

lineages after speciation. The thousands of rodent-expanded

B2-associated CTCF-binding events, most of which contain a

full 33 bp CTCF motif with a 20 bp spacing between M1 and

M2, have profoundly influenced the occurrence of specific

bound CTCF motifs (Figure 4D). However, the B2-associated
by observed/expected genomic evolutionary rate profiling (red, GERP) scores

F-binding events are shown as position weight matrix (PWM) below the GERP

richment both by read count and peak width, are more highly shared among

s shown. The DNase I footprint (red box, Quitschke et al., 2000) encompasses

d by CTCF in vivo and in vitro (Filippova et al., 1996). The sequence contains the

2 motif that eliminates CTCF binding in vitro is indicated in green.
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Figure 3. CTCF Motif Usage Shows a Conserved Hierarchy among
Placental Mammals

Heat map of the 2,492 CTCF motif-words found at least five times in any

species anchored to human; words are normalized by their background

occurrences within each genome. This set of words is found in 27,543 human-

binding events. The data are sorted in the human column by decreasing

frequency, and spearman rank correlations after one-dimensional hierarchical

clustering of the rows are shown. The average ChIP-enrichment of the motif-

words separated into bins containing 100 words is shown as a bar chart (left).

Similarly, the fraction of five-way conserved CTCF-binding events within the

same bins are shown as a bar chart (right). See also Figure S3.
CTCF-binding events seem not to be enriched near mouse-

or rodent-specific genes compared to other binding events

(Figure S4).

Similarly, we found that the SINEC-Cf member of the canoi-

dea-specific SINE repeat family LYS has carried CTCF-binding

events through the dog genome (Figure 4). In contrast to rodents,

the dog-specific expansion appears more limited, resulting in

well under a thousand binding events and a sequence that is

centered solely on the M1 motif (Figure 4E).

Similar to rodents and dogs, word-level analysis of the CTCF-

binding events revealed a set of motif-words overrepresented in

opossum, frequently associated with opossum-specific SINE

repeats MAR_Mdo (MIR family) (Figures 4A and 4B). Opossum

is the closest out-group to the eutherian mammals, and its ge-

nome is rich in transposable elements (Mikkelsen et al., 2007).

The expansion ofCTCF-binding events numbers in the hundreds,

and the CTCF-bound MIR elements in opossum contain only M1

motifs, with no evidence of associated M2 motifs (Figure 4D).

Perhaps surprisingly, we found no evidence of enrichment of

CTCF-binding events within species-specific repeats in human
340 Cell 148, 335–348, January 20, 2012 ª2012 Elsevier Inc.
or macaque, nor did we discover recent activity of retrotranspo-

son expansion of CTCF within these two species.

Nevertheless, CTCF binding has expanded via retrotransposi-

tion in multiple, independent, diverse mammalian lineages;

therefore, this mechanism of regulatory evolution is a profoundly

ancient strategy that must predate the mammalian radiation.

Molecular Paleontology of Fossilized, Repeat-Driven
CTCF Expansions
If the repeat-driven mechanisms currently active in creating

functional CTCF-binding events were also active in the common

mammalian ancestor, then ancestral expansions would eventu-

ally become shared binding events in descendant species, such

as our study species. Such amodel would explain both the origin

of shared CTCF-binding events as well as lineage-specific

expansions via the same mechanism.

This hypothesis predicts that fossilized repeat sequences from

ancient repeat expansions will be found around loci bound by

CTCF in multiple mammals. However, tens of millions of years

of evolution would likely have altered the genetic sequences

surrounding the bound CTCFmotif and so eliminated systematic

evidence of associated repeat elements that could be obtained

using a purely computational approach.

Taking a more targeted approach that exploited our six

species’ in vivo experimental data, we looked for evidence in

any genome of repeat element survival within the set of

partially—or fully—shared CTCF-binding events. We found just

over 100 CTCF-binding events (Table S3), often very deeply

conserved, which had fossilized repeat sequences surrounding

them in one or more of the mammals we profiled (Figure 5).

In Figure 5, we show two representative examples of candi-

date CTCF-binding events carried by ancestral repeats. First,

on HsChr13, we identified a partially, though deeply, shared

CTCF-binding event located within an ancient amniote SINE

element (Figure 5) (Hirakawa et al., 2009). Interestingly, this

specific binding event was lost along the rodent lineage due to

a motif disruption in the common rat-mouse ancestor. Second,

on HsChr4, a highly conserved CTCF-binding event is found

associated with a copy of mammalian repeat MamRep564,

which is shared among all placentals but appears to have arisen

subsequent to the placental-marsupial split.

These examples, along with the larger set of partially

preserved repetitive elements associated with shared CTCF

binding (Table S3), lend support to a model wherein repeat-

carriage of CTCF binding created highly conserved CTCF-

binding events throughout mammalian and most likely verte-

brate evolution.

Newly Created, Repeat-Driven CTCF Expansion Events
Demarcate Chromatin and Gene Expression Domains
To assess the functional impact of SINE-driven CTCF-binding

events on chromatin, we exploredCTCF’s known role as a barrier

element that divides chromatin domains (Cuddapah et al., 2009;

Xie et al., 2007). We reasoned that genomic locations where

CTCF plays a functional role in separating chromatin domains

would show distinct changes in histone modifications to either

side of the CTCF-binding event. We therefore profiled the

genome-wide location of histone 2A lysine 5 acetylation



(H2AK5ac) (Cuddapah et al., 2009) and directly compared these

data with matched CTCF occupancy data. This analysis identi-

fied hundreds of regions of abrupt changes in active chromatin

demarcated by CTCF binding, consistent with CTCF’s role as

a barrier element and representing almost 5% of CTCF-binding

events. Negative controls, such as unrelated TFs and random re-

gions, showed only background level association with H2AK5ac

in liver (Figure S6). In mouse, approximately 25% of CTCF chro-

matin boundaries were found to be associated with repetitive

element expansion. For example, in mouse a CTCF-binding

event foundwithin a B2 SINE represented the boundary between

the highly transcribed, liver-specific ApoA cluster of genes

and the neighboring genes downstream on chromosome 9

(Figure 6A).

We asked whether newly expanded CTCF-binding events

function as chromatin barriers as often as the five-way shared

CTCF-binding events that predate the placental mammalian

expansion. We exploited the recent expansion of B2 elements

that have introduced thousands of novel, lineage-specific CTCF-

binding events to the mouse genome. We categorized mouse

CTCF binding by whether it was (1) conserved in all five placental

mammals, (2) present in amouse-specificSINE repeat, (3) present

in a rodent-shared SINE repeat, and (4) all other binding events,

as well as adding (5) random genomic regions as controls (Fig-

ure 6B).CTCF-bindingeventsdemarcate activeand inactivechro-

matin at a similar frequency, regardless of whether the CTCF-

binding events are shared between the eutherian mammals,

rodentB2associated,ormouse-specificB2associated. Likewise,

all CTCF boundaries are capable of demarcating transcriptionally

active and inactive chromatin. Genes divided by CTCF-demar-

cated chromatin domains had higher transcriptional divergence

(Figure 6C). In addition, we did not observe specificmotif features

associated with CTCF barrier elements, as CTCF binding gener-

ated from B2 transposons is equally likely to form CTCF barrier

elements, as is non-repeat-associated CTCF binding.

To further assess the functional impact of SINE-driven CTCF-

binding events on transcription and gene expression, we

explored whether CTCF can act as a transcriptional insulator

between tandem genes (Figure 7A). Tandem genes are tran-

scribed by RNA polymerase in the same direction and have

been shown to have more coherence in their relative gene

expression than non-tandem-organized genes (Caron et al.,

2001; Lercher et al., 2002). We collected mRNA sequencing

data in livers of all studied species, identified the subset of

tandem genes divided by at least one CTCF-binding event in

each species, and further subdivided this set by whether the

CTCF-binding event was shared, repeat associated, or neither.

In all species, we observed statistically significant increases in

gene expression differences between tandem genes divided

by CTCF (Figure 7B). We did not find any significant effects of

the presence or absence of M2 on transcriptional insulation

(data not shown). Indeed, repeat-associated CTCF-binding

events in mouse, rat, and dog serve to transcriptionally separate

members of tandem gene pairs.

Our data thus indicate that newly arisen CTCF-binding events

in multiple mammalian species functionally demarcate chro-

matin domains and influence transcription at a similar frequency

as do ultra-conserved CTCF-binding events.
DISCUSSION

Understanding the structure, function, and origins of the genome

is fundamental to understanding the mechanisms of mammalian

evolution. By assaying CTCF binding in matched tissues of six

diverse mammals, we generated high-resolution in vivo maps

of CTCF evolution. This uncovered over 100,000 previously

unidentified CTCF-binding events in multiple species. Our data

reveal a highly conserved 33/34 bp motif consisting of a two-

part profile for CTCF binding, confirm that CTCF binding is

remarkably conserved compared to other TFs, and demonstrate

that CTCF has a core set of over 5,000 bound regions shared

among five representative placental mammals. Word-level anal-

ysis of the binding events revealed a conserved motif hierarchy,

and that new CTCF-binding events are born in highly diverse

mammalian lineages via the expansion of repetitive elements.

Many of these newborn CTCF-binding locations function as

barriers to both chromatin and gene expression. Finally, we

provide compelling evidence that the same process that

currently drives lineage-specific expansion of CTCF-binding

events in diverse mammals ancestrally generated the core set

of strong, deeply conserved CTCF-binding events.

Insights from an Expanded CTCF-Binding Motif
A larger motif for CTCF binding explains ambiguous results from

prior studies (see also Figure S2), which suggested that the

regions bound by CTCF are larger than 20 bp. For instance,

the 40 bp DNase I footprint at the APP gene promoter sequence

(Quitschke et al., 2000) contains the full motif we have identified

(Figure 2E). Earlier work described CTCF as a multivalent TF that

binds to two different DNA sequences in human (CTCF human

fragment A) and chicken (CTCF fragment V) (Filippova et al.,

1996). Our results explain that chicken fragment V contains the

previously known 20-mer CTCF motif (Figure 2F) and is thus

readily bound in vitro by zinc fingers 2 to 7; in contrast, the human

fragment A contains the full 33 bp motif and thus requires the

additional four C-terminal zinc fingers to be bound in vitro.

A 3 bp mutation within the critical DNA bases of the M2 motif

abolished CTCF binding (Figures 2F and S2) (Filippova et al.,

1996). The existence of a set of CTCF-binding events that require

the M1 and M2 motifs over the sole presence of the constitutive

M1 motif can also help explain the exceptional conservation of

CTCF’s 11 zinc finger DNA-binding domain (Klenova et al.,

1993; Moon et al., 2005). From the interaction of the C-terminal

zinc fingers with theM2motif, we can also deduce CTCF’s orien-

tation relative to the binding sequence. The expanded CTCF-

binding motif helps explain previous, somewhat conflicting

results and supports recent reports describing a preferred orien-

tation of CTCF binding relative to its target sequence (Quitschke

et al., 2000; Renda et al., 2007).

The Genetic Architecture and Regulatory Implications
of CTCF-Binding Conservation
The structural and regulatory organization of the mammalian

genome is fundamentally dependent on CTCF (Phillips and

Corces, 2009). Prior studies have revealed in the context of the

rapid divergence of tissue-specific TF binding that CTCF binding

is comparatively well conserved between human and mouse cell
Cell 148, 335–348, January 20, 2012 ª2012 Elsevier Inc. 341
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Figure 4. Repeat Expansions Remodeled CTCF Binding in Three Mammalian Lineages

(A) Heatmap of 71 motif-words identified as highly enriched in mammalian lineages.

(B) Lineage-specific repeats that are associated with the lineage-specific motif-words.

(C) Venn diagram showing the number of B2 repeat-associated binding events shared between mouse and rat.
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Figure 5. Intermittent Repeat Expansions Can Lead to Conserved, Lineage-Specific, and Species-Specific CTCF Binding in Mammals

A CTCF-binding site found within an ancient transposon shows conserved binding in placental and nonplacental mammals (left data inset) and must have been

present in the mammalian ancestor (ur-Mammal). In contrast, a CTCF-binding site generated in the eutherian ancestor (ur-Placental) shows conserved binding

across placental mammals but is absent in marsupials (right data inset). More recent CTCF-binding expansions lead to increasingly lineage- and species-specific

CTCF binding. For example, the expansions of B2 repeats in the mouse and rat ancestor (ur-Rodent) created CTCF binding that is highly shared between mouse

and rat, whereas the continued B2 expansions along both lineages also generated species-specific CTCF-binding sites (see Figure 4C). See also Table S3.
lines (Bourque et al., 2008; Kunarso et al., 2010). Reflecting the

organizational role of CTCF, one of the few hundred CTCF-

bound regions reported as shared among human, mouse, and

chicken cells has been shown to serve as a genomic barrier to

redirect EVI5 intron-located enhancers to regulate the distal

GFI1 gene (Martin et al., 2011).
(D) Frequencies of distances between the centers of M1 and M2 in all six studied

arrow), due to the B2 repeat expansion.

(E) Sections of the aligned consensus sequences from CTCF-carrying retrotrans

motif, dog and opossum only contain M1. Consensus motifs for CTCF binding s

(F) Estimated ages of lineage-specific repeats that expanded CTCF binding. White

bound by CTCF.

See also Figure S4.
Our global data extend these studies, exploring CTCF-

binding evolution in matched tissues from six mammals. This

comparison revealed that conserved CTCF binding often

shows a number of specific features, including the following:

(1) tissue invariance, (2) a specific and conserved motif-word

composition, (3) high ChIP enrichment, and (4) high-affinity
species. There is a smaller spacing between M1 and M2 in mouse and rat (blue

posons in mouse, rat, dog, and opossum; rat and mouse contain the M1+M2

olely based on bound repeat instances are shown below each alignment.

box plots are all instances of the indicated repeat; red box plots are only those
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protein-DNA interactions, as shown by strong resistance to

RNAi-mediated knockdown. In contrast, most tissue-specific

mammalian TFs not only evolve rapidly in their genomic binding

but also differ from CTCF in most other features as well (Ku-

narso et al., 2010; Mikkelsen et al., 2010; Odom et al., 2007;

Schmidt et al., 2010b). The conserved set of CTCF-binding

events, therefore, represent an organizational pattern present

in all mammalian cells, regardless of the developmental stage

and tissue, and delineate chromatin structures required for con-

served genome functions (as explored at one genomic locus;

Martin et al., 2011).

Repeat-Driven Expansions of CTCF Binding
Are an Ancient and Ongoing Source of Genome
and Regulatory Evolution
Due to CTCF’s long, high information content motif, new CTCF-

binding events are dramatically less likely to be generated by

random mutations than binding events for TFs targeting much

shorter motifs. However, the copy and paste mechanism of

transposable elements is blind to size. Therefore, once a CTCF

motif has been acquired by a transposon, it can spread across

the genome by generating carbon copies of the originally gained

motif sequence. Our experiments revealed that repeat-associ-

ated binding expansion carried functional CTCF-binding events

throughout the muridae, canidae, and didelphidae genomes,

suggesting that most mammalian lineages are subject to similar

CTCF expansions. Interestingly (and perhaps surprisingly), our

data in human and macaque show no evidence of such events.

It is possible, however, that primate lineages that we have not yet

studied have indeed been subject to repeat-driven expansion of

CTCF binding, as other primate SINEs such as Alu elements

have been active recently.

Expansions via transposable elements are increasingly recog-

nized as a general mechanism for the generation of new binding

sites of TFs with complex binding motifs (Johnson et al., 2006,

2009; Mortazavi et al., 2006). In addition, recent reports provide

evidence that transposable elements contain sequences for

larger regulatory assemblies that restructure tissue-specific

transcriptomes (Lynch et al., 2011; Kunarso et al., 2010). For

example, many binding events of the neuronal repressor NRSF/

REST have been generated across vertebrate genomes by

means of lineage-specific transposons (Johnson et al., 2006,

2009; Mortazavi et al., 2006), and the composite OCT-SOXmotif

has been expanded in humans (Kunarso et al., 2010). Similar

expansions of retrotransposons that carry CTCF binding might,

in fact, have an evolutionary advantage over those that do not:

it has been shown that CTCF binding can prevent DNA methyla-

tion and the establishment of repressive chromatinmodifications
Figure 6. Chromatin Boundaries Separated by Repeat-Associated CTC

(A) A B2-associated CTCF-binding event separates the ApoA cluster from downs

reflected both by H2AK5ac occupancy in mouse liver (bottom green track) and in

green is active) (Mortazavi et al., 2008).

(B) Heat map representation of H2AK5ac chromatin domains flanked by CTCF

repeat-associated (mouse RABs), repeat-associated and shared between mouse

(all other).

(C) Violin plots represent gene expression differences (Manhattan distances) be

categories.

See also Figure S6.
(Lee et al., 2010; Rand et al., 2004). Consequently, CTCF binding

might provide transposable elements with a survival strategy, by

protecting them against repressive chromatin and DNA modifi-

cations. Alternatively, CTCF and similar factors may have been

part of genomic defense strategies against specific transposable

element invasions.

Taken together, our data support a model in which lineage-

specific repeat expansions have been propelling distinct CTCF

motif-words and their associated binding events across the

genomemany times throughout mammalian evolution (Figure 7).

The same mechanisms creating lineage-specific CTCF binding

in extant species are almost certainly responsible for creating

the ancient CTCF events found across all mammals. Despite

the gradual divergence of genetic sequences surrounding the

core CTCF sequence motif, we found evidence that multiple

repeat sequences have carried CTCF binding in common ances-

tors. Indeed, deliberate molecular paleontology across our data

revealed over a hundred such repeat fossils associated with

conserved CTCF binding.

Howrepeatelementscangloballycontribute towardorganismal

phenotypes, from tissue-specific gene expression (Kunarso et al.,

2010) to coat color (Blewitt et al., 2006) to lactation (Lynch et al.,

2011), has only begun to be explored. Here, we have described

how mammalian repeat elements are a major mechanism by

which CTCF binding is born, thus revealing how complex eukary-

otic regulatory structures and the repetitive sequences they

control can collaborate to drive genome evolution.

EXPERIMENTAL PROCEDURES

We performed chromatin immunoprecipitation experiments followed by high-

throughput sequencing (ChIP-seq) (Schmidt et al., 2009) using liver material

isolated from six mammalian species: human (Hsap; primate), macaque

(Mmul; primate), dog (Cfam; carnivora), mouse (Mmus; rodent), rat (Rnor;

rodent), and short-tailed opossum (Mdom; didelphimorphia). For each ChIP

experiment, at least two independent biological replicates from different

animals, generally two young adult males, were performed (see Extended

Experimental Procedures). ChIP-seq experiments were performed as recently

described (Schmidt et al., 2009), and most interspecies analyses were per-

formed as previously reported (Schmidt et al., 2010b).

The CTCF antibody 07-729 (Milipore) was used for all experiments except

the opossum ones, which were performed using a custom antibody as

described and validated in Figure S5. The custom opossum CTCF antibody

is available upon request. The STAG1 antibody used for validation of the

opossum results and the H2AK5ac antibody were both purchased from

abcam, ab4457 and ab1764, respectively.

ACCESSION NUMBERS

Data have been deposited under ArrayExpress accession numbers E-MTAB-

437 and E-MTAB-424.
F Binding in Rodents

tream genes on mouse chromosome 9 (top blue track). Active transcription is

direct sequencing of mouse liver mRNA by gene name shading (red is silent;

binding that is shared between all five species (five-way), mouse unique and

and rat (mouse and rat shared RABs), and not within the previous categories

tween H2AK5ac and CTCF defined chromatin domains for different gene pair
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Figure 7. Tandem Gene Pairs Separated by CTCF Differ More in

Their Expression than Gene Pairs that Are Not Separated by CTCF

(A) Exemplified tandem gene pairs that are separated by CTCF binding or not

separated by CTCF (no). The CTCF-separated tandem gene pairs are further

distinguished into the following three groups: (1) shared between the five mam-

mals shown in (B) (five-way shared), (2) associated with lineage-specific repeats

(repeat-associated, RAB), (3) all other CTCF-separated gene pairs (all other).

(B) Violin plots represent gene expression difference distributions (Manhattan

distance) per tandem gene pair group as explained in (A). Stars (*) indicate

p values compared to the no CTCF binding category that are smaller than

0.001 (wilcoxon rank-sum test).
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